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Abstract—This paper proposes an incipient sensor fault de-
tection method for three-phase PWM inverter devices in electric
railway traction systems. An adaptive and sliding mode unknown
input observer is designed for sensor faulty inverter system. The
invariant ellipsoid is used to generate threshold. The parameters
of the observer are particularly designed such that the estimation
errors converge to the threshold invariant ellipsoid before the
sensor fault develops to incipient fault degree, and the estimation
errors exceed the threshold after the sensor fault develops to
incipient fault degree. Finally, simulations based on the traction
system in CRH2 (China Railway High-speed) are presented to
verify the effectiveness of the proposed method.

Index Terms—Incipient fault detection, adaptive sliding mode
estimator, invariant ellipsoid.

I. Introduction

Safety is the first concern in high-speed railway operation,

which is greatly dependent on the reliability of information

control systems of high-speed trains. The traction drive sub-

system is the core of information control systems in high-speed

train systems, which plays an important role in electric railway

running safety. Therefore, the fault diagnosis and FTC (fault-

tolerant control) mechanism are necessary for modern high-

speed railway systems, especially for the traction subsystems.

Modern railway traction power systems are fed by 2×

25KV/50Hz single phase ac current sources in [1] or by

1500V dc voltage from electric railway substations in [2].

A typical ac/dc/ac power system used for electrical traction

drives is shown in Fig. 1 (see, e.g. [3]), which includes a

catenary, a voltage transformer, a single phase PWM rectifier,

a three-phase PWM inverter and driving motors. In the traction

systems, the electric power is transmitted to the drive motors

through pantograph, voltage transformers, single phase PWM

rectifiers and three-phase PWM inverters. The inverter is

driven by the dc link voltage, provided by the rectifier, while

the driving motors are driven directly by the three-phase PWM

inverter which affects the motion performance of the driving
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Fig. 1. Railway traction circuit schematic diagram.

motors greatly. Over a long period of time, aging components,

such as electrolyte loss effectiveness of electrolytic capacitors,

in the current sensors and voltage sensors, may deduce incipi-

ent faults, and further develop to serious failures, which would

degrade performance of the total traction systems seriously.

Therefore, early incipient sensor fault diagnosis is significant.

During the past several decades, there are many results

about the incipient fault detection using adaptive technique and

sliding mode technique, such as [5], [6] and [7], [8]. Different

adaptive technique based fault estimation modules and sliding

mode technique based fault reconstruction modules are pro-

posed to estimate the fault parameters in these papers. How-

ever, it is still very challenging to apply these approaches to de-

tect incipient faults, especially in the presence of disturbances

and uncertainties. In [9] and [10], an invariant ellipsoid method

is proposed to deal with L∞ disturbances, which motivates us

to combine the adaptive technique, sliding mode technique and

invariant ellipsoid method to detect incipient faults. However,

in inverter systems, there are observer unmatched unknown

inputs which cannot be compensated through output channels

directly. Therefore, an robust detection observer should be

designed for the inverter system.

In this paper, an adaptive and sliding mode unknown input

observer is designed such that the fault estimation errors

converge to a designed invariant ellipsoid before the sensor

fault developing to incipient fault degree. Moreover, after the

fault develops to incipient fault degree, the estimation errors

are guaranteed to exceed the invariant ellipsoid in finite time.
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Correspondingly, the sensor incipient fault detection decision

schemes are also developed.

II. Problem Formulation

A. Dynamic Modeling of Inverter

The topology structure of the inverter device used in the

CRH2’s traction system is shown in Fig. 2, where L f , C f and

r are the filter inductor, capacitor and equivalent resistance,

respectively, Vdc is the dc voltage source, v jn, j = a, b, c are

the inverter bridge voltages, vo j and io j, j = a, b, c are the load

voltages and currents, respectively.
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Fig. 2. Three-phase PWM inverter topology

In electrical traction systems, the motors’ speeds are regu-

lated by varying the ac voltage frequencies in inverter devices.

However, the frequencies vary more slowly than sampling time

in practical transducers, that is ω̇ ≈ 0. Therefore, the d − q

coordinate transformation, which is always used in inverter

devices with fixed frequencies, can also used to frequencies

varying inverter devices in electrical traction systems. Let

x = col(vod, voq, iLd, iLq) and i0 = col(iod, ioq). Then, based on

[11], the state-space model of the inverter device with sensor

fault is described by

ẋ =Ax + Bu + Eio, (1)

eyr =Cx + F f − yr (2)

where the control input u in (1) and i0 are measurable,

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 ω 1
C f

0

−ω 0 0 1
C f

− 1
L f

0 − r
L f

ω

0 − 1
L f
−ω − r

L f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

0 0
Vdc

L f
0

0
Vdc

L f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

E =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 1
C f

0

0 − 1
C f

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

where the angular velocity ω of the inverter device in elec-

trical system belong to [100, 1382]. And the F is the fault

distribution matrix which is assumed to be full column rank

throughout the paper.

In this case, the polytopic representation can be written as

follows:

ẋ =

2
∑

i=1

ζi(ω)Aix + Bu + Ei0, (3)

eyr =Cx + F f − yr (4)

The obtained system evolves in a polytope of two vertices

corresponding to the extreme values of the angular velocity

ω. Thus, the matrices Ai are given by

A1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 100 1
C f

0

−100 0 0 1
C f

− 1
L f

0 − r
L f

100

0 − 1
L f
−100 − r

L f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1382 1
C f

0

−1382 0 0 1
C f

− 1
L f

0 − r
L f

1382

0 − 1
L f
−1382 − r

L f

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

And the weighting functions ζi(ω) are given by

ζ1(ω) =
ω − 100

1282
and ζ2(ω) =

1382 − ω

1282
.

Let A(ω) =
2
∑

i=1

ζi(ω)Ai for the describing simplicity in the

sequel.

B. Incipient Sensor Fault Modeling

Since incipient faults are small in amplitude, piecewise

continuous and develop slowly, they can be modeled based

on the following lemma.

Lemma 1: [12] For any piecewise continuous vector

function f : R+ → Rq, and a stable q × q matrix A f , there

always exists an input vector ξ ∈ Rq such that ḟ = A f f + ξ.

From Lemma 1, incipient faults f (t) can be modeled by

ḟ = A f f + ξ, f (0) = 0 (5)

where A f is a stable matrix with appropriate dimensions, and

ξ = [ξT
1
, · · · , ξTq ]T ∈ Rq is an unknown vector. Taking the

Laplace transformation on Eq. (5), it is clear to see that in

the frequency domain, f (s) = (sI − A f )
−1ξ, which shows that

the fault signal f is determined by ξ completely. Let xa :=

col(x, f ). System (3) and incipient sensor faults (5) can be

represented in an augmented form

ẋa = Aa(ω)xa + Bau + Eai0 + Ead + Daξ,

eyr = Caxa − yr

(6)

where

Aa =

⎡

⎢

⎢

⎢

⎢

⎣

A(ω)

A f

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(n+q)×(n+q), Ba =

⎡

⎢

⎢

⎢

⎢

⎣

B0

0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(n+q)×m,

Ea =

⎡

⎢

⎢

⎢

⎢

⎣

B0

0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(n+q)×h, Da =

⎡

⎢

⎢

⎢

⎢

⎣

0

Iq

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(n+q)×q, Ca =

[

C F
]

∈ Rp×(n+q). Suppose that F in (3) has the form

F =

⎡

⎢

⎢

⎢

⎢

⎣

0(p−q)×q

Iq

⎤

⎥

⎥

⎥

⎥

⎦

. (7)

Then rank(CaDa) = q and rank(Da) = q, which implies the

relative degree of the triple (Aa,Da,Ca) is inherently one.

To reject the bounded exogenous disturbances, the invariant

ellipsoid concept is introduced.
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Definiton 1: The ellipsoid

ε(P) = {x : xT Px < 1}, P > 0 (8)

with the center in the origin and a radius matrix P, is said to

be an invariant ellipsoid for the systems ẋ = Ax + Dω with

respect to the bounded disturbances ω

• if x(0) ∈ ε(P), then x(t) ∈ ε(P) for all t ≥ 0;

• and if x(0) � ε(P), then x(t)→ ε(P) for t → ∞.

C. Incipient Fault Description

In this paper, a worst-case scale variable between the influ-

ence of faults and the influence of disturbances is proposed

to define the incipient faults. First of all, a regulate output

z is given, which can effectively feedback on faults and

disturbances. Then two incremental quantities are defined by

Δz f
= G f ( f ), Δzd

= Gd(d). (9)

where G f (·) and Gd(·) represent functions that from faults f

and disturbances d to z respectively. Then the scale variable

is defined by

Γ = inf
‖Δz f
‖p

‖Δzd
‖p
= inf

∥

∥

∥G f ( f )
∥

∥

∥

p

‖Gd(d)‖p
. (10)

where inf(·) represents the minimal value.

Therefore, based on (10), the developing process of a fault

is divided into three degree which is shown as follows.

(a) when 0 ≤ Γ < Γ, the fault is unnecessary to detect;

(b) when Γ < Γ < Γ̄, the fault is in an incipient fault

degree;

(c) When Γ < Γ < +∞, the fault is in a serious fault

degree.

Suppose that T0 is the time that the fault develops to incipient

fault degree, and that there exist a positive definite matrix

Qd ∈ R
h×h and a positive constants d0 and d1 throughout the

paper such that

d1 < dT Qdd ≤ d0. (11)

Then the following two assumptions about the amplitudes of

faults and disturbances are presented.

Assumption 1: Before the fault develops to incipient fault

degree (t < T0), the fault parameters ξ, ξ̇ and disturbance d

satisfy that

ξT Qξξ ≤ Γ0dT Qdd, ξ̇T Qξ̇ ξ̇ ≤ Γ0dT Qdd, (12)

and after the fault develops to incipient fault degree (t > T0),

there exist two constants Γ and Γ̄ satisfying Γ0 ≤ Γ ≤ Γ̄ such

that

ΓdT Qdd ≤ ξT Qξξ ≤ Γ̄d
T Qdd, ΓdT Qdd ≤ ξ̇T Qξ̇ ξ̇ ≤ Γ̄d

T Qdd

(13)

where Qξ ∈ R
q×q and Qξ̇ ∈ R

q×q are positive definite matrices.

III. Incipient Fault Detection Observer Design

Based on [13], since the relative degree of the triple

(Aa(ω),Da,Ca) is one, there exists a coordinate transformation

for augmented system (6) such that the triple (Aa(ω),Da,Ca)

in the new coordinates can be described by

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Aa11(ω) Aa12(ω)

Aa211(ω)

Aa212(ω)

A11
a22

(ω) A12
a22

(ω)

A21
a22

(ω) A22
a22

(ω)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

0

Da2

⎤

⎥

⎥

⎥

⎥

⎦

,
[

0 Ca2

]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(14)

where Aa11(ω) ∈ R(n+q−p)×(n+q−p), Ca2 ∈ R
p×p is orthogonal and

Da2 =
[

0,DT
a22

]T
with Da22 ∈ R

q×q being nonsingular. Denote

xa = col(x1, x2) with x1 ∈ R
n+q−p and x2 ∈ R

p. Then, based on

[13], the system (6) can be transformed to

ẋ1 =Aa11(ω)x1 + Aa12(ω)x2 + Ba1u + Ea1i0 + Ea1d, (15)

ẋ21 =Aa211(ω)x1 + A11
a22(ω)x21 + A12

a22(ω)x22 + Ba21u

+ Ea21i0 + Ea21d, (16)

ẋ22 =Aa212(ω)x1 + A21
a22(ω)x21 + A22

a22(ω)x22 + Ba22u

+ Ea22i0 + Ea22d + Da22ξ, (17)

eyr =Ca2x2 − yr, (18)

where x2 = col(x21, x22), Ba1 and Ba2 are obtained from [13].

By a linear coordinate transforming z = T xa where z :=

col(z1, z21, z22) with z1 ∈ R
n+q−p, z21 ∈ R

p−q and z22 ∈ R
q, and

T =

⎡

⎢

⎢

⎢

⎢

⎣

In+q−p L

0 Iq

⎤

⎥

⎥

⎥

⎥

⎦

(19)

where L = [L1, 0(n+q−p)×q] with L1 ∈ R
(n+q−p)×(p−q), then z1 =

x1 + L1x21 and the system (15) becomes

ż1 = Âa11(ω)z1 + Âa12(ω)z2 + B̂1u + Ê1i0 + Ê1d, (20)

where matrices Âa11(ω) = Aa11(ω)+LAa21(ω) is Hurwitz, Â12 =

−(Aa11 + LAa21)L + (Aa12 + LAa22), B̂1 = Ba1 + LBa2 and Ê1 =

Ea1 + LEa2.

For subsystems (20) and (16)-(18), an adaptive and sliding

mode unknown input observer is proposed as

˙̂z1 =Âa11(ω)ẑ1 + Âa12(ω)x2 + K1 (x22 − ẑ22) + B̂1u + Ê1i0,

(21)

˙̂z21 =Aa211(ω)ẑ1 + A11
a22(ω)ẑ21 + K21 (x21 − ẑ21) + A12

a22(ω)x22

+ Ba21u + Ea21i0 + Ea21d + ν, (22)

˙̂z22 =Aa212(ω)ẑ1 + A21
a22(ω)x21 + A22

a22(ω)ẑ22 + K22 (x22 − ẑ22)

+ Ba22u + Ea22i0 + Ea22d + Da22ξ̂, (23)

˙̂ξ =ΓDT
a22P22 (x22 − ẑ22) − σΓξ̂, (24)

êyr =ẑ2 − yr (25)

where the gain matrix K1 is chosen as K1 =

Âa12(ω)diag{0(p−q)×(p−q)}, Iq) + G1(ω) with G1(ω) =
∑N

i=1 ζ (ω) G1i ∈ R(n+q−p)×q, K21 = Â21(ω) − G21 and

K22 = Â22(ω) + G22(ω) with G21 ∈ R(p−q)×(p−q) and

G22(ω) =
∑N

i=1 ζ (ω) G22i ∈ R
q×q. The matrix G21i is

symmetric negative definite and Hurwitz. The gain matrices

G1i, G22i, the constant σ > 0 and weighting matrix Γ = ΓT > 0

7484



will be optimized in the sequel. The nonlinear function ν is

given by

ν = ρ(·)sgn(x21 − ẑ21) (26)

where the scalar function ρ(·) is determined later.

Let e1 = z1− ẑ1, e21 = x21− ẑ21, e22 = x22− ẑ22 and eξ = ξ− ξ̂.

Denote e2 = col(e21, e22).Then by comparing (20) and (16)-

(18) with (21)-(24), the error dynamical system is obtained

by

ė1 =Âa11(ω)e1 −G1(ω)e22 + Ê1d, (27)

ė21 =Aa211(ω)e1 +G21e21 + Ea21d − ν, (28)

ė22 =Aa212e1 −G22(ω)e22 + Ea22d + Da22eξ, (29)

˙̂ξ =ΓDT
a22P22 (x22 − ẑ22) − σΓξ̂. (30)

where P22 is the Lyapunov matrix of subsystem (29).

Since the relative degree of the triple the triple

(Aa(ω),Da,Ca) is one, then from [13], there exist a constructed

the constraint Lyapunov matrix

P :=

⎡

⎢

⎢

⎢

⎢

⎣

P1 P1L

LT P1 P2 + LT P2L

⎤

⎥

⎥

⎥

⎥

⎦

(31)

where P1 ∈ R
(n+q−p)×(n+q−p) and P2 ∈ R

p×p, such that

(

T−1
)T

PT−1 =

⎡

⎢

⎢

⎢

⎢

⎣

P1

P2

⎤

⎥

⎥

⎥

⎥

⎦

(32)

where P1 is a Lyapunov matrix of subsystem (27), and P2 is

a Lyapunov function of subsystem (28)-(29).

Since (28) and (29) are decoupled, the Lyapunov matrix of

subsystem (28)-(29) is a diagonal matrix. Thus, the Lyapunov

matrix P2 is a block diagonal matrix, which can be chosen

as P2 = diag{P21, P22} with P21 and P22 being the Lyapunov

matrix respectively.

Consider the ellipsoid

ε(P) = {col(e1, e22, eξ) : col(e1, e22, eξ)
T
Pcol(e1, e22, eξ) < 1}

(33)

where P = diag{P1, P22, Γ
−1} > 0. Then the following

theorem is ready to be presented.

Proposition 1: Under Assumption 1, for certain σ > 0 and

some τ01 ≥ τ02 > 0 and τ11 ≥ τ12 > 0, the set ε(P) is

an invariant ellipsoid for error system (27) and (29)-(30), if

there exist SPD matrices P1 ∈ R
(n+q−p)×(n+q−p), P22 ∈ R

p×p

and Γ−1 ∈ Rq×q, matrices Y ∈ R(n+q−p)×p, W1i ∈ R
(n+q−p)×q and

W2i ∈ R
p×p and scalar σ such that

P22 > 0, P1 > 0, Γ−1 > 0, σ > 0 (34)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Θ11+τ01P1 Θ12 0 0 0 Θ16

∗ Θ22+τ01P22 0 0 0 Θ26

∗ ∗ −2σI+τ01Γ
−1 σI Γ−1 0

∗ ∗ ∗ −
τ02
αd0

Qξ 0 0

∗ ∗ ∗ ∗ −
τ02
αd0

Qξ 0

∗ ∗ ∗ ∗ ∗ −
τ02
αd0

Qd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (35)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Θ11−τ11P1 −Θ12 0 0 0 −Θ16

∗ −Θ22−τ11P22 0 0 0 −Θ26

∗ ∗ 2σI−τ11Γ
−1 −σI −Γ−1 0

∗ ∗ ∗ −
τ12
βd1

Qξ 0 0

∗ ∗ ∗ ∗ −
τ12
βd1

Qξ 0

∗ ∗ ∗ ∗ ∗ −
τ12
βd1

Qd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (36)

where Θ11 = He (P1Aa11(ω) + YAa21(ω)), Θ12 = −W1(ω) +

AT
a212

(ω)P22, Θ16 = P1Ea1 + YEa2, Θ22 = −He (W2(ω)), Θ26 =

P22Ea22, α = 2Γ0 + 1 and β = 2Γ + 1. Then, the gain matrices

L1 = P−1
1

Y , G1i = P−1
1

W1i and G2i = P−1
22

W2i.

Proof: The Lyapunov candidate function is chosen as V =

eT
1

P1e1 + eT
22

P22e22 + eT
ξ
Γ−1eξ. Note that ėξ = ξ̇ −

˙̂ξ. Then the

time derivative of V along the trajectory of subsystem (27)

and (29)-(30) is

V̇ =eT
1 (P1Âa11(ω) + Âa11(ω)T P1)e1 − 2eT

1 P1G1(ω)e22

+ 2eT
1 P1Ê1d + 2eT

22P22Aa212(ω)e1

− eT
22(P22G2(ω) +G2(ω)T P22)e22 + 2eT

22P22Da22eξ

+ 2eT
22P22Ea22d − 2eT

ξ DT
a22P22e22 − 2σeT

ξ eξ + 2σeT
ξ ξ

+ 2eT
ξ Γ
−1ξ̇

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e1

e22

eξ

ξ

ξ̇

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T ⎡
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ11 Ξ12 0 0 0 Ξ16

∗ Ξ22 0 0 0 Ξ26

∗ ∗ −2σI σI Γ−1 0

∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e1

e22

eξ

ξ

ξ̇

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(37)

where Ξ11 = He
(

P1Âa11(ω)
)

, Ξ12 = −P1G1(ω) + AT
a212

(ω)P22,

Ξ16 = P1Ê1,Ξ22 = −He (P22G2(ω)) and Ξ26 = P22Ea22.

Obviously, the ε(P) is an invariant ellipsoid if

and only if V̇ < 0, for any (e1, e22, eξ) satisfying

(e1, e22, eξ)
T P(e1, e22, eξ) ≥ 1 and for col(ξ, ξ̇, d) satisfying

Assumption 1.

From Assumption 1, ξ, ξ̇ and d satisfy

1

Γ0d0

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e1

e22

eξ

ξ

ξ̇

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

T ⎡
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0

∗ 0 0 0 0 0

∗ ∗ 0 0 0 0

∗ ∗ ∗ Qξ 0 0

∗ ∗ ∗ ∗ Qξ̇ 0

∗ ∗ ∗ ∗ ∗ Qd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

e1

e22

eξ

ξ

ξ̇

d

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ 1. (38)

Let ζ = col(e1, e22, eξ, ξ, ξ̇, d). Define

A00 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ11 Ξ12 0 0 0 Ξ16

∗ Ξ22 0 0 0 Ξ26

∗ ∗ −2σI σI Γ−1 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

A01 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−P1 0 0 0 0 0
∗ −P22 0 0 0 0

∗ ∗ −Γ−1 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A02 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ 1

αd0
Qξ 0 0

∗ ∗ ∗ ∗ 1
αd0

Qξ̇ 0

∗ ∗ ∗ ∗ ∗ 1
αd0

Qd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and f0i(ζ) := ζT A0iζ.

According to the S-procedure, the inequalities f01(ζ) ≤ −1

and f02(ζ) ≤ 1 imply f0(ζ) < 0 if and only if there exist

τ01, τ02 ≥ 0 such that A00 < τ01A01+τ02A02 and 0 ≥ −τ01+τ02.

Based on Chetaev’s instability theorem presented in [14], it

can be obtained that if V̇ > 0 for any
(

e1, e22, eξ
)

∈ ε(P) and
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for any col(ξ, ξ̇, d) satisfying Assumption 1, then
(

e1, e22, eξ
)

∈

ε(P) will escape the invariant ellipsoid ε(P) in finite time.

Define

A10 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Ξ11 −Ξ12 0 0 0 −Ξ16

∗ −Ξ22 0 0 0 −Ξ26

∗ ∗ 2σI −σI −Γ−1 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

A11 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

P1 0 0 0 0 0
∗ P22 0 0 0 0

∗ ∗ Γ−1 0 0 0
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, A12 :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0
∗ 0 0 0 0 0
∗ ∗ 0 0 0 0
∗ ∗ ∗ − 1

βd1
Qξ 0 0

∗ ∗ ∗ ∗ − 1
βd1

Qξ̇ 0

∗ ∗ ∗ ∗ ∗ − 1
βd1

Qd

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and f1i(ζ) := ζT A1iζ.

It follows from Assumptions 1 that

ξT Qξξ + ξ̇
T Qξ̇ ξ̇ + dT Qdd ≥ βd1. (39)

According to the S-procedure, the inequalities f11(ζ) ≤ 1 and

f12(ζ) ≤ −1 imply f10(ζ) < 0 if and only if there exist τ11, τ12 ≥

0 such that A10 < τ11A11 − τ12A12 and 0 ≥ τ11 − τ12.

Consider a sliding surface

S =
{

col(e1, e21, e22, eξ) | e21 = 0
}

. (40)

Then the following result is ready to be presented.

Proposition 2: Under Assumptions 1, before the fault signal

develops to incipient fault degree, the error system (27)-(30)

is driven to sliding surface S given by (40) in finite time and

remains on it thereafter, if the gain ρ(·) in (26) is chosen to

satisfying

ρ(·) ≥ ‖Aa211(ω)‖

√

1

λmin(P)
+ ‖Ea21‖

√

1

λmin(Qd)
+ η (41)

where λmin(P) and λmin(Qd) represents the minimum eigen-

value of P and Qd respectively, and η is any positive scalar.

Proof: It follows from Proposition 1 that before the fault

signal develops to incipient fault degree col(e1, e22, eξ) ∈ ε(P).

Then ‖e1‖ ≤

√

1
λmin(P)

. Moreover, it follows from Assumption

1 that ‖d‖ ≤
√

1
λmin(Qd)

. A Lyapunov candidate function

V = eT
21

e21 is chosen for error sub-system (28). Since G21 is

symmetric positive definite and ρ(·) is chosen to satisfy (41),

it can yield that V̇ ≤ −ηV
1
2 . Thus, the η-reachability condition

is satisfied, which implies that the error system (27)-(30) is

driven to sliding surface S in (40) in finite time and remains

on it thereafter. Hence, the result follows.

IV. Incipient Fault Detection Decisions

Firstly, the incipient fault detection residual in this paper is

defined by

r = col(e1, e22, eξ). (42)

Then, the threshold is chosen as ε(P). In this paper, the

following logical relationships are used for incipient fault

detection

r ∈ε(P)⇒ no alarm, faults free, (43)

r �ε(P)⇒ alarm, incipient faults are detected. (44)

Therefore, for the incipient faults occurring after sliding

motion taking place, the decision on the occurrence is made

if the residual r exceeds the threshold ε(P). The detection

time instant Td is defined as the first time instant when

r � ε(P).

Then the following theorem is ready to be presented.

Theorem 1: For the inverter sensor faulty system (3) and

incipient sensor faults modeled by (5) with fault parameters

ξ, ξ̇ and disturbances satisfying Assumptions 1, the fault

detection decision scheme characterized by observer (21)-(25),

residual r defined in (42) and threshold ε(P) guarantees that

there is no false alarm before incipient faults occur, and that

there is no missing alarm for the incipient faults satisfying

Assumption 1 .

V. Simulation

To verify the effectiveness of the proposed method, the case

that two incipient voltage sensor faults occur simultaneously is

considered. The practical parameters of the three-phase PWM

inverter in CRH2 from CRRC ZHUZHOU INSTITUTECO.,

LTD are provided in the following table. When two incipient

TABLE I
Parameters of the inverter in CRH2.

Parameter Value Unit

r 0.144 Ω

L f 1.417 × 10−3 H

C f 6000 × 10−6 F

Vdc 3600 V

faults occur on the vod and voq voltage sensors simultaneously,

the fault distribution matrix F is described by

F =

⎡

⎢

⎢

⎢

⎢

⎣

1 0

0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (45)

The incipient sensor faults are assumed to be generated by

ḟ =

⎡

⎢

⎢

⎢

⎢

⎣

−100

20 −100

⎤

⎥

⎥

⎥

⎥

⎦

f +

⎡

⎢

⎢

⎢

⎢

⎣

ξ1

ξ2

⎤

⎥

⎥

⎥

⎥

⎦

, f (0) = 0 (46)

where

ξ1 =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ t < 1s,

2000 sin(3t), 1s ≤ t,
(47)

ξ2 =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ t < 1s,

1000 sin(3t), 1s ≤ t.
(48)

The bounded noise is given by

d =

⎡

⎢

⎢

⎢

⎢

⎣

1.5 sin (10t)

2.0 sin (10t)

⎤

⎥

⎥

⎥

⎥

⎦

. (49)

Thus, Qξ, Qξ̇, Qd, Γ0, Γ, Γ̄ and d0, d1 in Assumption 1 can

be obtained, and the augmented system can be established as

(6).

It can be verified that the augmented system satisfies As-

sumption 1. The parameters in detection observer are calcu-

lated based on Proposition 1 and 2. The estimation results are

shown in Figs. 3-6.
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It can be seen from Figs. 3, 5 and 6 that the residual r

defined in (42) converges to the designed invariant ellipsoid

before the sensor fault develops to incipient fault degree. It is

clear from Fig. 4 that the sliding motion takes place infinite

time and maintains on the sliding surface thereafter.
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Fig. 3. Time response of e1 and corresponding invariant ellipsoid.
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Fig. 4. Time response of e21 and corresponding invariant ellipsoid.
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Fig. 5. Time response of e22 and corresponding invariant ellipsoid.

From Fig. 6, it can be seen that the estimation error eξ which

is one part of the residual r starts in the invariant ellipsoid

and converges to the area before the sensor faults develop to

the incipient fault degree. With the development of the sensor

faults, the faults develop to incipient fault degree at T0, then

the estimation error eξ diverges out the invariant ellipsoid at Td

and stay outside of the ellipsoid. Thus, based on the incipient

fault decision principle, the incipient fault is detected at time

instant Td.
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e
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1
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Fig. 6. Time response of eξ and corresponding invariant ellipsoid.

VI. Conclusion

This paper has proposed an adaptive and sliding mode

unknown input estimation modules as sensor incipient fault

detection observer for the inverter device in high-speed railway

traction systems. The novel method to distinguish incipient

faults from disturbances has been provided. Based on this

distinguish method, the invariant ellipsoid concept has been

introduced and particularly designed as threshold to detect

the sensor incipient faults. The simulation results has been

presented to verify the effectiveness and practicalness of the

proposed incipient fault detection schemes.
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