
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Contrastin, Mistral and Rice, Andrew and Danish, Matthew and Orchard, Dominic A. (2015)
Units-of-Measure Correctness in Fortran Programs. Computing in Science & Engineering, 18
 (1). pp. 102-107. ISSN 1521-9615.

DOI

https://doi.org/10.1109/MCSE.2016.17

Link to record in KAR

http://kar.kent.ac.uk/61621/

Document Version

Author's Accepted Manuscript

Units-of-measure Correctness in Fortran

Programs
We can increase confidence in Fortran programs with unit annotations and

CamFort units-of-measure analysis

Mistral Contrastin, Dominic Orchard,

Andrew Rice, Matthew Danish

Much of mathematics’ use in science revolves around measurements of physical quan-
tities, both abstractly and concretely. Such measurements are naturally classified by
their dimension, i.e. whether the measurement is of distance, energy, time, and so on.
Dimensionality is further refined by the units-of-measure (or units for short) of a mea-
surement e.g., metres, Joules, seconds; thereby, units-of-measure distinguish magnitudes
from each other, giving additional meaning. Despite their extensive use in the prac-
tice of science, units-of-measure do not see widespread adoption in tools for scientific
computing. Here we demonstrate how our freely available and open-source tool, named
CamFort, provides a low-effort and automated way of detecting mismatched units-of-
measure in code. This feature of CamFort is an example of a lightweight, non-binding
specification and analysis tool that can help find bugs in programs before they strike.
We hope that, in general, these kinds of program analysis tool will become more widely
used by scientists to save time and reduce grief during the process of development, as
well as increasing confidence in results of numerical models.

Ensuring the consistent use of units is an important “sanity check” in scientific com-
puting. For example, adding a value in kilograms to a value in litres is a nonsensical
operation. As trivial as that error may seem, in large enough projects such errors can
go unnoticed by human eyes. One such famous incident was the Mars Climate Or-
biter spacecraft, which disintegrated in the Martian atmosphere because one part of the
critical mission-control software provided values in imperial units whilst another part
expected values in metric units [8, pp. 13]. This seemingly simple error cost nearly 330
million dollars and delayed the scientific mission of Martian exploration.

That is not to say that scientific programmers neglect units in their source code. In
fact, we see many pieces of scientific computing code using comments to record this
information for major variables, equations, and functions. These comments, however,
are of limited efficacy since developers must manually check the consistency of every

1

variable’s units with respect to their use—and repeat this process every time a change is
made. What if it were possible to use these same comments for automatically checking
the consistency of the entire system?

Checking the consistency of units-of-measure is akin to type checking, and solutions
to the problem have been developed on this basis. Type checking systems ensure that
certain illegal operations, such as dividing a boolean value by a string value, does not
occur. This class of illegal operations is similar in nature to that of adding a kilogram to a
litre (an inherently meaningless statement) and thus should be automatically prohibited
by the programming language.

Units support in other languages

Tools for checking units-of-measure consistency for modern languages can be broadly
categorised as either static or dynamic analyses.

Static analysis of units-of-measure means that consistency is guaranteed at com-
pilation time. Hence, if the tool statically confirms that units are used consistently,
with respect to the annotations in the source code, then unit consistency will not be
violated by any execution path the program may take. For example, F# allows vari-
ables to be annotated and statically checked for units-of-measure consistency. C++
programmers can use the Boost Units library that uses C++ templates to statically
ensure that units are used appropriately. The Osprey project provides another solu-
tion with an external tool [3]. Haskell has various forms of units-of-measure typing
provided internally by building on Haskell’s rich type system [1, 4].

The other option is dynamic analysis. In this approach, consistent use of units is
checked when the program runs. This means that no guarantees can be made before
running the program. Instead, safety violations are caught as they happen. This
has the additional downside of adding run-time overhead. Python’s Pint library is
an example of a dynamic units-of-measure analysis.

Libraries and tools also exist for assisting with the management or conversion
of units. The udunits C library provides support for converting between units and
has a large database of standard units-of-measure. This library is also available to
R programmers through the udunits2 package. The difference here is that these
libraries aim to provide routines for helping with the conversion of units rather than
for detecting their misuse.

Arguably the most established language in scientific computing is Fortran, in which
a large body of libraries and expertise lies. To date, however, Fortran has lacked a
system for checking units. CamFort is a multi-faceted tool that provides various kinds

2

of analysis, verification, and refactoring techniques for Fortran code, aimed at scien-
tific computing. CamFort operates on Fortran programs compatible with at least the
FORTRAN 66 standard or newer. In this article we demonstrate CamFort’s automated
units-of-measure consistency checking system. We’ve designed this system with existing
code-bases in mind: 1) CamFort minimises the effort to introduce units to existing code;
2) CamFort uses comments to record annotations (short specifications on variable decla-
rations), meaning that existing compilers can be used unchanged; 3) CamFort uses only
static checks to validate units and so imposes no performance overhead at run-time.

The rest of this article consists of a brief introduction to computing total mechanical
energy, followed by its implementation in Fortran 90. We then give a tutorial on how
CamFort can be used to add units-of-measure specifications, check unit consistency,
and eliminate units-of-measure bugs, using the total mechanical energy program as an
example.

1 Example: total mechanical energy computation

Total mechanical energy is the sum of the kinetic and potential energy of a point object.
The relevant equations to calculate the total mechanical energy of a point object in free
fall are as follows:

Epotential = mass× gravity × height

Ekinetic =
1

2
mass× velocity2

Emechanical = Epotential + Ekinetic

An example Fortran program using the formula above might be:

1 program energy

2 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

3 real, parameter :: half = 0.5, velocity = 4.00

4 real :: kinetic_energy, potential_energy, total_mechanical_energy

5

6 potential_energy = mass * gravity * height

7 kinetic_energy = half * mass * (velocity**2)

8

9 total_mechanical_energy = potential_energy + kinetic_energy

10 end program energy

This program calculates the total mechanical energy for a point object of 3 kg mass in
free fall, travelling at 4 metres per second towards the Earth from a height of 4.2 metres.
The resulting total mechanical energy is 148 Joules.

3

2 Building a unit annotated program for the task

It is easy to integrate CamFort with an existing code base. CamFort can first analyse a
code base and report a minimal set of variables that can be annotated by the programmer
to gain the maximum amount of unit information in the rest of the program. Once
the initial annotations are inserted by the programmer, further unit annotations can
be added as the developers write more code. In our experiments, a typical program
requires roughly only 18% of its declared variables to be annotated before CamFort can
automatically infer the rest [6].

We consider first a subset of the mechanical energy program for just the potential
energy:

1 program energy

2 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

3 real :: potential_energy

4

5 potential_energy = mass * gravity * height

6 end program energy

We find the minimal set of variables to annotate by invoking the criticalUnits analysis
feature of CamFort (passing the source directory as an argument):

$ camfort criticalUnits energy_src

Inferring critical variables for units inference in directory "energy_src"

energy/energy.f90: Critical variables: potential_energy,gravity,mass

The output from CamFort tells us we need to annotate the variables potential energy,
gravity, and mass. CamFort can then deduce the units for other variables in the
program.

Annotations are similar to Fortran 90 variable declaration syntax, but inside of a
comment (that is, preceded by an exclamation point !). The syntax is of the form:

!= unit <unit_name> [:: variable_name]

Starting a comment with an exclamation ! has only been valid since Fortran 90 and
so for earlier Fortran standards we replace ! with c or C.

The advantage of using comments for program annotations is that they do not interfere
with compilation in any way. This means CamFort can be added or removed from the
development process at any point with no need to alter the source code.

Possible unit annotations for the above program are then:

4

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

5 != unit kg m**2/s**2

6 real :: potential_energy

7

8 potential_energy = mass * gravity * height

9 end program energy

This highlights some properties of unit annotations:

• The declaration of unit names is implicit (e.g., lines 2, 3, and 5 implicitly declare
non-compound units kg, m, and s for use in the program);

• A variable name in an annotation is optional (e.g., line 5) in which case any variable
declarations after the annotation are assigned that unit (potential energy on line
6 in this case);

• Annotation comments must always precede the related variable declaration (e.g.,
line 3), but may be separated from a variable declaration by other unit annotations
(e.g., line 2 separated from the mass variable declaration (line 4) by the line 3
annotation).

We can now apply the automatic units-of-measure inference of CamFort, which will
check the consistency of the units in the program and insert any inferred units—in this
case for height which was unspecified. This is invoked by the units feature (which
requires an output directory to be specified for the updated source files):

$ camfort units energy_src energy2

Inferring units for "energy_src"

energy_src/energy.f90: Added 1 unit annotation: m

energy_src/energy.f90: Checked/inferred 4 user variables

Writing refactored files to directory: energy2/

Writing energy2/energy.f90

CamFort generates a modified program in the output directory. Source code is changed
only to insert the annotation comment, while the rest of the source code lines—including
spacing and indentation—are preserved. The resulting program is:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

5

7 real :: potential_energy

8

9 potential_energy = mass * gravity * height

10 end program energy

Here, we can see on line 4 that CamFort has inferred that height must have units m to
be consistent, and has thus inserted this annotation.

We now proceed to extend the program to compute the total mechanical energy and
demonstrate how a unit error is caught by CamFort:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

7 real :: potential_energy

8

9 != unit 1 :: half

10 != unit m/s :: velocity

11 real, parameter :: half = 0.5, velocity = 4.00

12 real :: kinetic_energy, total_energy

13

14 potential_energy = mass * gravity * height

15 kinetic_energy = half * mass * velocity

16

17 total_energy = potential_energy + kinetic_energy

18 end program energy

Note the use of the special unit 1 for the variable half. When 1 is used for type
annotation, it signifies a unitless (or scalar) quantity.

Unitless vs Polymorphic units

A unitless value is a scalar quantity. Some operators require a unitless value. For
example, exponentiation requires that the exponent is a unitless quantity: it does
not make sense to raise a value to the power of “2 metres”. For other operators
a unitless operand gives flexibility: it is valid to multiply a value of any unit by a
unitless scaling factor.

A polymorphic unit represents a generalisation over all units. For example the
abs intrinsic function takes a number and returns its absolute (positive) value. This
function can be applied to a value of any unit, and is thus described as being
polymorphic in its unit. Further, if the input is of some unit α then the output

6

value is of the same unit α.

Almost all constant values must have a particular unit (perhaps inferred by Cam-
Fort) or they must be unitless. The exception to this rule is zero. To see why this
is the case consider the addition operation: adding zero to any value preserves the
unit of that value because zero is the additive identity, that is x + 0 = x for all x.
However, it does not make sense to add 1 (or any non-zero constant) to any other
value unless the units match exactly. In the former case, we can declare a zero con-
stant and safely add it to any value with any unit. In the latter case, addition of a
non-zero constant with a different unit would cause units-of-measure inconsistency.

Our implementation of kinetic energy above contains a programming error: velocity
should have been squared on line 15. This bug is detected as a unit error by CamFort.
If we attempt to run either the units or criticalUnits analysis, CamFort will display
a warning that the system is inconsistent because we are adding potential energy to
kinetic energy which have different units in the above program:

$ camfort units energy energy_out

Inferring units for "energy"

energy/energy.f90: inconsistent units of measure:

line 17: cannot match units ’kg m**2/s**2’ and ’kg m/s’

energy/energy.f90: checked/inferred 8 user variables

The fix is thus to square the velocity. For further illustration, we do this with a
used-defined squaring function, rather than just the built-in ** operator. The resulting
program is:

1 program energy

2 != unit kg :: mass

3 != unit m/s**2 :: gravity

4 != unit m :: height

5 real, parameter :: mass = 3.00, gravity = 9.81, height = 4.20

6 != unit kg m**2/s**2 :: potential_energy

7 real :: potential_energy

8

9 != unit 1 :: half

10 != unit m/s :: velocity

11 real, parameter :: half = 0.5, velocity = 4.00

12 != unit kg m**2 / s**2

13 real :: kinetic_energy, total_energy

14

15 potential_energy = mass * gravity * height

16 kinetic_energy = half * mass * square(velocity)

17

18 total_energy = potential_energy + kinetic_energy

7

19

20 contains

21

22 real function square(x)

23 real x

24 square = x * x

25 end function square

26 end program energy

The user-defined square function is inferred to be polymorphic in its units due to the
lack of any annotations inside the function body. This means that square can be reused
on values of different units, where given an input x of unit α then the output has units α2.
In the above code, its use on line 16 means that square(velocity) has units (m/s)**2.

Above, the energy unit kg m2 s−2 is quite long and complicated, instead Joule is the
preferred name for this unit, abbreviating the more complicated, derived form. Such
complicated unit terms can be tedious to write and understand. CamFort provides a
solution to this via unit aliases, which allow names to be given to derived units. In this
case, we can declare != unit :: Joule = kg m**2 / s**2 which aliases the more
complex unit term to the name Joule. Energy annotations can now be expressed more
succinctly and clearly in terms of Joule.

3 Moving towards modern Fortran with units

The 2015 Fortran standard includes a proposal for extending Fortran with unit annota-
tions in the N1969 report [7]. The new proposal suggests introducing a UNIT attribute
for variable annotations and a UNIT statement for unit declarations. Unlike CamFort,
unit declarations are obligatory. The potential energy computation above would be the
following according to N1969:

1 program energy

2 UNIT kg, m, s

3 UNIT a = m/s**2

4 real, parameter, unit(kg) :: mass = 3.00

5 real, parameter, unit(a) :: gravity = 9.81

6 real, parameter, unit(m) :: height = 4.20

7 UNIT Joule = kg * m**2 / s**2

8 real, unit(Joule) :: potential_energy

9

10 potential_energy = mass * gravity * height

11 end program energy

We originally considered the N1969 syntax for CamFort (CamFort can accept this style),
but we later decided on the comment notation to enable support for older versions of
Fortran without maintaining both the annotated and the compilable versions of source

8

code. The other important differences are that N1969 features compulsory explicit unit
declaration, lack of derived unit annotations, and conversion units.

Every unit used in an annotation in N1969 needs to be declared explicitly. Further
derived (composite) units such as m/s**2 cannot be used in annotations directly; they
must first be declared and given a name. CamFort similarly allows names to be given
to composite (derived) units as this can increase clarity (discussed above). Always
requiring this naming, however, can also hinder clarity. For example, in the above code,
acceleration is declared as a composite unit a to be used in the annotations, however,
m s−2 is more familiar to the scientist and to the programmer, therefore it is more
natural to use it directly in annotations rather than introducing a unit name.

Conversion units allow units in the same dimension to be exchanged automatically. For
example, variables annotated with the units “metres,” “centimetres,” and “inches” all
belong to the same dimension. Conversion units, regardless of their original declaration
unit, can be used alongside other variables in the same dimension inside any expression.
This is achieved through the insertion of implicit conversion functions. Although this
is a useful tool, it does not fall into the scope of the CamFort project nor its design
philosophy. Such an extension requires additional compiler support to implicitly insert
conversions. Furthermore, automated conversion between units often requires a chain
of conversions such as metres to centimetres and then centimetres to inches. Lack of
transparency in this conversion means any floating-point error introduced during the
conversion is hidden from the programmer.

Our earlier paper on units-of-measure offers a more thorough comparison of features
between CamFort and N1969, and demonstrates the support for N1969 syntax in Cam-
Fort [6].

4 Beyond units-of-measure

Whilst adding unit annotations is an additional task for the programmer, the overall
effort is reduced (less time debugging) and programmer’s can be more confident in the
correctness of their code. The units-of-measure annotations we showed here are a kind of
lightweight specification which, coupled with the CamFort automated checker, provide
a simple form of program verification.

Formal specification and verification techniques are increasingly important to the prac-
tice of scientific computing [2, 5], by increasing confidence in the program’s correctness,
by reducing the amount of time spent debugging, by aiding understanding and com-
munication of ideas, and by avoiding embarrassing errors in publications. Lightweight
formal specification mechanisms, such as CamFort’s units feature, do not require a
complete specification beforehand, making them easier than ever to deploy. Nor do they

9

hinder the development cycle, as unit information is often already included in the source
code for the purpose of documentation. In general, these kinds of local and incremental
specifications can help prevent common classes of errors from occurring without unduly
burdening the programmer. Thus, we hope that computational scientists will embrace
current and future means of lightweight specification and verification to help produce
software that is quicker to write, easier to understand, and containing fewer bugs than
ever before. Furthermore, we hope for increased interaction between scientists and com-
puter scientists, such that new lightweight verification techniques can be developed to
aid computational science programming.

CamFort is open source and free to download at https://github.com/

ucam-cl-dtg/naps-camfort. More information about CamFort and the
related research project at University of Cambridge can be found at http:
//www.cl.cam.ac.uk/research/dtg/naps/.

Acknowledgements This work was supported by the Engineering and Physical Sciences
Research Council (EP/M026124/1). Dominic Orchard additionally thanks the Software
Sustainability Institute for their support.

References

[1] A. Gundry. “A Typechecker Plugin for Units of Measure”. In: Proceedings of the
2015 ACM SIGPLAN symposium on Haskell. ACM. 2015.

[2] K. Hinsen. “Writing Software Specifications”. In: Computing in Science & Engi-
neering 17.3 (May 2015), pp. 54–61. issn: 1521-9615. doi: 10.1109/MCSE.2015.64.

[3] L. Jiang and Z. Su. “Osprey: a practical type system for validating dimensional unit
correctness of C programs”. In: Proceedings of ICSE. ACM. 2006, pp. 262–271.

[4] T. Muranushi and R. A. Eisenberg. “Experience report: Type-checking polymor-
phic units for astrophysics research in Haskell”. In: Proceedings of the 2014 ACM
SIGPLAN symposium on Haskell. ACM. 2014.

[5] D. Orchard and A. Rice. “A computational science agenda for programming lan-
guage research”. In: Procedia Computer Science 29 (2014), pp. 713–727.

[6] D. Orchard, A. Rice, and O. Oshmyan. “Evolving Fortran types with inferred units-
of-measure”. In: Journal of Computational Science (2015).

[7] W. V. Snyder. ISO/IEC JTC1/SC22/WG5 N1969. Tech. rep. International Orga-
nization for Standardization, 2013. url: ftp://ftp.nag.co.uk/sc22wg5/N1951-
N2000/N1969.pdf.

[8] A. G. Stephenson et al. Mars climate orbiter mishap investigation board phase I
report. Tech. rep. NASA, Washington, DC, 1999.

10

