
Marr, Stefan and Ducasse, Stéphane (2015) Tracing vs. Partial Evaluation:
Comparing Meta-Compilation Approaches for Self-Optimizing Interpreters.
 In: Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications.
SPLASH Systems, Programming, and Applications . ACM, New York, USA,
pp. 821-839. ISBN 978-1-4503-3689-5.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/63825/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2814270.2814275

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/63825/
https://doi.org/10.1145/2814270.2814275
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Tracing vs. Partial Evaluation
Comparing Meta-Compilation Approaches

for Self-Optimizing Interpreters

Stefan Marr
INRIA, Lille, France
mail@stefan-marr.de

Stéphane Ducasse
INRIA, Lille, France

stephane.ducasse@inria.fr

Abstract
Tracing and partial evaluation have been proposed as meta-
compilation techniques for interpreters to make just-in-time
compilation language-independent. They promise that pro-
grams executing on simple interpreters can reach perfor-
mance of the same order of magnitude as if they would
be executed on state-of-the-art virtual machines with highly
optimizing just-in-time compilers built for a specific lan-
guage. Tracing and partial evaluation approach this meta-
compilation from two ends of a spectrum, resulting in dif-
ferent sets of tradeoffs.

This study investigates both approaches in the context
of self-optimizing interpreters, a technique for building fast
abstract-syntax-tree interpreters. Based on RPython for trac-
ing and Truffle for partial evaluation, we assess the two ap-
proaches by comparing the impact of various optimizations
on the performance of an interpreter for SOM, an object-
oriented dynamically-typed language. The goal is to deter-
mine whether either approach yields clear performance or
engineering benefits. We find that tracing and partial eval-
uation both reach roughly the same level of performance.
SOM based on meta-tracing is on average 3x slower than
Java, while SOM based on partial evaluation is on average
2.3x slower than Java. With respect to the engineering, trac-
ing has however significant benefits, because it requires lan-
guage implementers to apply fewer optimizations to reach
the same level of performance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.
OOPSLA ’15 October 25–30 2015, Pittsburgh, PA, USA
Copyright © 2015 ACM 978-1-4503-3689-5/15/10. . . $15.00
DOI: http://dx.doi.org/10.1145/2814270.2814275

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers, Interpreters, Optimizations

General Terms Languages, Performance

Keywords language implementation, just-in-time compi-
lation, meta-tracing, partial evaluation, comparison, case
study, self-optimizing interpreters

1. Introduction
Interpretation is one of the simplest approaches to language
implementation. However, interpreters lost some of their ap-
peal because highly optimizing virtual machines (VMs) such
as the Java Virtual Machine (JVM) or Common Language
Runtime deliver performance that is multiple orders of mag-
nitude better. Nevertheless, interpreters stand out for their
simplicity, maintainability, and portability.

The development effort for highly optimizing static ahead-
of-time or dynamic just-in-time compilers makes it often in-
feasible to build more than a simple interpreter. A recent ex-
ample is JavaScript. In the last decade, its performance was
improved by several orders of magnitude, but it required
major industrial investments. Unfortunately, such invest-
ments are rarely justified, especially for research projects
or domain-specific languages (DSLs) with narrow use cases.

In recent years, tracing and partial evaluation became
suitable meta-compilation techniques that alleviate the prob-
lem. RPython [5, 6] and Truffle [27, 28] are platforms for
implementing (dynamic) languages based on simple inter-
preters that can reach the performance of state-of-the-art
VMs. RPython uses trace-based just-in-time (JIT) compi-
lation [2, 14], while Truffle uses partial evaluation [12] to
guide the JIT compilation.

The PyPy1 and Truffle/JS2 projects show that general pur-
pose languages can be implemented with good performance.
For instance Truffle/JS reaches the performance of V8 and

1 PyPy, a fast Python, access date: 2014-12-18 http://pypy.org/
2 Truffle/JS, a JavaScript for the JVM, Oracle Labs, access date: 2014-
12-18 http://www.oracle.com/technetwork/oracle-labs/
program-languages/javascript/index.html

Author Copy 1 2015/8/17

http://pypy.org/
http://www.oracle.com/technetwork/oracle-labs/program-languages/javascript/index.html
http://www.oracle.com/technetwork/oracle-labs/program-languages/javascript/index.html

SpiderMonkey on a set of selected benchmarks.3 However,
for language implementers and implementation technology
researchers, it remains the question of what the concrete
tradeoffs between the two meta-compilation approaches are.
When considering possible use cases and varying maturity
of language designs, the available engineering resources and
the desired performance properties require different trade-
offs. For instance for a language researcher, it is most im-
portant to be able to experiment and change a language’s se-
mantics. For the implementation of a standardized language
however, the focus is typically on performance, and thus the
best mechanisms to realize optimizations are required. For
implementation research, a good understanding of the trade-
offs between both meta-compilation approaches might lead
to further improvements that simplify language implementa-
tion for either of the scenarios.

In this study, we compare tracing and partial evaluation as
meta-compilation techniques for self-optimizing interpreters
to determine whether either of the two has clear advantages
with respect to performance or engineering properties. To
characterize the tradeoffs between the two, we investigate
the impact of a set of interpreter optimizations. This allows
us to determine whether an optimization is necessary de-
pending on the approach. We use RPython and Truffle as
concrete representations of these two approaches. To com-
pare them in a meaningful way, we implement SOM [15], a
dynamic object-oriented language with closures, as identi-
cal as possible on top of both. Section 3 details the practical
constraints and the requirements for a conclusive compari-
son. The contributions of this paper are:4

• a comparison of tracing and partial evaluation as meta-
compilation techniques for self-optimizing interpreters.

• an assessment of the performance impact and imple-
mentation size of optimizations in self-optimizing inter-
preters.

• a performance assessment of RPython and Truffle with
respect to interpreter performance, peak performance,
whole-program behavior, and memory utilization.

We find that neither of the two approaches has a funda-
mental advantage for the reached peak-performance. How-
ever, meta-tracing has significant benefits from the engineer-
ing perspective. With tracing, the optimizer uses directly ob-
served runtime information. In the case of partial evaluation
on the other hand, it is up to the language implementer to
capture much of the same information and expose it to the
optimizer based on specializations.

3 Performance: JavaScript, Slide 86, Graal Tutorial, Christian Wimmer,
CGO, 2015, access date: 2015-07-19 http://lafo.ssw.uni-linz.a
c.at/papers/2015 CGO Graal.pdf
4 Artifacts: http://stefan-marr.de/papers/oopsla-marr-ducasse

-meta-tracing-vs-partial-evaluation-artifacts/

if cnd:
 res := 1
else:
 res := 2

if

res
1

cnd res
2

if

res

1

cnd res

2

Trace through AST Partial Evaluation
guided by AST

Figure 1. Selecting JIT Compilation Units for AST In-
terpreters. To select a compilation unit, meta-tracing (left)
records the operations performed by the interpreter for the
execution of one specific path through a program. Partial
evaluation (right) uses the AST structure to determine which
interpreter-level code to include in a compilation unit.

2. Background
This section gives a brief overview of meta-tracing, partial
evaluation, and self-optimizing interpreters as background
for the remainder of this paper.

2.1 Meta-Tracing and Partial Evaluation
While interpreters are a convenient and simple implementa-
tion technique, they are inherently slow. Hence, researchers
tried to find ways to generate efficient native code from them
without having to build custom JIT compilers. With the ap-
pearance of trace-based JIT compilation [14], trace-based
meta-compilation, i. e., meta-tracing was the first practical
solution for general interpreters [5, 6] that also works for dy-
namic languages such as JavaScript, Python, or Ruby. The
main idea is to trace the execution of the interpreter instead
of tracing the concrete program it executes, and thus, make
the JIT compiler a reusable meta-compiler that can be used
for different language implementations. The resulting traces
are the units of compilation in such a system. Based on fre-
quently executed loops on the application level, the inter-
preter records a concrete path through the program, which
then can be heavily optimized and compiled to native code.
Since traces span across many interpreter operations (cf.
fig. 1), the interpreter overhead can be eliminated completely
and only the relevant operations of the application remain.

Partial evaluation [12] of interpreters has been discussed
as a potential meta-compilation technique for interpreters as
well [1, 7, 24, 25]. However, only very recently, Würthinger
et al. [28] were able to show that it is a practical meta-
compilation technique for abstract-syntax-tree-based (AST)
interpreters for dynamic languages. Instead of selecting the
compilation unit by tracing, the unit is determined by using
a program’s AST to guide a partial evaluator. The evalua-
tor resolves all parts of the program that do not depend on
unknown runtime information. With the knowledge of the
AST and values embedded in it, the evaluator can resolve

Author Copy 2 2015/8/17

http://lafo.ssw.uni-linz.ac.at/papers/2015_CGO_Graal.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2015_CGO_Graal.pdf
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/

otherwise highly polymorphic method calls, perform aggres-
sive constant propagation, and inlining. Thereby it identifies
the relevant elements of the interpreter implementation (cf.
fig. 1), which need to be included in a compilation unit.

In contrast to tracing, partial evaluation preserves the con-
trol flow of the interpreter and the user program that cannot
be resolved statically. Since interpreters needs to handle ev-
ery case of a language, the resulting control flow is generally
too complex for partial evaluation and compiler optimiza-
tions to generate efficient native code. However, combined
with the idea of self-optimizing interpreters, partial evalua-
tion became finally practical for a wide range of languages.

2.2 Self-Optimizing Interpreters
The main idea of a self-optimizing interpreter is that an ex-
ecuting AST rewrites itself at runtime, e. g., based on ob-
served types and values [27]. Typical optimizations specu-
late for instance that observed types do not change in the
future. In case of an addition operation, a generic node that
handles all possible types can be replaced by one that is spe-
cialized for integers. With such optimizations, an AST can
specialize itself for exactly the way the program uses the lan-
guage. This is beneficial for the interpreter, because it can
avoid unnecessarily generic runtime operations, and at the
same time the control flow is simplified, which leads to bet-
ter compilation results when partial-evaluation-based meta-
compilation is used [28]. In case of the addition operation,
the type-based specialization avoids generic checks at run-
time as well as boxing of primitive integer values to reduce
overhead and complexity of the operations.

Self-optimizations can also have other benefits. One com-
mon technique is to cache runtime values for later use. It
enables for instance polymorphic inline caches for method
lookups [19]. Starting out from a generic AST, the first exe-
cution of a method invocation node does the normal lookup
and then rewrites itself to a simpler node that caches the
lookup result and associates it with a predicate that confirms
whether the cached value is valid in subsequent invocations.
Thus, instead of having to include the complex lookup logic,
the node only performs a check, and if it succeeds, the actual
method invocation.

3. Study Setup and Practical Constraints
The goal of this study is to compare tracing and partial eval-
uation as meta-compilation techniques with respect to the
achievable performance as well as the required engineer-
ing effort for interpreters. This section discusses how these
two techniques can be compared based on concrete existing
systems. It further discusses the design for the experimental
setup, the concrete experiments, and the implications for the
generalizability of the results. It also provides the required
background on the SOM language, for which we implement
interpreters for this study.

3.1 How to Compare Tracing and Partial Evaluation?
As discussed above, partial evaluation for dynamic lan-
guages has only recently been shown to be practical and
so far only in the context of self-optimizing interpreters.
Meta-tracing has been successfully applied to AST inter-
preters as well [5], thus, we compare both approaches based
on self-optimizing AST interpreters.

To the best of our knowledge RPython5 is the only
meta-tracing toolchain for interpreters. Similarly, Truffle6

is the only framework with partial-evaluation-based meta-
compilation for interpreters. Thus, we chose these two sys-
tems for this experiment.

The goal of this study is to assess the conceptual as
well as the practical difference of tracing and partial evalua-
tion. Hence, it stands to question what the generalizable in-
sights of an empirical comparison are. From our perspective,
both systems reached sufficient maturity and sophistication
to represent the state of the art in tracing as well as partial
evaluation technology. Furthermore, RPython with PyPy and
Truffle with Truffle/JS implement complex widely used lan-
guages with the goal to optimize the peak performance as
much as possible, and indeed reach the performance levels
of dedicated JIT compiling VMs. Thus, we expect a perfor-
mance comparison to reflect the general capabilities of the
two approaches. However, both systems implement differ-
ent sets of optimizations, and have different approaches for
generating native code. Therefore, minor performance dif-
ference between both systems are expected and will not al-
low for conclusions with respect to the general approaches.
Nonetheless, we think the general order of magnitude is rep-
resentative for both approaches.

In order to compare both approaches fairly, we need a
language implementation based on RPython as well as Truf-
fle. With PyPy and ZipPy [26], there exist Python imple-
mentations for both systems. However, PyPy is a bytecode-
interpreter and ZipPy a self-optimizing interpreter. Thus,
a comparison would not only compare tracing with par-
tial evaluation, but also include bytecode vs. ASTs, which
would make a study inconclusive with respect to our ques-
tion. The situation is the same for the Ruby implementa-
tions JRuby+Truffle 7 and Topaz. Moreover, they all differ
in many other aspects, e. g., differences in the implemented
optimizations, which makes a comparison generally incon-
clusive. Hence, for a fair comparison we need language im-
plementations for both systems that are as identical as possi-
ble, and enables us to compare tracing and partial evaluation

5 RPython Documentation, The PyPy Project, access date: 2015-03-18 ht
tp://rpython.readthedocs.org/
6 The Truffle Language Implementation Framework, SSW JKU Linz, access
date: 2015-03-18 http://www.ssw.uni-linz.ac.at/Research/P
rojects/JVM/Truffle.html
7 JRuby+Truffle - a High-Performance Truffle Backend for JRuby, JRuby
Project, access date: 2015-03-18 https://github.com/jruby/jru
by/wiki/Truffle

Author Copy 3 2015/8/17

http://rpython.readthedocs.org/
http://rpython.readthedocs.org/
http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html
http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html
https://github.com/jruby/jruby/wiki/Truffle
https://github.com/jruby/jruby/wiki/Truffle

instead of other aspects. For this study we use SOM, which
is discussed in section 3.3.

3.2 RPython and Truffle
In the previous section, we discussed meta-tracing and par-
tial evaluation from the conceptual perspective only. Since
this study compares the two approaches empirically, this sec-
tion provides a few technical details on RPython and Truf-
fle and discusses the theoretical differences between the two
meta-compilation approaches.

RPython is a toolchain for language implementation that
uses meta-tracing. It is also a restricted subset of Python that
uses type inference and code transformations to add low-
level services such as memory management and JIT compi-
lation to interpreters to generate complete VMs. RPython’s
meta-tracing has been shown to work well for a wide range
of different languages including Pyrolog (Prolog), Pycket
(Racket), and Topaz (Ruby), of which some are bytecode
interpreters, e. g., PyPy and Topaz, and others are AST in-
terpreters, e. g., Pyrolog and Pycket.

With a set of annotations, language implementers can
communicate high-level knowledge about the implemented
language to the toolchain. Since trace-based compilation
works best on loops, one of the main annotation is the so-
called trace merge point, which indicates potential starting
points for traces and defines how to recognize application-
level loops. Other language-specific properties, for instance
about mostly-constant values such as method lookup results
can be communicated similarly. For instance, functions can
have side-effects that are not essential for the execution, e. g.,
for caching the result of method lookups. With RPython’s
@elidable annotation, the optimizer can be told that it
is safe to elide repeated executions within the context of a
trace. Another example are values that are runtime constants.
Those can be explicitly promoted to enable the compiler to
optimize based on them. In general, these annotations are
useful in cases where an optimizer alone needs to make
conservative assumptions, but the specific language usage
patterns allow for additional optimizations, which can be
used to generate specialized native code. A more detailed
discussion of RPython is provided by Bolz and Tratt [5].

RPython’s Meta-Tracing As mentioned earlier, RPython
traces the execution of an interpreter instead of tracing the
program the interpreter is executing. The resulting trace is
the compilation unit on which the optimizer works to pro-
duce efficient native code that can be executed instead of the
slow interpreter.

The tracing process is started based on trace merge points
in the interpreter. It is triggered when a merge point has been
visited with the same interpreter state for a predefined num-
ber of times. During tracing, the interpreter continues exe-
cuting as usual but also records each of the RPython-level
operations it performs. As for regular tracing, control-flow
operations are not directly recorded. Instead, for conditional

branches, the observed result of the conditional expression
is recorded as a guard in the trace. Afterwards, the inter-
preter continues in the corresponding branch. Similarly, for
dynamic dispatches, the actual call is not recorded. To en-
sure that the trace is only used when the dispatch goes to the
same function, a guard is recorded, e. g., to check that the
function object is the expected one.

Generally, the tracer records all operations the interpreter
performance, but does not consider the concrete values.
However, as discussed earlier, it can be desirable to do
so based on @elidable and promote(). In case of a
lookup for instance, the results are likely constant and a re-
peated lookup can be avoided in compiled code.

Once the tracer reached again the merge point, the trace,
i. e., the resulting compilation unit is completed and can be
optimized and compiled to native code. Note that this means
that the compilation unit is determined strictly during inter-
pretation and contains concrete values observed during a sin-
gle execution. Furthermore, it is a completely linear list of
instructions and does not contain control flow. This simpli-
fies optimization significantly. On the other hand, all change
in control-flow conditions and dynamic-dispatch targets lead
to guard failures. If a guard fails, execution returns to the in-
terpreter, or if the guard failed repeatedly can start tracing of
a side-trace. Thus, the approach assumes that control flow is
relatively stable, which seems to be the case in interpreters
since the control flow is governed by the user program.

Truffle is Würthinger et al.’s Java framework for self-
optimizing interpreters and uses partial evaluation as meta-
compilation technique. It integrates with the Graal JIT com-
piler for the partial evaluation of ASTs and the subsequent
native code generation. Truffle in combination with Graal is
built on top of the HotSpot JVM, and thus, guest languages
benefit from the garbage collectors, memory model, thread
support, as well as the general Java ecosystem.

For language implementers, Truffle has an annotation-
based DSL [17], which avoids much of the boilerplate code
for self-optimizations. For instance, the DSL provides sim-
ple means to build specialized nodes for different argument
types of operations. Instead of manually defining various
node classes, with the DSL only the actual operations need
to be defined. The corresponding node classes as well as the
node rewriting and argument checking logic are generated.

In addition to the DSL, there are other differences to
RPython. For instance, runtime constants, and more gener-
ally any form of profiling information, are exposed by pro-
viding node specializations instead of using a promote-
like operation. Thus, the value is cached in the AST in-
stead of relying on a trace context as RPython does. An-
other difference is that Truffle relies on explicit indica-
tions to determine the boundaries of compilation units.
While RPython relies mostly on tracing, Truffle uses the
@TruffleBoundary annotation to indicate that methods
should not be included in the compilation unit. This is neces-

Author Copy 4 2015/8/17

sary, because Truffle’s partial evaluation greedily inlines all
possible control-flow paths, which would lead to too large
compilation units without these explicit cutoffs. In practice,
boundaries are placed on complex operations that are not on
the fast path, e. g., lookup operations and complex library
functionality such as string or hashtable operations. Also re-
lated is Truffle’s transferToInterpreter operation,
which results in a deoptimization point [16] in the native
code. This excludes the code of that branch from compi-
lation and can avoid the generation of excessive amounts
of native code and enable optimizations, because the con-
straints of that branch do not have to be considered.

Truffle’s Partial Evaluation In contrast to RPython’s
meta-tracing, Truffle’s partial evaluation works on a method
level. Similar to classic JIT compilers, the method invoca-
tion count is used as a heuristic to start compilation. When
a certain threshold is reached, the AST root node of such
a method is given to the partial evaluator, which then starts
processing the execute() method of that node. Based on
the actual AST and all constants referenced by the code,
the Java code is partially evaluated. In a classic JIT compiler
without such partial evaluation, the highly polymorphic calls
to the execute() methods of subexpressions are prob-
lematic, but with the knowledge of the AST and the con-
crete code corresponding to the execute() methods for
its nodes, aggressive inlining can be performed to construct a
compilation unit that contains all of the interpreter’s behav-
ior for a user-level method. Furthermore, the use of inline
caches on the AST level exposes inlining opportunities on
the user-language level, which further increases the oppor-
tunity for optimization. As mentioned earlier, this greedy in-
lining can be controlled by placing @TruffleBoundary
annotations and calls to transferToInterpreter()
to avoid code explosion.

Compared to RPython’s meta-tracing, this approach has
two fundamental differences. On the one hand, a compila-
tion unit contains the complete control flow that cannot be
resolved by compiler optimizations. Thus, the approach has
the known tradeoffs between method-based and trace-based
compilation. On the other hand, the compilation units are
determine strictly independent of a concrete execution. This
means, a language implementer needs to accumulate profil-
ing information to guide optimistic optimizations, whereas
tracing considers one set of concrete values gathered during
the tracing. We discuss the impact of this based on our ex-
periments in section 5.2.

From a conceptual perspective, both approaches are in-
stances of the first Futamura projection [13], i. e., they spe-
cialize an interpreter based on a given source program to an
executable. However, while partial evaluation is restricted
by the knowledge at compilation time, tracing deliberately
chooses which knowledge to use to avoid over-specializing
code, which would then only work for a subset of inputs.

3.3 The Case Study: SOM (Simple Object Machine)
As discussed in section 3.1, for a meaningful comparison of
the meta-compilation approaches, we need close to identical
language implementations on top of RPython and Truffle.
We chose to implement the SOM language as case study.
It is an object-oriented class-based language [15] designed
for teaching. Therefore, it is kept simple and includes only
fundamental language concepts such as objects, classes, clo-
sures, and non-local returns. With these concepts, SOM rep-
resents a wide range of dynamic languages. Its implementa-
tion solves the same performance challenges more complex
languages face, for instance for implementing exceptions,
specializing object layouts, and avoiding the overhead for
dynamic method invocation semantics, to name but a few.

While its size makes it a good candidate for this study,
its low complexity raises the question of how generaliz-
able the results of this study are for other languages. From
our perspective, SOM represents the core concepts and thus
solves many of the challenges common to more complex lan-
guages. What we do not investigate here is however the scal-
ability of the meta-compilation approaches to more complex
languages. Arguably, projects such as PyPy, Pycket, Topaz,
JRuby+Truffle, and Truffle/JS demonstrate this scalability
already. Furthermore, even though SOM is simple, it is a
complete language. It supports classic object-oriented VM
benchmarks such as DeltaBlue, Richards, and numeric ones
such as Mandelbrot set computation and n-body simulations.
The benchmark set further includes a JSON parser, a page
rank algorithm, and a graph search to cover a wide range of
use cases server programs might face.

Implementation Differences of SOMMT and SOMPE. Sub-
sequently, we refer to the two SOM implementations as
SOMMT for the version with RPython’s meta-tracing, and
SOMPE for one with Truffle’s partial evaluation. SOMPE
builds on the Truffle framework with its TruffleDSL [17].
SOMMT however is built with ad hoc techniques to realize a
self-optimizing interpreter, which are kept as comparable to
SOMPE as possible. Generally, the structure of the AST is
the same for both interpreters. Language functionality such
as method invocation, field access, or iteration constructs are
represented in the same way as AST nodes.

Some aspects of the interpreters are different however.
SOMPE uses the TruffleDSL to implement basic operations
such as arithmetics and comparisons. TruffleDSL signifi-
cantly simplifies self-optimization based on types observed
at runtime and ensures that arithmetic operations work di-
rectly on Java’s primitive types long and double with-
out requiring boxing. Boxing means that primitive values are
stored in specifically allocated objects. With Java’s unboxed
versions of primitive types, we avoid the additional alloca-
tion for the object and the pointer indirection when operating
on the values.

SOMMT on RPython relies however on uniform boxing
of all primitive values as objects. With the absence of Truf-

Author Copy 5 2015/8/17

fleDSL for RPython, the minimal boxing approach used in
SOMPE was not practical because the RPython type system
requires a common root type but does not support Java’s im-
plicit boxing of primitive types. Since tracing compilation
eliminates the boxing within a compilation unit, it makes
only a difference in the interpreted execution. Since Truf-
fle, and therefore SOMPE uses a method calling convention
based on Object arrays, boxing is not eliminated com-
pletely either. Thus, we consider this difference acceptable
(cf. sections 4.3 and 4.4).

3.4 Assessing the Impact of the Meta-Compilation
Strategies

To assess the benefits and drawbacks of meta-tracing and
partial evaluation from the perspective of language imple-
menters, we determine the impact of a number of interpreter
optimizations on interpretation and peak performance. Fur-
thermore, we assess the implementation sizes to gain an in-
tuition of how the required engineering effort compares for
both approaches.

Optimizations. To use a representative set of optimiza-
tions, we identify tree main categories. Structural optimiza-
tions are applied based on information that can be derived at
parse time. Dynamic optimizations require runtime knowl-
edge to specialize execution based on observed values or
types. Lowerings reimplement performance critical standard
library functionality in the interpreter. These three groups
cover a wide range of possible optimizations. For each cat-
egory, we pick representative optimizations. They are listed
in table 1 and detailed in appendix A.

Performance Evaluation. For the performance evaluation,
we consider the pure interpreted performance and the com-
piled peak performance. Both aspects can be important.
While interpreter speed can be negligible for long-running
server applications, it is critical for short-lived programs
such as shell scripts. We assess the impact of the optimiza-
tions for both modes to also determine whether they are
equally beneficial for interpretation and peak performance,
or whether they might have a negative effect on one of them.

Implementation Size of Optimizations. To gain some in-
dication for potential differences in engineering effort, we
assess the implementation size of the applied optimizations.
However, this is not a systematic study of the engineering ef-
fort. On the one hand RPython and Java are two very differ-
ent languages making a proper comparison hard, and on the
other hand, implementation size is only a weak predictor for
effort. Nonetheless, implementation size gives an intuition
and enables us to position the two approaches also with re-
spect to the size of other language implementation projects.
For instance in a research setting, an interpreter prototype
might be implemented in 2.5K lines of code (LOC). A ma-
turing interpreter might be 10 KLOC in size, but a state-of-
the-art VM is usually larger than 100 KLOC.

Structural Optimizations
opt. local vars distinguish variable accesses

in local and non-local scopes
catch-return nodes handle non-local returns only

in methods including them
min. escaping vars expose variables in scope only

if accessed (SOMMT only)
min. escaping closures avoid letting unused lexical

scopes escape

Dynamic Optimizations
cache globals cache lookup of global values
inline caching cache method lookups and

block invocations
typed vars type-specialize variable ac-

cesses (SOMPE only)
typed args type-specialize argument ac-

cesses (SOMPE only)
typed fields specialize object field access

and object layout
array strategies type-specialize array storage
inline basic ops. specialize basic operations

(SOMPE only)

Lowerings
lower control structures lower control structures from

library into interpreter
lower common ops lower common operations

from library into interpreter

Table 1. The set of optimizations applied to the SOMMT and
SOMPE interpreters (cf. appendix A).

4. Comparing Tracing and Partial
Evaluation

Before discussing the results of the comparisons, we detail
the methodology used to obtain and assess the performance
and give a brief characterization of the used benchmarks.

4.1 Methodology
With the non-determinism in modern systems, JIT compila-
tion, and garbage collection, we need to account for the in-
fluence of variables outside of our control. Thus, we execute
each benchmark at least 500 times within the same VM in-
stance. This guarantees that we have at least 100 continuous
measurements for assessing steady state performance. The
steady state is determined informally by examining plots of
the measurements for each benchmark to confirm that the
last 100 measurements do not show signs of compilation.

The benchmarks are executed on a system with two quad-
core Intel Xeons E5520 processors at 2.26 GHz with 8 GB of
memory and runs Ubuntu Linux with kernel 3.11, PyPy 2.4-
dev, and Java 1.8.0 11 with HotSpot 25.11-b03.

Measurement Setup. Pure interpretation performance for
SOMMT is measured with executables without meta-tracing

Author Copy 6 2015/8/17

SOMMT

PE+Graal
SOMPE

MetaTracing
SOMMT

SOMPE

HotSpot C2
HotSpot

Interpreter

Java

Compiled

HotSpot C2

Interpreted

SOMMT SOMPE SOMMT SOMPEJava

Figure 2. Experimental setup for interpreted as well as
compiled, i. e., peak performance measurements.

support. Similarly, we measure the pure interpretation per-
formance of SOMPE on Hotspot without the partial eval-
uation and compilation support of Truffle. Thus, in both
cases, there is no additional overhead, e. g., for compiler re-
lated bookkeeping. However, SOMPE still benefits from the
HotSpot’s normal Java JIT compilation, while SOMMT is a
simple interpreter executing directly without any underly-
ing JIT compilation. We chose this setup to avoid measuring
overhead from the meta-JIT compiler infrastructure and fo-
cus on the interpreter-related optimizations. Since we report
results after warmup, the results for SOMPE and SOMMT
represent the ideal interpreter performance in both cases.

Figure 2 depicts the setup for the measurements including
only the elements that are relevant for the interpreter or peak
performance.

For measuring the peak performance, we enable meta-
compilation in both cases. Thus, execution starts first in the
interpreter, and after completing a warmup phase, the bench-
marks execute solely in optimized native code. To assess
the capability of the used meta-compilation approach, we
report only the measurements after warmup is completed,
i. e., ideal peak performance. For this experiment, Truffle is
configured to avoid parallel compilation to be more compa-
rable with RPython, which does not have any parallel ex-
ecution. Furthermore, for peak performance measurements,
SOMPE uses a minimum heap size of 2GB to reduce noise
from the GC. Still, measurement errors for SOMPE are gen-
erally higher than for SOMMT, because the JVM performs
various operations in parallel and the operating system can
reschedule the benchmark thread on other cores. RPython’s
runtime system on the other hand is completely sequential
and is therefore less exposed to rescheduling, which leads to
lower measurement errors.

For measuring whole program and warmup behavior in
section 4.5, the VMs use their standard unchanged garbage
collection settings and Truffle uses parallel compilation. We
chose to rely for the experiments on the standard settings to
reflect the experience a normal user would have, assuming
that the parameters are tuned for a wide range of applica-
tions. We use the same settings for determining the memory
usage in section 4.6.

Benchmark Suite. The used benchmarks cover various as-
pects of VMs. DeltaBlue and Richards test among other
things how well polymorphic method invocations are opti-

I

I
I

I
I

I
I
I
I
I
I

lower control structures
lower common ops

inline caching
array strategies

cache globals
opt. local vars

catch-return nodes
min. escaping closures

baseline
typed fields

min. escaping vars

0.
7

0.
8

0.
9

1.
0

1.
2

1.
5

2.
0

3.
0

4.
0

5.
0

Speedup Factor
(higher is better, logarithmic scale)

Figure 3. Impact of optimizations on SOMMT’s interpreter
performance. Experiments are ordered by geometric mean
of the speedup over all benchmarks, compared to the base-
line. Each dot represents a benchmark. The red vertical bar
indicates the geometric mean. The results show that the op-
timization for minimizing escaping variables slows the in-
terpreter down. Inline caching and lowering of library func-
tionality give substantial benefits.

mized. Json is a parser benchmark measuring string opera-
tions and object creation. PageRank and GraphSearch tra-
verse large data structures of objects and arrays. Mandelbrot
and n-body are classic numerical ones focusing on float-
ing point performance. Fannkuch, n-queens, sieve of Er-
atosthenes, array permutations, bubble sort, and quick sort
measure array access and logical operations. The storage
benchmark is a stress test for garbage collectors. A few mi-
crobenchmarks test the performance, e. g., of loops, field ac-
cess, and integer addition. While these benchmarks are com-
parably small and cannot compete with application bench-
mark suites such as DaCapo [4], they test a relevant range of
features and indicate the order of magnitude the discussed
optimizations have on interpretation and peak performance.

Assessing Optimization Impact. As in classic compilers,
optimizations interact with each other, and varying the order
in which they are applied can have significant implications
on the observed gains they provide. To minimize the impact
of these interdependencies, we assess the optimizations by
comparing against a baseline that includes all optimizations.
Thus, the obtained results indicate the gain of a specific op-
timization for the scenario where all the other optimizations
have been applied already. While this might lead to underes-
timating the value of an optimization for gradually improv-
ing the performance of a system, we think it reflects more
accurately the expected gains in optimized systems.

4.2 Impact on Interpreter
Before assessing the impact of the meta-compilation ap-
proach, we discuss the optimization’s impact on interpreta-
tion performance.

Figure 3 depicts for each of the optimizations the bench-
mark results as separate points representing the average
speedup over the baseline version of SOMMT. All dots on

Author Copy 7 2015/8/17

the right of the 1-line indicate speedup, while all dots left of
the line indicate slowdowns. Furthermore, the optimizations
are ordered by the geometric mean over all benchmarks,
which is indicated for each optimization with a red bar.
Based on this ordering, all optimizations listed above the
baseline cause on average a slowdown, while all optimiza-
tions listed below the baseline result in a speedup. Note, the
x-axis uses a logarithmic scale.

The optimization for minimizing escaping of variables
causes on average a slowdown of 9.6%. This is not sur-
prising, since the interpreter has to allocate additional data
structures for each method call and the optimization can only
benefit the JIT compiler. Similarly, typed fields cause a slow-
down of 5.3%. Since SOMMT uses uniform boxing, the inter-
preter creates the object after reading from a field, and thus,
the optimization is not beneficial. Instead, the added com-
plexity of the type-specialization nodes causes a slowdown.
The optimizations to separate catch-return nodes (0.2%),
minimizing escaping of closures (0.2%), and the extra nodes
for accessing local variables (0.8%) do not make a signif-
icant difference for the interpreter’s performance. The dy-
namic optimizations for caching the association object of
globals (1.4%) and array strategies (2%) do not provide a
significant improvement either.

The remaining optimizations more clearly improve the in-
terpreter performance of SOMMT. The largest gains for inter-
preter performance come from the lowering of control struc-
tures. Here we see an average gain of 1.6x (min. −1.6%,
max. 4.5x). This is expected because their implementation
in the standard library rely on polymorphic method invo-
cations and the loop implementations all map onto the ba-
sic while loop in the interpreter. Especially for for-loops,
the runtime overhead is much smaller when they are imple-
mented directly in the interpreter because it avoids multiple
method invocations and the counting is done in RPython in-
stead of requiring language-level operations. Inline caching
for methods and blocks (21%) gives also significant speedup
based on runtime feedback.

For SOMPE, fig. 4 shows that the complexity introduced
for the type-related specializations leads to overhead during
interpretation. The typed arguments optimization makes the
interpreter on average 18.3% slower. For typed variables,
we see 8.9% overhead. Thus, if only interpreter speed is
relevant, these optimizations are better left out. For typed
object fields, the picture is less clear. On average, they cause
a slowdown of 4.1%, but range from 16% slowdown to 4.5%
speedup. The effect for SOMPE is more positive than for
SOMMT because of the differences in boxing, but overall the
optimization is not beneficial for interpreted execution.

Caching of globals (0.4%), optimizing access to local
variables (3%), and inline caching (4.6%) give only minimal
average speedups for the interpreter. The low gains from
inline caching are somewhat surprising. However, SOMMT
did not inline basic operations as SOMPE does. Thus, we

I

I
I

I
I

I
I

I
I
I
I
I
I

lower control structures
inline basic ops.

lower common ops
array strategies

catch-return nodes
inline caching
opt. local vars

min. escaping closures
cache globals

baseline
typed fields
typed vars
typed args

0.
7

0.
8

1.
0

1.
2

1.
5

2.
0

3.
0

4.
0

5.
0

Speedup Factor
(higher is better, logarithmic scale)

Figure 4. SOMPE optimization impact on interpreter perfor-
mance. Type-based specialization introduce overhead. Low-
ering of library functionality and direct inlining of basic op-
erations on the AST-level are highly beneficial.

I

I
I

I
I

I
I
I
I
I
I

lower control structures
lower common ops

typed fields
array strategies

min. escaping vars
inline caching

catch-return nodes
opt. local vars

min. escaping closures
baseline

cache globals

0.
90

0.
95

1.
00

1.
20

1.
50

1.
75

1.
90

2.
00

2.
20

Speedup Factor
(higher is better, logarithmic scale)

Figure 5. SOMMT optimization impact on peak perfor-
mance. Most optimizations do not affect average perfor-
mance. Only lowering of library functionality gives substan-
tial performance gains.

assume that inlining of basic operations, which gives in itself
a major speedup of 1.9x, hides the gains that inline caching
of blocks and methods gives on an interpreter without it.

Array strategies give a speedup of 17.6% (min. −4.2%,
max. 72.4%) and is with the different boxing strategy
of SOMPE more beneficial for the interpreter. Similar to
SOMMT, lowering library functionality to the interpreter
level gives large improvements. Lowering common oper-
ations gives an average speedup of 1.6x and lowering con-
trol structures gives 2.1x, confirming the usefulness of these
optimizations for interpreters in general.

4.3 Peak Performance
While some of the studied optimizations improve interpreted
performance significantly, others cause slowdowns. How-
ever, especially the ones causing slowdowns are meant to
improve peak performance for the meta-compilation with
tracing or partial evaluation.

Meta-Tracing. Figure 5 shows the results for SOMMT with
meta-tracing enabled. The first noticeable result is that 6
out of 10 optimizations have barely any effect on the opti-

Author Copy 8 2015/8/17

mized peak performance. The optimizations to cache glob-
als (0%), minimize escaping closures (0.1%), optimize local
variable access (0.2%), the separate nodes to catch returns
(0.2%), inline caching (0.2%), and minimize escaping vari-
ables (0.7%) affect average performance only minimally.

For the optimization of local variable access and inline
caching, this result is expected. The trace optimizer elimi-
nate tests on compile-time constants and other unnecessary
operations. Furthermore, inline caching is only useful for the
interpreter, because SOMMT uses RPython’s @elidable
(cf. section 3.2) to enable method lookup optimization. The
lookup is marked as @elidable so that the optimizer
knows its results can be considered runtime constants to
avoid lookup overhead.

The optimization to minimize escaping of variables
shows variability from a 5.1% slowdown to a to 6.8%
speedup. Thus, there is some observable benefit, but overall
it is not worth the added complexity, especially since the
interpreter performance is significantly reduced.

Array strategies gives an average speedup of 4.7% (min.
−29.9%, max. 69.3%). The additional complexity can have
a negative impact, but also gives a significant speedup on
benchmarks that use integer arrays, e. g., bubble and quick
sort. For typed fields, the results are similar with an aver-
age speedup of 7% (min. −8.2%, max. 77.3%). For bench-
marks that use object fields for integers and doubles, we
see speedups, while others show small slowdowns from the
added complexity.

The lowering of library functionality is not only benefi-
cial for the interpreter but also for meta-tracing. For common
operations, we see a speedup of 11.5% (min. −21.6%, max.
1.8x). The lowering provides two main benefits. On the one
hand, the intended functionality is expressed more directly in
the recorded trace. For instance for simple comparisons this
can make a significant difference, because instead of build-
ing, e. g., a larger or equal comparison with smaller than
and negation, the direct comparison can be used. When lay-
ering abstractions on top of each other, these effects accu-
mulate, especially since trace guards might prevent further
optimizations. On the other hand, lowering typically reduce
the number of operations that are in a trace and thus need to
be optimized. Since RPython uses trace length as a criterion
for compilation, lowering functionality from the library into
the interpreter can increase the size of user programs that are
acceptable for compilation.

For the lowering of control structures, we see a speedup
of 1.5x (min. −0.1%, max. 4.1x). These speedups are
based on the effects for common operations, but also on
the additional trace merge points introduced for loop con-
structs. With these merge points, we communicate directly
to RPython where user-level loops are and thereby provide
more precise information for compilation.

Generally, we can conclude that only few optimizations
have a significant positive impact when meta-tracing is used.

I

I
I
I
I

I
I

I
I
I

I
I
I

lower control structures
inline caching
cache globals

typed fields
lower common ops

array strategies
inline basic ops.

typed vars
opt. local vars

baseline
min. escaping closures

typed args
catch-return nodes

0.
85

1.
00

1.
20

1.
50

2.
00

3.
00

4.
00

5.
00

7.
00

8.
00

10
.0

0
12

.0
0

Speedup Factor
(higher is better, logarithmic scale)

Figure 6. SOMPE optimization impact on peak perfor-
mance. Overall, the impact of optimizations in case of partial
evaluation is larger. Lowering of control structures and inline
caching are the most beneficial optimizations.

Specifically, the lowering of library functionality into the
interpreter helps to expose more details about the execution
semantics, which enables better optimizations. The typing
of fields and array strategies are useful, but highly specific
to the language usage.

Partial Evaluation. The first observation based on fig. 6
is that compared to SOMMT, more of SOMPE’s optimiza-
tions have a positive effect on performance, which is also
larger on average. Added catch-return node (−1.1%), typed
arguments (−1.1%), minimization of escaping closures
(−0.1%)), and direct access to variables in local scope
(0.3%) have only insignificant effect on peak performance.

Typed variables give an average speedup of (4.6%) (min.
−13.9%, max. 32.6%). Thus, there is some speedup, how-
ever, in most situations partial evaluation is able to achieve
the same effect without the type specialization.

Inlining of basic operations, which avoids full method
calls, e. g., for arithmetic operations, shows a speedup of
5.8% (min. −5.8%, max. 1.6x). It shows that in many cases
the optimizer is able to remove the overhead of method calls.
However, the optimization provides significant speedup in
other cases as for instance complex loop conditions.

Array strategies give a speedup of 18.1% (min. −19%,
max. 2x), which is comparable to the speedup for SOMMT,
but slightly higher.

The lowering of common operations gives an average
speedup of 18.7% (min. −6.5%, max. 2.8x). The results are
similar to the ones for SOMMT, indicating the general use-
fulness of these optimization independent of the technique
to determine compilation units. Furthermore, the benefit of
the optimization here is again higher for SOMPE.

The optimization for object fields improves performance
significantly. For the SOMPE interpreter, it was causing a
slowdown. With the partial evaluation and subsequent com-
pilation however, we see a speedup of 41.1% (min. −5.8%,
max. 11.2x). Thus, typed object fields contribute signifi-
cantly to the overall peak performance, despite their nega-

Author Copy 9 2015/8/17

tive impact on interpreter performance. The benefit of typing
variables and arguments seems to be minimal. Here the opti-
mizer has already sufficient information to generate efficient
code regardlessly.

The caching of globals gives an average speedup of
79.9% (min. −3%, max. 10x). Compared to RPython, on
Truffle this form of node specialization is the only way to
communicate runtime constants to the optimizer and as the
results show, it is important for the overall performance.

Custom inline caching at method call sites and block in-
vocations is the second most beneficial optimization. It re-
sults on average in a speedup of 3x (min. 0%, max. 19.6x).
On SOMMT, this optimization did not give any improve-
ments because RPython offers annotations that communi-
cate the same information to the compiler. With Truffle how-
ever, inline caching is only done by chaining nodes with the
cached data to the call site AST node. While tracing intrin-
sically inlines across methods, Truffle needs these caching
nodes to see candidates for inlining. Since inlining enables
many other classic compiler optimizations, it is one of the
the most beneficial optimizations for SOMPE.

The lowering of control structures is the most beneficial
optimization for SOMPE. It gives an average speedup of 4.3x
(min. −0.2%, max. 232.6x). Similar to SOMMT, expressing
the semantics of loops and other control flow structures re-
sults in significant performance improvements. In Truffle,
similar to RPython, the control structures communicate ad-
ditional information to the compilation backend. In SOMPE,
loops record loop counts to direct the adaptive compilation.
Similarly, branching constructs record branch profiles to en-
able optimizations based on branch probabilities.

Conclusion. Considering all optimizations that are benefi-
cial on average, and show for at least one benchmark larger
gains, we find that array strategies, typed fields, and lower-
ing of common operations and control structures are highly
relevant for both meta-compilation approaches.

Inline caching and caching of globals is realized with
annotations in RPython’s meta-tracing and thus, does not
require the optimizations based on node specialization, even
so, they are beneficial for the interpreted mode. However,
with partial evaluation, the node specializations for these
two optimizations provide significant speedup. Inlining of
basic operations is beneficial for partial evaluation. While
we did not apply this optimization to SOMMT, it is unlikely
that it provides benefits, since the same result is already
achieved with the annotations that are used for basic inline
caching. The typing of variables was also only applied to
SOMPE. Here it improves peak performance. For SOMMT,
it might in some cases also improve performance, but the
added complexity might lead to a result like, e. g., for the
minimizing of escaping variables, which does not improve
peak performance on average.

Thus, overall we conclude that partial evaluation benefits
more from the optimizations in our experiments by gener-

ating higher speedups. Furthermore, we conclude that more
optimizations are beneficial, because partial evaluation can-
not provide the same implicit specialization based on run-
time information that meta-tracing provides implicitly.

4.4 SOMMT vs. SOMPE

To compare the overall performance of SOMMT and SOMPE,
we use their respective baseline version, i. e., including all
optimizations. Furthermore, we compare their performance
to Java. The compiled performance is compared to the re-
sults for the HotSpot server compiler and the interpreted
performance to the Java interpreter (-Xint). Note, the re-
sults for the compiled and interpreted modes are not compa-
rable. Since the performance difference is at least one order
of magnitude, the benchmarks were run with different pa-
rameters. Furthermore, cross-language benchmarking is in-
herently problematic. While the benchmarks are very simi-
lar, they are not identical and, the VMs executing them are
tuned based on how the constructs are typically used, which
differ between languages. Thus, the reported comparison to
Java is merely an indication for the general order of magni-
tude one can expect, but no reliable predictor.

Figure 7 shows that SOMMT’s peak performance is on this
benchmark set on average 3x (min. 1.5x, max. 11.5x) slower
than Java 8 on HotSpot. SOMPE is about 2.3x (min. 3.9%,
max. 4.9x) slower. Thus, overall both SOMs reach within
3x of Java performance, even so they are simple interpreters
running on top of generic JIT compilation frameworks. This
means both meta-compilation approaches achieve the goal
of reaching good performance. However, SOMMT is slower
than SOMPE. At this point, we are not able to attribute
this performance difference to any conceptual differences
between meta-tracing and partial evaluation as underlying
technique. Instead, when investigating the performance dif-
ferences, we see indications that the performance differences
are more likely an indication of the amount of engineering
that went into the RPython and Truffle projects, which re-
sults in Truffle and Graal producing more efficient machine
code, while RPython has remaining optimization opportuni-
ties. For instance, GraphSearch is much slower on SOMMT
than on SOMPE. The main reason is that RPython currently
does not optimize the transition between traces. The bench-
mark has many nested loops and therefore trace transitions.
But instead of passing only the needed values when trans-
ferring to another trace, it constructs a frame object with all
argument and local variable structures. RPython could opti-
mize this by transitioning directly to the loop body and pass-
ing only the values that are needed.

The performance of SOMMT being only interpreted is
about 5.6x (min. 1.6x, max. 15.7x) lower than that of the
Java 8 interpreter. Similarly, SOMPE is about 6.3x (min.
1.9x, max. 15.7x) slower than the Java 8 interpreter. Here
we see some benchmarks being more than an order of mag-
nitude slower. Such high overhead can become problematic
when applications have short runtimes and very irregular be-

Author Copy 10 2015/8/17

Compiled
SOMMT

Compiled
SOMPE

Interpreted
SOMMT

Interpreted
SOMPE

1

4

8

12

16

B
ou

nc
e

B
ub

bl
eS

or
t

D
el

ta
B

lu
e

Fa
nn

ku
ch

G
ra

ph
S

ea
rc

h
Js

on
M

an
de

lb
ro

t
N

B
od

y
P

ag
eR

an
k

Pe
rm

ut
e

Q
ue

en
s

Q
ui

ck
S

or
t

R
ic

ha
rd

s
S

ie
ve

S
to

ra
ge

To
w

er
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
el

ta
B

lu
e

Fa
nn

ku
ch

G
ra

ph
S

ea
rc

h
Js

on
M

an
de

lb
ro

t
N

B
od

y
P

ag
eR

an
k

Pe
rm

ut
e

Q
ue

en
s

Q
ui

ck
S

or
t

R
ic

ha
rd

s
S

ie
ve

S
to

ra
ge

To
w

er
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
el

ta
B

lu
e

Fa
nn

ku
ch

G
ra

ph
S

ea
rc

h
Js

on
M

an
de

lb
ro

t
N

B
od

y
P

ag
eR

an
k

Pe
rm

ut
e

Q
ue

en
s

Q
ui

ck
S

or
t

R
ic

ha
rd

s
S

ie
ve

S
to

ra
ge

To
w

er
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
el

ta
B

lu
e

Fa
nn

ku
ch

G
ra

ph
S

ea
rc

h
Js

on
M

an
de

lb
ro

t
N

B
od

y
P

ag
eR

an
k

Pe
rm

ut
e

Q
ue

en
s

Q
ui

ck
S

or
t

R
ic

ha
rd

s
S

ie
ve

S
to

ra
ge

To
w

er
s

R
un

tim
e

no
rm

al
iz

ed
to

Ja
va

(c
om

pi
le

d
or

in
te

rp
re

te
d)

Figure 7. SOM performance compared to Java. The compiled performance are the SOMs with JIT compiler compared to
HotSpot’s peak performance. The interpreted performance is compared to the HotSpot interpreter (-Xint).

havior, because only parts of the application are executed as
compiled code with good performance.

4.5 Whole Program and Warmup Behavior
In addition to interpreter and peak performance, the per-
ceived performance for users is also a relevant indicator.
Typically, it is influenced by the warmup behavior, i. e., the
time it takes to reach peak performance and the overall time
it takes to execute a program. To characterize RPython and
Truffle more closely in this respect, we measure the time
it takes to execute a given benchmark n times. The mea-
sured time is wall-clock time and includes process start and
shutdown.8 By varying n, we can approximate the warmup
behavior. By using wall-clock time, we further abstract from
the concrete time a single iteration takes by accounting for
garbage collection, compilation, and other miscellaneous
runtime overheads. In contrast to the previous measuments,
we have only a single measurement for each n for each of
the benchmarks. Because of the long runtimes, it was im-
practical to collect more. However, the graphs indicate that
the measurement errors are acceptable since the lines are
relatively smooth and the results correspond to the other
measurements.

Figure 8 depicts the results for our benchmark set. To
emphasize the warmup behavior, the results are normalized
with f(n) = timeVM(n)/(timeJava(1000)/1000 ∗ n) that
represents an idealized behavior based on Java’s peak perfor-
mance. This means, each result is normalized by the the n-th
fraction of the result for Java with 1000 iterations. This ap-
proach results in a plot that shows the warmup behavior for
all three systems and allows us to compare them visually.
At each point, the plot shows the factor by which SOMMT,
SOMPE, and Java are slower than a hypothetical VM with
Java peak performance.

8 It is measured with the common Unix utility /usr/bin/time.

For the first benchmark, Bounce, we see that SOMMT
starts out to be minimally faster than Java, but then Java
warms up faster and SOMMT eventually cannot keep up
with it. SOMPE however starts out being significantly slower
and then warms up slowly. On this particular benchmark,
SOMMT remains faster so that the high warmup cost of
SOMPE is not compensated by higher peak performance.
For benchmarks such as Fannkuch or GraphSearch on the
other hand, SOMPE warms up faster and compensates for
its warmup cost early on. Averaging these results over all
benchmarks, we find that SOMPE starts out to be about
16.3x slower than Java and after 1000 benchmark iterations
reaches 2.4x. SOMMT starts out with about 1.5x slower and
is after 1000 iterations 3.1x slower than Java. Compared to
SOMMT, it takes SOMPE about 200 iterations to break even
and reach a performance of 3x slower than Java.

In its current state, Truffle does not optimize startup per-
formance. On the one hand, it builds on the standard HotSpot
JVM and all interpreter code as well as the code of the Graal
JIT compiler are first compiled by HotSpot, which increases
the warmup time. On the other hand, the Graal JIT com-
piler itself is designed to be a top-tier compiler optimiz-
ing for peak performance, which makes it comparably slow.
RPython on the other hand does create a static binary of the
interpreter, which does not need to warmup and therefore is
initially faster. From the conceptual perspective, this differ-
ence is not related to the meta-compilation approaches, but
merely an artifact of the concrete systems.

4.6 Memory Usage
With the differences in how objects are represented between
Java and our SOM implementations, as well as the question
of how effective optimizations such as escape analyses are,
it is interesting to investigate the memory usage of programs
executing on RPython and Truffle. Especially for programs
with large data sets, memory usage can have a major per-

Author Copy 11 2015/8/17

Bounce BubbleSort DeltaBlue Fannkuch GraphSearch Json Mandelbrot NBody

PageRank Permute Queens QuickSort Richards Sieve Storage Towers
0

5

10

0

5

10

0

50
0

10
00 0

50
0

10
00 0

50
0

10
00 0

50
0

10
00 0

50
0

10
00 0

50
0

10
00 0

50
0

10
00 0

50
0

10
00

Run length in n iterations of benchmarks

W
al

l-c
lo

ck
tim

e
fo

rn
ite

ra
tio

ns
no

rm
al

iz
ed

to
Ja

va

Java

SOMMT

SOMPE

Figure 8. Whole program behavior of SOM compared to Java. Each benchmark is execute n times within the same VM
processes and we measure the overall wall-clock time for the execution. For each benchmark, the result for n iterations is
normalized to the n-th fraction of Java with 1000 iterations.

Bounce BubbleSort DeltaBlue Fannkuch GraphSearch Json Mandelbrot NBody

PageRank Permute Queens QuickSort Richards Sieve Storage Towers
0

10

20

30

40

0

10

20

30

40

0

75
0

15
00 0

75
0

15
00 0

75
0

15
00 0

75
0

15
00 0

75
0

15
00 0

75
0

15
00 0

75
0

15
00 0

75
0

15
00

Run length in n iterations of benchmarks

M
ax

R
S

S
fo

rn
ite

ra
tio

ns
no

rm
al

iz
ed

to
S

O
M

M
T

Java

SOMMT

SOMPE

Figure 9. Maximum resident set size, i. e., maximum memory usage of SOM and Java normalized to SOMMT. Each benchmark
is execute n times within the same VM processes and we measure the max. RSS for the execution. For each benchmark, the
result for n iterations is normalized to SOMMT.

formance impact. For this comparison we can unfortunately
not rely on precise information since RPython does not pro-
vide access to the current heap usage or statistics from the
garbage collector. Thus, we measure the maximum resident
set size (RSS) as reported by the Unix time utility. This
number only gives a rough indication of the maximal mem-
ory pressure during program execution. Thus, we measure it
for different number of iterations of the benchmarks. How-
ever, this numbers is also interesting, because it includes all
memory used by the systems. It includes the garbage col-
lected heap memory as well as memory that is used by the
VM for instance for the generated machine code.

The results are depicted in fig. 9. The measurements are
normalized based on SOMMT, because it has the smallest
overall resident set size, and the resulting graph shows more

details than if it would be normalized to Java. Note that
the direct comparison between SOMMT and Java or SOMPE
is not allowing any conclusion with respect to the meta-
compilation approaches, because the systems are too differ-
ent. However, a comparison of SOMPE with Java is possible.

Averaged over all benchmarks, SOMPE has at the first
iteration an 9.6x higher max. RSS than Java. After 1500
iterations, the difference is down to 3.2x. This means, that
SOMPE has a higher initial footprint than Java. The dynamic
overhead seems to be still higher than Java’s but significantly
less then the initial factor of 9.6x.

Currently, neither SOMPE nor SOMMT use precise alloca-
tion, i. e., minimize the allocated memory for objects based
on the knowledge of their layout. Instead, they use an ob-
ject representation with 5 fields for primitive values (longs

Author Copy 12 2015/8/17

or doubles), 5 fields for object values, and optional extension
arrays for primitive and object values. In praxis, this means
that small objects use more space then needed. Arrays on the
other hand use storage strategies and thus, do not use more
memory than necessary.

Since the garbage collectors of RPython and HotSpot are
so different, we cannot draw conclusions from this data with
respect to the meta-compilation approaches.

4.7 Implementation Sizes
In addition to the achievable performance, engineering as-
pects can be of importance for language implementations
as well. To gain some insight of how partial evaluation and
meta-tracing compare in that regard, we determine the im-
plementation sizes of the experiments. However, in addi-
tion to the weak insights measurement of implementation
size provides, it needs to be noted that the obtained numbers
are only directly comparable for experiments with the same
SOM implementation. Since Java and RPython have signif-
icant syntactical and semantic differences, a direct compari-
son is not possible. Instead, we compare the relative numbers
with respect to the corresponding baseline implementation.
The reported percentages are based on the implementation
without an optimization as denominator so that the percent-
age indicates the change needed to add the optimization.

As first indication, we compare the minimal versions of
the SOM interpreters without optimizations with the base-
line versions. SOMMT has 3455 lines of code (LOC, exclud-
ing blank lines and comments) with all optimizations added
it grows to 5414LOC which is a 57% increase. The minimal
version of SOMPE has 5424LOC and grows to 11037LOC
with all optimizations, which is an increase of 103%. Thus,
SOMPE is overall larger, which is expected since we apply
more optimizations.

Table 2 lists the data for all experiments incl. absolute
numbers. Comparing the relative increases of implementa-
tion sizes for SOMMT and SOMPE indicates that the opti-
mizations are roughly of the same size in both cases. The
only outlier is the implementation of inline caching which is
larger for SOMPE. Here the language differences between
RPython and Java are becoming apparent and causes the
SOMPE implementation to be much more concise.

Conclusion. Considering performance and implementa-
tion sizes combined, we see for SOMMT an overall peak
performance increase of 1.8x (min. −10.5%, max. 5.4x) for
going from the minimal to the baseline version. The inter-
preter performance improves by 2.4x (min. 41.5%, max.
3.9x). Note, the minimal version includes one trace merge
point in the while loop to enable trace compilation (cf.
section 3.2). For SOMPE, the peak performance improves by
78.1x (min. 22.8x, max. 342.4x) from the minimal to the
baseline version. SOMPE’s interpreter speed improves by 4x
(min. 2.1x, max. 7.3x). SOMPE also implements while in

the interpreter, but it does not provide the same benefits for
the partial evaluator as it does for the meta-tracer.

We conclude that for partial evaluation the optimizations
are essential to gain performance. For meta-tracing however,
they are much less essential and can be used more gradually
to improve the performance for specific use cases.

5. Discussion
This sections discusses technical questions and possible al-
ternative design choices for RPython and Truffle. The gen-
eral design of this study, its conclusiveness, and the general-
izability of the results are also discussed as part of section 3.

5.1 Performance Results
After studying the impact of various optimization on SOMMT
and SOMPE, the question arrises whether the observed per-
formance effects are generalizable to other languages. With-
out further experiments, it needs to be assumed that they are
not directly transferable. To give but a single example, for
SOMPE we observed no benefit for peak performance from
specializing method argument access based on their types.
On the contrary, the interpreter showed clear performance
drawbacks. However, in SOM, arguments are not assignable
and methods are generally short. The usage pattern for ar-
guments can thus be different in languages with assignable
argument variables such as Java. Thus, other languages po-
tentially benefit from this optimization. Nonetheless, the ob-
servations made here can provide initial guidance for other
language implementations to prioritize the optimization ef-
fort. For instance, the relevance of inline caching is not only
widely acknowledge in literature but is also very relevant in
other Truffle languages such as JRuby+Truffle [22].

Since the performance of the SOM implementations is
compared with Java, the result of being in the range of 2.3-
3x slower leads to the question of whether it is a limita-
tion of the meta-compilation approaches. From our perspec-
tive, the reason for the performance difference is based on
the language differences and further optimization potential
in RPython and Truffle as well as in our interpreters. Since
Java and SOM have different language characteristics, even
highly optimizing compilers cannot produce identical code
for both languages. Operations on Java’s integer types for
instance do not require any dynamic checks. On the other
hand, SOM requires dynamic dispatch of operators as well
as the promotion to arbitrary precision integers on overflow.
Compilers can reduce the impact of such differences, for in-
stance by moving checks out of loops, however, the checks
cannot be eliminated completely without changing the lan-
guage’s semantics. Nonetheless, RPython and Truffle seem
to be able to deliver performance comparable with classic
JIT compilation approaches, indicated for instance by Truf-

Author Copy 13 2015/8/17

SOMMT SOMPE SOMMT SOMPE
LOC % LOC % LOC ins. del. LOC ins. del.

baseline 0.0 0.0 5414 0 0 11037 0 0
array strategies 11.6 9.0 4851 37 829 10125 126 1233
cache globals 0.5 1.7 5386 2 41 10853 14 239
catch-return nodes 0.3 0.4 5397 12 36 10995 54 107
inline basic ops. 3.7 10647 0 430
inline caching 2.0 7.9 5307 1 158 10231 95 1095
lower common ops 10.2 9.1 4912 2 678 10115 1 1083
lower control structures 12.2 9.9 4824 8 790 10045 9 1160
min. escaping closures 0.4 0.9 5394 5 30 10943 42 152
min. escaping vars 1.7 5322 20 130
opt. local vars 1.0 1.6 5359 49 135 10863 70 284
typed args 1.4 10886 204 383
typed fields 10.2 11.1 4912 18 698 9933 39 1393
typed vars 1.1 10915 9 161

Table 2. Implementation sizes of the implementations without the optimization. LOC: Lines of code excluding comments and
empty lines, LOC %: increase of LOC to add optimization, ins./del.: inserted and deleted lines as reported by git

fle/JS performing in the range of V8 and SpiderMonkey.9

Remaining optimization potential in both systems is for in-
stance in the inter-compilation-unit calling convention. Cur-
rently, both systems use a simplified approach that requires
boxing all arguments and pass them in an argument object or
array. Since both system however need to know the types of
these arguments in either case, they could generate code with
more efficient signatures. Furthermore, in the SOM inter-
preters other optimizations could be added, for instance pre-
cise object allocation to reduce memory usage, using storage
strategies for other common data structures beside arrays to
avoid boxing overhead, and more optimizations for standard
library functionality.

Another aspect this study does not discuss in detail is the
impact of self-optimizations on memory usage. While we
see that the maximal memory usage of Java and SOMPE be-
come more similar with increasing runtime (cf. section 4.6),
we did not assess the concrete memory usage of the ASTs.
However, the general requirement for self-optimizing inter-
preters is that the AST stabilizes at some point [27]. This
implies that self-modification should only introduce an up-
per bound of nodes, which limits the additional memory re-
quirements. Whether this can lead to excessive memory con-
sumption on large applications remains an open question,
but since AST nodes are generally small objects with only
few fields, it seems unlikely.

5.2 Meta-Tracing vs. Partial Evaluation
A major difference between the two approaches is their over-
head during interpretation. Partial evaluation requires the in-
terpreter to record information about the executed code for

9 Performance: JavaScript, Slide 86, Graal Tutorial, Christian Wimmer,
CGO, 2015, access date: 2015-07-19 http://lafo.ssw.uni-linz.a
c.at/papers/2015 CGO Graal.pdf

instance branch probabilities and unused code paths. This
information is used by the compiler to guide optimization
together with heuristics, e. g., to avoid compilation of excep-
tion handling in the standard case. While sampling might re-
duce the overhead of collecting the runtime feedback, Truf-
fle does currently use a precise approach that is active at all
times, leading to a high overhead during interpretation.

With meta-tracing, the interpreter tracks execution only at
the trace merge points. Only during tracing, which happens
very infrequently, it records additional information needed
for optimization. Thus, in a tracing system, interpreter per-
formance might have conceptual advantages over a system
with partial evaluation.

From a language implementers perspective, it can be
argued that the meta-tracing approach as exemplified by
RPython also is a conceptually purer approach in the sense
that it requires only to reason about interpretation behavior.
With partial evaluation on the other hand, the language im-
plementer needs to reason about compilation time as well.
Since partial evaluation is performed strictly independent
of actual execution, profiling information and value caches
need to be collected separately during execution to facili-
tate the later partial evaluation and optimization. This comes
with the consequence that not only a single value has to be
regarded as during the concrete tracing execution, but mul-
tiple values, i. e., general polymorphism has to be handled
directly. Note, the explicit reasoning about compilation time
is not necessarily a drawback, since it makes performance
relevant polymorphism explicit.

5.3 RPython vs. Truffle
The main difference observed between RPython and Truf-
fle is the performance difference between unoptimized in-
terpreters. With RPython’s meta-tracing, the performance is

Author Copy 14 2015/8/17

http://lafo.ssw.uni-linz.ac.at/papers/2015_CGO_Graal.pdf
http://lafo.ssw.uni-linz.ac.at/papers/2015_CGO_Graal.pdf

already in the same order of magnitude, while Truffle’s par-
tial evaluation results in one order difference. While much of
the difference can be attributed to the missing compile-time
knowledge of method calls, and thus, the missing support for
inlining on language level, another important difference be-
tween the two systems is the chosen language in which inter-
preters are implemented. Truffle uses standard Java with full
Java semantics. This comes for the partial evaluation with
additional restrictions. For instance, Java gives certain guar-
antees with respect to object identities, which restricts for
instance optimizations avoid boxing. Another relevant re-
striction is that interfaces are not sufficient to optimize in
all cases, which requires the use of concrete value profiles
to enable the optimizer to know that certain objects are of
a specific class and optimize accordingly. Such profiling in-
formation can be provided with the Truffle framework. How-
ever, compared to RPython, it requires additional work from
the language implementer.

The benefit Truffle gains from the use of Java is that exist-
ing Java code can be easily integrated into an interpreter. It
can even become part of a Truffle compilation unit and thus
be highly optimized on the fast path. From our perspective,
there are however sufficient indications that it restricts the
partial evaluation and optimizations consequently requiring
language implementers to provide more self-optimizations
in their interpreters than ideally would be required.

From the perspective of how knowledge is commu-
nicate to the optimizers, both RPython and Truffle turn
out to be very similar. With RPython’s @elidable and
promote(), the compiler can be told about runtime con-
stants. Very similar, Truffle’s ValueProfile fulfills the
same purpose. A second concept is explicit loop unrolling
for instance for the processing of a constant number of
method arguments. In RPython, the @unroll_safe an-
notation is used for this, and in Truffle the equivalent
@ExplodeLoop annotation. A third relevant concept is
global optimistic speculation. RPython has the notion of
quasi-immutable fields, which do not leave a runtime check
in the code, but instead writes to such fields cause an in-
validation of all compiled code that depended on the field’s
value. In Truffle, this is handled by the Assumption class,
which also causes an invalidation on all code that depends on
it incase it is invalidated. Since these are the major mecha-
nisms offered by the two systems, and offered in very similar
ways, there does not seem to be an immediate opportunity
for either of the systems to add a missing mechanism.

When implementing a language, tooling can be a relevant
deciding factor for RPython or Truffle. When optimizing an
implementation, tools need to make it easy to understand and
relate the optimizations done by the respective toolchains to
an input program in the language that is implemented. Based
on the current status of the tools provided with both systems,
there seems to be some benefit for meta-tracing. Since all op-
timizations are based on traces that linearize control flow, the

tools are able to attribute relatively accurately the optimized
instructions in a trace to the elements of the language imple-
mentation they originate from. In practice, this means that
a program is relatively easily recognized in a trace, which
supports the understandability of the results. For Truffle on
the other hand, the available tool for inspecting the control-
and data-flow graph of a program does not maintain the con-
nection to the language implementation. Part of the issue is
that some of Graal’s compiler optimizations can duplicate or
merge nodes, which complicates the mapping to the input
program.

Another practical aspect are the platforms’ capabilities
and their ecosystems. Since Truffle builds on the JVM, sup-
port for threads, a memory model, and a wide range of soft-
ware is implicitly give. Furthermore, the use of JVM-based
software does not introduce a compilation boundary and
thus, just-in-time compilation can optimize a Truffle-based
language together with other libraries. RPython on the other
hand does not come with comprehensive support for threads.
Furthermore, its integration into the surrounding ecosystem
is based on a foreign function interface (rffi), which is a com-
pilation boundary for the tracing compiler.

6. Related Work
As far as we are aware, there is no other study compar-
ing meta-tracing and partial evaluation in detail. In pre-
vious work, we studied whether both approaches deliver
on their performance promise [21]. However, we compared
a bytecode-based with a self-optimizing AST interpreter
limiting the explanatory value of the results. In this study,
we compare two self-optimizing AST interpreters and fur-
ther detail the impact of optimizations, overall performance,
whole program behavior, and memory usage.

Interpreters and Optimizations Related to Würthinger
et al. [27]’s self-optimizing interpreters is for instance quick-
ening and superinstructions focused on bytecode-based in-
terpreters [9, 10, 23].

The optimizations proposed for self-optimizing inter-
preters cover a wide range of topics and the optimizations
discussed in this paper are either directly based on the lit-
erature or small variations. Würthinger et al. [27] initially
discussed operation specialization by type, dynamic data
type specialization, type specialization of local variable and
field accesses, boxing elimination, and polymorphic inline
caching (cf. also Würthinger et al. [28]). Later, Wöß et al.
[29] detailed the strategy for field access optimization with
an object storage model. Kalibera et al. [20] discussed the
challenges of a self-optimizing interpreter for the R lan-
guage to address the dynamic and lazy nature of R. They
detail a number of structural optimizations similar to the
ones discussed here, dynamic operation and variable spe-
cialization, inline caching, data type specializations, as well
as a profiling-based optimization of R’s view feature, which
is a complex language feature that has different tradeoffs

Author Copy 15 2015/8/17

depending on the size of vectors it is used on. A similarly
complex language feature that has been optimized in this
context is Python’s generators [30].

Meta-Tracing Bolz and Tratt [5] discuss the impact of
meta-tracing on the VM design and implementation. They
detail how an implementation needs to expose for instance
data dependencies, compile-time constants, and elidable
computations clearly to the tracer for best optimization re-
sults. Generally, they advise to expose runtime constants
also on the level of the used data structures. Thus, to prefer
fixed sized arrays over variable sized lists, and to use known
techniques such as maps [11] to optimize objects to provide
the tracer and subsequent optimization with as much infor-
mation about runtime constants as possible. In this study, we
find that these general suggestions apply to both compilation
techniques, meta-tracing as well as partial evaluation.

Beside RPython, SPUR is another system that uses meta-
tracing just-in-time compilation for dynamic languages [3].
We did not investigate it in this study since it requires that
the language is compiled to the Common Intermediate Lan-
guage (CIL), and thus, has a different and not directly com-
patible approach with RPython and Truffle. The general ben-
efit of the system we study is that language implementers
build simple interpreters, without requiring an additional
compilation step.

7. Conclusion and Future Work
This study compares tracing and partial evaluation as meta-
compilation techniques for self-optimizing AST interpreters.
The results indicate that both techniques enable language
implementations to reach average performance within 3x of
Java. A major difference between meta-tracing and partial
evaluation is the amount of optimization a language imple-
menter needs to apply to reach the same level of perfor-
mance. Our experiments with SOM, a dynamic class-based
language, indicates that meta-tracing performs well even
without adding optimizations. With the additional optimiza-
tions it is on average only 3x (min. 1.5x, max. 11.5x) slower
than Java. SOMMT reaches this results with 5414 LOC. For
partial evaluation on the other hand, we find that many of
the optimization are essential to reach good performance.
With all optimizations, SOMPE is on average only 2.3x (min.
3.9%, max. 4.9x) slower than Java. SOMPE reaches this re-
sult with 11037 LOC. We conclude overall that meta-tracing
and partial evaluation can reach the same level of perfor-
mance. However, meta-tracing has significant benefits from
the engineering perspective, because the optimizations pro-
vide generally fewer performance benefits and thus are less
critical to be applied.

Since this study uses with Truffle and RPython two inde-
pendent systems, we consider the observed difference in ab-
solute performance as insignificant. We find that tracing and
partial evaluation are equally suited for meta-compilation,
and that the observed performance differences are merely

an artifact of the different amounts of engineering that went
into Truffle and RPython. Future work could verify this by
studying both techniques on top of the same optimization
infrastructure. For instance a tracing JIT compiler on top of
HotSpot [18] could be used to verify whether the observed
engineering benefits are a consequence of tracing. On the
other hand, if the partial evaluated language would be more
geared towards it than Java, it might also reduce the self-
optimizations that are necessary to reach peak performance.

The interpreted performance of self-optimizing inter-
preters could still benefit from significant improvements.
Possible research directions include approaches similar to
superinstructions [10] on the AST level to avoid costly poly-
morphic method invocations. Another direction could be to
attempt the generation of bytecode interpreters potentially
in highly efficient machine code to reach interpretive perfor-
mance competitive with for instance Java’s bytecode inter-
preter.

A. Evaluated Optimization Techniques
This appendix details the interpreter optimizations used for
the study of this paper. The optimizations are grouped into
structural and dynamic optimizations as well as lowering of
language and library functionality.

A.1 Structural Optimizations
Literature discusses many optimizations that can be per-
formed after parsing a program, without requiring dynamic
information. We chose a few to determine their impact in the
context of meta-compilation. Note, each optimization has a
shorthand by which we refer to it throughout the paper.

Distinguish Variable Accesses in Local and Non-Local
Lexical Scopes (opt. local vars) In SOM, closures can
capture variables of their lexical scope. A variable access
thus needs to determine in which lexical scope the variable
is to be found, then traverse the scope chain, and finally do
the variable access. SOM’s compiler can statically deter-
mine whether a variable access is in the local scope. At run-
time, it might be faster to avoid the tests and branches of the
generic variable access implementation. Thus, in addition to
the generic AST node for variable access, this optimization
introduces an AST node to access local variables directly.

Handle Non-Local Returns Only in Methods including
Them (catch-return nodes) In recursive AST interpreters
such as SOMPE and SOMMT, non-local returns are imple-
mented using exceptions that unwind the stack until the
method is found from which the non-local return needs to
exit. A naive implementation handles the return exception
simply in every method and checks whether it was the target.
However, the setup for exception handlers as well as catch-
ing and checking an exception has a runtime cost on most
platforms, and the handling is only necessary in methods
that actually contain lexically embedded non-local returns.

Author Copy 16 2015/8/17

Thus, it might be beneficial to do the handling only in meth-
ods that need it. Since it is known after parsing a method
whether it contains any non-local returns, the handling can
be represented as an extra AST node that wraps the body of
the method and is only added when necessary.

Expose Variables in Lexical Scope Only if Accessed (min.
escaping vars, SOMMT only) Truffle relies on a rigid
framework that realizes temporary variables of methods
with Frame objects. The partial evaluator checks that these
frames do not escape the compilation unit, so that they do
not need to be allocated. However, for lexical scoping, frame
objects can escape as part of a closure object. In Truffle, such
escaping frames need to be materialized explicitly. Instead
of using such a strict approach, RPython works the other
way around. An object can be marked as potentially virtual,
so that its allocation is more likely to be avoided depending
on its use in a trace.

To help the implicit approach of RPython in SOMMT, the
frames can be structured to minimize the elements that need
to escape to realize closures. At method compilation time,
it is determined which variables are accessed from an inner
lexical scope and only those are kept in an array that can
escape. The optimizer then ideally sees that the frame object
itself does not need to be allocated. Since Truffle fixes the
structure of frames, this optimization is not applicable to
SOMPE.

Avoid Letting Unused Lexical Scopes Escape (min. escap-
ing closures) While the previous optimization tries to min-
imize the escaping of frames by separating variables, this
optimization determines for the whole lexical scope whether
it is needed in an inner scope or not. When the scope is not
used, the frame object is not passed to the closure object and
therefore will not escape. The optimization is realized by us-
ing a second AST node type that creates the closure object
with null instead of the frame object.

A.2 Dynamic Optimizations
While the discussed static optimizations can also be applied
to other types of interpreters, the dynamic optimizations are
self-optimizations that require runtime information.

Cache Lookup of Global Values (cache globals) In SOM,
values that are globally accessible in the language are stored
in a hash table. Since classes as well as the literals true,
false, and nil are globals, accessing the hash table is a
common operation. To avoid the hash table lookup at run-
time, globals are represented as association objects that can
be cached after the initial lookup in a specialized AST node.
The association object is necessary, because globals can be
changed. For true, false, and nil, we optimistically as-
sume that they are not changed and specialize the access to
a node that returns the corresponding constants directly.

Cache Method Lookups and Block Invocations (inline
caching) In dynamic languages, inline caching of method

lookups is common to avoid the overhead of traversing the
class hierarchy at runtime for each method invocation. In
self-optimizing interpreters, this is represented as a chain of
nodes, which encodes the lookup results for different kinds
of objects as part of the caller’s AST. In addition to avoiding
the lookup, this technique also exposes the target method as
a constant to the compiler which in turn can decide to inline
a method to enable further optimizations. Similar to caching
method lookups, it is beneficial to cache the code of closures
at their call sites to enable inlining.

In both cases, the node chains are structured in a way
that each node checks whether its cached value applies to
the current object or closure, and if that is not the case, it
delegates to the next node in the chain. At the end of the
chain, an uninitialized node either does the lookup operation
or in case the chain grows too large, it is replaced by a
fallback node that always performs the lookup.

Type-Specialize Variable Accesses (typed vars, SOMPE
only) As mentioned earlier, Truffle [27] uses Frame ob-
jects to implement local variables. For optimization, it tracks
the types stored in a frame’s slots, i. e., of local variables.
For SOMPE, Truffle thus stores long and double values
as primitives, which avoids the overhead of boxing. Further-
more, SOMPE’s variable access nodes specialize themselves
based on this type information to ensure that all operations
in this part of an AST work directly with unboxed values.

Since SOMMT uses uniform boxing, this optimization is
not applied.

Type-Specialize Argument Accesses (typed args, SOMPE
only) With the type specialization of SOMPE’s access to
local variables, it might be beneficial to type specialize also
the access to a method’s arguments. In Truffle, arguments to
method invocations are passed as an Object array. Thus,
this optimization takes the arguments passed in the object
array and stores them into the frame object to enable type
specialization. While this does not avoid the boxing of prim-
itive values on method call boundaries, it ensures that they
are unboxed and operations on these arguments are type spe-
cialized in the body of a method.

Note, since the variable access optimization is not appli-
cable to SOMMT, this optimization is not applicable either.

Specialize Object Field Access and Object Layout (typed
fields) To avoid boxing, it is desirable to store unboxed
values into object fields as well. Truffle provides support
for a general object storage model [29] that is optimized
for class-less languages such as JavaScript, and is similar to
maps in Self [11]. To have identical strategies, SOMPE and
SOMMT use a simplified solution that keeps track of how
object fields are used at runtime, so that long and double
values can be stored directly in the primitive slots of an
object. For each SOM class, an object layout is maintained
that maps the observed field types to either a storage slot
for primitive values or to a slot for objects. The field access

Author Copy 17 2015/8/17

nodes in the AST specialize themselves according to the
object layout that is determined at runtime to enable direct
access to the corresponding slot.

Type-Specialize Array Storage (array strategies) Similar
to other dynamic languages, SOM only has generic object ar-
rays. To avoid the overhead of boxing, we implement strate-
gies [8] for arrays. It is similar to the idea of specializing the
access and layout of object fields. However, here the goal is
to avoid boxing for arrays that are used only for either long,
double, or boolean values. In these cases, we specialize
the storage to an array of the primitive type. In the case of
booleans, it also reduces the size of the array from a 64-bit
pointer to a byte per element.

Specialize Basic Operations (inline basic ops., SOMPE
only) As in other dynamic languages, SOM’s basic op-
erations such as arithmetics and comparisons are normal
method invocations on objects. Thus for instance the expres-
sion 1 + 2 causes the plus method to be invoked on the 1
object. While this allows developers to define for instance
addition for arbitrary classes, in most cases arithmetics on
numbers still use the built-in method. To avoid unnecessary
method lookups and the overhead of method invocation, we
specialize the AST nodes of basic operations directly to the
built-in semantics when the type information obtained at
runtime indicate that it is possible.

Note, since this relies on TruffleDSL and its handling
of the possible polymorphism for such specializations, this
optimization is not applied to SOMMT.

A.3 Lowerings
The last category of optimizations covers the reimplementa-
tion of standard library functionality as part of the interpreter
to gain performance.

Control Structures (lower control structures) Similar to
specializing basic operations, we specialize control struc-
tures for conditionals and loops. In SOM, conditional struc-
tures are realized as polymorphic methods on boolean ob-
jects and loops are polymorphic methods on closures. An
optimization of these constructs is of special interest because
they are often used with lexically defined closures. Thus, in
the context of one method, the closures reaching a control
structure are statically known. Thus, specializing the control
structures on the AST level does not only avoid overhead for
method invocations done in the language-level implementa-
tion, but also utilizes directly the static knowledge about the
program structure and exposes the closure code directly for
further compiler optimizations such as inlining.

In SOMMT, such specializations have the benefit of ex-
posing the language-level loops to the implementation by
communicating them directly to the meta-tracer with trace
merge points (cf. section 3.2).

Common Library Operations (lower common ops) In
addition to generic control structures, the SOM library

provides many commonly used operations. We selected
boolean, numeric, array copying, and array iteration oper-
ations for implementation at the interpreter level.

Similar to the specialization of basic operations and con-
trol structures, these optimizations are applied optimistically
on the AST nodes that do the corresponding method invoca-
tion if the observed runtime types permit it.

B. Artifact Overview
This paper is supplemented with an online appendix that
includes the experiments and the source artifacts on which
this research is based. The artifacts and how to execute the
experiments are detailed as at: http://stefan-marr.d
e/papers/oopsla-marr-ducasse-meta-traci
ng-vs-partial-evaluation-artifacts/.

The artifacts include the following elements:

• a VirtualBox image with the complete experiment set up
for experimentation

• the raw data set on which section 4 is based
• R scripts to process the raw data and produce the graphs

and numbers used in section 4
• a complete source tar ball containing the snapshot of the

used sources
• a ReBench10 configuration file to execute the benchmarks

with the parameters used in this paper

The experiment setup is also accessible via our GitHub
repository https://github.com/smarr/selfopt
-interp-performance on the branch papers/met
atracing-vs-partialevaluation.

Acknowledgments
The authors would like to thank C. F. Bolz, M. Fijałkowski,
and A. Rigo from the PyPy team as well as B. Daloze, G.
Duboscq, M. Grimmer, C. Humer, M. Haupt, C. Seaton,
L. Stadler C. Wimmer, A. Wöß, T. Würthinger, and W.
Zhang from the Truffle community for guidance, support,
and discussions on the topic of this research. Their help was
essential for enabling the SOM implementations to perform
efficiently in the first place. We would further like to thank E.
Barrett, C. F. Bolz, T. D’Hondt, L. Tratt, and the anonymous
reviewers for their input on this paper.

References
[1] L. Augustsson. Partial Evaluation in Aircraft Crew Planning.

In Proc. of PEPM, pages 127–136. ACM, 1997.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Trans-
parent Dynamic Optimization System. In Proc. of PLDI,
pages 1–12. ACM, 2000. ISBN 1-58113-199-2.

10 ReBench, Execute and document benchmarks reproducibly, access date:
2015-07-12 https://github.com/smarr/ReBench

Author Copy 18 2015/8/17

http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/
http://stefan-marr.de/papers/oopsla-marr-ducasse-meta-tracing-vs-partial-evaluation-artifacts/
https://github.com/smarr/selfopt-interp-performance
https://github.com/smarr/selfopt-interp-performance
papers/metatracing-vs-partialevaluation
papers/metatracing-vs-partialevaluation
https://github.com/smarr/ReBench

[3] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo,
W. Schulte, N. Tillmann, and H. Venter. Spur: A trace-based
jit compiler for cil. In Proc. of OOPSLA, pages 708–725.
ACM, 2010.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In
Proc. of OOPSLA, pages 169–190. ACM, 2006.

[5] C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM
Design and Implementation. Science of Computer Program-
ming, 2013.

[6] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing
the Meta-level: PyPy’s Tracing JIT Compiler. In Proc. of
ICOOOLPS, pages 18–25. ACM, 2009.

[7] C. F. Bolz, M. Leuschel, and D. Schneider. Towards a Jitting
VM for Prolog Execution. In Proc. of PPDP, pages 99–108.
ACM, 2010. ISBN 978-1-4503-0132-9.

[8] C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies
for Collections in Dynamically Typed Languages. In Proc.
of OOPSLA, pages 167–182. ACM, 2013.

[9] S. Brunthaler. Efficient Interpretation Using Quickening. In
Proc. of DLS, pages 1–14. ACM, Oct. 2010.

[10] K. Casey, M. A. Ertl, and D. Gregg. Optimizing Indirect
Branch Prediction Accuracy in Virtual Machine Interpreters.
ACM Trans. Program. Lang. Syst., 29(6):37, 2007.

[11] C. Chambers, D. Ungar, and E. Lee. An Efficient Implemen-
tation of SELF a Dynamically-Typed Object-Oriented Lan-
guage Based on Prototypes. In Proc. of OOPSLA, pages 49–
70. ACM, 1989. ISBN 0-89791-333-7.

[12] Y. Futamura. Partial Evaluation of Computation Process–
An Approach to a Compiler-Compiler. Higher-Order and
Symbolic Computation, 12(4):381–391, 1971/1999.

[13] Y. Futamura. Partial Computation of Programs. In E. Goto,
K. Furukawa, R. Nakajima, I. Nakata, and A. Yonezawa, ed-
itors, RIMS Symposia on Software Science and Engineering,
volume 147 of LNCS, pages 1–35. Springer, 1983.

[14] A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective
JIT Compiler for Resource-constrained Devices. In Proc. of
VEE, pages 144–153. ACM, 2006. ISBN 1-59593-332-6.

[15] M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr,
A. Bergmann, A. Heise, M. Kleine, and R. Krahn. The SOM
Family: Virtual Machines for Teaching and Research. In Proc.
of ITiCSE, pages 18–22. ACM Press, June 2010.

[16] U. Hölzle, C. Chambers, and D. Ungar. Debugging Optimized
Code with Dynamic Deoptimization. In Proc. of PLDI, pages

32–43. ACM, 1992. ISBN 0-89791-475-9.

[17] C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger.
A Domain-Specific Language for Building Self-Optimizing
AST Interpreters. In Proc. of GPCE, pages 123–132. ACM,
2014.

[18] C. Häubl, C. Wimmer, and H. Mössenböck. Context-sensitive
Trace Inlining for Java. Computer Languages, Systems &
Structures, 39(4):123–141, 2013.

[19] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
Dynamically-Typed Object-Oriented Languages With Poly-
morphic Inline Caches. In Proc. of ECOOP, volume 512 of
LNCS, pages 21–38. Springer, 1991. ISBN 3-540-54262-0.

[20] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A Fast Abstract
Syntax Tree Interpreter for R. In Proc. of VEE, pages 89–102.
ACM, 2014. ISBN 978-1-4503-2764-0.

[21] S. Marr, T. Pape, and W. De Meuter. Are we there yet? sim-
ple language implementation techniques for the 21st century.
IEEE Software, 31(5):60–67, September 2014.

[22] S. Marr, C. Seaton, and S. Ducasse. Zero-overhead metapro-
gramming: Reflection and metaobject protocols fast and with-
out compromises. In Proc. of PLDI, pages 545–554. ACM,
2015.

[23] T. A. Proebsting. Optimizing an ANSI C Interpreter with
Superoperators. In Proc. of POPL, pages 322–332. ACM,
1995.

[24] A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine
Construction. In Proc. of DLS, pages 944–953. ACM, 2006.

[25] G. Sullivan. Dynamic Partial Evaluation. In Programs as Data
Objects, volume 2053 of LNCS, pages 238–256. Springer,
2001.

[26] C. Wimmer and S. Brunthaler. ZipPy on Truffle: A Fast
and Simple Implementation of Python. In Proc. of OOPSLA
Workshops, SPLASH ’13, pages 17–18. ACM, 2013.

[27] T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon,
and C. Wimmer. Self-Optimizing AST Interpreters. In Proc.
of DLS, pages 73–82, 2012.

[28] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One VM
to Rule Them All. In Proc. of Onward!, pages 187–204. ACM,
2013. ISBN 978-1-4503-2472-4.

[29] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and
H. Mössenböck. An Object Storage Model for the Truffle
Language Implementation Framework. In Proc. of PPPJ,
pages 133–144. ACM, 2014. ISBN 978-1-4503-2926-2.

[30] W. Zhang, P. Larsen, S. Brunthaler, and M. Franz. Acceler-
ating Iterators in Optimizing AST Interpreters. In Proc. of
OOPSLA, pages 727–743. ACM, 2014.

Author Copy 19 2015/8/17

