
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Eisl, Josef and Marr, Stefan and Würthinger, Thomas and Mössenböck, Hanspeter (2017) Trace
Register Allocation Policies: Compile-time vs. Performance Trade-offs. In: Proceedings of
the 14th International Conference on Managed Languages and Runtimes.

DOI

https://doi.org/10.1145/3132190.3132209

Link to record in KAR

http://kar.kent.ac.uk/63807/

Document Version

Author's Accepted Manuscript

Trace Register Allocation Policies
Compile-time vs. Performance Trade-o�s

Josef Eisl
Institute for System Software
Johannes Kepler University

Linz, Austria
josef.eisl@jku.at

Stefan Marr
Institute for System Software
Johannes Kepler University

Linz, Austria
stefan.marr@jku.at

Thomas Würthinger
Oracle Labs

Zürich, Switzerland
thomas.wuerthinger@oracle.com

Hanspeter Mössenböck
Institute for System Software
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT

Register allocation is an integral part of compilation, regardless

of whether a compiler aims for fast compilation or optimal code

quality. State-of-the-art dynamic compilers often use global register

allocation approaches such as linear scan. Recent results suggest

that non-global trace-based register allocation approaches can com-

pete with global approaches in terms of allocation quality. Instead

of processing the whole compilation unit (i.e., method) at once, a

trace-based register allocator divides the problem into linear code

segments, called traces.

In this work, we present a register allocation framework that

can exploit the additional �exibility of traces to select di�erent

allocation strategies based on the characteristics of a trace. This

provides us with �ne-grained control over the trade-o� between

compile time and peak performance in a just-in-time compiler.

Our framework features three allocation strategies: a linear-

scan-based approach that achieves good code quality, a single-pass

bottom-up strategy that aims for short allocation times, and an

allocator for trivial traces.

To demonstrate the �exibility of the framework, we select 8

allocation policies and show their impact on compile time and peak

performance. This approach can reduce allocation time by 7%–43%

at a peak performance penalty of about 1%–11% on average.

For systems that do not focus on peak performance, our ap-

proach allows to adjust the time spent for register allocation, and

therefore the overall compilation time, thus �nding the optimal

balance between compile time and peak performance according to

an application’s requirements.

CCS CONCEPTS

• Software and its engineering→ Just-in-time compilers;Dy-

namic compilers; Virtual machines;

ManLang 2017, September 27–29, 2017, Prague, Czech Republic

© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in Proceedings of
ManLang 2017, September 27–29, 2017 , https://doi.org/10.1145/3132190.3132209.

KEYWORDS

Trace Register Allocation, Trace Compilation, Linear Scan, Just-in-

Time Compilation, Dynamic Compilation, Virtual Machines, Com-

pile Time vs. Performance Trade-o�

ACM Reference format:

Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck.

2017. Trace Register Allocation Policies. In Proceedings of ManLang 2017,

Prague, Czech Republic, September 27–29, 2017, 13 pages.

https://doi.org/10.1145/3132190.3132209

1 INTRODUCTION

Register allocation is an integral part of compilers that produce

code for register machines, which is the predominant type of archi-

tectures found in computers today. Its task is to map an arbitrary

number of variables to a limited set of physical registers of the pro-

cessor. Many sub-problems of register allocation are NP-complete

in general, for instance spill free register allocation [Chaitin et al.,

1981], minimizing spill costs [Farach and Liberatore, 1998], or regis-

ter coalescing [Bouchez et al., 2007]. Therefore, register allocation

needs to make a trade-o� between the time spent on �nding a

solution and the resulting code quality. One of these trade-o�s is

whether to perform register allocation locally, i.e. on the scope of a

basic block, or globally by looking at the whole compilation unit,

i.e., a method. The advantage of local approaches is that they are

simple since they do not need to handle control �ow. However,

optimization potential is limited by the narrow scope. Global algo-

rithms, on the other hand, o�er more opportunities for improving

code quality. However, due to the problem size, compile time easily

becomes a bottleneck. In modern JIT compilers, compile-time trade-

o�s become especially important, because aggressive inlining leads

to large compilation units, which are a challenge for global register

allocation approaches.

Trace-based register allocation, proposed by Eisl et al. [2016],

solves the problem with an approach that is neither global nor local.

Instead of processing a whole method at once, the basic blocks

of the control �ow graph are partitioned into traces, i.e., linear

sub-graphs of sequentially executed blocks. For each trace, register

allocation is performed without interaction with other parts of the

1

https://doi.org/10.1145/3132190.3132209
https://doi.org/10.1145/3132190.3132209

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

compilation unit. This simpli�es the problem of register allocation

since control �ow can be ignored.

Register allocation of traces can be done for each trace indepen-

dently. Therefore, it allows the use of di�erent allocation algorithms

for di�erent traces within one compilation unit. This enables con-

trol over the trade-o� between compile time and code quality on a

very �ne-grained level. It allows �ne-tuning JIT compilation and

optimizing application performance, which is essential for systems

where resources are constrained and peak performance is not the

predominant goal. In this paper, we evaluate the �exibility of our

framework by applying di�erent heuristics to decide which algo-

rithm to use on a per-trace basis.

Eisl et al. already applied two allocation approaches, a simpli�ed

linear scan algorithm for general traces, and a special purpose allo-

cator for trivial traces, i.e., traces that consist of a single, empty basic

block. In this paper, we added the bottom-up allocator as a third

algorithm. It is 43% faster than the trace-based linear scan strat-

egy, with a peak-performance penalty of 11% on average. We also

extended the above framework with allocator selection strategies,

which are based on policies that exploit properties of the traces.

The new framework is implemented in the Graal compiler [Du-

boscq et al., 2014; Simon et al., 2015], an optimizing compiler for

the Java HotSpot VM.1

The contributions of this paper are:

• A framework for using di�erent allocation policies to decide

whether to use the linear scan or the bottom-up register

allocation strategy for a trace of a compilation unit. This

enables us to make �ne-grained trade-o� decisions between

compile time and peak performance.

• An extension of the existing trace-based allocator with a fast

bottom-up register allocation strategy for arbitrary traces. It

requires only a single pass backwards through the instruc-

tions of the trace and is therefore signi�cantly faster than

the preexisting linear scan strategy.

• A set of 8 di�erent policies for selecting allocation strategies

based on the properties of a trace. Each heuristic exhibits

di�erent compile-time vs. peak-performance behavior.

• A thorough compile time and peak performance evaluation

of 14 di�erent con�gurations using the DaCapo and the

Scala-DaCapo benchmark suites.

The rest of this paper is organized as follows. We based our

approach on previous work on trace-based register allocation by

Eisl et al., 2016. In Section 2 we review their approach and present

a system overview of GraalVM, the virtual machine we used for

our implementation. Section 3 introduces our bottom-up allocation

strategy that was added to the existing framework to increase the

�ne-tuning capabilities of our selective register allocation approach.

In Section 4we describe our so-called trace register allocation policies,

which are heuristics to decide which allocator should be used for a

speci�c trace. We selected a set of 8 policies for empirical evaluation

using di�erent parameters. The results are outlined in Section 5.

In Section 6 we discuss related work and how it compares to our

contribution. We conclude the paper with a summary of our results

and propose directions for future extensions.

1http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html

2 BACKGROUND

Thework in this paper is based on the trace-based register allocation

approach proposed by Eisl et al. [2016], which is publicly available

as part of the GraalVM.2 This section gives a brief overview of the

GraalVM and details trace-based register allocation.

2.1 GraalVM

The GraalVM is a Java virtual machine based on the HotSpot VM.

The HotSpot VM comes with an interpreter and two just-in-time

compilers, the client compiler [Kotzmann et al., 2008] and the server

compiler [Paleczny et al., 2001]. The goal of the client compiler is to

provide fast compilation speed, whereas the server compiler aims

at good code quality at the cost of a higher compilation time.

In the GraalVM, the server compiler is replaced by the Graal

compiler as the second-tier compiler. This is done using the JVM

Compiler Interface,3 which is part of the upcoming Java 9 release.

The Graal compiler is itself written in Java, which eliminates

the need of recompiling the whole virtual machine for compiler

development. It is implemented in a modular way so that its com-

ponents, e.g. the register allocator, can be easily replaced with a

di�erent implementation. This makes it a practical environment

for (dynamic) compiler research.

The compiler uses two di�erent intermediate representations.

In the front end Graal performs optimizations such as inlining,

dead code elimination, conditional elimination, partial escape anal-

ysis [Stadler et al., 2014], and loop unrolling [Stadler et al., 2013] to

name just a few. It uses a high-level representation (HIR), which is

graph-based [Duboscq et al., 2013] and in static single assignment

(SSA) form [Cytron et al., 1991; Brandis and Mössenböck, 1994]. Al-

though Java bytecode can describe irreducible programs [Aho et al.,

2006], Graal handles only reducible control �ow. This assumption

simpli�es all control-�ow-sensitive phases. Since Java programs

are always reducible this restriction is not an issue in practice.

After applying all optimizations, the graph-based representation

is converted to a low-level intermediate representation (LIR) be-

fore entering the back end. In the beginning, the LIR still adheres

to the SSA form. For every variable there is only one de�nition

which dominates all its usages. There are ϕ-functions to handle

control �ow merges. This simpli�es liveness analysis. The back

end’s main responsibility is register allocation and code generation.

The register allocator also destructs the SSA form.

The LIR consists of a control �ow graphwith basic blocks.Critical

edges are split, so that every edge is either the only edge leaving its

source or the only edge entering its target block. Figure 1a depicts an

example. Block B1 has two successors and B3 has two predecessors.

Therefore the edge between those two blocks is critical. We insert

an empty block to split this edge. The result is shown in Figure 1b.

This property is crucial for data-�ow resolution.

A block contains a list of LIR instructions, which are close to the

actual machine operations. Nevertheless, the backend phases are

implemented in a machine-independent manner.

For �xed register constraints, e.g. as required by calling conven-

tions, the LIR instructions use register operands directly. These

usages do not adhere to the single de�nition property of the SSA

2https://github.com/graalvm/graal-core
3JEP 243: Java-Level JVM Compiler Interface; http://openjdk.java.net/jeps/243

2

http://www.oracle.com/technetwork/articles/javase/index-jsp-136373.html
https://github.com/graalvm/graal-core
http://openjdk.java.net/jeps/243

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

B1

B2

B3

critica
l
ed
g
e

(a) Critical Edge

B1

B2 B′

B3

(b) After Splitting

Figure 1: Critical Edge Splitting

Linear Scan RA

Trivial RA

Bo�om-Up RA

for each trace

Global Liveness Analysis

Trace Building

Data-flow Resolution

Allocate trace

Figure 2: Trace Register Allocation Overview

form. However, a �xed register is never live across a basic block

boundary so these requirements can be handled locally.

Machine instructions in modern architectures can often directly

address memory. Therefore, a LIR instruction di�erentiates between

usages thatmust have a register and those that could use a memory

operand, e.g. a stack slot. The register allocator is free to assign a

stack slot to the latter kind in order to reduce the register pressure.

2.2 Trace-based Register Allocation

Instead of solving the register allocation problem globally for the

whole compilation unit at once, the idea of trace-based register allo-

cation is to divide the problem into smaller pieces, so-called traces,

which are simpler to allocate due to their structural properties. The

sub-solutions are then combined to get a valid global solution.

Eisl et al. use the term trace as it was used in trace scheduling

papers, e.g. by Ellis [1985] or Lowney et al. [1993], which operated

on the same structure. A trace is a linear list of sequentially exe-

cuted basic blocks. For programs in SSA form there are no lifetime

holes in traces. This simpli�es the implementation of a register

allocator [Eisl et al., 2016].

The remainder of this section gives an overview of the main

components of the trace register allocation approach as well as on

the allocation strategies that are employed.

2.2.1 Overview. Figure 2 shows the components of the trace reg-

ister allocation framework. We cover them only brie�y. A detailed

discussion is provided by Eisl et al. [2016].

Trace Building. The trace building algorithm takes the basic

blocks of a control �ow graph as an input and returns a set of

traces. Traces are non-empty and non-overlapping. Every basic

block is contained in exactly one trace. For our experiments we

use the unidirectional trace building algorithm described by Eisl

et al. [2016]. A new trace is started by selecting the block with the

highest execution frequency, that is not already part of a trace. The

algorithm continues with the most likely successor block that is

not yet included in a trace. This procedure continues until there is

no more successor that is not in a trace already. Figure 3 illustrates

the trace-building process.

Global Liveness Analysis. To capture the liveness of variables at

trace boundaries, a global liveness analysis is required. For every

inter-trace edge a liveout and livein set is computed. The anal-

ysis is done in a single iteration over the blocks in reverse post

order, similar to the liveness analysis described by Wimmer and

Franz [2010] for SSA-based linear scan register allocation.

Allocate Traces. For each trace our algorithm selects an alloca-

tion strategy. The following sections detail the three strategies that

are currently implemented in our system. Section 4 describes how

we select a strategy for a trace. Note that traces can be processed

in arbitrary order, potentially even in parallel. However, traces

that are processed later can exploit information about already pro-

cessed traces for hinting the algorithm towards a favorable solution

to reduce the data-�ow resolution at trace boundaries. Therefore,

traces are ordered with respect to their importance. Note that this

is optional and is done only to improve the resulting code.

Data-�ow Resolution. Since the location of a variable might be

di�erent across an inter-trace edge, data-�ow resolution is needed

for these edges. This is similar to the resolution pass in linear scan

allocators with interval-splitting [Traub et al., 1998; Wimmer and

Mössenböck, 2005]. In addition, data-�ow resolution performs SSA

destruction, i.e., it replaces ϕ-functions with move instructions.

The remainder of this section discusses the trace-based linear

scan allocator and the trivial trace allocator proposed by Eisl et

al. [2016]. The bottom-up strategy is part of our contributions and

is detailed in Section 3.

2.2.2 Trace-based Linear Scan. The trace-based linear scan al-

gorithm is an adaption of the global approach by Wimmer and

Franz [2010] to the properties of a trace. The main di�erence is that

there is no need to maintain a list of live ranges for each lifetime

interval, since there are no lifetime holes in trace intervals. A from

and to position are su�cient to describe an interval.

First, the algorithm creates the lifetime intervals of all variables

in a backward pass over the instructions of the trace. Following

the linear scan principle, these intervals are then visited in order

of their start position. Note that due to possible spilling the actual

location of a variable is not yet known during this iteration [Wim-

mer and Mössenböck, 2005]. Therefore the algorithm performs

another pass over the instructions to replace the variables with the

actual locations. Eisl et al. [2016] showed that the trace-based linear

scan algorithm is capable of producing code that achieves peak

performance comparable to that of the global linear scan approach.

2.2.3 Trivial Trace Allocator. The trivial trace allocator is a

special-purpose allocator for trivial traces which have a speci�c

structure. They consist of a single basic block which contains only

a single jump instruction. These blocks are introduced by splitting

critical edges, and are quite common. For the DaCapo benchmark

3

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

boolean equals(int[] a, int[] b) {

/*B1*/ if (b.length != a.length)

/*B2*/ return false;

/*B3*/ int i = 0;

/*B4*/ while (i < a.length) {

/*B5*/ if (a[i] != b[i])

/*B6*/ return false;

/*B7*/ i++;

}

/*B8*/ return true;

}

(a) Java Source

B1

B2 B3

B4

B8 B5

B6 B7

(b) Control Flow Graph

T1 T2 T3 T4

B1

B2 B3

B4

B5

B6B7

B8

(c) After Trace-building

Figure 3: Trace-based Register Allocation

suite about 40% of the traces are trivial [Eisl et al., 2016]. A trivial

trace can be allocated by mapping the variable locations at the

beginning of the trace to the locations at the end of the trace.

3 BOTTOM-UP ALLOCATOR

Not all traces of a method are equally important for peak per-

formance. Eisl et al. [2016], for instance, processed traces in the

order of decreasing execution frequency to shift spill code to less

frequently executed parts of the method. We pursue a similar idea

to reduce the register allocation time. The goal is to spend time only

on traces that are worth it, i.e., that contribute to peak performance.

The other traces still need a valid allocation, but the quality is not

critical. Therefore, we aim for a fast, general purpose allocation

strategy that sacri�ces peak performance for allocation time.

The trace-based linear scan allocator exhibits a linear time be-

havior with respect to the number of instructions [Eisl et al., 2016],

which is the asymptotic lower bound for the problem. However,

the constant factors are relevant in practice. As outlined in the

previous section, the algorithm iterates over the list of instructions

three times: once for liveness analysis, once for allocating registers,

and a third time for replacing variables with the assigned registers.

The algorithm is guided by the set of intervals, which are main-

tained throughout all passes. All these components are required

for improving the allocation quality, not for correctness. They are

unnecessary for a fast allocation where run-time performance is

not the main focus.

To address these issues, we added a new allocator (called the

bottom-up allocator) to the existing framework. It requires only a

single combined backward pass over the instructions. In this pass

the allocator computes the liveness requirements, selects registers

if required, and replaces variables by the assigned location.

3.1 Tracking Liveness Information

In the bottom-up allocator, liveness information is never main-

tained for the whole trace but is known only locally for the current

instruction. This information is tracked using two data structures.

The register content map stores the current contents of every reg-

ister. The entry for a register points to a variable if the variable is

currently stored in this register. It can also point to a register itself,

which indicates that there is a �xed register constraint, e.g. due to

calling convention requirements. An entry in the register content

map might be empty in case the register is currently unused. The

second data structure is the variable location map. It tracks the

current location of every variable, which is either a register, a stack

slot, or empty if the variable is not live. We also track which register

is used in the current instruction. The memory requirement is there-

fore linear in the number of registers and the number of variables.

Only the size of the second map depends on the compilation unit.

The register map’s size is �xed for a given architecture.

3.2 Register Allocation

Register allocation is done in a single backward pass over the in-

structions of a trace. If the last block of the trace has a successor

that has already been allocated, we use the allocation information

from this successor to initialize the variable location and register

content maps.

When visiting an instruction, we �rst process �xed register us-

ages to mark them as used in the register content map. Next, we

iterate over the variable operands of the instruction. For variables

that are de�ned by the current instruction, we already have a lo-

cation since the algorithm iterates over the instructions in reverse

order. We replace the variable with the corresponding location in

the variable location map. If the location happens to be a register,

we mark it as free by setting the entry in the register content map

to empty. For variables that are read by the current instruction, we

query the variable location map for the current location. There are

three cases to cover:

• The variable might already be in a register. In this case we

need only to replace the occurrence of the variable in the

instruction with the register and are done.

• If the location of the variable is not yet de�ned, i.e., it is the

last usage of the variable, we need to �nd a free register. To

do so, we iterate over the list of registers and look up their

register content entry. If we �nd a register that is unused, i.e.,

its entry is empty, we can assign it to the current variable.

• If the variable is stored on the stack, but the instruction

cannot directly use memory operands, we need to �nd a

register and insert a move instruction to get the variable

from the stack slot into the register.

If all registers are occupied, we need to spill a variable. If the

current operand can directly address memory, we assign it to a stack

slot. Otherwise we search the available registers for one that can be

4

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

L0: l ivein (a, b)

L1: def (c)

L2−: sta ← reд1

L2: use(a, c)

L2+: reд1 ← stb

L3: usestack (a)

L4: use(c)

L4+: reд0 ← sta

L5: use(b)

L6: l iveout (a)

Lx: l ivein (r eд0)

. . .

B1

B2

B0

a b c a b c reд0 reд1

reд0

reд1

stack

variable location register content

(0) assign reg0 to a reg0 — — a —

(1) assign reg1 to b reg0 reg1 — a b

(2) assign reg0 to c sta reg1 reg0 c b

(3) insert reg0 ← sta

(4) use a on stack (sta) sta reg1 reg0 c b

(5) assign reg1 to a reg1 stb reg0 c a

(6) insert reg1 ← stb

(7) insert sta ← reg1

(8) free reg0 reg1 stb — — a

(9) �nished reg1 stb — — a L0: l ivein (r eд1, stb)

L1: def {r eд0 }

L2−: sta ← reд1

L2: use {reд1, r eд0 }

L2+: reд1 ← stb

L3: usestack {sta }

L4: use {reд0 }

L4+: reд0 ← sta

L5: use {reд1 }

L6: l iveout (r eд0)

Lx: l ivein (r eд0)

. . .

before allocation a�er allocation

Figure 4: Bottom-Up Allocation Example

. . .

ϕout (v0, v1)

ϕin (v2, v3)

use(v1)

. . .

B1

B2

(a) before B2

. . .

ϕout (v0, v1)

ϕin (r eд0,r eд1)

use(r eд2)

. . .

B1

B2

(b) after B2

. . .

r eд1 ← r eд2

ϕout (r eд0,r eд2)

ϕin (r eд0, r eд1)

use(r eд2)

. . .

B1

B2

(c) after B1

Figure 5: ϕ-resolution in the Bottom-Up Allocator

spilled. We skip registers that are used in the current instruction as

well as those with a �xed register constraint. The �rst register that

is not skipped by these constraints is the chosen for spilling. The

variable that was previously contained in that register is now stored

in a stack slot. Thus, we insert a move after the current instruction

that restores the variable in the selected register from the stack to

�x the data �ow.

At block boundaries the allocator needs to take care of ϕ-instruc-

tions. ϕ-instructions are basically parallel moves from the locations

in the predecessor (ϕout) to the locations in the successor (ϕin)

[Hack, 2007]. At the beginning of a basic block, all variables in the

ϕin set have already been assigned to a location. Due to the single

de�nition property of the SSA-formwe know that these variables are

not live in any predecessor, i.e., they are de�ned at the beginning of

the block. Therefore, we can directly reuse their locations for those

variables in theϕout set which are not yet mapped to a location. This

way we can avoid unnecessary move operations. For the variables

that are already assigned to a di�erent location we need to insert

moves to satisfy the data-�ow requirements.

Figure 5 shows an example for ϕ-resolution. Figure 5a shows a

trace consisting of two blocks B1 and B2. Block B2 is a merge that

contains two ϕ variables, v2 and v3. In the predecessor B1 these

variables are matched to v0 and v1, respectively. After allocation

of B2 (Figure 5b) we allocated v1 to reg2, v2 to reg0 and v3 to

reg1. Before we continue with B1 we need to resolve the data �ow

between ϕout and ϕin. Namely, we want to map v0 to reg0 and v1
to reg1. Since v0 is not yet assigned to a location we can simple

replace it with reg0. Variable v1, on the other hand is already stored

in reg2. To resolve this data-�ow mismatch, we insert a move from

reg2 to reg1. Figure 5c shows the result of the resolution step.

We consider only the predecessor that is part of the current

trace. Since there are no critical edges there can only be one. The

other predecessors are handled by the data-�ow resolution phases

afterwards.

Note that the bottom-up approach does not require the SSA-

property and can deal with lifetime holes without modi�cation. It

does so, for example, for �xed register constraints, which do not

adhere to the SSA properties.

3.3 Example

Figure 4 depicts bottom-up allocation of a simple trace with two

blocks, B1 and B2. For readability, we omitted the details of the

instructions and only show the operand modes use, def and usestack .

To the right of the blocks we visualize the live intervals of the

variables. This information is never explicitly stored. Next to the

intervals, we describe the action that is performed when processing

the corresponding instruction. Actions are numbered from (0) to (9)

in processing order. On the right-hand side of Figure 4, we display

the contents of the variable location and the register content maps

after the instruction has been processed.

5

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

The allocator starts with the outgoing values at line L6 at the

end of block B2. The successor has already been allocated so the

algorithm can match the incoming variable location livein(reg0) of

block B0 with the outgoing variable locations liveout(a) in B2. This

initializes the variable location entry of a to reg0 and the register

content of reg0 to a. Also a is replaced with reg0 in the instruction at

L6 (0). We continue with the instruction in line L5. Variable b has no

location assigned so we query the register contentmap for the next

free register which is reg1 (1). The next instruction to be processed

is the usage of c in line L4. All registers are currently occupied

so the allocator arbitrarily selects reg0 for spilling (2). Since the

location of a changes from a register to a stack slot, we insert a

move from the stack slot sta to reg0 right after the instruction that

is currently processed (3) at line L4. We continue at line L3with the

usage of variable a, which is currently stored in stack slot sta. Since

the instruction can directly address the stack, the allocator simply

replaces the variable with sta (4). Next we process the instruction

in line L2. Variable a is currently located in stack slot sta, but the

current usage requires a register. Since all registers are occupied,

we need to select one for spilling. We cannot spill reg0 because it is

the location of c, which is used in the current instruction. Therefore,

we choose reg1 and assign it to a (5). As reg1 contains the value of

variable b we need to insert a move from stb to reg1 after line L2 (6).

Variable a also changed its location from sta to reg1. To adjust the

data-�ow the allocator inserts a move from reg1 to the stack slot sta
before the current instruction on line L2 (7). The allocator advances

to line L1 which contains the de�nition of variable c. We mark the

register reg0 as free and clear the entry for c in the variable location

map (8). The last instruction on line L0 contains pseudo usages of

variables a and b. The operands of the instruction are replaced with

the current locations of the variables.

4 TRACE REGISTER ALLOCATION POLICIES

Our main goal is to demonstrate that switching the register alloca-

tion algorithm on a per-trace basis enables �ne-grained compile-

time vs. peak-performance trade-o� control not seen in other ap-

proaches. To support our claim we present a case study of 8 decision

heuristics, so-called allocation policies.

First, we identi�ed properties which allow us to characterize a

trace. Based on these properties, we developed policies to select

either the linear scan, the bottom-up, or the trivial allocator. The

list of properties and policies is non-exhaustive. We will discuss

alternatives in the conclusion.

4.1 Properties

Our allocation policies are based on properties of basic blocks,

traces, the complete compilation unit, or a combination of them.

Block Properties. A trace consists of a sequence of basic blocks.

For every block b we know its relative execution frequency, which

we denote as f req(b). It is a real number estimating how often

this block is executed per invocation of the compilation unit. A

value of 0.5 means that the block is executed every second time the

enclosing method is invoked. For blocks inside of loops this value

can be above 1. For example, a loop header that is entered with a

probability of 1 and with a frequency of 10 indicates a loop iteration

count of 10. Note that these numbers are relative to the invocation.

Therefore, the frequency of the method entry block is always 1. We

cannot infer absolute execution counts from these numbers. The

block frequency is calculated from branch pro�les collected by the

virtual machine in previous executions of the compilation unit.

Another block metric is the loop nesting level, or loopDepth(b).

It indicates on which loop nesting level this block occurs. However,

this metric can be misleading since not all branches inside a loop

are equally likely. It should be used as a structural indicator only.

Due to the Global Liveness Analysis, described in Section 2.2.1,

we can also take the livein and liveout sets into account, i.e., the

variables live at the beginning and the end of the block. More live

variables increase the likelihood of spilling.

Trace Properties. The properties of the blocks of a trace can be

aggregated to de�ne properties for the trace. For example, the

frequency of a trace can be de�ned as the maximum frequency of

the blocks in the trace.

Another important property of a trace is triviality, i.e., the fact

that a trace consists of a single block containing just a jump instruc-

tion. It determines whether or not the algorithm can use the trivial

trace allocator.

We also consider the trace building order, denoted by id(trace).

The trace building algorithm constructs important traces �rst [Eisl

et al., 2016]. That means a trace with a lower number is generally

more performance-critical than one with a higher number.

Compilation Unit Properties. For compilation units we can apply

the same aggregation techniques as for traces. We use compilation

unit properties to set trace properties into relation. For example,

the maximum block frequency of a trace vs. the maximum block

frequency of the whole compilation unit. We also exploit structural

properties of a compilation unit to switch between di�erent sub-

policies. For instance, if a method contains a loop we might want to

choose a di�erent decision model than for methods without loops.

Aggregation of Properties. As outlined above, we aggregate the

block properties to calculate new metrics for traces of the compi-

lation unit. We consider di�erent aggregation functions including

maximum, minimum, sum, average, and count.

4.2 Policies

We developed a set of 8 allocation policies, based on the identi�ed

properties. A policy is a decision function that selects an allocation

strategy for a given trace.

For trivial traces, we always use the trivial trace allocator. For

non-trivial traces, we therefore need to decide only whether to use

the trace-based linear scan or the bottom-up approach. We describe

this decision as a hotness condition. If the condition is true the trace

is considered important, i.e., we use the linear scan approach for

register allocation.

In the remainder of this section, trace refers to the trace for

which we want to choose a strategy. We use the termmethod to

describe the set of all blocks of the method (compilation unit).

TraceLSRA. This policy uses the linear scan strategy for all

traces that are not trivial. The con�guration is equivalent to the

one evaluated by Eisl et al. [2016].

6

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

BottomUp. The BottomUp policy always uses the bottom-up

strategy for non-trivial traces. Due to implementation reasons there

is one exception to this rule, namely traces with edges to compiled

exception handlers. These edges require slightly di�erent handling.4

It could be easily implemented in the bottom-up allocator, but it

would make the algorithm more complicated. Since exceptions in

Graal are usually handled via deoptimization, this case is uncom-

mon. To keep the implementation simple, we decided to ignore this

special case and fall back to the linear scan strategy if it occurs. The

entry for the BottomUp policy in Figure 7 shows that the fraction

of linear-scan-compiled traces is indeed marginal (∼0.3% as depicted

in Table A in the appendix).

Ratio. The Ratio policy uses linear scan for a �xed fraction p

of the traces.

id(trace) ≤ |traces | × p

Since traces are processed in trace-building order (i.e., in the

order of their importance) a fraction of p = 0.5 means that the

�rst half of the created traces (i.e., those with an id less or equal to

|traces | × 0.5) is allocated with linear scan (or the trivial allocator).

Budget. The Budget policy is a budget-based approach. The

idea is to allocate traces with the linear scan strategy in trace-

building order until we run out of budget.

©«
∑

t∈traces
id (t)<id (trace)

∑
b ∈t

f req(b)
ª®®¬
<

(∑
b ∈method

f req(b)

)
× p

The cost function is the sum of the block frequencies of all traces

that have already been allocated. The budget is a fraction of the

sum of the frequencies of all blocks in the compilation unit.

Loop. The Loop policy uses the linear scan strategy for all traces

that contain at least one block that is in a loop.

HasLoop(trace) ∨ ¬HasLoop(method)

where HasLoop(blocks) is de�ned as:

∃ b ∈ blocks where (loopDepth(b) > 0)

The idea is that we consider loops to be performance-critical,

so we want to �nd a good allocation for them. In addition to that,

linear scan is used if the current compilation unit does not contain

a loop at all. The rationale behind this is that the virtual machine

compiles only methods which either exceed a certain invocation

or loop-backedge threshold. If a method without a loop is queued

for compilation, the runtime did so due to the invocation count

only. This means that the method was called often enough to be

considered important.

LoopBudget. This policy combines the Loop policy with the

Budget policy. Instead of using linear scan for all compilation units

without loops, we apply the MaxFreq condition.

HasLoop(trace) ∨
(
¬HasLoop(method) ∧ Budget(trace)

)
4Graal assumes that the framestate at the instruction that causes the exception, e.g., a
call, is the same as at the beginning of the exception handler. In other words, we are
not allowed to insert moves between the throwing instruction and the end of the block.
The linear scan implementation in Graal guarantees this by design. The bottom-up
allocator, however, does not.

The resulting policy can decrease compile time compared to

the Loop policy since fewer traces are allocated with linear scan.

Nevertheless, loop traces are still prioritized.

MaxFreq. TheMaxFreq policy considers a trace important if the

maximum execution frequency of all blocks in the trace is greater

than a fraction p of the maximum frequency of all blocks in the

compilation unit.

max
b1∈trace

f req(b1) > max
b2∈method

f req(b2) × p

Only traces with high-frequency blocks are allocated with the

linear scan strategy since these traces are most critical for perfor-

mance. For example, if p = 0.8, a trace is compiled with the linear

scan allocator if its frequency is larger than 0.8× the frequency of

the most frequent block of the method. In other words, only traces

with high-frequency blocks.

NumVars. The NumVars policy uses the linear scan for all traces

where the maximum number of live variables at block boundaries

exceeds a certain threshold p.

max
b ∈trace

max (|livein (b)|, |liveout (b)|) > p

The idea is that traces with a higher number of live variables are

more likely to require spilling. The spilling mechanism in the linear

scan strategy leads to better code than the spilling mechanism in

the bottom-up allocator. On the other hand, if no spilling is needed

the bottom-up allocator produces code of similar quality as the

linear scan allocator but in shorter time.

5 EVALUATION

The goal of this evaluation is to support our claim that selective

trace-based register allocation is an appropriate approach for con-

trolling the trade-o� between compile time and peak performance

on a �ne-grained level. To this end, we study the impact of the 8 al-

location policies discussed in the previous section. For policies with

parameters we compare multiple values to further highlight the

�exibility of our approach. In total, we selected 14 con�gurations

as case study to supports our claim.

We used the implementation of the trace-based linear scan strat-

egy in Graal by Eisl et al. [2016] to which we added the bottom-up

allocation strategy, the policy selection logic, and the policies de-

scribed in the previous section.

The source code of our implementation is available on Github.5

Our experiments were performed using revision f5cad2eda111.

5.1 Benchmark Suites

We evaluated our results using the DaCapo 9.12 [Blackburn et

al., 2006] as well as the Scala-DaCapo [Sewe et al., 2011] bench-

mark suites. We excluded the eclipse, tomcat, tradebeans, and

tradesoap benchmarks from DaCapo due to Java 8 compatibility

issues. Together with Scala-DaCapo we have 22 di�erent bench-

marks in total. The DaCapo-style benchmarks are iteration-based,

meaning that they run the same workload for a prede�ned number

of times in order to warm up the virtual machine. We chose this

number high enough to make sure that all important methods are

5https://github.com/zapster/graal-core/tree/tracera/policies

7

https://github.com/zapster/graal-core/tree/tracera/policies

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

(la
st

ite
ra
tio

n
/lo

w
e
r
is
b
e
�
e
r)

B
e
n
ch

n
a
rk

E
x
e
cu

tio
n
T
im

e

(lo
w
e
r
is
b
e
�
e
r)

R
e
g
iste

r
A
llo

ca
tio

n
T
im

e

Global-

LSRA

Trace-

LSRA

Ratio

p=0.8

Budget

p=0.999995

Ratio

p=0.5

Loop NumVars

p=8

Budget

p=0.98

MaxFreq

p=0.1

Loop-

Budget

p=0.5

Ratio

p=0.3

NumVars

p=15

MaxFreq

p=0.8

Budget

p=0.5

BottomUp

90%

95%

100%

105%

110%

115%

120%

125%

130%

40%

60%

80%

100%

120%

140%

160%

180%

200%

V
a
lu
es

re
la
ti
ve

to
T
ra
ce
L
S
R
A
m
ea
n

Figure 6: Peak Performance and Register Allocation Time

Bo�om-Up Strategy

Linear Scan Strategy

Trivial Strategy

stra
te
g
y

tra
ce

Global-

LSRA

Trace-

LSRA

Ratio

p=0.8

Budget

p=0.999995

Ratio

p=0.5

Loop NumVars

p=8

Budget

p=0.98

MaxFreq

p=0.1

Loop-

Budget

p=0.5

Ratio

p=0.3

NumVars

p=15

MaxFreq

p=0.8

Budget

p=0.5

BottomUp
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D
is
tr
ib
u
ti
o
n
o
f
S
tr
a
te
g
ie
s

Figure 7: Distribution of the Allocation Strategy per Policy

The distribution is calculated per benchmark. The �gure shows the mean over all benchmarks.

compiled. Since the work performed in one iteration varies consid-

erably from benchmark to benchmark the iteration numbers range

from 5 to 120. The run time of the last iteration is the performance

result of the benchmark.

5.2 Hardware Environment

We performed the experiments on a cluster of 64 identical Sun

Server X3-2 machines,6 equipped with two Intel "Sandy Bridge"

Xeon E5-2660 @ 2.20GHz with 8 cores per processor, and 256GB

of DDR3-1600 memory. The machines were running an Oracle

Linux Server 6.8 operating system with Linux Kernel version 4.1.12.

For the experiments we disabled all frequency scaling modes (e.g.

scaling governors or Intel Turbo Boost).

6Sun Server X3-2: http://docs.oracle.com/cd/E22368_01/

For every experiment we randomly selected a node from the

cluster to execute a benchmark suite (DaCapo or Scala-DaCapo)

with a single con�guration. For each benchmark we started a new

Java VMwith an initial and maximum heap size of 8GB. To improve

the precision of the results we �xed the CPU and the memory of

the process to a single NUMA node using the hwloc-bind utility.7

To minimize the e�ect of disk I/O we executed the benchmarks

on a 10GB ram disk. For some benchmarks, for instance lusearch,

luindex, h2, or batik, this is necessary to get stable results.

5.3 Evaluation Metrics

We repeated every experiment at least 30 times to compensate for

variation factors that we cannot control, such as low-level hardware

di�erences or non-determinism of the virtual machine. For every

7hwloc-bind(1) - Linux man page: https://linux.die.net/man/1/hwloc-bind

8

http://docs.oracle.com/cd/E22368_01/
https://linux.die.net/man/1/hwloc-bind

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

2%

4%

6%

8%

10%

12%

14%

16%

18%

Global-

LSRA

Trace-

LSRA

Ratio

p=0.8

Budget

p=0.999995

Ratio

p=0.5

Loop NumVars

p=8

Budget

p=0.98

MaxFreq

p=0.1

Loop-

Budget

p=0.5

Ratio

p=0.3

NumVars

p=15

MaxFreq

p=0.8

Budget

p=0.5

BottomUp

R
eg
is
te
r
A
ll
o
ca
ti
o
n
/C
o
m
p
il
e
T
im

e

Figure 8: Register Allocation Time Relative to Overall Compilation Time

The gray area highlights the range between the mean of TraceLSRA and BottomUp, i.e., the potential range for improving compile time.

metric we use the arithmetic mean for each benchmark and for every

con�guration. Since we average raw numbers, the arithmetic mean

is appropriate [according to Fleming andWallace, 1986; Smith, 1988].

These means are then normalized to the trace-based linear scan

allocator. We present the normalized numbers as box plots [Tukey,

1977] to give an unbiased impression of the distribution of results

across the benchmarks.

Peak Performance. The reported performance result for the Da-

Capo-style benchmarks is the time required for the last iteration

(Benchmark Execution Time in Figure 6). Ideally, in this iteration

the VM does not perform any compilation. However, we cannot

exclude compilations completely due to the behavior of the harness

and for instance the use of bytecode generation in a benchmark.

The peak performance is shown in the top half of Figure 6.

Compile Time. De�ning a meaningful compile time metric is

inherently more di�cult for a dynamic compilation system than

for a static compiler. On the one hand, the compilation and the

execution of every benchmark are intertwined. Compile time is

an integral part of the run time. On the other hand, experiments

are harder to reproduce, since the executed machine code can be

di�erent for every run after recompilation and depends on non-

deterministic factors such as timing.

The meta-circular aspect of the GraalVM adds another layer of

challenges to the problem. Since the compiler itself (which is written

in Java) is subject to compilation, changes in the compiler in�uence

not only the generated machine code, but also the time it takes to

translate the compiler itself. To minimize this e�ect, Graal avoids

self-compilation, i.e., all methods in the Java packages jdk.vm.ci

and org.graalvm.compiler are compiled by the HotSpot client

compiler and not by the Graal compiler. Figure 8 depicts the fraction

of overall compile time that is used for register allocation.

5.4 Analysis of the Results

The baseline for all our experiments is the trace-based linear scan

allocator, denoted by TraceLSRA. To visualize all benchmarks on

the same scale, we show the numbers relative to the geometric

mean of the baseline of a given benchmark. For compile time, we

are interested in the time spent for register allocation. In case of

the trace-based register allocator we include trace-building, global

liveness analysis, the time used by the allocation algorithm, and the

time used for allocation strategy selection.

Figure 6 shows the total register allocation time relative to the

trace-based linear scan. We include all compilations of the bench-

marks, including warm-up iterations, since the peak-performance

result of the last iteration depends on all these compilations.

Figure 7 depicts the distribution between the allocation strategies

for a given con�guration. The numbers suggest that there is a

correlation between the percentage of linear-scan-compiled traces

and the register allocation time in Figure 6.

Unless otherwise noted, the numbers mentioned in this section

represent the geometric mean of the averaged benchmark results

relative to TraceLSRA.

GlobalLSRA. For comparison, we also show the results for global

linear scan, which is the default allocator used by Graal. On average,

GlobalLSRA behaves similar to the TraceLSRA policy for both al-

location time and peak performance. Figure 6 shows allocation time

outliers for GlobalLSRA, which are worse than the trace-based

policies. The most severe outlier is the jython benchmark from the

DaCapo suite where the global linear scan implementation shows

a non-linear behavior.

On the other hand, the peak performance for the sunflow bench-

mark is 9% better than for TraceLSRA. This benchmark is very

sensitive to spilling decisions and triggers the worst case behavior

of the trace-based register allocation [Eisl et al., 2016].

TraceLSRA. TraceLSRA is the policy that performs best with

respect to peak performance. It is the upper bound in terms of

register allocation time but also produces the best code. In this

baseline con�guration linear scan is used for 61% of the traces. The

other traces are trivial and are therefore allocated by the trivial

trace allocator.

BottomUp. The BottomUp policy, on the other hand, is the

lower bound with respect to allocation time. It requires only about

9

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

57% of the time used by TraceLSRA. In terms of peak performance,

this policy is the slowest with an average performance decrease

of about 11%. For the sunflow benchmark from the DaCapo suite,

however, the performance penalty is 30%.

Ratio. In our experiment we evaluated the Ratio policy with the

parameters p ∈ {0.8, 0.5, 0.3}. Although the number of linear-scan-

allocated traces decreased signi�cantly by 17% for p = 0.8, this is

hardly noticeable in the allocation time and the peak performance.

Setting p = 0.5 decreases the time for allocation to 87%. The

performance slowdown is about 1% relative to TraceLSRA.

With p = 0.3 allocation time is further reduced to 80% with a

performance degradation of 4%. In this con�guration, only 13% of

the traces are allocated with the linear scan strategy.

The results suggest that the Ratio policy allows a �ne-grained

tuning of compile time vs. peak performance.

Budget. The Budget policy exhibits a non-linear behavior with

respect to the parameter p. For p = 0.99995 we see a performance

degradation of only 1%while the register allocation time goes down

to 93%. Only 33% of the traces use the linear scan strategy.

Setting p = 0.98 reduces the allocation time to 77% with a per-

formance decrease of 3%.

For p = 0.5 allocation time drops to 62%. The linear scan strategy

is used for only 1% of the traces. Basically, only the �rst trace of a

method is considered important. The performance decrease is 10%,

which is almost at the level of the BottomUp policy (11%).

Loop. The Loop policy triggers for 26% of the traces, which is

slightly less than the half of the non-trivial traces (61%). Performance-

wise this policy is about 2% slower than TraceLSRA. On the other

hand, it requires only 86% of the time for register allocation.

LoopBudget. The LoopBudget policy (p = 0.5) combines the

advantages of Loop, i.e. good and stable peak performance, with the

fast allocation time of the Budget policy. Around 11% of the traces

use the linear scan strategy. The allocation time therefore drops to

79% compared to TraceLSRA. With respect to peak performance

this policy is 3% slower.

MaxFreq. We evaluated theMaxFreq policy with p = 0.1 and

p = 0.8. Compared to the TraceLSRA policy,MaxFreqwithp = 0.1

is about 3% slower regarding peak performance. Again, sunflow

exhibits the worst behavior with a performance decrease of 20%.

Allocation time, on the other hand, is only about 77% of the time

used by TraceLSRA.

With p = 0.8 the MaxFreq the allocation time drops to 71%.

However, the impact on peak performance is signi�cant. On average

the generated code is 7% slower than with TraceLSRA (max. 31%).

NumVars. The evaluation of the NumVars shows that 32% of the

traces have at most 8 live variables at their block boundaries (and

are not trivial). Allocating these traces with the bottom-up strategy

reduces the allocation time to 92%. Performance decreases by 3%.

Extending the scope to 15 variables increases the fraction of

bottom-up-allocated traces to 51% and reduces performance by 5%

compared to TraceLSRA. However, the register allocation time

went down to 76%.

One interesting observation is that the NumVars policy seems

to be more robust against performance outliers than policies with

similar average values. For p = 15 the worst performance degra-

dation is 13%, while, for example, for the MaxFreq (p = 0.1) it is

as high as 20%, although the MaxFreq performs better on average

(5% vs. 3%).

5.5 Impact on Overall Compile Time

The Graal compiler is currently tuned for peak performance. The

majority of the compile time is spent in the front end on code

optimizations. Figure 8 shows how much of the overall compile

time can be accounted to register allocation. With TraceLSRA, 7%

of the time is used for register allocation, while in the BottomUp

con�guration this number goes down to 4%. The shaded area in

Figure 8 visualizes the range of tuning possibilities. For a Graal

con�guration that is tuned towards compile time rather than peak

performance, register allocation would make up a signi�cantly

larger portion of the overall compile time.

6 RELATED WORK

The trade-o� between time spent for executing application code

and time spent in the runtime is an important design parameter for

a virtual machine.

6.1 Dynamic and Adaptive Compilation

Modern language virtual machines use dynamic compilation to

produce e�cient native machine code. However, for such systems,

the time constraints for the compiler are very strict. For instance,

the CACAOVM [Krall, 1998], performs optimizations only on a

local scope. Later systems such as the JalapeñoVM [Arnold et al.,

2000] or the HotSpot VM [Paleczny et al., 2001], introduce adaptive

compilation, i.e., dynamic compilation of the most relevant parts

based on the current execution pro�le. They use multiple optimiza-

tion stages that are invoked for performance-critical parts only.

Methods are usually selected for optimization based on pro�ling

information, for instance invocation and loop counters, or stack

sampling. Although, these systems can select thresholds to control

the compile time, they can do so only on a per-method basis. Our

approach is orthogonal to that. For a compilation that is considered

hot by the virtual machine, we can make a �ne-grained compile

time vs. peak performance decision.

6.2 Trace Compilation

Instead of focusing on methods as the unit of operation, trace com-

pilation systems, such as Dynamo by Bala et al. [2000], HotPathVM

by Gal et al. [2006] or HotSpot VM adaptions by Häubl and Mössen-

böck [2011], take a di�erent route. They trace the execution of the

program, potentially across method boundaries, and then select

such a recorded trace for compilation. This way they compile only

the parts of a program that are performance-critical, which narrows

the scope of the compilation unit and therefore improves compile

time. In our approach, the compilation unit is a method (not a trace),

but we use di�erent register allocation strategies for di�erent traces

of a method based on structural properties of the traces. To the best

of our knowledge, this has not been tried before.

10

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

6.3 Register Allocation

The design decisions taken for a compiler depend heavily on its

application domain and its intended usage. This is especially rele-

vant for register allocation since it is mandatory. Compilers used

for static compilation are less restricted in terms of compile time

than dynamic compilers in a virtual machine, where compilation

time contributes to the overall program execution time. The major

design decision of a register allocator in this context is whether

it should work on a global scope, on a local scope, or on a middle

ground like the trace-based approach. We showed in this paper that

a trace-based approach enables �ne-grained control over how and

where to spent time on register allocation.

A global approach such as graph coloring [Chaitin et al., 1981;

Briggs et al., 1989; George and Appel, 1996] does not provide this

�exibility. Optimizations focus here on the heuristics to improve

code quality. For just-in-time compilation these approaches are

often too costly.

To meet the compile-time requirements for the dynamic code

generation system tcc [Poletto et al., 1997], Poletto and Sarkar [1999]

introduced linear scan as a simple and fast method for global reg-

ister allocation. They achieved peak performance that was within

10% of a graph coloring approach. Wimmer and Mössenböck [2005]

improved code quality achieved with linear scan by making it more

precise and by moving spill code out of loops. However, this makes

the algorithm computationally more expensive. By exploiting SSA

properties, Wimmer and Franz [2010] where able to decrease alloca-

tion time with virtually no peak-performance regression. However,

the overall approach did not change with respect to its granularity.

A single algorithm is applied to all code independent of whether it

is performance-critical or not.

Cavazos et al. [2006] proposed a hybrid optimization mechanism

to switch between a graph coloring and a linear scan allocator in

the Jikes RVM. They use an o�ine machine learning algorithm to

�nd a decision heuristic. The induced heuristic reduces the total time

(compile time plus benchmark execution time) by 9% on average

over graph coloring for a selected set of benchmarks from the

SPECjvm98 suite. To classify a method, they use properties which

are similar to those we are using. However, we can change the

allocation algorithm for each trace even within a method. This

allows more �ne-grained control over the compile-time vs. peak-

performance trade-o�.

Approaches similar to our bottom-up register allocator were

described previously for local register allocation, e.g., by Cooper and

Torczon [2011, Chapter 13]. A major di�erence is that we apply the

algorithm to a trace, i.e., to a list of basic blocks, instead of to a single

block only. While we have to deal with data-�ow between blocks,

this requires only minor adaptions, due to the simple structure of

our traces. Also, we initialize our variable/location map to match

the successor trace to avoid data-�ow mismatches, which is usually

not done in local register allocators. Another di�erence is how we

select spill candidates. The bottom-up allocator described by Cooper

and Torczon spills the register with the longest distance to the next

usage. While this improves the allocation quality, it also requires

more work to maintain this information. We experimented with

similar heuristics, but they all have a signi�cant negative impact

on allocation time. Since fast allocation time is the main goal of our

bottom up approach, we excluded such optimizations.

Also related to our proposed bottom-up allocator is the work

by Yang et al. [1999]. They describe LaTTe, a compile-only Java

VM that focusses on compilation speed, including a fast, non-local

register allocator. Register allocation is performed on tree regions,

which are trees of basic blocks with a single entry and potentially

multiple exits. The allocator does a backward pass to collect register

preferences based on the requirements at the exits of the allocation

region. After collecting the references, a forward pass performs

the actual register allocation. Their spilling technique is similar to

the approach used by our bottom-up allocation strategy. However,

we perform allocation on traces instead of trees and require only a

single pass over the instructions.

Our work builds on the trace-based register allocator of Eisl et

al. [2016], as detailed in Section 2. The idea of using traces as the

unit of operation was introduced by Fisher [1981] for instruction

scheduling in Very Long Instruction Word (VLIW) architectures

to exploit Instruction Level Parallelism (IPL). Freudenberger et

al. [1994] studied the connection of instruction selection and reg-

ister allocation on traces. However, to the best of our knowledge,

none of these approaches applied di�erent allocation algorithms

within a compilation unit and none of them provides the �exibility

of our framework. Also, since their system was designed for static

compilation, compile time was not a priority.

7 CONCLUSION AND FUTUREWORK

Our trace-based register allocation approach o�ers the �exibility

to switch between allocation algorithms within one compilation

unit. This gives us �ne-grained control over the trade-o� between

compile time vs. peak performance, which is not supported in other

register allocation approaches.

Our framework can currently choose between three register al-

location strategies: a linear-scan-based algorithm, a fast bottom-up

allocator and a specialized approach for trivial traces. The bottom-

up allocator is 43% faster than the trace-based linear scan imple-

mentation at a performance degradation of 11% on average.

To assess how �exibly we can trade compile time against peak

performance, we implemented and studied 8 policies (14 con�gu-

rations in total) for deciding which register allocator to use for a

speci�c trace. The Budget policy with a parameter p = 0.999995,

for instance, improves register allocation time by 7% on average

compared to the trace-based linear scan approach with an average

peak-performance slowdown of only 1%. On the other hand, the

NumVars policy decreases allocation time by about 24% with a

performance degradation of 5% but exhibits a better worst-case

behavior than the bottom-up approach. Most policies can be param-

eterized, which allows adjusting the trade-o� between compile time

and peak performance on a �ne-grained level. Our results con�rm

that our trace register allocation policy framework o�ers unique

�exibility not seen in other approaches.

Future work will investigate further policies that might have

even better performance trade-o�s. One speci�c aspect is that most

of our policies can be parameterized. While we experimented with

di�erent settings, we did not evaluate the tuning potential exhaus-

tively. Furthermore, combining existing policies can result in new

11

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Eisl et al.

useful con�gurations, as suggested by our evaluation of the Loop-

Budget policy. Since the search space for policies is large, we

believe that using auto-tuning tools, such as OpenTuner [Ansel

et al., 2014], is an idea that is worth investigating.

The rule induction technique, used by Cavazos et al. [2006] for

their hybrid optimizations approach, is another option that should

be considered. However, the generation of training data for our

trace-based setting is an open question. Cavazos et al. allocate every

method twice, once using the graph coloring allocator and once

with linear scan. For both invocations they collect the number of

spill moves to decide which strategy is preferred. This is not feasible

for our approach since we would need to evaluate all combinations

for a method (i.e., #traces#strategies).

We plan to further explore onwhich properties policies should be

based. So far, we focused on trace properties that are exposed in our

experimentation platform or are simple to compute. For example,

while we have direct access to (bytecode) branch probabilities,

we do not have access to the global execution count of a method.

Therefore, evaluating such metrics is left for future work. We also

plan to explore whether considering speci�c instructions in a trace

can be exploited to select an allocation policy.

In this paper we focused on improving compile time. In the future,

the same ideas could be applied to achieve better peak performance,

i.e., add allocation strategies that �nd better solutions than linear

scan. Because of the properties of traces, it might even be feasible

to do an optimal register allocation for a trace or a set of traces. For

such an approach, our policy framework can be used to keep the

register allocation time within bounds.

The trace-based approach in general and our policy model in par-

ticular are not restricted to the problem of register allocation. Other

optimizations such as instruction scheduling or instruction selec-

tion could apply the same idea to bene�t from a �ne-grained control

over the compile-time vs. quality-of-result balance. Furthermore,

the proposed policies are not speci�c to register allocation but can

be applied to other problems in compiler design and optimization.

ACKNOWLEDGMENTS

We thank the Graal community, the Virtual Machine Research

Group at Oracle Labs and the Institute for System Software at the

Johannes Kepler University Linz for their support and feedback on

this work. Special thanks to Doug Simon for his comments on the

draft version of this paper. We also thank the anonymous reviewers

for their valuable feedback. Josef Eisl is funded in part by a research

grant from Oracle Labs. Stefan Marr is funded by a grant of the

Austrian Science Fund (FWF), project number I2491-N31.

REFERENCES
Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc. isbn: 0321486811. url: http://dragonbook.stanford.edu/.

Ansel, Jason, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Je�rey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. 2014. OpenTuner: An Ex-
tensible Framework for Program Autotuning. In: PACT ’14. doi: 10.1145/2628071.
2628092.

Arnold, Matthew, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
2000. Adaptive Optimization in the Jalapeño JVM. In: OOPSLA ’00. ACM. doi:
10.1145/353171.353175.

Bala, Vasanth, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: A Transpar-
ent Dynamic Optimization System. In: PLDI ’00. ACM. doi: 10.1145/349299.349303.

Blackburn, S. M. et al. 2006. The DaCapo Benchmarks: Java Benchmarking Develop-
ment and Analysis. In: OOPSLA’06. ACM Press. doi: 10.1145/1167473.1167488.

Bouchez, Florent, Alain Darte, and Fabrice Rastello. 2007. On the Complexity of Register
Coalescing. In: CGO’07. doi: 10.1109/cgo.2007.26.

Brandis, Marc M. and Hanspeter Mössenböck. 1994. Single-pass Generation of Static
Single-assignment Form for Structured Languages. In: TOPLAS’94. issn: 0164-0925.
doi: 10.1145/197320.197331.

Briggs, P., K. D. Cooper, K. Kennedy, and L. Torczon. 1989. Coloring Heuristics for
Register Allocation. In: PLDI ’89. ACM. doi: 10.1145/73141.74843.

Cavazos, John, J. Eliot B. Moss, and Michael F. P. O’Boyle. 2006. Hybrid Optimizations:
Which Optimization Algorithm to Use? In: CC ’00. Springer Berlin Heidelberg. doi:
10.1007/11688839_12.

Chaitin, Gregory J,Marc AAuslander, Ashok KChandra, JohnCocke,Martin EHopkins,
and Peter W Markstein. 1981. Register Allocation via Coloring. In: Computer
languages. doi: 10.1016/0096-0551(81)90048-5.

Cooper, Keith and Linda Torczon. 2011. Engineering a compiler. 2nd ed. Elsevier. isbn:
9780120884780.

Cytron, Ron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. E�ciently Computing Static Single Assignment Form and the Control
Dependence Graph. In: TOPLAS’91. issn: 0164-0925. doi: 10.1145/115372.115320.

Duboscq, Gilles, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Speculation
without regret. In: PPPJ’14. doi: 10.1145/2647508.2647521.

Duboscq, Gilles, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon,
and Hanspeter Mössenböck. 2013. An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler. In: VMIL’13. doi: 10.1145/2542142.2542143.

Eisl, Josef, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter
Mössenböck. 2016. Trace-based Register Allocation in a JIT Compiler. In: PPPJ ’16.
ACM. doi: 10.1145/2972206.2972211.

Ellis, John R. 1985. “Bulldog: A Compiler for VLIW Architectures”. PhD thesis. Yale
University.

Farach,Martin andVincenzo Liberatore. 1998. On Local Register Allocation. In: SODA’98.
Society for Industrial and Applied Mathematics. doi: 10.1006/jagm.2000.1095.

Fisher, Joseph Allen. 1981. Trace Scheduling: A Technique for Global Microcode Com-
paction. In: Computers, IEEE Transactions on Computers. issn: 0018-9340. doi:
10.1109/TC.1981.1675827.

Fleming, Philip J. and John J. Wallace. 1986. How Not To Lie With Statistics: The
Correct Way To Summarize Benchmark Results. In: Communications of the ACM.
issn: 0001-0782. doi: 10.1145/5666.5673.

Freudenberger, Stefan M., Thomas R. Gross, and P. Geo�rey Lowney. 1994. Avoidance
and Suppression of Compensation Code in a Trace Scheduling Compiler. In: ACM
Transactions on Programming Languages and systems.

Gal, Andreas, Christian W. Probst, and Michael Franz. 2006. HotpathVM: An E�ective
JIT Compiler for Resource-constrained Devices. In: VEE’06. ACM. doi: 10.1145/
1134760.1134780.

George, Lal and Andrew W. Appel. 1996. Iterated register coalescing. In: TOPLAS’96.
issn: 0164-0925. doi: 10.1145/229542.229546.

Hack, Sebastian. 2007. “Register Allocation for Programs in SSA Form”. PhD thesis.
Universität Karlsruhe. isbn: 978-3-86644-180-4. url: http : / / digbib . ubka . uni -
karlsruhe.de/volltexte/documents/6532.

Häubl, Christian and Hanspeter Mössenböck. 2011. Trace-based compilation for the
Java HotSpot virtual machine. In: PPPJ’11. doi: 10.1145/2093157.2093176.

Kotzmann, Thomas, Christian Wimmer, Hanspeter Mössenböck, Thomas Rodriguez,
Kenneth Russell, and David Cox. 2008. Design of the Java HotSpot™client compiler
for Java 6. In: TACO’08. issn: 1544-3566. doi: 10.1145/1369396.1370017.

Krall, Andreas. 1998. E�cient JavaVM Just-in-Time Compilation. In: PACT’98. IEEE
Computer Society. doi: 10.1109/PACT.1998.727250.

Lowney, P. Geo�rey, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein,
Robert P. Nix, John S. O’donnell, and John C. Ruttenberg. 1993. The Multi�ow Trace
Scheduling Compiler. In: Journal of Supercomputing. doi: 10.1007/BF01205182.

Paleczny, Michael, Christopher Vick, and Cli� Click. 2001. The Java HotSpot™ Server
Compiler. In: JVM’01. USENIX Association. url: https://www.usenix.org/legacy/
events/jvm01/full_papers/paleczny/paleczny.pdf.

Poletto, Massimiliano, Dawson R. Engler, and M. Frans Kaashoek. 1997. tcc: A System
for Fast, Flexible, and High-level Dynamic Code Generation. In: PLDI ’97. ACM.
doi: 10.1145/258915.258926.

Poletto, Massimiliano and Vivek Sarkar. 1999. Linear Scan Register Allocation. In:
TOPLAS’99. issn: 0164-0925. doi: 10.1145/330249.330250.

Sewe, Andreas, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da capo con
scala. In: OOPSLA’11. doi: 10.1145/2048066.2048118.

Simon, Doug, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and
Thomas Würthinger. 2015. Snippets: Taking the High Road to a Low Level. In:
TACO’15. issn: 1544-3566. doi: 10.1145/2764907.

Smith, J. E. 1988. Characterizing Computer Performance with a Single Number. In:
Commun. ACM. issn: 0001-0782. doi: 10.1145/63039.63043.

Stadler, Lukas, Gilles Duboscq, Hanspeter Mössenböck, Thomas Würthinger, and
Doug Simon. 2013. An Experimental Study of the In�uence of Dynamic Compiler
Optimizations on Scala Performance. In: SCALA’13. ACM. doi: 10.1145/2489837.
2489846.

12

http://dragonbook.stanford.edu/
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/2628071.2628092
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/cgo.2007.26
https://doi.org/10.1145/197320.197331
https://doi.org/10.1145/73141.74843
https://doi.org/10.1007/11688839_12
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1006/jagm.2000.1095
https://doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/1134760.1134780
https://doi.org/10.1145/229542.229546
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/6532
https://doi.org/10.1145/2093157.2093176
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1109/PACT.1998.727250
https://doi.org/10.1007/BF01205182
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://www.usenix.org/legacy/events/jvm01/full_papers/paleczny/paleczny.pdf
https://doi.org/10.1145/258915.258926
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/2048066.2048118
https://doi.org/10.1145/2764907
https://doi.org/10.1145/63039.63043
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846

Trace Register Allocation Policies ManLang 2017, September 27–29, 2017, Prague, Czech Republic

Table A: Experimental Results

Register Allocation Time (∆%) Peak Performance (∆%) Strategy (%)

Policy mean median min min max max mean median min min max max LS BU TT

GlobalLSRA 1.3 −2.1 −12.0 scalatest 96.3 jython 0.0 0.0 −9.0 sun�ow 6.4 apparat
TraceLSRA 0.0 0.0 0.0 avrora 0.0 avrora 0.0 0.0 0.0 avrora 0.0 avrora 61.2 38.8

Ratio-0.8 −1.3 −0.6 −10.7 jython 3.0 avrora 0.7 0.4 −0.8 kiama 6.5 apparat 43.9 17.3 38.8

Budget-0.999995 −7.5 −4.9 −33.4 jython −0.1 avrora 0.7 0.5 −0.2 sun�ow 2.0 scalaxb 32.6 28.7 38.7

Ratio-0.5 −12.6 −11.0 −30.6 jython −2.8 avrora 1.5 1.1 0.1 scalatest 9.2 sun�ow 22.4 38.8 38.8

Loop −14.0 −13.1 −27.4 jython −4.8 avrora 2.2 1.8 0.3 scalaxb 5.5 xalan 26.4 34.8 38.7

NumVars-8 −7.9 −8.3 −14.2 scalatest −2.3 luindex 2.6 2.2 0.2 sun�ow 8.7 apparat 29.2 32.0 38.7

Budget-0.98 −23.2 −21.5 −44.9 jython −11.3 avrora 3.3 2.9 0.6 scalatest 9.0 luindex 11.4 49.9 38.7

MaxFreq-0.1 −23.5 −21.9 −47.0 jython −7.7 avrora 3.4 2.7 0.1 avrora 19.6 sun�ow 11.3 50.0 38.7

LoopBudget-0.5 −21.0 −20.5 −34.9 scalac −10.9 lusearch 3.5 3.8 0.2 scalatest 6.7 apparat 11.2 50.0 38.7

Ratio-0.3 −20.3 −19.2 −42.4 jython −8.1 avrora 3.6 3.0 0.7 scalatest 17.2 sun�ow 12.6 48.6 38.8

NumVars-15 −23.9 −25.1 −34.0 scalac −6.4 sun�ow 5.4 5.1 0.6 avrora 13.3 scalaxb 10.2 51.2 38.7

MaxFreq-0.8 −29.2 −28.5 −49.1 jython −16.5 avrora 7.2 5.5 0.6 avrora 30.5 sun�ow 4.8 56.6 38.6

Budget-0.5 −37.5 −37.0 −52.9 jython −29.5 avrora 9.7 9.2 0.5 scalatest 30.6 sun�ow 1.4 60.0 38.6

BottomUp −43.0 −42.3 −54.6 jython −36.0 factorie 10.6 9.6 0.8 scalatest 31.7 luindex 0.3 61.2 38.4

For every con�guration we show the (geometric) mean, the median, the min and max values of the benchmark results for both the register allocation time as

well as peak performance (lower is better). For min and max we also show the corresponding benchmark. The given numbers are the di�erence relative to

TraceLSRA in %. The last three columns depict the distribution between the allocation strategies, Linear Scan Allocator (LS), Bottom-Up Allocator and Trivial

Trace Allocator (TT).

Stadler, Lukas, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial Escape
Analysis and Scalar Replacement for Java. In: CGO ’14. ACM. doi: 10.1145/2544137.
2544157.

Traub, Omri, Glenn Holloway, and Michael D. Smith. 1998. Quality and Speed in
Linear-scan Register Allocation. In: PLDI ’98. ACM. doi: 10.1145/277650.277714.

Tukey, John W. 1977. Exploratory data analysis. Reading, Mass.
Wimmer, Christian and Michael Franz. 2010. Linear Scan Register Allocation on SSA

Form. In: CGO’10. ACM. doi: 10.1145/1772954.1772979.
Wimmer, Christian and Hanspeter Mössenböck. 2005. Optimized Interval Splitting in

a Linear Scan Register Allocator. In: VEE’05. ACM. doi: 10.1145/1064979.1064998.
Yang, Byung-Sun, Soo-Mook Moon, Seongbae Park, Junpyo Lee, SeungIl Lee, Jinpyo

Park, Y.C. Chung, Suhyun Kim, K. Ebcioglu, and E. Altman. 1999. LaTTe: a Java
VM just-in-time compiler with fast and e�cient register allocation. In: PACT’99.
doi: 10.1109/pact.1999.807503.

13

https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/277650.277714
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1109/pact.1999.807503

	Abstract
	1 Introduction
	2 Background
	2.1 GraalVM
	2.2 Trace-based Register Allocation

	3 Bottom-Up Allocator
	3.1 Tracking Liveness Information
	3.2 Register Allocation
	3.3 Example

	4 Trace Register Allocation Policies
	4.1 Properties
	4.2 Policies

	5 Evaluation
	5.1 Benchmark Suites
	5.2 Hardware Environment
	5.3 Evaluation Metrics
	5.4 Analysis of the Results
	5.5 Impact on Overall Compile Time

	6 Related Work
	6.1 Dynamic and Adaptive Compilation
	6.2 Trace Compilation
	6.3 Register Allocation

	7 Conclusion and Future Work
	Acknowledgments

