
Intermediate Language Design of
High-level Language Virtual Machines

Towards Comprehensive Concurrency Support

Stefan Marr
Software Languages Lab

Vrije Universiteit Brussel, Belgium
stefan.marr@vub.ac.be

Michael Haupt
Hasso Plattner Institute

University of Potsdam, Germany
michael.haupt@hpi.uni-potsdam.de

Theo D’Hondt
Software Languages Lab

Vrije Universiteit Brussel, Belgium
tjdhondt@vub.ac.be

Keywords Intermediate Language, Instruction Set, Bytecode, De-
sign, Concurrency, Virtual Machines, Survey

1. Introduction
Today’s major high-level language virtual machines (VMs) are
becoming successful in being multi-language execution platforms,
hosting a wide range of languages. With the transition from few-
core to many-core processors, we argue that VMs will also have to
abstract from concrete concurrency models at the hardware level, to
be able to support a wide range of abstract concurrency models on
a language level. To overcome the lack of sufficient abstractions for
concurrency concepts in VMs, we proposed earlier to extend VM
intermediate languages by special concurrency constructs [Marr
et al. 2009].

As a first step towards this goal, we try to fill a gap in the current
literature and survey the intermediate language design of VMs.
Our goal is to identify currently used techniques and principles as
well as to gain an overview over the available concurrency related
features in intermediate languages. Another aspect of interest is the
influence of the particular target language, for which the VM is
originally intended, on the intermediate language.

2. Related Work on Intermediate Languages
To our knowledge, surveys on instruction set design have been con-
ducted only in the field of hardware instruction set architectures
(ISA) [Hennessy and Patterson 2007]. With respect to VMs, cur-
rently there is no survey available discussing intermediate language
design.

However, several aspects thereof are discussed separately. The
question whether an AST-based intermediate format has benefits
over a bytecode format has been been discussed by [Kistler and
Franz 1999]. Another important design decision is the machine
model of the VM [Shi et al. 2008]. The optimization potential of
bytecode sets with regard to branch prediction in modern CPUs
has been discussed by [Proebsting 1995] and [Casey et al. 2007].

With respect to multi-language VMs, the Java Virtual Machine
(JVM) [Lindholm and Yellin 1999] gained a lot attention over the

c©ACM, 2009. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was
published in VMIL’09, October 25, 2009, Orlando, FL.
http://doi.acm.org/10.1145/1711506.1711509

last decade, but was originally designed to execute Java code only.
Thus, beside the Common Language Infrastructure (CLI) [ECMA
International 2006], until now, there is no major platform which
was specifically designed as a multi-language execution platform.
However, general comparison of the JVM and the CLI by [Gough
2001] as well as [Shiel and Bayley 2005] point out that both
platforms share the basic ideas.

3. Survey
We surveyed 17 VMs with sufficiently detailed specifications or
open source implementations. On the one hand, we covered differ-
ent kinds of languages. On the other, we also include alternative
implementations for the same language to gain a feeling for the
influence of the target language on the VM intermediate language.

Instead of the full survey, here we give only the used criteria,
which are partially inspired by the survey on hardware ISAs by
[Hennessy and Patterson 2007].
Specification or Implementation Only a minority of the surveyed
VMs is based on a specification, thus it is important to draw a
distinction, as the analyses based on actual implementations usually
also regard technical subtleties.
Abstraction Level The intermediate layer of a VM commonly uses
either a representation which is strongly related to its target lan-
guage in terms of an abstract syntax tree (AST), or it relies on
a representation which is design with the execution machinery in
mind, i. e., a bytecode set resembling hardware ISAs.
Machine Model VMs are usually modeled similar to hardware
machines. We distinguish between stack, register, register-memory,
and memory-to-memory machines [Hennessy and Patterson 2007].
As the number of registers of a machine model, we refer to general
purpose registers only.
Representation For bytecode sets, we look into instruction encod-
ing in terms of instruction width, whether it is a fixed width or vari-
able width per instruction. Furthermore, the instruction size, num-
ber of instructions, and the used style to encode the instructions are
of interest. Other designs are characterized by their node-types of
the AST-, graph-, or S- expression-based representation.
Instruction Categories Most of the common operations in the inter-
mediate representations can be classified into one of the following
categories: Load/Store/Stack, Compare, Control Flow & Exception,
Arithmetic and Logic, Creational, and Conversion operations. All
deviations from these categories will be reported explicitly.
Execution Techniques As approaches to executing intermediate
representations, we identify switch and threaded [Bell 1973] inter-
pretation, and dynamic (just-in-time) as well as static compilation.
Optimizations Regarding the intermediate representation, we are
also interested in relevant design decisions achieving optimizations.



4. Concurrency Support
One of the conclusions we can draw from our survey is that explicit
concurrency support in the intermediate language is fairly rare in
today’s VMs. In most VMs, even the support for native concur-
rency is still limited. Thus, they are not able to benefit from the
concurrency provided by the underlying system. This is due to the
fact that many VMs still use a global interpreter lock and provide
only green threads or coroutines as means of concurrency.

In the following section, we briefly discuss the concurrency
support found in the different intermediate languages.
CLI Actual concurrency support in the CLI’s bytecode set is lim-
ited to the volatile instruction causing all changes to subsequent
pointer references to be made visible in memory without caching.
Furthermore, the CLI relies on a flag in methods to indicate that a
lock has to be acquired before the method can be executed. Locking
is implemented in the standard library together with a set of more
complex synchronization mechanisms and, e. g., parallel loops.
Dis VM The concurrency mechanisms of the Dis VM1 have been
inspired by CSP [Hoare 1978]. As a result, the bytecode set in-
cludes instructions to spawn new threads, create typed channels,
and to send and receive values in a synchronizing way. Instructions
to select a ready channel from a list of sending or receiving chan-
nels in a blocking or non-blocking way are included, too.
Erlang Erlang’s support for the Actor model [Agha 1986] is real-
ized by five instructions. The send instruction implements asyn-
chronous message sends to a specified process. Instructions to wait
for messages arriving at the incoming message queue exist, includ-
ing variations with timeouts. Furthermore, removal of a message
from the queue is made explicit. In contrast to the Dis VM, Erlang
does not include an explicit instruction to spawn new processes.
JVM The JVM specification defines two concurrency-related in-
structions: monitorenter and monitorexit. Basic locking func-
tionality is thus included in the bytecode set. Furthermore, similar
to the CLI, methods have a flag indicating whether a lock has to be
acquired prior to execution. Other than that, the JVM defines the
semantics of the memory model in the presence of threads. Thus, it
gives additional information about the semantics for use, assign,
load, store, lock, and unlock instructions. Java also incorporates
various higher-level concurrency support in its standard library and
it is planned to add a fork/join framework.
Mozart The main concept in Mozart/Oz2 to express concurrency
are so-called data flow variables. However, the bytecode set con-
tains LOCKTHREAD to explicitly acquire a lock. Interestingly, no
unlock instruction can be produced by the Oz compiler. The
TASKLOCK instruction supported by the runtime is not part of the
official bytecode set, but is classified as an optimization which can
be generated by the runtime system. Mozart’s distribution mecha-
nisms are realized without introducing additional bytecodes.

5. Conclusion and Future Work
Support for concurrency in VMs is still limited, and the few VMs
offering it support mechanisms as diverse as the languages.

Mozart, the CLI, and the JVM provide mostly implicit support,
using structural hints and memory model definitions. Although the
JVM provides lock and unlock instructions, it is the Java standard
library that provides functionality relevant to concurrency.

The Dis VM and Erlang demonstrate how concurrency models
can be explicitly supported by the intermediate language. Similarly,
hardware ISAs provide support for shared-memory concurrency:
they offer a number of low-level operations to allow the efficient

1 http://doc.cat-v.org/inferno/4th_edition/dis_VM_
specification
2 http://www.mozart-oz.org, Mozart 1.4

implementation of high-level constructs like locks or lock-free data
structures by, e. g., operating systems.

We believe in multi-language VMs, since the effort to imple-
ment an efficient language runtime is tremendous. The challenge
here is the anticipation of a wide range of languages and the design
of sufficient support for a large set of different concurrency mecha-
nisms. Furthermore, efficiency in terms of runtime performance is
an important feature to attract language developers instead of them
implementing a dedicated runtime for their language.

Thus, we think that it will be necessary to provide support for
low-level as well as high-level concurrency concepts in the interme-
diate language. Language developers can potentially use low-level
concepts like atomic operations on values, compare and swap, or
load linked and store conditional to implement higher level con-
cepts, which might not even be envisioned today, efficiently. On the
other hand, high-level operations like message send or even support
for transactional memory might allow runtime optimizations by the
compiler for a large set of languages using these mechanisms.

We plan to use both insights to investigate how the currently
limited concurrency support in VM intermediate languages can be
improved. We will explore the opportunities and benefits of intro-
ducing low-level as well as high-level constructs into the interme-
diate language with the goal to provide support for a wide range
of different concurrency models on top of it, and thus, advance the
notion of multi-language VMs.

Acknowledgments
Stefan Marr is supported by a doctoral scholarship of the Institute
for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen), Belgium.

References
Gul Agha. ACTORS: A Model of Concurrent Computation in Distributed

Systems. MIT Press, Cambridge, MA, USA, 1986.
James R. Bell. Threaded code. Commun. ACM, 16(6):370–372, 1973. ISSN

0001-0782.
Kevin Casey, M. Anton Ertl, and David Gregg. Optimizing indirect branch

prediction accuracy in virtual machine interpreters. ACM Trans. Pro-
gram. Lang. Syst., 29(6):37, 2007. ISSN 0164-0925.

ECMA International. Standard ECMA-335 - Common Language Infras-
tructure (CLI). 4 edition, June 2006.

K. John Gough. Stacking them up: a comparison of virtual machines. Aust.
Comput. Sci. Commun., 23(4):55–61, 2001.

John L. Hennessy and David A. Patterson. Computer Architecture - A
Quantitative Approach. Morgan Kaufmann, fourth edition, 2007.

Charles Antony Richard Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978. ISSN 0001-0782.

Thomas Kistler and Michael Franz. A tree-based alternative to java byte-
codes. IJPP, 27(1):21–33, 1999.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley Longman, Amsterdam, 2 edition, April 1999.

Stefan Marr, Michael Haupt, Stijn Timbermont, Bram Adams, Theo
D’Hondt, Pascal Costanza, and Wolfgang De Meuter. Virtual machine
support for many-core architectures: Decoupling abstract from concrete
concurrency models. In Proc. PLACES’09, EPTCS, York, UK, March
2009.

Todd A. Proebsting. Optimizing an ansi c interpreter with superoperators.
In Proc. POPL ’95, pages 322–332, New York, NY, USA, 1995. ACM.

Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine
showdown: Stack versus registers. ACM Trans. Archit. Code Optim., 4
(4):1–36, 2008. ISSN 1544-3566.

Sam Shiel and Ian Bayley. A translation-facilitated comparison between
the common language runtime and the java virtual machine. ENTCS,
141(1):35–52, 2005. ISSN 1571-0661. Proc. Bytecode’05.


