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Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable,
individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to
pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation,
whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic
stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species
with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a
cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics
from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell
counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study
highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are poten-
tially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration.
These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.
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Introduction
Habitat degradation, loss and fragmentation are widespread
causes of biodiversity loss worldwide (Barnosky et al., 2011;

Gibson et al., 2011; Laurance et al., 2014). Considering the
pace at which habitats are altered by humans, it is essential
to understand how anthropogenic land-use changes affect
wildlife species and whether this impact could as well
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influence human and animal health (Ellis et al., 2012).
Encroachment of humans into formerly pristine habitats
often leads to reduced wildlife populations and local extinc-
tion of species (Newbold et al., 2014; Haddad et al., 2015;
Meyer et al., 2016). However, human disturbances also
affect wildlife at the individual level (Ellis et al., 2012).
Focusing on individual physiology may help us to estimate
the consequences of environmental stressors on wildlife
before the effects begin to manifest in decreased population
sizes (Davis et al., 2008).

Indeed, previous studies have observed chronic stress and
an impaired body condition in various wildlife species from
disturbed habitats, suggesting that anthropogenic perturba-
tions may become a major stressor for wildlife species
(reviewed by Romero, 2004; Ellis et al., 2012). This is because
habitat fragmentation may force individuals of mobile taxa to
use more than one patch for foraging. By using multiple
patches, individuals are thus exposed to a higher predation
risk and have to spend more energy and time to meet their
food requirement (Hinsley, 2000). Additionally, the quality of
the habitat may decline, exacerbating the limitation of food
resources (Ellis et al., 2012). Further, habitat deterioration
and fragmentation may result in the loss of shelter, and also
an increased exposure to abiotic factors such as wind and
rain, especially at habitat edges (Ellis et al., 2012).

Although chronic stress caused by natural stressors (e.g.
predation pressure) can be adaptive in wildlife populations
(Boonstra, 2013), it also has the potential to lead to an
impaired body condition and to permanently disrupt the
homeostasis of animals (Romero, 2002, 2004; Wingfield,
2005; Wikelski and Cooke, 2006; Romero and Wikelski,
2010; Dickens and Romero, 2013). For example, chronically
elevated plasma levels of circulating glucocorticoid hormones
may suppress the immune system of animals, decrease their
survival, their growth and reproductive function (Dhabhar
et al., 1996; Wingfield et al., 1997; Buchanan, 2000;
Sapolsky et al., 2000). Thus, animals that are not resilient to
anthropogenic perturbations may suffer from chronic stress
and, as a consequence, from impaired immunity (Suorsa
et al., 2004). For example, Allen et al. (2009) found that
bats roosting at human-made bridges experienced physio-
logical stress, which resulted in reduced immune system func-
tioning. An impaired immune system may then result in
increased susceptibility, shedding of pathogens and decreased
survival rates (Demas et al., 2011).

Bats (Chiroptera) are a promising taxon to study the
effects of forest degradation, habitat loss and fragmentation
on body condition, chronic stress and immunity, since bats
are known to be highly sensitive to the effects of environ-
mental change (Jones et al., 2009; Struebig et al., 2011;
Meyer, et al., 2016). Furthermore, more than 100 different
viruses have been associated with Chiroptera, including sev-
eral particularly virulent ones, such as rabies, Severe Acute
Respiratory Syndrome (SARS)-like coronavirus, Nipah,

Hendra, Ebola and Marburg (Chua et al., 2000; Leroy et al.,
2005; Li et al., 2005; Towner et al., 2009; Wibbelt et al.,
2010; Wang et al., 2011; Baker et al., 2013; Brook and
Dobson, 2015). Bats harbor on average the highest number
of viruses than any other taxa per species, probably due to
their extraordinary longevity and high levels of interspecific
viral transmission (Luis et al., 2013). Surprisingly, bats often
do not show clinical signs of viral infections (Wibbelt et al.,
2010; Epstein and Field, 2016). Despite their potential role
as viral reservoirs, there is almost no information on the
immune function of bat species, and an understanding of the
ecological and social factors influencing the intra- and inter-
specific immune differences between taxa is lacking (but see
Allen et al., 2009; Schneeberger et al., 2013a).

In our study, we assessed the impact of anthropogenic dis-
turbances on body mass in eight, and on immunological
parameters in three forest bat species in Malaysian Borneo,
each of which utilize the cluttered forest environment for for-
aging. In contrast to bat species utilizing forest edges, these
forest specialists might suffer from fragmentation in particu-
lar because of decreased availability of potential prey insects
and roost sites in the forest interior. Other studies in the
Paleo- and Neotropics have already shown that feeding
activity and abundance of some forest bat species is lower in
smaller compared with larger fragments or continuous for-
ests (Meyer et al., 2008; Estrada-Villegas et al., 2010;
Struebig et al., 2011). Therefore, we predicted that foliage-
roosting bats from actively logged areas and fragmented for-
est exhibit lower body masses, signs of chronic stress,
assessed by the neutrophils to lymphocytes (N/L)-ratio
(Davis et al., 2008), and impaired immunity, measured as
total white blood cell counts, compared with bats of recover-
ing forest. In cave-roosting bats, we predicted smaller effects
due to their substantial larger home range sizes and more
permanent roosting sites compared with foliage-roosting spe-
cies, which may enable cave-roosting bats to cover wider,
disturbed and intact areas by flying longer distances from
respective roosts to their foraging site (Struebig et al., 2013).

Methods
Study site and species
The study was conducted within the SAFE project (Stability
of Altered Forest Ecosystems, www.safeproject.net), a
7200 ha landscape fragmentation experiment established in
Sabah, Borneo. The SAFE landscape comprises logged over
dipterocarp rainforest, some of which is being converted to
oil palm plantation, leaving behind a network of disturbed
forest fragments. Thus, the landscape represents a land-use
transition common across much of Southeast Asia (Fitzherbert
et al., 2008; Gaveau et al., 2014; Marlier et al., 2015). All
sample locations were situated within 10 km of a research
camp at N4.73 E117.60 (Fig. 1). Much of the landscape
had been logged twice prior to our study and the coupes
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allocated for conversion to oil palm had been heavily
logged multiple times before (Struebig et al., 2013). At the
time of sampling, these areas were experiencing a final har-
vest prior to conversion and were at the early stages of frag-
mentation, with large areas devoid of any tree cover,
ultimately resulting in ten isolated plots (e.g. B, C, F and
LFE). We sampled bats multiple times at various sites across
this disturbance gradient during the conversion process: in
plot B, C, F and LFE. These plots were located 2–10 km
apart from each other, exceeding the mean home range size
of foliage-roosting insectivorous bat species (Struebig et al.,
2013). LFE is a twice-logged site at which logging operations
ceased in the late 1990s leaving time for substantial recovery
of a tall dipterocarp forest; and sites B, C and F had experi-
enced additionally logging prior to the onset of the study,
and then experienced heavy logging and fragmentation
throughout the 2-year study period. We categorized these
sites into three disturbance levels according to human log-
ging activity at the time of sampling: (1) Relatively undis-
turbed (only presence of SAFE-affiliated researchers with
minimal impact), hereafter ‘Recovering forest’: LFE, B1 and
C1, whereby subscript denotes the order of sampling. (2)
Sites that were heavily logged at the time of sampling were
categorized as ‘Actively logged forest’: B2, C2 and F1. After
logging was completed and thus sites relatively undisturbed,
site F (i.e. F2) was categorized as ‘Fragmented’ (for sites B
and C logging was still underway at the end of sampling).
Data collection took place between July and September in
2014 and 2015, with additional sampling period between
March and April in 2015 (Table 1).

The landscape has a well characterized insectivorous bat
fauna, which is known to have experienced a substantial
shift in assemblage composition in response to past logging
(Struebig et al., 2013). We recorded body measurements of
all adult individuals captured, but selected study species
from the families Vespertilionidae (subfamily: Kerivoulinae),
Hipposideridae and Rhinolophidae, which were sufficiently
abundant across the landscape to warrant sufficient sample
size. Within the subfamily Kerivoulinae (woolly bats), we
studied the following congeneric bats: Kervivoula inter-
media, K. papillosa and K. hardwickii. Within the family
Hipposideridae (leaf-nosed bats), we focused on the congen-
eric species Hipposideros cervinus and H. dyacorum, and
within the family of Rhinolophidae (horseshoe bats) on
Rhinolophus sedulus, R. trifoliatus and R. borneensis. All
species of the subfamily Kerivoulinae are thought to roost
solitarily in foliage, except for K. papillosa which roosts in
tree cavities living in dynamic fission-fusion societies (Payne
et al., 1985; Kingston et al., 2006). Hipposideros cervinus,
H. dyacorum and R. borneensis form colonies roosting in
caves or cave-like structures, whereas R. sedulus and R. trifo-
liatus are solitary or monogamous, roosting in trees (Payne
et al., 1985; Kingston et al., 2006). All species are small,
insectivorous bats with body masses ranging between 3 and
16 g (Payne et al., 1985). In 2011/2012, prior to our sam-
pling, bat abundance for our study species was moderate to
high in all sites, but richness was lower in the repeatedly
logged sites (B, C, F) compared to our recovering twice
logged site (LFE, Table 2, Struebig et al., 2013).

Bat capture
In the morning hours after sunrise, we set up six harp traps
(Museum Zoologicum Bogoriense, Bogor, Indonesia) along
established trails in the forest, with a minimum distance of
30–100m. Harp traps are an established sampling method
for capturing forest bats and are particularly effective in the
paleotropics (Kingston et al., 2003; Kunz et al., 2009).
Between subsequent nights, we moved traps to new posi-
tions, resulting in a total of 15–20 positions per site and sur-
vey. The total sampling effort over the study period was 321
harp trap nights.

We checked traps at 1900 and at 0700 the following day.
Bats were retrieved from harp traps and transported back to
the camp in individual cloth bags for processing, with the

Figure 1: Location of forest sites sampled for bats at the Stability of
Altered Forest Ecosystems Project in Sabah, Borneo. Prior to sampling
all sites had been logged multiple times, with sites B, C and F (light
shading) experiencing much higher extraction rates than site LFE
(intermediate shading), and old growth forest in the southwest (dark
shading). Sites were sampled for bats multiple times during the final
round of logging and subsequent fragmentation of sites B, C and F.
Site LFE remained as a control site throughout the study with no
further logging or fragmentation activity at or around this locality. The
oil palm plantation matrix is shown in white and lines indicate rivers.

Table 1: Study sites, habitat type and sampling year

Recovering
forest

Actively logged
forest

Fragmented
forest

LFE 2014, 2015 – –

B 2014, 2015 2015 –

C 2014, 2015 2015 –

F – 2014, 2015 2015
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exception of fruit bats (Pteropodidae), individuals of H. cervi-
nus (known to be highly sensitive towards handling), juve-
niles, pregnant or lactating females of all species. These
individuals were instead processed on site and released as
soon as possible at the point of capture, typically within 2 h.
Pregnant females were excluded from analyses of body mass
because the fetus influences body mass to an unknown extent.
We identified species according to Kingston et al. (2006) and
Struebig and Sujarno (2006). Juveniles were distinguished
from adults by the epiphyseal closure of phalanges (Kunz
and Anthony, 1982). We classified the reproductive status of
females (non-reproductive, pregnant, lactating or post-lactat-
ing) by abdominal palpation and visual inspection of the teats
and surrounding area.

We recorded body mass (g) by using a spring balance
(Pesola balance, Switzerland, accuracy = 0.25 g) and length
of forearm (mm) using a caliper (Wiha Werkzeuge GmbH,
Schonach, Germany). Further, we noted if the bat had con-
sumed a large visible amount of prey based on visual inspec-
tion of the torso. We marked all adult bats with a uniquely
coded forearm band of 2.9 or 4.2 mm, depending on size of
the bat (Porzana Limited, East Sussex, UK) as described in
Kunz and Weise (2009). Blood samples were collected only
from the rhinolophid species as these taxa were larger than
Kerivoulinae and Hipposideridae, and thus sufficient blood
could be collected without undue harm to the individual.
From rhinolophid species we collected a small quantity of
whole blood (max. 140 µl, <1 % of the body mass) in a
heparinized capillary (Paul Marienfeld GmbH & Co.KG,
Lauda-Koenigshofen, Germany) by puncturing the antebra-
chial vein as described in Voigt and Cruz-Neto (2009). For
venipuncture we used sterile needles (Henry Schein Inc.,
Melville, New York, USA). The blood sample was trans-
ferred with a micropipetter (Hirschmann Laborgeräte GmbH
& Co.KG, Eberstadt, Germany) to a tube, and a subsample
of 3 µl was used to produce a blood smear on glass slides

(Carl Roth GmbH & Co.KG, Karlsruhe, Germany). All bats
were released at the capture site within 12 h. Although we
took measurements for all adult bats captured, only data of
the eight focus species are used in analyses as justified above.

Ethics statement
Our study and export of samples was authorized by the sci-
entific committee of the Sabah Biodiversity Center, Sabah,
Malaysia (JKM/MBS.1000-2/2 (317); JKM/MBS.1000-2/3
JLD.2 (16); JKM/MBS.1000-2/2 JLD.3 (153)), as well as the
SAFE project and complies with the laws of Malaysia and
Germany.

White blood cell counts
We stained blood smears with May-Gruenwald’s solution
(#T863.2, Carl Roth GmbH & Co.KG, Karlsruhe,
Germany) and Giemsa (#T862.1, Carl Roth GmbH & Co.
KG, Karlsruhe, Germany). Blood smears were analyzed with
a microscope under oil immersion at a 100× magnification.
Some samples were suboptimal due to adverse weather con-
ditions (e.g. high humidity causing mold) and had to be dis-
carded without analyses. Blood smears were analyzed
blindly with respect to the identity of individuals and con-
ducted by the same person (A.S.).

Total white blood cell (TWBC) counts were estimated
manually by the mean number of leukocytes per visual field
using the total count of leukocytes in 10 fields, or the num-
ber of fields that was necessary to examine until a single
leukocyte was observed (Schneeberger et al., 2013b). For the
differential white blood cell (DWBC) counts, we counted
100 (or 50 in few cases) leukocytes and identified the differ-
ent types of leukocytes by size, color, shape and cytoplasmic
contents. From this, we calculated relative numbers (%)
of lymphocytes, neutrophils, eosinophils, monocytes and

Table 2: Bat capture rates (individuals/harp trap night) at sampling sites prior to the study in 2011/2012 (Struebig et al., 2013) and this study
period (2014/2015)

Prior to conversion
(2011/2012)

Recovering forest
(2014/2015)

Actively logged forest
(2014/2015) Fragmented forest (2015)

Species/plot B C F LFE B C LFE B C F F

Hipposideros cervinus 0.74 0.88 0.86 0.45 0.22 0.68 0.23 0.19 0.47 0.1 0.2

Hipposideros dyacorum 0 0.02 0.76 0.02 0 0.08 0.04 0.02 0 0.25 0.43

Kerivoula hardwickii 0.40 0.46 0.26 0.31 0.5 0.42 0.35 0.12 0.11 0.15 0.17

Kerivoula intermedia 0.71 0.29 0.07 0.26 0.77 0.45 0.54 0.31 0.19 0.3 0.36

Kerivoula papillosa 0.17 0 0.12 0.07 0.02 0 0.07 0.02 0 0.03 0.04

Rhinolophus borneensis 0.12 0.24 0.17 0.10 0.02 0.1 0.04 0.05 0.06 0.05 0.16

Rhinolophus sedulus 0.33 0.17 0.05 0.29 0.04 0.05 0.11 0.05 0.06 0.03 0

Rhinolophus trifoliatus 0.29 0.43 0.33 0.14 0.25 0.25 0.09 0.19 0.06 0.25 0.25
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basophils and also the N/L-ratio, which was used as an esti-
mate for chronic stress (Davis et al., 2008).

Statistical analyses
We performed all statistical analyses using the statistical soft-
ware R version 3.3.1 (R Core Team, 2016). We conducted
two-tailed tests (when applicable) and set the level of signifi-
cance to α = 0.05. Means and standard errors are given in
the format X ± SE, unless stated otherwise.

Due to the large sample size of the dataset for body mass
(N = 443), we studied the influence of different predictor vari-
ables on the body mass using a parametric method—the linear
model. We included the following predictor variables in the
linear model: the interaction between species (8 levels) and
habitat type (3 levels: recovering forest, actively logged forest
or fragmented forest), the standardized deviation from the
species-specific mean forearm length (continuous: z-score) to
control for intraspecific variation in body size, plot identity (4
levels: B, C, F and LFE), reproductive status and sex (3 levels:
male, lactating and non-reproducing females), recent feeding
status (2 levels: fed, non-fed), season (2 levels: dry season:
March-April, characterized by a mean monthly precipitation
of 77mm; beginning of rainy season: July–September, charac-
terized by a mean monthly precipitation of 170mm, personal
communication from Prof. R. Walsh, Swansea University,
UK) and year (2014, 2015). The body mass and the forearm
length (as z-scores) were log-transformed before the analysis.
We did not consider the interaction between species and
the forearm length because within our double logarithmic
approach the regression coefficient associated to the forearm
length corresponds to an allometric coefficient that has
been shown to present little variation between bat species
(Norberg, 1981). The total number of parameters considered
in the linear model was thus 31. As required, the residuals of
our model were homoscedastic and normally distributed. We
used the function lm readily available in R to fit our linear
model, followed by Anova from the package ‘car’ (Fox and
Weisberg, 2011) to assess the significance of predictor vari-
ables using marginal (type II) F-tests. If a non-continuous
predictor had a significant effect on the response variable, we
performed post hoc analyses using the function glht from the
package ‘multcomp’ (Hothorn et al., 2008), which performs
generalized linear hypotheses testing (GLHT). Because we
were interested in the effect of roost type on body mass
in different habitats, we grouped the species according
to their roosting habit in cave- (H. cervinus, H. dyacorum,
R. borneensis) and foliage-roosting species (K. hardwickii,
K. intermedia, K. papillosa, R. trifoliatus, R. sedulus) prior to
performing post hoc analyses.

Our sample size was sufficient to fulfill the recommended
minimal amount of data points for our model to avoid over-
fitting (i.e. 10 × k; e.g. Harrel, 2001 or 50 + 8 × k; Field,
2005 with k = 31). Our linear model should also not suffer
from potential problems arising from multi-collinearity (i.e.
correlation between the predictors). We tested this possibility

by computing generalized variance inflation factors (specific-
ally, the square of the generalized variance inflation factors
scaled for the number of degree of freedom, or [GVIF^(1/
(2*Df))]^2) according to Fox and Monette (1992). The max-
imum value obtained was 3.5 which is below the critical
threshold of 4–10 usually mentioned in the literature
(reviewed by O’Brien, 2007).

As some pairs of bat species are more related to each other
than others in our sample, we also fitted the same linear model
as a phylogenetic generalized least squares (PGLS) using the R
packages ‘ape’, ‘geiger’ and ‘phytools’ (Paradis et al., 2004;
Harmon et al., 2008; Revell, 2012) in order to test for the pres-
ence of a phylogenetic signal. We considered the Brownian, the
Grafen and the Pagel’s lambda correlations structure in the
PGLS (Felsenstein, 1985; Grafen, 1989; Martins and Hansen,
1997), and based our phylogenetic information on Khan et al.
(2010) and Sazali et al. (2011). Because we did not find evi-
dence for a phylogenetic signal, we only present the linear
model in this paper for the reason of simplicity.

Due to small sample sizes, we analyzed differences in
TWBC counts and in N/L-ratio between habitat types within
rhinolophid species using the non-parametric Kruskal–
Wallis-test followed by the Dunn’s test for post hoc analyses
(R package ‘dunn.test’; Dinno, 2015). We used the Bonferroni
method to perform multiple-comparison adjustments during
the Dunn’s test.

Results
In total, we obtained data from 443 adult individuals of the
eight target species (see Table 2). Data on body mass were
available for all 443 individuals (see Table 3). For rhinolo-
phid species, we obtained differential and TWBC counts for
85 and 82 individual bats, respectively.

Body mass in relation to habitat type
Overall, the linear model for body mass (log) accounted for
97% of the total variation in body mass. Body mass varied
significantly depending on the habitat-species combination
(Anova, F = 1.86, df1 = 13, df2 = 401, P = 0.033). In cave-
roosting bats, there were no significant differences in body
mass across habitat types (GLHT, absolute t-values < 0.40,
P > 0.99 for all pairwise comparison between habitat types,
Fig. 2). In foliage-roosting species, body masses of individual
bats were significantly lower in fragmented compared to
actively logged forests (GLHT, exp (Estimate) = −1.12 g,
t-value = −3.14, P = 0.01) and higher in recovering than in
fragmented forest (GLHT, exp (Estimate) = 1.12 g, t-value =
2.67, P = 0.04). Foliage-roosting bats captured in recovering
forest were slightly heavier than those captured in actively
logged forest, although the difference was not significant
(GLHT, exp (Estimate) = 1.04 g, t-value = 1.15, P = 0.70).

As expected, body mass significantly increased with the
z-score of forearm length (log) (Anova, F = 34.35, df1 = 1,
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df2 = 401, P < 0.001). The location of capture (plot) had a
significant effect on body mass (Anova, F = 4.32, df1 = 3,
df2 = 401, P = 0.005): In plot B, bats weighed significantly
more than in plot LFE (GLHT, Estimate = 0.06, t-value =
3.57, P = 0.002). There were no significant differences in
body mass between the other plots (GLHT, all t-values < 2.3,
all P > 0.1). Bats that had clearly eaten recently were signifi-
cantly heavier than bats that did not recently feed before cap-
ture (Anova, F = 28.04, df1 = 1, df2 = 401, P < 0.001). Body
mass varied with reproductive condition (Anova, F = 5.43,
df1 = 2, df2 = 401, P = 0.005): Non-reproducing females
weighed significantly less than males (GLHT, Estimate =
−0.04, t-value = 3.27, P = 0.003). There were no significant
differences in body mass between lactating and non-reproducing

females and males, respectively (GLHT, all t-values <0.04,
all P > 0.36). In addition, body mass was significantly higher
in bats captured during the beginning of the rainy season
compared with those being captured during the dry season
(Anova, F = 14.42, df1 = 1, df2 = 401, P < 0.001). We did
not detect any annual fluctuations in body mass (Anova,
F = < 0.01, df1 = 1, df2 = 401, P = 0.99).

Stress and immunological measures in
relation to forest categories
We measured the N/L-ratio (a proxy for chronic stress levels)
in three congeneric species. Rhinolophus trifoliatus and R.
sedulus had N/L-ratios with relatively low variation of

Table 3: Body masses and roosting ecology of study species in each habitat type (values indicate mean ± SE (g) and sample size in
parentheses)

Species Roosting ecology Recovering forest Actively logged forest Fragmented forest

Rhinolophus trifoliatus Foliage 13.8 ± 1.6 (26) 14.0 ± 1.7 (20) 13.2 ± 1.5 (10)

Hipposideros cervinus Cave 9.8 ± 1.4 (52) 10.4 ± 1.1 (29) 10.3 ± 1.0 (10)

Rhinolophus sedulus Foliage 10.9 ± 2.6 (9) 9.4 ± 0.9 (5) NA

Kerivoula papillosa Foliage 9.5 ± 1.5 (6) 11.5 ± 2.1 (2) 7.5 ± 0.7 (2)

Rhinolophus borneensis Cave 8.8 ± 1.1 (7) 9.3 ± 0.7 (7) 9.1 ± 1.1 (7)

Hipposideros dyacorum Cave 7 ± 0.4 (5) 7.3 ± 1.4 (11) 6.9 ± 0.9 (21)

Kerivoula hardwickii Foliage 3.7 ± 0.4 (63) 3.7 ± 0.4 (16) 3.2 ± 0.2 (9)

Kerivoula intermedia Foliage 3.4 ± 0.4 (78) 3.3 ± 0.4 (32) 3.0 ± 0.3 (19)

Species are ordered by size (largest to smallest).

Figure 2: Post hoc pairwise comparisons between predicted body mass (log) for different habitat types within roost type (RT). The figure
shows the difference in estimate (dot) and the 95% confidence interval of the difference (line) for each pairwise comparison.
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0.18–11.38 (median 1.48) and 0–8.09 (median 2.48),
respectively, whereas R. borneensis showed higher variation
in N/L-ratio (0.06–47.5, median 3.36). The overall results of
the DWBC counts can be found in Table 4. Kruskal–Wallis
(KW)-tests within each species revealed that there was no sig-
nificant difference in the N/L-ratio between habitat types in
R. trifoliatus and R. sedulus (R. trifoliatus: KW chi-squared =
0.19, df = 2, P = 0.91, n = 55; R. sedulus: KW chi-squared =
0.13, df = 1, P = 0.72, n = 11; Fig. 3). In R. borneensis, we
found that individuals living in fragmented forest had signifi-
cantly higher N/L-ratios than conspecifics from actively logged
areas (fragmented forest: 11.91 ± 9.69, active logging areas:
5.25 ± 9.24, recovering forest: 8.51 ± 17.25; KW-tests, KW
chi-squared = 6.52, df = 2, P = 0.04, n = 19; Dunn’s test
between fragmented and actively logged forest, Z = −2.46,
P = 0.02, Dunn’s test between recovering and fragmented
forest, Z = −1.86, P = 0.1, Dunn’s test between recovering
and actively logged forest, Z = 0.7, P = 0.72).

The mean number of leukocytes per optical field was simi-
lar for all study species (R. trifoliatus: 0.31 ± 0.2, R. sedulus:
0.32 ± 0.28, R. borneensis: 0.28 ± 0.36). Leukocyte number
was not related to habitat type in R. trifoliatus and R. bor-
neensis (KW-tests, R. trifoliatus: KW chi-squared = 1.74, df =
2, P = 0.42, n = 53; R. borneensis: KW chi-squared = 0.38,
df = 2, P = 0.83, n = 18; Fig. 4). We found significantly lower
numbers of leukocytes in R. sedulus captured in logging areas
compared with conspecifics from recovering forests (actively
logged forest: 0.1 ± 0.07, recovering forest: 0.5 ± 0.25;
Mann–Whitney U test, W = 29.5, P = 0.01, n = 11).
Rhinolophus sedulus was absent from fragmented forest.

Discussion
This study aimed to evaluate the impact of habitat disturb-
ance on body mass, chronic stress and cellular immunity in
forest-dwelling paleotropical bats. Forest disturbance was
associated with a reduced individual body mass in foliage-
roosting species. In one cave-roosting species (Rhinolophus
borneensis), we found elevated N/L-ratios in individuals
from fragmented forest compared to individuals from active
logging areas, indicating chronic stress. In a foliage-roosting
species (R. sedulus), we found reduced white blood cell num-
bers in actively logged compared to less disturbed recovering
forest. Keeping in mind that the biological differences might
be small, we may not have been able to detect significant dif-
ferences due to low sample sizes in some of the study species.

Body mass and habitat alteration
Anthropogenic habitat disturbance had a roost type-specific
effect on bat body mass in our study. In foliage-roosting spe-
cies, body mass of individual bats decreased with increasing
disturbance level. In cave-roosting species, the body mass was
not significantly associated with habitat type, although trends
were similar to foliage-roosting species. Cave-roosting species
may benefit from increased edge habitats and decreased abun-
dance of individuals of foliage-roosting species, resulting in
reduced competition for food due to their relatively large home
range size associated with central-place foraging (Struebig
et al., 2013). Confirming our findings, Struebig et al. (2013)
found that some cave-roosting species such as H. cervinus
were highly abundant across heavily disturbed sites.

The observation that habitat alteration affects body mass
supports the findings of other studies, although variation
exists across species. Most work in this direction has so far
been conducted in birds. For example, in montane white-
eyes (Zosterops poliogaster) body mass was lower in indivi-
duals from forest fragments compared with conspecifics
from continuous forests (Habel et al., 2014). Suorsa and col-
leagues found that body condition was lower in Eurasian
treecreeper (Certhia familiaris) nestlings that were raised in
smaller compared to nestlings raised in larger forest patches
(Suorsa et al., 2003, 2004). However, body condition did
not change with habitat deterioration in Taita thrushes
(Turdus helleri; Lens et al., 2002).

In mammals, the effect of habitat disturbance on nutri-
tional status also varies considerably, and the limited number
of studies undertaken precludes identification of a general
trend. For example, food limitation, measured by the urinary
urea nitrogene:creatinine ratio, increased in New England
cottontails (Sylvilagus transitionalis) with decreasing home
range patch (Villafuerte et al., 1997). However, in wood
mice (Apodemus sylvaticus), body condition was not related
to the size of fragments in which the animals lived (Diaz
et al., 1999). Body masses of agile antechinus (Antechinus
agilis) may increase or decrease in individuals from disturbed
habitats, depending on sex and season (Johnstone et al.,
2010; 2011; 2014).

As bats represent one of the most diverse and species-rich
order of mammals, replicating our study in other bats species
could help to better understand the impact of habitat alter-
ation on body condition in mammals. According to a broad

Table 4: Differential white blood cell counts in Rhinolophus trifoliatus, R. sedulus and R. borneensis. Values indicate mean ± SE (%)

Species (sample size) Neutrophils Lymphocytes Eosinophils Monocytes Basophils

Rhinolophus trifoliatus (n = 55) 54.42 ± 19.82 41.75 ± 20.05 0.42 ± 1.07 2.38 ± 2.31 0.07 ± 0.26

Rhinolophus sedulus (n = 11) 61.09 ± 25.31 36.73 ± 24.28 0.54 ± 1.04 1.55 ± 1.63 0.09 ± 0.30

Rhinolophus borneensis (n = 19) 62.05 ± 31.97 35.13 ± 31.90 1.21 ± 1.51 1.39 ± 1.48 0.21 ± 0.54
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study on insect abundance at the study site, potential prey for
insectivorous bats is reduced at the more disturbed logged sites
(Ewers et al., 2015). Thus, it is not surprising, that in our
study, habitat deterioration led to a reduced body mass in
some bat species, even though bats are much more mobile
than most other terrestrial mammals and thus could poten-
tially compensate for a reduction in food availability by visit-
ing alternative, presumably more distant, foraging areas.
Indeed, our findings indicate that bat species were differently
affected by habitat disturbance depending on their roost pref-
erence, which may be caused by varying home range sizes. In
foliage-roosting bat species, for example, body mass was low-
er in actively logged and fragmented forest compared to con-
specifics from lesser disturbed recovering forest.

Nutritional stress, reflected by a loss in body mass, can
lead to an increased susceptibility to pathogens (Plowright

et al., 2008). For example, in female Brazilian free-tailed bats
(Tadarida brasiliensis) a low body mass was associated with
a higher risk for rabies infection (Turmelle et al., 2010).
Further, Lau et al. (2010) found an association of a corona-
virus detection rate and low body mass in Chinese horseshoe
bats (Rhinolophus sinicus). Thus, foliage-roosting bat species
in disturbed habitats might become especially susceptible to
viral infections and present increased shedding, potentially
leading to zoonotic spillover events when they come into
contact with humans or livestock.

Chronic stress in disturbed habitats
In many vertebrates, especially mammals, N/L-ratios are
positively correlated with the plasma concentration of circu-
lating stress hormones (Davis et al., 2008). Chronically
elevated levels of glucocorticoids shift the numbers of

Figure 3: Association between N/L-ratio and habitat type for Rhinolophus borneensis, R. sedulus and R. trifoliatus. The figure shows data points
(dots), medians (bold line) and 25–75% percentiles (box). The N/L-ratio does not significantly differ between habitat types in R. sedulus (n = 11)
and R. trifoliatus (n = 55). In R. borneensis (n = 19), individuals living in fragmented forest had significantly higher N/L-ratios than those in
actively logged forest. For reasons of clearer representation one data point in the dataset of R. borneensis (N/L-ratio = 47.5, habitat type:
recovering forest) is not depicted.
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neutrophils and lymphocytes, causing an increase in the N/L-
ratio making it a suitable measurement of chronic stress
(Davis et al., 2008; Ellis et al., 2012). We used this ratio as a
proxy for stress level in our study instead of directly measur-
ing plasma glucocorticoid concentrations because hormone
concentrations change within 3–5min after capture in mam-
mals (Romero, 2004), whereas N/L-ratios remains stable
after capture and handling (Davis, 2005; Davis et al., 2008).
Further, we were limited in the amount of available plasma
given ethical considerations for the study taxa.

In one of our study species, N/L-ratios differed between
individuals of different habitat types. Rhinolophus borneen-
sis from fragmented forest showed higher N/L-ratios than
conspecifics from actively logged forests. Similarly, in
another small mammal, the agile antechinus, Johnstone and
colleagues found that the N/L-ratio of individuals living in

fragmented areas was elevated throughout most of the year,
although not during winter (Johnstone et al., 2012a, 2014).
In birds, results are inconsistent. On the one hand, Suorsa
et al. (2004) and Hinam and Clair (2008) reported higher
heterophil to lymphocyte ratios (H/L; the avian equivalent to
N/L-ratio) in Eurasian treecreeper nestlings and Northern
sawwhet owls (Aegolius acadius) in smaller compared to lar-
ger forest patches. On the other hand, in male ovenbirds
(Seiurus aurocapilla) fragmentation was associated with low-
er H/L-ratios compared to males from the continuous forest,
even though only during the breeding season (Mazerolle and
Hobson, 2002).

In contrast to our hypothesis, we found an association
between chronic stress and habitat disturbance in a small,
highly social, cave-roosting species, but not in the larger,
foliage-roosting species (R. trifoliatus and R. sedulus).

Figure 4: Association between mean number of leukocytes per optical field and habitat type for Rhinolophus borneensis, R. sedulus and R.
trifoliatus. The figure shows data points (dots), medians (bold line) and 25–75% percentiles (box). There is no significant difference in the
number of leukocytes between habitat types in Rhinolophus trifoliatus (n = 53) and R. borneensis (n = 18), while numbers of leukocytes are
significantly lower in individuals from actively logged than from recovering forest in R. sedulus (n = 11).
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Foliage-roosting species may be less resilient to forest modifi-
cation and individuals suffering from chronic stress may
have emigrated or deceased of starvation or disease already
at the early beginning of habitat modification. In the conse-
quence, we would not have been able to sample them.

Indeed, the total number of captured individuals was gen-
erally lower in actively logged and fragmented compared
with recovering forest for most species including R. sedulus,
which was completely absent in fragmented forest (although
sampling effort was similar in all habitat types). Thus, this
species may be highly vulnerable to local extinction in
human-modified habitats. Due to the fact that a small home
range size increases extinction risk in bats (Jones et al.,
2003) one should attribute particular attention on species
with small home ranges for conservation management.

Effect of habitat alteration on total white
blood cell counts
In three rhinolophid bat species, we used TWBC counts as a
measure of the cellular immunity. White blood cells (leuko-
cytes) are energetically costly to produce and maintain and
commonly used in comparative field research (Nunn, 2002;
Young et al., 2013; Schneeberger et al., 2013a; Tian et al.,
2015). Compared to similar-sized insectivorous bat species
from the Neotropics, we found low mean values of leuko-
cytes per field. Schneeberger et al. (2013a) reported between
1.8 (Micronycteris microtis) and 3.9 (M. hirsuta) leukocytes
per visual field while the range in our study was only
0.27–0.32 leukocytes per field. Stockmaier et al. (2015)
reported similar numbers of leukocytes (0.85) in the similar-
sized, insectivorous Pallas’ mastiff bat (Molossus molossus).

In one species, R. sedulus, we found a significant effect of
habitat disturbance, with significantly lower numbers of leu-
kocytes in individuals from actively logged than individuals
from recovering forests, which is consistent with findings in
diademed sifaks (Propithecus diadema; Irwin et al., 2010) and
agile antechinus (Johnstone et al., 2012b). In these other stud-
ies, authors suggested that animals suffered from an impaired
immune system function, yet no experimental tests were per-
formed on functional aspects of the immune system in support
of this notion. High numbers of leukocytes can either indicate
an individual in good condition that is well prepared to fight
an infection or an individual currently fighting an infection
(Salvante, 2006). Because all animals appeared healthy on vis-
ual examination, we support the former explanation and sug-
gest that individuals in actively logged forest suffered from a
weakened immune system. In support with this, a previous
study on Brazilian free-tailed bats showed that individuals
roosting in certain disturbed locations (human-made bridges)
can have lower cellular immune function compared to indivi-
duals roosting in natural caves (Allen et al., 2009).

In R. sedulus a large proportion of leukocytes consisted
of lymphocytes (36.73 ± 24.28%), a cell type that is used to
counter viral infections by killing infected cells and the

activation of the cytokine and antibody response (Baker and
Zhou, 2015). Therefore, R. sedulus with low leukocyte num-
bers might be particularly prone to shed pathogens, poten-
tially causing zoonotic spillovers when humans come into
contact with this species. In Southeast Asia, besides flying
foxes also larger insectivorous bats are occasionally hunted
for their meat (Mildenstein et al., 2016), as it may be the
case for R. sedulus.

Rhinolopohus sedulus seems to be less resilient to habitat
disturbance compared with R. borneensis and R. trifoliatus
that might develop reduced numbers of leukocytes during
later stages of habitat conversion. Like R. trifoliatus, but
contrasting to R. borneensis, R. sedulus is smaller compared
to the other congeneric species. Although N/L-ratios of indi-
viduals in R. sedulus were not elevated in actively logged
compared to recovering forest, a non-stress related mechan-
ism affecting all immune cells in a similar way might have
led to the reduction in TWBC counts.

Conclusions
Overall, we found evidence that in some, but not all studied
paleotropical bat species human habitat disturbances may be
associated with a decrease in body mass, elevated chronic
stress and reduced investment in cellular components of the
immune system. We identified foliage-roosting species as par-
ticularly sensitive to habitat deterioration, which may predis-
pose them as potential sources for viral spillovers events when
humans encroach into natural habitats. Presumably, a pro-
longed period of habitat disturbances will result in chronic
stress and an impaired immune system in more species, espe-
cially because forest modification during our study only lasted
for a short period of time. A follow-up study at a later stage
of fragmentation may clarify whether and which bat species
are resilient to human disturbances over a longer period.
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