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Abstract: In this paper, a decentralised control strategy based on sliding mode techniques
is proposed for a class of nonlinear interconnected systems in generalised regular form. All
the isolated subsystems and interconnections are fully nonlinear. It is not required that the
nominal isolated subsystems are either linearizable or partially linearizable. The uncertainties
are nonlinear and bounded by known functions. Under mild conditions, sliding mode controllers
for each subsystem are designed by only employing local information. Sufficient conditions
are developed under which information on the interconnections is employed for decentralised
controller design to reduce the effects of the interconnections on the entire systems. The bounds
on the uncertainties have more general forms compared with previous work. A simulation
example is used to demonstrate the effectiveness of the proposed method.

Keywords: Interconnected system, decentralised control, sliding mode control, generalised
regular form

1. INTRODUCTION

In real world, large scale systems are often modelled as a
collection of subsystems with interconnections, e.g. multi-
machine power systems (e.g. see Fusco and Russo (2013);
Singh and Pal (2016)). Due to the complex dynamics
caused by nonlinearity in the interconnections and sub-
systems, it is difficult to control such systems by using
classical methods. Moreover, as mentioned by Yan et al.
(2017), such a class of systems is usually distributed in
space, resulting in difficulty in implementation of a cen-
tralised strategy. Therefore, the development of decen-
tralised control strategies in which each local controller of
subsystem is working independently is essential. Moreover,
uncertainties such as modelling errors, external distur-
bances and parameter variation also widely exist in the
real world which may also greatly affect the control system
performance. Therefore, robust control theory has received
much attention in the past few decades (see e.g. Yan
et al. (2005); Cheng and Chang (2008); Mi et al. (2013);
Labibi and Alavi (2014); Zhang et al. (2016)). Multi-area
power systems with decentralised sliding mode control are
designed by Mi et al. (2013). However, the uncertainties
are assumed to be matched. Cheng and Chang (2008)
applied adaptive techniques to estimate an upper bound on
mismatched uncertainty, which is used to counteract the

effects of uncertainty in control design. In most previous
work, the nominal part of the system is usually assumed
to be linear, which limits the application of the obtained
results. Labibi and Alavi (2014) proposed a decentralised
quantitative feedback control for a class of large-scale
systems in the presence of uncertainties in the state-space
matrices, and the designed controllers have been imple-
mented on a Selective Compliance Assembly Robot Arm
system.

Sliding mode control has been recognised as a power-
ful approach in dealing with nonlinear systems with un-
certainties owing to its reduced-order sliding mode and
complete robustness against matched uncertainties (e.g.
see Edwards and Spurgeon (1998); Utkin et al. (2009)).
It is shown by Yan et al. (2005) that the sliding mode
approach can be used to deal with systems in the presence
of unmatched uncertainty. A sliding mode control scheme
proposed by Ginoya et al. (2014) shows a way for linear
system to reject the effect of the mismatched uncertainties
by using disturbance observer. However, the structure of
the system is restricted, which makes the method difficult
to be implemented. Zhang et al. (2016) also proposed a
sliding mode scheme applied with disturbance observer
techniques to reject mismatched uncertainties. Although
the structure and the upper bounds of the uncertainties
are known, the proposed method can be applied to a wide



class of linear systems. To reduce the effect of uncertainties
on the whole system in nonlinear interconnected systems is
very challenging using decentralised control strategy (see
Yan et al. (2004)). Moreover, in most existing sliding mode
control design, the system is usually required to be in
regular form or to be transferred into such a form for
analysis (see Edwards and Spurgeon (1998)). Although
such a transformation matrix can be easily obtained by
basic matrix theory for linear systems, it is very difficult
to find a diffeomorphism to transfer a nonlinear system
into the traditional regular form even though the exis-
tence of such a diffeomorphism is guaranteed. Moreover,
associated conditions may be too strong to be applied
for most nonlinear systems (see e.g. Yan et al. (2014)).
These have motivated the decentralised control design for
a class of nonlinear interconnected systems in generalised
regular form in this paper. Since the generalised regular
form includes the traditional regular form as a special case
as mentioned in Mu et al. (2015a), the developed results
can be applied to a wide class of nonlinear systems.

In this paper, a nonlinear decentralised control strategy for
a class of nonlinear interconnected systems in generalised
regular form is proposed based on a sliding mode control
paradigm. The interconnected system is fully nonlinear,
and the form of the system is more general than the
system with the classical regular form considered in Mu
et al. (2015b). Moreover, the uncertainties are assumed
to be bounded by known functions which are employed
in the control design to counteract the effects of the
uncertainties on the controlled interconnected system. The
bounds on the uncertainties take more general forms when
compared with existing work. It is also shown that if
the uncertainties/interconnections possess a superposition
property, a decentralised control scheme may be designed
to counteract the effect of the uncertainty. A numerical
example with simulation results is presented to show the
effectiveness of the approach proposed.

2. SYSTEM DESCRIPTION

Consider a class of nonlinear large-scale interconnected
systems composed of N subsystems where the i-th sub-
system can be transformed or described by

Ẋa
i =F ai (t,Xi) +Gai (t,Xi)(Ui + Φi(t,Xi))

+

N∑
j=1

Ha
ij(t,Xj) (1)

Ẋb
i =F bi (t,Xi) +Gbi (t,Xi)(Ui + +Φi(t,Xi))

+

N∑
j=1

Hb
ij(t,Xj) (2)

where Xi := col(Xa
i , X

b
i ) ∈ Ωi ⊂ Rni are the state

variables of the i-th subsystem with Xa
i ∈ Rni−mi , Xb

i ∈
Rmi . The functions F ai (·), F bi (·) with F ai (t, 0) = 0 and
F bi (t, 0) = 0 and the function matrix Gai (·) and Gbi (·)
are continuous with appropriate dimensions. Ui ∈ Rmi

denote inputs of the i-th subsystem respectively for i =
1, 2, . . . , N . Matched uncertainty is denoted by Φi(·) The
nonlinear functions Ha

ij(·) ∈ Rni−mi and Hb
ij(·) ∈ Rmi

represent the uncertain interconnections. It is assumed
that all the nonlinear functions are sufficiently smooth

such that the unforced system has a unique continuous
solution.

Choose the sliding function σi(Xi) as follows:

σi(Xi) = Xb
i + ϕi(X

a
i ), i = 1, 2, . . . , N. (3)

where ϕi(·) is a known Frechet-differentiable function with
ϕi(0) = 0 satisfy

Mϕi(ξ) (Mϕi(ξ))
τ ≤βiIm ∀ξ ∈ Rni−mi (4)

where Mϕi
(·) ∈ Rmi×(ni−mi) represent the Jacobian

matrix of function ϕi(·), and βi is a positive constant.

For the sliding functions in (3), the sliding surface is
described by

Si = {Xi ∈ Rni | σi(Xi) = 0}, i = 1, 2, . . . , N. (5)

Assumption 1. Function Gai (·) in system(1) satisfies

Gai (t,Xi)|Xi∈Si = 0, i = 1, 2, . . . , N. (6)

where Si is defined in (5).

Define function matrix Γi(t,Xi) as

Γi(t,Xi) := Gbi (t,Xi) +Mϕi
(Xa

i )Gai (t,Xi) (7)

where Gai (·) and Gbi (·) are defined in systems (1)-(2) and
ϕi(·) are defined in (3).

Assumption 2. There exist known continuous nondecreas-
ing functions Ξaij(·) in R+ with Ξaij(t, 0) = 0, and known

continuous functions Ξbi (·) and ρi(·) such that

(i)
∥∥Ha

ij(t,Xj)
∥∥ ≤ Ξaij(‖Xj‖) (8)

(ii)
∥∥Hb

ij(t,Xj)
∥∥ ≤ Ξbij(‖Xj‖) (9)

(iii) ‖Φi(t,Xi)‖ ≤ ρi(t,Xi) (10)

for all t ∈ R+, Xi ∈ Ωi.

3. STABILITY ANALYSIS OF THE SLIDING MODE

Choose the composite sliding surface for the intercon-
nected system (1)-(2) as follows

σ(X) = 0 (11)

where σ(X) ≡: col (σ1(X1), σ2(X2), . . . , σN (XN )) and
X := col(X1, X2, . . . , XN ) with σi(·) defined in (3). During
sliding motion, σi(Xi) = 0 for i = 1, 2, . . . , N , under
Assumption 1, Gai = 0 and from (3), Xb

i = −ϕi(Xa
i ) for

i = 1, 2, . . . , N . Then, the sliding mode dynamics for the
system (1)-(2) associated with the designed sliding surface
(5) can be described by

Ẋa
i = F si (t,Xa

i ) +

N∑
j=1

Hs
ij(t,X

a
j ) (12)

where

F si (t,Xa
i ) :=F ai (t,Xa

i ,−ϕi(Xa
i )) (13)

and

Hs
ij(t,X

a
j ) := Ha

ij(t,X
a
j ,−ϕj(Xa

j )) (14)

for i, j = 1, 2, . . . , N with Ha
ij(t,Xj) defined in (1).

Lemma 1. For terms Hs
ij(t,X

a
j ) in system (12), if inequal-

ity (8) in Assumption 2 holds, then

‖Hs
ij(t,X

a
j )‖ ≤ Ξsij(‖Xa

j ‖) (15)

where
Ξsij(‖Xa

j ‖) = Ξaij(
√

1 + βi‖Xa
j ‖)

where Ξaij(·) are defined in (8).



Proof. From the definition of Hs
ij(·) in (14), it follows

that

Hs
ij(t,X

a
j ) =Ha

ij(t,X
a
j ,−ϕi(Xa

j )) (16)

From (4), it is straightforward to see that

‖Mϕi
(ξ)‖ ≤

√
βi (17)

Then from the mean value theorem,

‖ϕi(h)− ϕi(0)‖ = ‖ϕi(h)‖ ≤
√
βi‖h‖ (18)

When the system is on the sliding surface

‖Xi‖ =
√

(Xa
i )τXa

i + (Xb
i )τXb

i

=
√

(Xa
i )τXa

i + ϕτi (Xa
i )ϕi(Xa

i )

≤
√
‖Xa

i ‖2 + βi‖Xa
i ‖2

=
√

1 + βi‖Xa
i ‖ (19)

From (16), (8) and (19), it follows that

‖Hs
ij(t,X

a
j )‖ ≤Ξaij(‖Xj‖)
≤Ξaij(

√
1 + βi‖Xa

j ‖)
=Ξsij(‖Xa

j ‖) (20)

Hence the result follows. �
Assumption 3. There exist continuous C1 function Vi :
R+ ×Rni−mi → R+ and functions ςi1(·), ςi2(·), ςi3(·) and
ςi4(·) of class K such that for all Xi ∈ Ωi and t ∈ R+

(i) ςi1(‖Xa
i ‖) ≤ Vi(t,Xa

i ) ≤ ςi2(‖Xa
i ‖)

(ii)
∂Vi(t,X

a
i )

∂t
+
∂Vi(t,X

a
i )

∂Xa
i

F si (t,Xa
i ) ≤ −ς2i3(‖Xa

i ‖)

(iii)

∥∥∥∥∂Vi(t,Xa
i )

∂Xa
i

∥∥∥∥ ≤ ςi4(‖Xa
i ‖)

where
∂Vi(t,X

a
i )

∂Xa
i

=

(
∂Vi(t,X

a
i )

∂Xa
1

,
∂Vi(t,X

a
i )

∂Xa
2

. . .
∂Vi(t,X

a
i )

∂Xa
n

)
Theorem 1. Under Assumptions 1, 2 and 3, the sliding
modes (12) of the systems (1)-(2) for i = 1, 2, . . . , N
associated with the sliding surface (11) are asymptotically
stable if there exists a domain ΩXa of the origin in Xa =

col(Xa
1 , X

a
2 , . . . , X

a
N ) ∈ R

∑N

i=1
(ni−mi) such that

(W (t,X))
τ

+W (t,X) > 0

in domain ΩXa\{0} with W (t,X) = (wij(t,Xi, Xj))N×N
and for i, j = 1, 2, . . . , N

wij(t,Xi, Xj)

=

{
µi3(‖Xa

i ‖)− µi4(‖Xa
i ‖)γii(‖Xa

i ‖), i = j

− µi4(‖Xa
i ‖)γij(‖Xa

j ‖), i 6= j

where µi3(·), µi4(·) and γij(·) are defined respectively by

µi3(ξ) =

∫ 1

0

∂ςi3(ξh)

∂h
dh (21)

µi4(ξ) =

∫ 1

0

∂ςi4(ξh)

∂h
dh (22)

γij(ξ) =

∫ 1

0

∂Ξsij(ξh)

∂h
dh (23)

Proof. From (21)-(23), it can be observed that

ςi3(‖Xa
i ‖) =µi3(‖Xa

i ‖)‖Xa
i ‖ (24)

ςi4(‖Xa
i ‖) =µi4(‖Xa

i ‖)‖Xa
i ‖ (25)

Ξsij(‖Xa
i ‖) =γij(‖Xa

i ‖)‖Xa
i ‖ (26)

From the analysis above, it is seen that system (12)
represents the sliding mode dynamics of the system (1)-
(2) corresponding to the sliding surface (11).

For system (12), consider the Lyapunov function candidate

V (t,Xa) =

N∑
i=1

Vi(t,X
a
i ) (27)

where Vi(t,X
a
i ) is given in Assumption 3. Then, the time

derivative of V (t,Xa
i ) along equation (12) is given by

V̇ =

N∑
i=1

{∂Vi(t,Xa
i )

∂t
+
∂Vi(t,X

a
i )

∂Xa
i

F si (t,Xa
i )

+
∂Vi(t,X

a
i )

∂Xa
i

N∑
j=1

Ha
ij(t,X)

}
≤

N∑
i=1

{
− ς2i3(‖Xa

i ‖) + ςi4(‖Xa
i ‖)

N∑
j=1

Ξsij(‖Xa
j ‖)
}

−
N∑
i=1

µ2
i3(‖Xa

i ‖)‖Xa
i ‖2

+

N∑
i=1

N∑
j=1

µi4(‖Xa
i ‖)γij(‖Xa

j ‖)‖Xa
i ‖‖Xa

j ‖

=− 1

2
(‖Xa

1 ‖, ‖Xa
2 ‖, . . . , ‖Xa

N‖) (W τ +W )


‖Xa

1 ‖
‖Xa

2 ‖
...

‖Xa
N‖


Since the matrix function W τ +W in ΩXa\{0} is positive
definite, it follows that V is negative definite in domain
ΩXa . Hence, the results follow. �

4. DECENTRALISED CONTROL DESIGN

For the nonlinear interconnected system (1)-(2), the cor-
responding reachability condition is described by (e.g. see
Hsu (1997); Yan et al. (2004))

N∑
i=1

στi (Xi)σ̇i(Xi)

‖σi(Xi)‖
< 0 (28)

where σi(Xi) is defined in (3).

Consider the decentralised control

Ui =− Γ−1
i (t,Xi)

{
Mϕi(X

a
i )F ai (t,Xi) + F bi (t,Xi)

}
− Γ−1

i (t,Xi)sgn(σi(Xi))
{ N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2
+

N∑
j=1

Ξbji(t,Xi) +Nεiβi + ‖Γi(t,Xi)‖ρi(t,Xi)

+ ζi

}
(29)

where Ξaji(·), Ξbji(·) and ρi(t,Xi) are defined in Assumption
2, ζi and εj are positive constants which can be considered
as design parameters.

Theorem 2. Consider the nonlinear interconnected sys-
tems (1) and (2) for i = 1, 2, . . . , N . Under Assumptions
1-2, the closed-loop systems (1)-(2) with the decentralised



controls (29) are convergent to the composite sliding sur-
face (11) and maintain a sliding motion on it thereafter.

Proof. From the analysis above, all that needs to be
proved is that the composite reachability condition (28)
is satisfied. From (3), for i = 1, 2, . . . , N

σ̇i(Xi) =Mϕi
(Xa

i )F ai (t,Xi) + F bi (t,Xi)

+Mϕi
(Xa

i )

N∑
j=1

Ha
ij(t,Xj) +

N∑
j=1

Hb
ij(t,Xj)

+ Γi(t,Xi)(Ui + Φi(t,Xi)) (30)

Substituting (29) into (30),

N∑
i=1

στi (Xi)σ̇i(Xi)

‖σi(Xi)‖

=

N∑
i=1

{ στi (Xi)

‖σi(Xi)‖

{ N∑
j=1

Hb
ij(t,Xj)+Mϕi

(Xa
i )

N∑
j=1

Ha
ij(t,Xj)

+ Γi(t,Xi)Φi(t,Xi)
}
− ‖Γi(t,Xi)‖ρi(t,Xi)

−
N∑
j=1

ε−1
j

(
Ξaji(‖Xj‖)

)2− N∑
j=1

Ξbji(t,Xi)−Nεiβi−ζi
}

≤
N∑
i=1

‖Γi(t,Xi)Φi(t,Xi)‖+

N∑
i=1

N∑
j=1

‖Hb
ij(t,Xj)‖

+

N∑
i=1

N∑
j=1

στi (Xi)

‖σi(Xi)‖
Mϕi

(Xa
i )Ha

ij(t,Xj)

−
N∑
i=1

‖Γi(t,Xi)‖ρi(t,Xi)−
N∑
i=1

N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2
−

N∑
i=1

N∑
j=1

Ξbji(t,Xi)−N
N∑
i=1

εiβi −
N∑
i=1

ζi (31)

From the fact that for any positive constant ε (e.g. see Yan
et al. (2012)),

2W τZ ≤ εW τW + ε−1ZτZ, ∀W,Z ∈ Rl (32)

Then, from (9) and (4), it is straightforward to obtain that

N∑
i=1

N∑
j=1

στi (Xi)

‖σi(Xi)‖
Mϕi(X

a
i )Ha

ij(t,Xj)

≤N
N∑
i=1

εi
στi (Xi)

‖σi(Xi)‖
Mϕi

(Xa
i ) (Mϕi

(Xa
i ))

τ σi(Xi)

‖σi(Xi)‖

+

N∑
i=1

N∑
j=1

ε−1
i

(
Ha
ij(t,Xj)

)τ
Ha
ij(t,Xj)

≤N
N∑
i=1

εiβi
στi (Xi)σi(Xi)

‖σi(Xi)‖2
+

N∑
i=1

N∑
j=1

ε−1
i

∥∥Ha
ij(t,Xj)

∥∥2

=N

N∑
i=1

εiβi +

N∑
i=1

N∑
j=1

ε−1
i

∥∥Ha
ij(t,Xj)

∥∥2
(33)

where εi is a positive constant.

Then, from Assumption 2 and identity

∑
i=1

∑
j=1

aij ≡
∑
i=1

∑
j=1

aji (34)

it is straightforward to see that

N∑
i=1

N∑
j=1

ε−1
i ‖H

a
ij(t,Xj)‖2

≤
N∑
i=1

N∑
j=1

ε−1
i

(
Ξaij(‖Xj‖)

)2
=

N∑
i=1

N∑
j=1

ε−1
j

(
Ξaji(‖Xi‖)

)2
(35)

N∑
i=1

N∑
j=1

‖Hb
ij(t,Xj)‖

≤
N∑
i=1

N∑
j=1

Ξbij(t,Xj)

=

N∑
i=1

N∑
j=1

Ξbji(t,Xi) (36)

‖Γi(t,Xi)Φi(t,Xi)‖ ≤‖Γi(t,Xi)‖‖Φi(t,Xi)‖
≤‖Γi(t,Xi)‖ρi(t,Xi) (37)

Then from inequalities (33)-(37), it is straightforward to
verify that

N∑
i=1

σi(Xi)
τ σ̇i(Xi)

‖σi(Xi)‖
≤ −

N∑
i=1

ζi < 0 (38)

Hence, the result follows. �

5. NUMERICAL SIMULATION

Consider the following nonlinear interconnected system
composed of three subsystems described by

Ẋa
1 =−0.6X11 cos(X12) +X13︸ ︷︷ ︸

Fa
1 (t,X1)

+

2∑
j=1

Ha
1j(t,Xj)

+ [ 0 sin(X12) ]︸ ︷︷ ︸
Ga

1 (t,X1)

(U1 + Φ1(t,X1)) (39)

Ẋb
1 =

[
0.2X11X13

−X11 + 0.8X13 cos(X12)

]
︸ ︷︷ ︸

F b
1 (t,X1)

+

2∑
j=1

Hb
1j(t,Xj)

+

[
1 X13

0 1

]
︸ ︷︷ ︸
Gb

1(t,X1)

(U1 + Φ1(t,X1)) (40)

Ẋa
2 =−0.5X21 cos(X22) +X23︸ ︷︷ ︸

Fa
2 (t,X2)

+

2∑
j=1

Ha
2j(t,Xj)



+ [ 0 sin(X22) ]︸ ︷︷ ︸
Ga

2 (t,X2)

(U2 + Φ2(t,X2)) (41)

Ẋb
2 =

[
0.4X21X23

−0.8X21 + 0.8X23 cos(X22)

]
︸ ︷︷ ︸

F b
2 (t,X2)

+

2∑
j=1

Hb
2j(t,Xj)

+

[
1 X23

0 1

]
︸ ︷︷ ︸
Gb

2(t,X2)

(U2 + Φ2(t,X2)) (42)

Ẋa
3 =−0.7X31 cos(X32) +X33︸ ︷︷ ︸

Fa
3 (t,X3)

+

2∑
j=1

Ha
3j(t,Xj)

+ [ 0 sin(X32) ]︸ ︷︷ ︸
Ga

3 (t,X3)

(U3 + Φ3(t,X3)) (43)

Ẋb
3 =

[
0.2X31X33

−X31 + 0.9X33 cos(X32)

]
︸ ︷︷ ︸

F b
3 (t,X3)

+

2∑
j=1

Hb
3j(t,Xj)

+

[
1 X33

0 1

]
︸ ︷︷ ︸
Gb

3(t,X3)

(U3 + Φ3(t,X3)) (44)

where Xi1 := Xa
i , col(Xi2, Xi3) := Xb

i for i = 1, 2, 3.
Assume the matched uncertainties satisfy

‖Φ1(t,X1)‖ ≤ 0.24
√
X2

13 + 1︸ ︷︷ ︸
ρ1(t,X1)

‖Φ2(t,X2)‖ ≤ 0.16
√
X2

23 + 1︸ ︷︷ ︸
ρ2(t,X2)

‖Φ3(t,X3)‖ ≤ 0.18
√
X2

33 + 1︸ ︷︷ ︸
ρ2(t,X3)

Assume the bounds of the interconnections satisfy

2∑
j=1

‖Ha
1j(t,Xj)‖ ≤ 0.72| cos(X12)|‖X1‖︸ ︷︷ ︸

Ξa
11(‖X1‖)

+ 0.5‖X2‖︸ ︷︷ ︸
Ξa

12(‖X2‖)

+ 0.64‖X3‖︸ ︷︷ ︸
Ξa

13(‖X3‖)
2∑
j=1

‖Hb
1j(t,Xj)‖ ≤ 0.83|‖X1‖︸ ︷︷ ︸

Ξb
11(‖X1‖)

+ 1.01‖X2‖︸ ︷︷ ︸
Ξb

12(‖X2‖)

+ 0.68‖X3‖︸ ︷︷ ︸
Ξb

13(‖X3‖)
2∑
j=1

‖Ha
2j(t,Xj)‖ ≤ 0.5‖X1‖︸ ︷︷ ︸

Ξa
21(‖X1‖)

+ 0.78| cos(X22)|‖X2‖︸ ︷︷ ︸
Ξa

22(‖X2‖)

+ 0.58‖X3‖︸ ︷︷ ︸
Ξa

23(‖X3‖)
2∑
j=1

‖Hb
2j(t,Xj)‖ ≤ 0.63‖X1‖︸ ︷︷ ︸

Ξb
21(‖X1‖)

+ 0.63‖X2‖︸ ︷︷ ︸
Ξb

22(‖X2‖)

+ 0.42‖X3‖︸ ︷︷ ︸
Ξb

23(‖X3‖)

2∑
j=1

‖Ha
3j(t,Xj)‖ ≤ 0.64‖X1‖︸ ︷︷ ︸

Ξa
31(‖X1‖)

+ 0.78‖X2‖︸ ︷︷ ︸
Ξa

32(‖X2‖)

+ 0.64| cos(X33)|‖X3‖︸ ︷︷ ︸
Ξa

32(‖X3‖)
2∑
j=1

‖Hb
3j(t,Xj)‖ ≤ 0.64‖X1‖︸ ︷︷ ︸

Ξb
31(‖X1‖)

+ 0.65‖X2‖︸ ︷︷ ︸
Ξb

32(‖X2‖)

+ 0.73‖X3‖︸ ︷︷ ︸
Ξb

33(‖X3‖)

Now define the sliding function in the form of (3) with

ϕi(X
a
i ) =

[
0√

βiciX11√
ci+X2

11

]
i = 1, 2, 3

where the design parameters βi and ci are chosen as βi = 1
and ci = 0.25. Then it is straightforward to verify that

Mϕi
(Xa

i )Mϕi
(Xa

i )τ =

[
0 0

0
βic

3
i

(ci+X2
11)3

]
≤ βiI2

From Lemma 1, when the sliding motion takes place,
2∑
j=1

‖Hs
1j(t,X

a
j )‖ ≤ 0.51‖Xa

1 ‖︸ ︷︷ ︸
Ξs

11(‖X1‖)

+ 0.35‖Xa
2 ‖︸ ︷︷ ︸

Ξs
12(‖X2‖)

+ 0.45‖Xa
3 ‖︸ ︷︷ ︸

Ξs
13(‖X3‖)

2∑
j=1

‖Hs
2j(t,X

a
j )‖ ≤ 0.35‖Xa

1 ‖︸ ︷︷ ︸
Ξs

21(‖X1‖)

+ 0.55‖Xa
2 ‖︸ ︷︷ ︸

Ξs
22(‖X2‖)

+ 0.41‖Xa
3 ‖︸ ︷︷ ︸

Ξs
23(‖X3‖)

2∑
j=1

‖Hs
3j(t,X

a
j )‖ ≤ 0.45‖Xa

1 ‖︸ ︷︷ ︸
Ξs

31(‖X1‖)

+ 0.55‖Xa
2 ‖︸ ︷︷ ︸

Ξs
32(‖X2‖)

+ 0.45‖Xa
3 ‖︸ ︷︷ ︸

Ξs
33(‖X3‖)

Choose the Lyapunov function candidate

V =

3∑
i=1

Vi (45)

where

Vi =
1

2
(Xa

i )τXa
i , i = 1, 2, 3

Then,
0.4‖Xa

i ‖2︸ ︷︷ ︸
ςi1

≤ Vi(t,Xa
i ) ≤ 0.6 ‖Xa

i ‖2︸ ︷︷ ︸
ςi2

Define ςi3(·) for i = 1, 2, 3 as

ς13(r) = 0.6︸︷︷︸
µ13

r, ς23(r) = 0.5︸︷︷︸
µ23

r, ς33(r) = 0.7︸︷︷︸
µ33

r

and ςi4(·) as

ςi4(r) = 1︸︷︷︸
µi4

·r, i = 1, 2, 3

By direct computation, it is straightforward to verify that

W (t,X) + (W (t,X))
τ
> 0

with
γ11(‖X1‖) = 0.51, γ12(‖X2‖) = 0.35, γ13(‖X3‖) = 0.45
γ21(‖X1‖) = 0.35, γ22(‖X2‖) = 0.55, γ23(‖X3‖) = 0.41
γ31(‖X1‖) = 0.45, γ32(‖X2‖) = 0.55, γ33(‖X3‖) = 0.45

Thus the designed sliding modes are asymptotically stable.

From (29), the controllers Ui are well defined with ζi = 1
and εi = 0.5 for i = 1, 2, 3, which guarantee that the
condition (28) is satisfied for Xi ∈ R3, i = 1, 2, 3. Thus



systems (39)-(42) for i = 1, 2, 3 can be stabilised by the
designed controls Ui proposed in (29).

The time response of the system states is shown in Fig.1.
The simulation results show that the proposed approach
is effective. It should be noted that in the simulation, a
boundary layer is used to remove the chattering.

6. CONCLUSION

This paper has proposed a robust decentralised sliding
mode control design approach for a class of nonlinear
systems in generalised regular form with uncertain inter-
connections. The bounds on the uncertainties are assumed
to be known functions which have been used to enhance
robustness to uncertainties. Sliding mode controllers are
designed to reduce the effects of the interconnections on
the entire system. The developed results can be applied to
the interconnected systems which can be transformed to
the generalised regular form described in (1)-(2). A numer-
ical example is given to show how to use the sliding mode
technique to stabilise a system with uncertainty intercon-
nections. Simulations have been presented to demonstrate
the effectiveness of the approach.
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