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Abstract—In this paper, optimal content caching strategy is
proposed to jointly minimize the cell average outage probability
and fronthaul usage in cloud radio access network (Cloud-RAN).
An accurate closed form expression of the outage probability
conditioned on the user’s location is presented, and the cell
average outage probability is obtained through the composite
Simpson’s integration. The caching strategy for jointly optimizing
the cell average outage probability and fronthaul usage is
formulated as a weighted sum minimization problem, which
is a nonlinear 0-1 integer NP-hard problem. In order to deal
with the NP-hard problem, at first, two particular caching
placement schemes are investigated: the most popular content
(MPC) caching scheme and the proposed location-based largest
content diversity (LB-LCD) caching scheme. Then a genetic
algorithm (GA) based approach is proposed. Numerical results
show that the performance of the proposed GA-based approach
with significantly reduced computational complexity is close to
the optimal performance achieved by exhaustive search based
caching strategy.

I. INTRODUCTION

Consisting of centralized base band processing resources,

known as base band unit (BBU) pool, and distributed remote

radio heads (RRHs), cloud radio access network (Cloud-RAN)

becomes a new type of radio access network (RAN) archi-

tecture to support multipoint transmission and access point

densification required by the fifth generation (5G) wireless

mobile systems [1], [2]. However, existing fronthaul/backhaul

of Cloud-RAN cannot meet the requirements of the emerging

huge data and signaling traffic in terms of transmission band-

width requirements, stringent latency constraints and energy

consumption etc. [3], [4], which has become the bottleneck of

the evolution towards 5G.

Content caching in RAN can be a promising solution to sig-

nificantly reduce the fronthaul/backhaul traffic [5], [6]. During

off-peak times, popular content files can be transferred to the

cache-enabled access points (macro base stations, small cells

etc.). If the files requested by mobile users are cached in the

access points of the RAN, the files will be transmitted directly

from the RAN’s cache without being fetched from the core

network, which can significantly reduce the fronthaul/backhaul

traffic and meanwhile shorten the access latency of the files,
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thus improve users’ quality of experience (QoE). In Cloud-

RAN, thanks to the ongoing evolution of fronthaul technology

and function splitting between the BBU and RRHs [4], there

comes possibility to realize content caching in RRHs, which

allows users fetching required content files directly from RRHs

and thus can further reduce fronthaul traffic.

There are two stages related with content caching: caching

placement stage and delivery stage [6]. Caching placement, or

known as caching strategy, is the stage to determine which

files should be stored in which cache-enabled access points,

and delivery stage refers to transmitting the requested files

from access points to mobile users. Caching strategy is of

importance because it is the initial step to perform caching and

obviously it will have an impact on the performance of the

delivery stage. Hence, caching strategy should be optimized

by taking into consideration the wireless transmission perfor-

mance. However, the wireless transmission characteristics such

as fading were not considered in most of the researches when

designing caching strategies [7]–[9], i.e., it was assumed that

the wireless transmission is error-free.

There are some papers considering wireless fading char-

acteristics when designing caching strategy. In [10], optimal

caching placement was obtained through a greedy algorithm to

minimize the average bit error rate in a macro cell with many

cache-enabled helpers. In [11], cache-enabled base stations are

connected to a central controller via backhaul links. Caching

strategy was proposed to minimize the average download

delay. In [10] and [11], the authors only considered small

scale Rayleigh fading by assuming that the user has the same

large scale fading at any location. However, in reality, several

RRHs will jointly serve the user in Cloud-RAN, and the

distance between each RRH and the user will not be the same,

so it is important to consider large scale fading in wireless

transmission. The works in [10] and [11] cannot be extended

to the case with the consideration of large scale fading. In

addition, they focused on single-objective optimization without

considering the fronthaul/backhaul usage.

The aim of caching in RRHs of Cloud-RAN is to sig-

nificantly reduce the fronthaul traffic. Fronthaul usage, i.e.,

whether the fronthaul is used, is a metric which can reflect

not only the fronthaul traffic and file delivery latency but

also the energy consumption of the fronthaul. For example,



lower fronthaul usage implies there are more possibilities that

mobile user can access the content files in near RRHs, which

will shorten the file access latency, meanwhile the fronthaul

cost (i.e, the energy consumption) will be lower. On the

other hand, outage probability is an important performance

metric of the system, which reflects the reliability of the

wireless transmission, i.e., whether the requested content files

can be successfully transferred to the user. If replicas of

certain content files are cached in several RRHs, the outage

probability will be reduced due to the transmit diversity in

wireless transmissions, while the fronthaul usage will become

higher because the total number of different files cached in the

RRHs are reduced. On the other hand, caching different files

in the RRHs will reduce the fronthaul usage, while the outage

probability will become relatively higher due to the decrease

of wireless diversity. Therefore, there exists tradeoff between

fronthaul usage and outage probability.

In this paper, we investigate downlink transmission in a

virtual cell in Cloud-RAN. The optimal caching strategy is

proposed to jointly minimize the cell average outage proba-

bility and the fronthaul usage. A realistic fading channel is

adopted, which includes path loss and small scale Rayleigh

fading. The major contributions of this paper are:

1) Closed form expression of outage probability conditioned

on the user’s location is derived, and the cell average outage

probability is obtained through the composite Simpson’s

integration. Simulation results show that the analysis is

highly accurate.

2) The joint optimization problem is formulated as a weighted

sum minimization of cell average outage probability and

fronthaul usage, which is NP-hard. An effective genetic

algorithm (GA) based approach is proposed to solve the

problem, which can achieve almost the same performance

as the optimal exhaustive search, while the computational

complexity is significantly reduced.

II. SYSTEM MODEL

It is assumed that there are N cache-enabled RRHs in a

circular cell with radius R, and the set of RRH cluster is

denoted as N = {1, 2, · · · , N}. The file library with a total of

L content files is denoted as F = {F1, F2, · · · , FL}, where Fl

is the l-th ranked file in terms of popularity. The popularity

distribution of the files follows the Zipf’s law [12], i.e., the

request probability of the l-th ranked content file is

Pl =
l−β

∑L
n=1 n

−β
, (1)

where β ∈ [0,+∞) is the skewness factor.

Considering the BBU pool can be equipped with sufficient

storage space, it is assumed that all the L content files are

cached in the BBU pool, and all of them have the same size.

Some of the content files can be further cached in the RRHs in

order to improve the system’s performance. The n-th RRH can

cache Mn files, and generally
∑N

n=1 Mn < L. The caching

placement of the content files in the RRHs can be denoted by

a binary placement matrix A
L×N , with the (l, n)-th entry

al,n =

{
1, the n-th RRH caches the l-th file

0, otherwise
(2)

indicating whether the l-th content file is cached in the n-th

RRH, and
∑L

l=1 al,n = Mn, ∀n.

Single user scenario is considered in this paper. However,

the proposed algorithm can be applied in practical multiuser

orthogonal frequency division multiple access (OFDMA) sys-

tem, in which each user is allocated with different subcarriers

[13]. It is assumed that the user can only requests for one

file at one time, and all the RRHs caching the requested

file will serve the user. If none of the RRHs caches the

requested file, the file will be transferred to all the RRHs

from the BBU pool through fronthauls, and then all the

RRHs transmit the file to the user. The service RRH set

for the user with respect to (w.r.t.) the l-th file is denoted

as Φl = {n|al,n = 1, n ∈ N}, (l ∈ {1, 2, · · · , L}), with

cardinality |Φl|∈ {1, 2, · · · , N}. The system model and file

delivery scheme are illustrated in Fig.1. For example, when the

user requests for the l1-th file which is not cached in any of the

RRHs, the user’s service RRH set is Φl1 = {1, 2, 3, 4}. When

the user requests for the l2-th file which is already cached in

RRH 2 and RRH 3 via caching placement, the service RRH

set is Φl2 = {2, 3}.

Assuming that both the RRH and the user’s device are

equipped with single antenna, the user’s received signal from

the service RRH set when requesting for the l-th file can be

expressed as

y =
∑

n∈Φl

√

pT d
−α
n hn + noise, (3)

where pT is the transmit power of each RRH, dn is the

distance between the n-th RRH and the user, α is the pass

loss exponent, hn ∼ CN (0, 1) represents complex Gaussian

small scale fading, and noise denotes complex additive white

Gaussian noise (AWGN) with zero mean and variance σ2.

BBU pool

RRH with cache

Mobile user

1
2

3

4

Fig. 1. System model and file delivery scheme. Red and green dashed lines
represent the file fetching routes when user requests for the l1-th and l2-th
content file, respectively.



III. PROBLEM FORMULATION AND ANALYSIS

A. Problem Formulation

Define the normalized fronthaul usage w.r.t. the l-th file as

Tl(A) =

N∏

n=1

(1− al,n) =

{
1, al,n = 0 for ∀n
0, ∃n such that al,n = 1

,

(4)

which indicates that if there is at least one copy of the

requested file cached in the RRHs, there will be no fronthaul

usage, i.e., Tl = 0, while if the requested file is not cached in

any of the RRHs, there will be fronthaul usage, i.e., Tl = 1.

Note that Tl does not depend on the user’s location.

The caching strategy should be designed according to the

long-term statistics over the user’s locations and content file

requests. The joint optimization problem can be formulated

through a weighted sum of the objectives [14],

min fobj(A) = η

L∑

l=1

PlEx0

[

P
(l)
out(x0)

]

︸ ︷︷ ︸

cell average outage probability

+(1− η)

L∑

l=1

PlTl

︸ ︷︷ ︸

fronthaul usage

(5a)

s.t.

L∑

l=1

al,n = Mn, (5b)

al,n ∈ {0, 1}. (5c)

where η ∈ [0, 1] is a weighting factor to balance the tradeoff

between outage probability and fronthaul usage, Ex0
denotes

expectation in terms of the user’s location x0, P
(l)
out(x0) is the

outage probability when the user requests for the l-th file at

location x0. Constraint (5b) describes the caching limit of each

RRH, and constraint (5c) indicates the joint optimization as a

0-1 integer problem.

Different values of η will lead to different balances between

outage probability and fronthaul usage. Given η, the caching

strategy can be determined through solving the optimization

problem in (5). In practice, η is chosen by the decision maker

(e.g., RAN’s operator) according to the system’s long-term

statistics of outage probability and fronthaul usage.

B. Outage Probability Analysis

When the user requests for the l-th file at location x0, the

signal to noise ratio (SNR) of the received signal is given by

γl(x0) =
∑

n∈Φl

pT
σ2

d−α
n |hn|

2=
∑

n∈Φl

γ0Sn|hn|
2=

∑

n∈Φl

γn,

(6)

where γ0 = pT

σ2 is SNR at the transmitter of each RRH,

Sn = d−α
n is the large scale fading, and γn = γ0Sn|hn|

2

represents the received SNR from the n-th RRH. For a specific

file, without ambiguity, we omit the subscript of file index l
and the user’s location x0 in the following analysis.

In the service RRH set Φ with cardinality |Φ|, the RRHs

with the same distance to the user are grouped together.

Assuming there are I (I ≤ |Φ|) groups, the number of RRHs

in the i-th group is denoted by Ji, and
∑I

i=1 Ji = |Φ|.

The distance between RRH and the user in the i-th group

is denoted by di (i ∈ {1, 2, 3, · · · , I}). Letting λi = 1
γ0d

−α

i

,

the probability density function (PDF) of the received SNR

can be obtained as

fγ(γ) =
I∑

i=1

Ji∑

j=1

λj
iAij

(j − 1)!
γj−1e−λiγ , (7)

and the cumulative distribution function (CDF) is given by

Fγ(γ) =

I∑

i=1

Ji∑

j=1

λj−1
i Aij

(j − 1)!

·

[

(j − 1)!

λj−1
i

−

(

e−λiγ

j−1
∑

k=0

(j − 1)!

(j − 1− k)!λk
i

γj−1−k

)]

,

(8)

where

Aij =
(−λi)

Ji−j

(Ji − j)!

dJi−j

dsJi−j

[

Mγ(s)

(

1−
1

λi

· s

)Ji

] ∣
∣
∣
∣
∣
s=λi

.

(9)

The derivations of (7) and (8) are given in Appendix A.

The accuracy of the derived CDF of (8) is illustrated

in Fig. 2 through three scenarios. Assuming there are 6

service RRHs for the user, and the distances between the

service RRHs and the user are denoted by a vector D.

The three different scenarios are (1) scenario 1: D1 =
[0.8R, 0.8R, 0.8R, 0.8R, 0.8R, 0.8R], (R is the cell radius),

i.e., all the RRHs are with the same distance to the user;

(2) scenario 2: D2 = [0.6R, 0.7R, 0.7R, 0.8R, 0.8R, 0.8R],
i.e., some of the RRHs have same distance with the user;

(3) scenario 3: D3 = [0.5R, 0.6R, 0.7R, 0.8R, 0.9R, 1.0R],
i.e., all the RRHs are with different distances to the user.

It can be seen from Fig. 2 that the analytical results match

the simulation results, which demonstrates the accuracy of the

derived expression of (8).

The outage probability according to a certain SNR threshold

γth is

Pout(γth) = Fγ(γth). (10)
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Fig. 2. CDF of the user’s received SNR at a fixed location.



It is difficult to find a closed form solution of the cell aver-

age outage probability w.r.t. the l-th file, i.e., Ex0
[P

(l)
out(x0)].

However, we can use the composite Simpson’s integration

in forms of polar coordinates, where the user’s location is

denoted by (ρ, θ) and x0 = ρejθ.

Ex0

[

P
(l)
out(x0)

]

=

∫ 2π

0

∫ R

0

P
(l)
out(ρ, θ)fx0

(ρ, θ)ρdρdθ

≈
∆h∆k

9

U∑

u=0

V∑

v=0

wu,vρuP
(l)
out(ρu, θv)fx0

(ρu, θv),

(11)

where R is the cell radius, even integers U and V are

chosen such that ∆h = R/U and ∆k = 2π/V meeting the

requirement of calculation accuracy, ρu = u∆h, θv = v∆k,

fx0
(ρ, θ) is the probability density function of the user’s

location, which is 1/πR2 when the user’s location is uniformly

distributed in the cell, and {wu,v} are constant coefficients

given in [15].

Substituting (4), (8), (10) and (11) into (5a), the opti-

mization problem is formulated as a function of the caching

placement matrix A
L×N = {al,n}. However, the problem is

a 0-1 integer nonlinear problem which is NP-hard, and it is

difficult to obtain a closed form solution. The following section

will focus on how to solve this problem.

IV. CACHING PLACEMENT SCHEMES

In this section, firstly, the most popular content (MPC)

caching placement and the largest content diversity (LCD)

caching placement [11] are introduced, and we propose a

location-based LCD (LB-LCD) caching placement for the

tradeoff caching of outage probability and fronthaul usage in

Cloud-RAN. Secondly, a genetic algorithm based approach is

proposed to solve the joint optimization problem.

A. The MPC and LB-LCD Caching Placements

There are two particular caching placement schemes: one

is the MPC caching, and the other one is the LCD caching.

In MPC, each RRH caches the most popular files, i.e., the n-

th RRH caches {Fl|l = 1, 2, · · · ,Mn}, which will have low

outage probability while high fronthaul usage. In the LCD

scheme, a total of L′ =
∑N

n=1 Mn (< L) different most

popular content files are cached in the RRHs, which can have

lowest fronthaul usage while relatively high outage probability.

If the LCD scheme is adopted in Cloud-RAN, the impact of

locations of caching content files on the cell average outage

probability needs to be considered. Assuming the locations

of the user are uniformly distributed in the cell, caching the

most popular files in the RRH nearest to the cell center will

achieve better outage probability performance. Therefore, for

Cloud-RAN, we improve the LCD scheme and propose a

location-based LCD (LB-LCD) scheme which is described in

Algorithm 1.

Algorithm 1: Proposed LB-LCD caching strategy

1 Sort the RRH set as

Ns = {ni|i = 1, 2, · · · , N,Dn1
≤ Dn2

, · · · ,≤ DnN
},

where Dni
denotes the distance between the ni-th RRH

and the cell center.

2 Fill the cache of the RRH set Ns in sequence from n1 to

nN with content files {Fl|l = 1, 2, · · · ,
∑N

n=1 Mn} in

ascending order of l.

Since the MPC and LB-LCD caching schemes mainly focus

on minimization of outage probability and fronthaul usage,

respectively. In the following subsection, we propose a genetic

algorithm based approach to jointly minimize the cell average

outage probability and fronthaul usage.

B. Genetic Algorithm Based Approach

The genetic algorithm structure is shown in Fig. 3. Firstly,

Np candidate caching placement matrices are generated,

known as the initial population (with population size Np), and

each matrix is called an individual. Then the objective value of

each individual is evaluated through (5a). Ne individuals with

best objective values are chosen as elites and passed into next

generation (children of current generation population) directly.

The rest of the next generation population are generated

through crossover and mutation operations. The crossover

function operates on two individuals (known as parents) and

generates a crossover child, and the mutation function operates

on a single individual and generates a mutation child. The

number of individuals generated through crossover and muta-

tion operations are denoted as Nc and Nm, respectively, where

Ne + Nc + Nm = Np, and the crossover fraction is defined

as fc = Nc

Nc+Nm

. The selection function selects 2Nc and

Selection 

Function

Evaluation

Eq. (5a)

Termination

criterion

reached ?

Elites

No

Yes

Initial population

Output the best 

individual in 

current population

Current generation

Next generation

...

L N·
A

...

Evaluation

Eq. (5a)

Crossover

Function

Mutation

Function

Fig. 3. Genetic algorithm structure.



Nm individuals from the current generation for the crossover

and mutation function, respectively, where some individuals

will be selected more than once. Stochastic uniform sampling

selection [16] is adopted. Repeat the evaluation-selection-

generation procedures until termination criterion is reached.

Finally, the best individual in the current population is chosen

as the output of the algorithm. The initial population, crossover

function and mutation function of the proposed GA approach

are described as follows.

1) Initial Population: The initial population is created as a

set of {AL×N}. For each column in each individual, Mn out

of the first L′ entries (i.e., {a1,n, a2,n, · · · , aL′,n}) are set to

be one randomly, and all the remaining entries are set to be

zero, where

L′ =

N∑

n=1

Mn < L (12)

is based on the fact that the total different files with higher pop-

ularity can be cached in the RRHs are {Fl|l = 1, 2, · · · , L′}.

There is no benefit to cache files {Fl|l > L′} with lower

popularity. In addition, placement matrices of the MPC and

the LB-LCD schemes are added into the initial population to

further improve the performance.

2) Crossover Function: The crossover function generates

a child Ac from parents A1 and A2. A two-point crossover

function is used, which is described in Algorithm 2, in which

steps 9 to 14 are heuristic operations to meet constraint (5b).

Algorithm 2: Crossover function

1 Get parent A1 = {a
(1)
l,n} and A2 = {a

(2)
l,n} from selection

function, initialize their child Ac with entries

a
(c)
l,n = 0, ∀{l, n}.

2 for n = 1, 2, · · · , N do

3 Generate random integers l1, l2 ∈ [1, L′), l1 	= l2
according to uniform distribution.

4 if l1 < l2 then

5 Replace a
(1)
l,n , l = {l1 +1, · · · , l2 +1} of A1 with

a
(2)
l,n , l = {l1 + 1, · · · , l2 + 1} of A2, and then

set a
(c)
l,n = a

(1)
l,n , ∀l ∈ {1, 2, · · · , L}.

6 else

7 Replace a
(2)
l,n , l = {l2 +1, · · · , l1 +1} of A2 with

a
(1)
l,n , l = {l2 + 1, · · · , l1 + 1} of A1, and then

set a
(c)
l,n = a

(2)
l,n , ∀l ∈ {1, 2, · · · , L}.

8 end

9 while
∑L

l=1 a
(c)
l,n > Mn do

10 Set nonzero a
(c)
l,n to 0 in descending order of l.

11 end

12 while
∑L

l=1 a
(c)
l,n < Mn do

13 Set zero a
(c)
l,n to 1 in ascending order of l.

14 end

15 end

3) Mutation Function: The mutation function operates on

a single individual and generates its mutation child. For each

column of the individual, one of the first L′ entries is randomly

selected and the value is set to be the opposite (0 to 1 and

vice versa), then steps 9 to 14 described in Algorithm 2

are executed to meet constraint (5b). The mutation operation

reduces the probability that the algorithm converges to local

minimums.

The number of objective function calculations w.r.t. a certain

value of η is evaluated to measure the complexities of the

proposed GA approach and the optimal exhaustive search

method. The complexity of the proposed GA is NpNg , where

Np and Ng are the population size and the number of gen-

erations evaluated, respectively. The complexity of exhaustive

search is
∏N

n=1

(
L

Mn

)
. When Mn = M, ∀n, it is clear that

the complexity of exhaustive search is exponential w.r.t. the

number of RRHs, i.e.,
(
L
M

)N
.

V. NUMERICAL RESULTS

Some representative numerical results are given in this

section. At first, the effectiveness of the proposed GA approach

is verified by comparing its performance with exhaustive

search. Then performances of different caching strategies are

compared and the convergence behavior of the proposed GA is

presented. Throughout the simulation, it is assumed that each

RRH has the same cache size Mn = M . The transmit power of

each RRH is pT = P
N

, where P is the total transmit power in

the cell and P
σ2 = 23 dB. The received power attenuates 20 dB

when the distance between the RRH and the user is R. In such

setting, the outage probability does not depend on the absolute

value of R, that is, R can be regarded as the normalized radius.

The main simulation parameters are summarized in Table I.

TABLE I
SIMULATION PARAMETERS

Parameter Value

Path loss exponent α 3

P/σ2
23 dB

SNR threshold γth 3 dB
User location distribution uniform
U and V in Simpson’s integration 6, 6
Population size Np in GA 50

Selection function stochastic universal sampling
Number of elites Ne 10

Crossover fraction fc 0.85

Fig. 4 shows the optimal tradeoffs between the cell average

outage probability and the fronthaul usage with different cache

size M . There are three RRHs, and the polar coordinates of

which are
(
R
4 , 0

)
,
(
R
3 ,

2π
3

)
, and

(
R
2 ,

4π
3

)
, respectively. There

are L = 9 content files, and the popularity skewness factor

β = 1.5. It can be seen from the figure that the minimum

cell average outage probability is achieved at point A1 when

M = 1, A2 when M = 2, and A3 when M = 3, respectively.

The corresponding caching placements of the three points are

the MPC scheme. On the other hand, the minimum fronthaul

usage is achieved at point B1 when M = 1, B2 when M = 2,

and B3 when M = 3, respectively. The corresponding caching

placements of the three points are the LB-LCD scheme. The



Cell average outage probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
er

ag
e 

fr
o
n
th

au
l 

u
sa

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.6~1

0.6~1

0.6~1

0.4, 0.5

0.3, 0.4

0.5

0.5

0.45

0.4

0.2, 0.3

0.2

η = 0, 0.1

η = 0~0.3

η = 0, 0.10.15

exhaustive search

proposed GA
M=1

M=2
A1

A2

B1

B2

B3

M=3

A3

Unless otherwise specified,

η is evaluated from 0 to 1

with step 0.1 in the proposed

GA-based approach

Fig. 4. Cell average outage probability and fronthaul usage tradeoff. L =

9,M = {1, 2, 3}, N = 3, β = 1.5.

results obtained through the proposed GA approach is almost

the same as exhaustive search, which means that the proposed

GA approach can achieve near-optimal performance.

Fig. 5 shows the objective value of different caching strate-

gies with M = 5. There are L = 50 files, N = 7 RRHs

with one RRH located at the cell center and the other 6

RRHs evenly distributed on the circle with radius 2R/3, and

β = 1.5. It can be seen from the figure that as the weighting

factor η increases, i.e., more focus on minimization of outage

probability, the objective value of MPC decreases linearly,

while the objective value of the LB-LCD scheme increases

linearly. The horizontal coordinate of the crossover point of the

MPC and LB-LCD scheme approaches zero as the popularity

skewness factor β increases. That is, as β increases, the MPC

scheme will dominate with most values of η. This can be

explained as follows. When β increases, the average fronthaul

usage will depend more and more on the few files with higher

ranks. These files can be cached in the RRHs under both of the

MPC and the LB-LCD schemes, thus the MPC and the LB-

LCD schemes are equivalent in terms of fronthaul usage, while

the MPC can achieve lower outage probability. Therefore the

MPC scheme is superior to the LB-LCD scheme.

According to the above evaluations in Fig. 4 and Fig. 5, the

MPC and LB-LCD caching schemes are two special solutions

of the joint optimization problem when η = 1 and η = 0,

respectively. The former can achieve the lowest cell average

outage probability while the latter can achieve the minimum

fronthaul usage. The proposed GA-based approach can achieve

different tradeoffs between the cell average outage probability

and fronthaul usage according to different weighting factors,

which can achieve better performance than the MPC and LB-

LCD schemes.

Fig. 6 shows the convergence behavior of the proposed GA

approach. It can be seen from the figure that the mean objective

value of the population converges within average 8 genera-

tions. The computational complexity is NgNp = 8×50 = 400.

While the computational complexity of the exhaustive search

is
(
50
5

)7
= 1.92× 1044, which is not feasible in practice.
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VI. CONCLUSION

In this paper, we have investigated optimal caching strategy

in Cloud-RAN for future mobile communications. In order

to jointly minimize the cell average outage probability and

fronthaul usage, the optimization problem is formulated as a

weighted sum of the two objectives, with weighting factor η
(and 1− η). Analytical expressions of outage probability has

been presented and verified through simulations. Performances

of two particular caching strategies have been analyzed,

namely the MPC and the LB-LCD schemes. When the mini-

mization of the cell average outage probability is more focused

on, the MPC scheme is superior to the LB-LCD scheme, while

the latter is superior to the former in the opposite situation,

i.e., where the reduction of average fronthaul usage is more

focused on. When the content files’ popularity skewness factor

β is larger, the MPC scheme will dominate in a wide range

of η. A genetic algorithm based approach is proposed to solve

the joint optimization problem, which can achieve nearly the

same optimal performance of exhaustive search, while the

computational complexity is significantly reduced.



APPENDIX A

DERIVATIONS OF (7) AND (8)

In (6), |hn|
2∼ χ2(2), where χ2(2) is the central Chi-squared

distribution with 2 degrees of freedom, and the PDF is given

by

f|hn|2(x) = exp(−x), x > 0. (A.1)

Then the PDF of γn = γ0Sn|hn|
2 is

fγn
(γ) =

1

γ0Sn

exp

(

−
γ

γ0Sn

)

, γ > 0, n ∈ Φ. (A.2)

The moment generation function (MGF) [17] of the random

variable γn is

Mγn
(s) =

∫ ∞

0

fγn
(γ)esγdγ =

1

1− γ0Sn · s
. (A.3)

Since the RRHs are distributed at different locations, {γn, n ∈
Φ} is independent of each other, the MGF of received SNR

γ =
∑

n∈Φ γn is given by

Mγ(s) =
∏

n∈Φ

Mγn
(s) =

∏

n∈Φ

1

1− γ0Sn · s
. (A.4)

Since there are I distinct distances d1 	= d2 	= · · · 	= di 	=
· · · 	= dI between the service RRHs and the user, and the i-th
distance has multiplicity of Ji, (A.4) can be rewritten as

Mγ(s) =
1

(

1−
1

λ1
s

)J1
(

1−
1

λ2
s

)J2

· · ·

(

1−
1

λI

s

)JI

,

(A.5)

where λi = 1
γ0d

−α

i

, i ∈ {1, 2, · · · , I} is the i-th pole of

multiplicity Ji of Mγ(s), using partial fraction expansion,

Mγ(s) can be expressed as

Mγ(s) =

I∑

i=1

Ji∑

j=1

Aij
(

1−
1

λi

s

)j
, (A.6)

where {Aij} are the undetermined coefficients. Multiplying

(1− 1
λi

s)Ji to both sides of (A.6), then calculating the (Ji−j)-
th order derivate for both sides and let s = λi, we have

dJi−j

dsJi−j

[

Mγ(s)

(

1−
1

λi

s

)Ji

] ∣
∣
∣
∣
∣
s=λi

=
dJi−j

dsJi−j

⎡

⎢
⎢
⎢
⎣

I∑

i=1

Ji∑

j=1

Aij
(

1−
1

λi

· s

)j

(

1−
1

λi

s

)Ji

⎤

⎥
⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
s=λi

=(Ji − j)!

(

−
1

λi

)Ji−j

Aij .

(A.7)

Thus Aij is obtained as (9).

The PDF of γ can be obtained by inversely transforming

the MGF in (A.6). Considering a general form of the PDF,

f(γ) = γne−aγ , γ ≥ 0, (A.8)

where integer n � 0 and a is a positive real number. The MGF

of f(γ) can be obtained by continuously using the method of

integration by parts.

M(s) =

∫ ∞

0

γne−aγesγdγ =
n!

(a− s)n+1
. (A.9)

The CDF can be calculated in the same manner,

F (γ) =

∫ γ

0

γne−aγdγ

=
1

a

[

n!

an
−

(

e−aγ

n∑

k=0

n!

(n− k)! ak
γn−k

)]

.

(A.10)

According to (A.6), (A.8) and (A.9), the PDF of the received

SNR is obtained, as shown in (7). According to (7), (A.8) and

(A.10), the CDF of the received SNR is obtained as shown in

(8).
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