Phosphorylation of dock180 at tyrosine residue Y722 by Src family kinases mediates EGFRvIII-driven glioblastoma tumorigenesis

Haizhong Feng,a,b, Bo Hu,c,d,1 Michael J. Jarzynka,b,2 Yanxin Li,2 Susan Keezer,a Terrance G. Johns,a Careen K. Tang,a Ronald L. Hamilton,b, Kristiina Vuori,h Ryo Nishikawa, Jann N. Sarkaria,k Tim Fenton,a,b,1 Tao Cheng,a,b,1 Frank B. Furnari,a Webster K. Cavenee,a,b,1 and Shi-Yuan Cheng,a,b,1

aUniversity of Pittsburgh Cancer Institute, Departments of Pathology, Medicine, and Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; bCell Signaling Technology, Inc., Danvers, MA 01923; cOncogenic Signaling Laboratory, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia; dDepartment of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057; eCancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037; fDepartment of Neurosurgery, Saitama Medical University, Saitama 350-0495, Japan; gDepartment of Radiation Oncology, Mayo Clinic, Rochester, MN 55905; hLudwig Institute for Cancer Research, University of California at San Diego School of Medicine, La Jolla, CA 92037; and kState Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300041, China

Contributed by Webster K. Cavenee, December 29, 2011 (sent for review November 30, 2011)

Glioblastoma, the most common primary malignant cancer of the brain, is characterized by rapid tumor growth and infiltration of tumor cells throughout the brain. These traits cause glioblastomas to be highly resistant to current therapies with a resultant poor prognosis. Although aberrant oncogenic signaling driven by signature genetic alterations, such as EGFR receptor (EGFR) gene amplification and mutation, plays a major role in glioblastoma pathogenesis, the responsible downstream mechanisms remain less clear. Here, we report that EGFRvIII (also known as ΔEGFR and Δe2-7EGFR), a constitutively active EGFR mutant that is frequently co-overexpressed with EGFR in human glioblastoma, promotes tumorigenesis through Src family kinase (SFK)-dependent phosphorylation of Dock180, a guanine nucleotide exchange factor for Rac1. EGFRvIII induces phosphorylation of Dock180 at tyrosine residue 722 (Dock180[Y722]) and stimulates Rac1 signaling, glioblastoma cell survival, and migration. Consistent with this being causal, siRNA knockdown of Dock180 or expression of a Dock180[Y722] mutant inhibits each of these EGFRvIII-stimulated activities. The SFKs, Src, Fyn, and Lyn, induce phosphorylation of Dock180[Y722] and inhibition of these SFKs by pharmacological inhibitors or shRNA depletion markedly attenuates EGFRvIII-induced phosphorylation of Dock180[Y722], Rac1 activity, and glioblastoma cell migration. Finally, phosphorylated Dock180[Y722] is coexpressed with EGFRvIII and phosphorylated Src[Y418] in clinical specimens, and such coexpression correlates with an extremely poor survival in glioblastoma patients. These results suggest that targeting the SFK-p-Dock180[Y722]-Rac1 signaling pathway may offer a novel therapeutic strategy for glioblastomas with EGFRvIII overexpression.

Results

Dock180 is required for EGFRvIII-promoted glioblastoma cell migration and survival in vitro. To determine if EGFRvIII signaling engages Dock180 as part of its oncogenic mechanism, we

Oncogenic signaling stimulated by overexpressed genes, such as EGFR receptor (EGFR), renders human brain glioblastomas malignant and resistant to combination therapies (1). Amplification of EGFR is the most frequent genetic alteration in World Health Organization (WHO) grade IV glioblastoma multiforme (GBM) (2, 3) and is associated with poor prognosis (1). About half of GBMs with EGFR amplification also express the mutant form, EGFRvIII (ΔEGFR/de2-7EGFR), that lacks a portion of the extracellular ligand-binding domain (encoded by exons 2 through 7), leading to constitutively activated oncogenic signaling (3, 4). Expression of EGFRvIII enhances glioblastoma tumorigenesis in vivo (5) and promotes glioblastoma cell motility in vitro (6). Although EGFRvIII activates PI3K/Akt signaling, other signaling cascades are also likely involved in mediating EGFRvIII-driven tumorigenesis (3, 4).

Dock180 is a guanine nucleotide exchange factor (GEF) that activates Rac1 and controls several cellular functions, including cell motility, survival, and proliferation (7). Dock180 facilitates nucleotide exchange on Rac1 through its Dock-homology region-2 (DHR-2) domain, but requires binding to engulfment and cell motility protein 1 (ELMO1) through its N-terminal SH3 domain to achieve full activation of Rac1 (8). Adjacent to the SH3 region resides a DHR-1 domain which interacts with phosphatidylinositol3,4,5-trisphosphate (PIP3), and thereby mediates the localization of Dock180 to the cell membrane sites of PIP3 production where Dock180 subsequently activates Rac1 through its DHR-2 domain (8). Although genomic studies have revealed no genetic alterations in Rac1, Dock180, or ELMO1 in various human cancers, including glioblastoma, it remains possible, given its central role in regulating cellular functions, that GEF-Rac1 signaling is stimulated by signals emanating from activated oncogenes, such as EGFRvIII.

GEF activation by receptor tyrosine kinases (RTK) stimulates Rac1 (9) and may be important in EGFRvIII-driven tumorigenesis (5). Dock180 activates Rac1 (8) and is involved in RTK-induced cell migration in Drosophila (10), and Dock180 plays a role in glioblastoma cell invasion through the activation of Rac1 (11). Here, we report that EGFRvIII induces tyrosine phosphorylation (p-Y) at tyrosine residue 722 (Y722) of Dock180, and that Dock180 and its phosphorylation are required for EGFRvIII-promoted glioblastoma cell growth, survival, and invasion. Correspondingly, ectopic expression of an unphosphorylatable Dock180[Y722] mutant inhibited EGFRvIII-induced Rac1 activation, cell migration, and survival in vitro, and glioblastoma growth and invasion in the brain. We also report that EGFRvIII-induced p-Dock180[Y722] is dependent on Src family kinases (SKFs), that p-Dock180[Y722] is coexpressed with EGFRvIII and pan-p-Src[Y418] in clinical glioblastoma specimens, and that such coexpression correlates with an extremely poor prognosis.

1To whom correspondence may be addressed. E-mail: hub@upmc.edu, wcavenee@ucsd.edu, or chengs@upmc.edu.

2Present Address: Department of Pharmacy, University of Pittsburgh Medical Center-Chartwell, Pittsburgh, PA 15205.

3Present Address: Laboratory of Viral Oncology, University College London Cancer Institute, London WC1E 6BT, England.

This article contains supporting information online at www.pnas.org/cgi/doi/10.1073/pnas.1121457109/-/DCSupplemental.
stably expressed exogenous EGFRvIII in glioblastoma LN444/ GFP and SNB19/GFP cells that have high levels of endogenous Dock180 (11). Expression of EGFRvIII in LN444 and SNB19 glioblastoma cells induced p-EGFRvIII, p-Akt, p-Erk1/2, and Rac1 activity (Fig. 1A), increased in vitro cell migration (Fig. 1B), proliferation (Fig. S1 A and B), and markedly inhibited cell apoptosis (Fig. S1C).

We recently reported that Dock180 promotes glioblastoma cell invasion through activation of Rac1 (11). To determine whether this function of Dock180 is required for EGFRvIII-stimulated glioblastoma tumorigenesis, we knocked down endogenous Dock180 using siRNAs (11) in each of LN444/GFP, LN444/GFP/EGFRvIII, SNB19/GFP, and SNB19/GFP/EGFRvIII cells. As shown in Fig. 1C, knockdown of Dock180 in EGFRvIII-expressing cells inhibited EGFRvIII-induced p-Akt, p-Erk1/2, and Rac1 activity. Depletion of Dock180 also suppressed basal Rac1 activity in GFP control cells (11). Knockdown of Dock180 attenuated EGFRvIII-promoted cell migration and survival in EGFRvIII-expressing cells and basal levels of cell migration in GFP control cells (Fig. 1 D and E). However, depletion of Dock180 had only moderate effects on cell proliferation in both EGFRvIII- and GFP-expressing cells (Fig. 1 F and G). These data suggest that Dock180 is critical for EGFRvIII-stimulated p-Akt, p-Erk1/2, and Rac1 activity, as well as for glioblastoma cell migration and survival in vitro.

EGFRvIII Induces p-Y of Dock180 at Y722. We examined whether EGFRvIII phosphorylates Dock180 at Y residues in glioblastoma cells. As shown in Fig. 2A, p-Y of endogenous Dock180 was evident in both LN444/EGFRvIII and SNB19/EGFRvIII cells, but not in GFP-expressing cells. To identify the Y residues of Dock180 that are phosphorylated by EGFRvIII, we generated Flag-tagged WT and six different Dock180 mutants that lack DHR-1, -2, or other regions (Fig. 2B). When EGFRvIII and WT Dock180 were coexpressed in HEK293T cells, EGFRvIII-induced p-Y of WT Dock180, whereas expression of either protein alone did not result in p-Y of Dock180 (Fig. 2C). Next, we coexpressed EGFRvIII with WT or the six individual mutants of Dock180 and found a marked reduction of EGFRvIII-induced p-Y of the Dock180 Del-6 mutant but not the Dock180 WT or other Del mutants (Fig. 2D, blue arrows), suggesting that the Y sites are located between amino acid residues 602 and 805 (Fig. 2B). In this region, there are six Y residues: Y700, Y712, Y722, Y736, Y760, and Y780, of which Y722 is the only Y residue phosphorylated by EGFRvIII, which we individually mutated each of these six Y residues to a phenylalanine (F) in the Dock180 Del-5 mutant. When these six Del-5 YF mutants or the Del-5 mutant were separately coexpressed with EGFRvIII in HEK293T cells, EGFRvIII induced p-Y of all Dock180 mutants except Del-5/ Y722F. To further validate this result, we generated an Y722F mutation in the full-length Dock180 protein (Dock180Y722F). Coexpression of EGFRvIII with Dock180Y722F showed a more than 40% reduction in p-Y levels compared with that of Dock180 (Fig. 2F). These data suggest that Y722 is a major p-Y site induced by EGFRvIII, and that there are additional p-Y sites within Dock180 because of EGFRvIII activity to a lesser extent. Next, we compared amino acid sequences surrounding Y722 in Dock180 in various species and the other four members of the Dock family, and found that Y722 and most of its surrounding residues are highly conserved among them (Fig. 2G).

Phosphorylation of Dock180

Y722 Is Required for EGFRvIII-Promoted Glioblastoma Tumorigenesis. We generated a rabbit polyclonal antibody that specifically recognizes the p-Dock180Y722 protein. This anti-p-Dock180Y722 antibody detected EGFR (but not PDGF or HGF) induced p-Y of endogenous Dock180 in SNB19, U87, U373, and LN444 glioblastoma cells at various levels (Fig. 3A). We then knocked down Dock180 in SNB19 or SNB19/EGFRvIII cells using an siRNA pool for Dock180 or a control siRNA (11), and found that depletion of endogenous Dock180 by the siRNA pool, but not control siRNA, significantly diminished the EGFRvIII-induced p-Dock180Y722 in SNB19/EGFRvIII cells whereas no signal was seen in SNB19 cells (Fig S2A and B). These results validate the specificity of this antibody in detecting EGFRvIII-induced p-Y722 of endogenous Dock180 in glioblastoma cells. Next, we transfected Flag-tagged Dock180WT or Dock180Y722F into EGFRvIII-expressing SNB19 and LN444 glioblastoma cells. As shown in Fig. 3B, ectopic expression of Dock180WT did not affect EGFRvIII stimulation of p-Akt, p-Erk1/2, and Rac1 activity in SNB19/EGFRvIII and LN444/EGFRvIII cells. In contrast, expression of Dock180Y722F markedly reduced EGFRvIII-induced p-Akt, p-Erk1/2, and Rac1 activity. Additionally, Dock180Y722F but not Dock180WT significantly attenuated EGFRvIII-stimulated glioblastoma cell survival and migration in vitro (Fig. S3A and B). However, expression of Dock180WT or Dock180Y722F had only a moderate impact on in vitro proliferation in both LN444/EGFRvIII and SNB19/EGFRvIII cells (Fig. S3C and D).

We then separately implanted SNB19/EGFRvIII/Dock180WT, SNB19/EGFRvIII/Dock180Y722F, or the control SNB19/EGFRvIII/GFP cells into the brains of mice. As described previously (12), SNB19/GFP cells formed small but invasive tumors in the brains of mice. Moreover, mice that received SNB19/EGFRvIII/GFP cells showed markedly enhanced tumor growth and invasion, whereas mice that received SNB19/EGFRvIII/Dock180WT cells developed brain tumors with large volumes and similar invasiveness (Fig. 3C and S4A–C), suggesting no further enhancement by Dock180WT expression. In contrast, mice that received SNB19/ EGFRvIII/Dock180Y722F cells developed much smaller and less invasive tumors (Fig. 3C and S4A–C). In addition, expression of Dock180WT had no significant effect on glioblastoma cell proliferation and survival compared with the controls (Fig. 3D and E).
and Fig. S4). However, expression of Dock180Y722F significantly suppressed EGFRvIII-stimulated glioblastoma cell proliferation and survival compared with SNB19/EGFRvIII/GFP or SNB19/EGFRvIII/Dock180WT tumors (Fig. 3 D and E and Fig. S4). These data suggest that p-Dock180Y722 is important for EGFRvIII-promoted glioblastoma tumorigenesis in vivo and that Dock180Y722 acts in a dominant negative fashion to inhibit EGFRvIII-driven tumorigenicity.

SFKs Are Responsible for EGFRvIII-Induced p-Dock180Y722. We next performed in silico analyses (http://scansite.mit.edu) and found that Y722 of Dock180 is a potential p-Y site for Src. To determine whether Src and other SFKs are involved in EGFRvIII-stimulated p-Dock180Y722 and cell migration, we first treated LN444/EGFRvIII and SNB19/EGFRvIII cells with two pharmacological inhibitors of SFKs (SU6656, PP2) or a vehicle control. As shown in Fig. 4 A and B, both PP2 and SU6656 effectively inhibited EGFRvIII-induced p-Y of Dock180, Rac1, and p-Y of SrcY418, and EGFRvIII-stimulated cell migration.

Next, we coexpressed WT, kinase dead (KD) or constitutively activated (CA) Src with flag-tagged Dock180WT or Dock180Y722F in HEK293T cells. WT or CA Src induced p-Y of Dock180 WT to higher levels compared with that of Dock180Y722F, whereas KD Src had no effect on p-Y of Dock180 WT or Dock180Y722F. As expected, CA Src displayed higher kinase activity on p-Y of Dock180 than did WT Src (Fig. 4C). We then tested whether the dominant negative KD Src mutant inhibits the EGFRvIII-induced p-Y of Dock180. As shown in Fig. 4D, coexpression of KD

Fig. 2. EGFRvIII induces p-Y of Dock180 at Y722. (A) IP and IB analyses. (B) Schematic of deletion mutants of Dock180. (C) EGFRvIII induces p-Y of Dock180 in HEK293T cells. (D) IB analyses. Red arrows, IgG, blue arrows, p-Y of Del mutant. (E) Mutation of Y722F in Del-5 decreased p-Y of Dock180. (F) Y722 is a major EGFRvIII-induced p-Y site in Dock180. (Scale bars, ± SD.) Bar graph underneath: relative amount of p-Y of Dock180 was determined from three separate in IP-IB blots by ImageJ and normalized to the amount of Dock180. *P < 0.05. (G) Y722 is conserved in Dock180 of various species and in Dock protein family. Black, conserved amino acids; blue, nonconserved amino acids. In A and C-F, a pan-phospho-tyrosine antibody was used to detect p-Y-Dock180. Data are representative of three independent experiments with similar results.

Fig. 3. Phosphorylation of Dock180Y722 is critical for EGFRvIII-driven glioblastoma growth and invasion. (A) EGFR, but not PDGF-A or HGF, induces p-Y of endogenous Dock180Y722 (detected with a specific anti-p-Dock180Y722 antibody) in glioblastoma cells. (B) Effect of Dock180WT, Dock180Y722F, or a vector control on p-Dock180Y722, p-Akt, p-Erk1/2, and Rac1 activity in EGFRvIII-expressing cells. Dock180, Akt, Erk1/2, Rac1, and p-actin were used as loading controls. (C) Dock180Y722F inhibits EGFRvIII-promoted glioblastoma growth and invasion in the brain. Representative H&E and IHC images of brain sections of mice receiving various SNB19 cells (8 wk postinjection, five mice per group). (a–d) H&E staining. (Scale bars, 1 mm.) (d–f) Enlarged areas in a to c marked with squares. (Scale bars, 200 μm.) (g–i) GFP images of the same areas in d to f. (Scale bars, 200 μm.) Arrows indicate invasive tumor cells (d–f). (D and E) Quantification of Ki-67 and TUNEL staining, respectively. *P < 0.05. (Scale bars, ± SD.) Data represent three independent experiments with similar results.
Src with EGFRvIII and Dock180 partially blocked EGFRvIII-induced p-Y of both Dock180 WT and Dock180 Y722F compared with controls. These results are consistent with partial attenuation of EGFRvIII-induced p-Y by the Dock180 Y722F mutant, suggesting that there are other p-Y sites on Dock180 stimulated by EGFRvIII through other kinases.

To validate direct Src phosphorylation of Dock180 Y722F, we performed in vitro p-Y assays by incubating purified recombinant (His)_6-Dock180 WT or (His)_6-Dock180 Y722F proteins with a recombinant active Src followed by immunoblot (IB) using the specific anti-p-Dock180 Y722 antibody. As shown in Fig. 4E, a recombinant Src effectively induced p-Y of Dock180 WT but not Dock180 Y722F in vitro. Next, we evaluated the impact of Src-induced p-Y of Dock180 on its interaction with Rac1 using an in vitro reconstitution assay. In the absence of the recombinant Src, when immunoprecipitated Dock180 WT or Dock180 Y722F from HEK293T was dephosphorylated by a protein tyrosine phosphatase, p-Y of Y722 of Dock180 was undetectable and minimal Dock180–Rac1 interaction was observed. However, when a recombinant Src was added, p-Dock180 WT but not p-Dock180 Y722F was significantly induced, accompanied by an increase in association of Dock180 with Rac1 (Fig. 4F).

Then, we stably knocked down endogenous Src using two different shRNAs in SNB19/EGFRvIII cells that expressed either Dock180 WT or Dock180 Y722F. An ~75% reduction of Src in SNB19/EGFRvIII cells markedly attenuated EGFRvIII-stimulated p-Y722 of Dock180, Rac1 activity (Fig. 4G and H), and cell migration (Fig. 4H) in vector control and Dock180 WT-expressing cells, but had a minimal impact on Dock180 Y722F expressing cells. Additionally, expression of Dock180 WT had minimal impact, whereas Dock180 Y722F suppressed EGFRvIII stimulation of p-Y722 WT, Rac1 activity, and cell migration (Fig. 4G and H). Finally, we determined whether two other SFKs, Fyn and Lyn (13, 14), are involved in EGFRvIII-stimulated Dock180 phosphorylation. We knocked down endogenous Fyn or Lyn using two separate shRNAs for each protein in SNB19/EGFRvIII cells that express Dock180 WT, Dock180 Y722F, or as a vector control. As shown in Fig. 5A–C, shRNA knockdown of Fyn or Lyn markedly decreased EGFRvIII-induced p-Y722 of Dock180 WT Rac1 activity, and cell migration in SNB19/EGFRvIII/vector and SNB19/ EGFRvIII/Dock180 WT cells, but did not affect EGFRvIII stimulation of SNB19/EGFRvIII/Dock180 Y722F cells (Fig. 5). These data demonstrate that SFKs, Src, Fyn, and Lyn largely mediate EGFRvIII stimulation of Rac1 activity and glioblastoma cell migration through p-Y722 of Dock180.

SFKs Stimulate p-Dock180 Y722, Rac1 Activity, and Cell Migration of Primary Human GBM Cells That Overexpress EGFRvIII. Next, we determined whether SFKs also induce p-Y of Dock180 Y722, Rac1 activity, and cell migration in primary human GBM cells. To this end, we examined cells from four different serially transplanted human GBMs, GBM6, GBM9, GBM12, and GBM14 cells that retain the EGFR status of the primary tumor from which they were derived (15). In GBM6 and GBM14 cells that retained EGFRvIII overexpression, strong p-Y of Dock180 Y722 and Rac1 activity were found (Fig. S5A). In contrast, without EGF stimulation, neither p-Y722 of Dock180 nor increased Rac1 activity was detected in GBM12 cells that express WT EGFR or GBM14 cells that have nondetectable WT EGFR or EGFRvIII. We then treated GBM6 and GBM39 cells with the EGFR inhibitors AG1478 and Erlotinib, the SFK inhibitors SU6656, PP2, its inactive stereoisomer PP3, or vehicle control. These inhibitors markedly attenuated EGFRvIII-induced pan-p-Src Y412, p-Dock180 Y722, p-Akt, p-Erk1/2, and p-VEGFR2, p-MAPK, p-ERK1/2, p-Src, and p-Akt to different extents. However, only SFKs had a significant impact on cell migration (Fig. S5B). In summary, our data support that Src/Fyn/Lyn directly phosphorylate Dock180 Y722 and induce Dock180/Y722-mediated Rac1 activation and cell migration.
Rac1 activity, and cell migration compared with GBM cells treated with PP3 or vehicle control (Fig. S5 B and C). These results further suggest that SFK-dependent p-Dock180\(^{Y722}\) is critical for EGFRvIII-stimulated p-Akt, p-Erk1/2, Rac1 activity, and cell migration in glioblastoma cells.

Coexpression of EGFRvIII, p-Dock180\(^{Y722}\) and pan-p-Src\(^{Y418}\) in Clinical Glioblastoma Specimens Correlates with an Extremely Poor Prognosis.

We performed immunohistochemical (IHC) analysis using antibodies against p-Dock180\(^{Y722}\) and pan-p-Src\(^{Y418}\) (also detects p-Y of other SFKs) on a cohort of 124 clinical glioblastoma specimens with identifiable central and invasive regions (11). As shown in Table S1, EGFRvIII protein was detected by the specific anti-EGFRvIII-antibody DH8.3 (16) in 36 of 69 GBM (WHO grade IV, 52.2%), 5 of 26 WHO grade II (19.2%), and 5 of 29 WHO grade III (17.2%) glioblastoma samples, similar to the frequency of EGFRvIII overexpression in clinical GBMs (2). Next, we stained these 46 EGFRvIII-positive tumors and an additional 11 EGFRvIII-negative samples. As shown in Tables S1 and S2, the majority of EGFRvIII-positive tumors demonstrated the presence of p-Dock180\(^{Y722}\) (Fig. 5A a and b, c, e, f, Table S1). Additionally, p-Dock180\(^{Y418}\) was also detected in tumor cells within the invasive areas, as well as in the central regions (Tables S1–S3). An example is shown in Fig. 6a, where EGFRvIII was detected in both invasive (Fig. 6a) and central regions (Fig. 6a/d) in a GBM specimen. Interestingly, both pan-p-Src\(^{Y418}\) and p-Dock180\(^{Y722}\) were also expressed in the majority of EGFRvIII-positive tumor cells in invasive and central regions of clinical WHO grade IV and II–III specimens (Fig. 6a, b, c, e, f, and Tables S1). In contrast, EGFRvIII, p-Src\(^{Y418}\) and p-Dock180\(^{Y722}\) were not detected in normal brain tissues. Spearman’s rank correlation analysis of expression levels of EGFRvIII and p-Dock180\(^{Y722}\) in all of these IHC-stained clinical specimens showed correlation coefficients between border vs. border regions as 0.9000 (P < 0.05), center vs. center regions as 0.9747 (P < 0.05), and invasive vs. invasive areas as 0.8721 (P < 0.05), respectively (Tables S2 and S3).

To further validate these findings, we examined expression of EGFRvIII, p-Src\(^{Y418}\), and p-Dock180\(^{Y722}\) in a separate and independent cohort of 38 clinical GBM specimens by IB analyses. As shown in Fig. 6b, overexpression of EGFR and EGFRvIII was detected in 10 of 38 (26.3%) GBMs, whereas EGFR was overexpressed in an additional 10 of 38 tumors. Additionally, Dock180 was also detected in 10 of 38 (26.3%) GBMs, whereas pan-p-Src\(^{Y418}\) was also found in 38 tumor specimens (38 GBMs, 50 μm). (D) IB analysis of a separate and independent cohort of 38 snap-frozen GBM specimens. Dock180 and p-actin were used as loading controls. (E) Kaplan-Meier curves with long-rank analyses for patients with high EGFRvIII−p-Dock180\(^{Y722}\)–expressing tumors (red line) versus low-expression tumors (blue line) of two separate cohorts of glioblastomas examined in A and B. P values were determined by using the log-rank test. Black bars, censored data. Data represent three independent experiments with similar results.

Discussion

In this study, we report that SFK-dependent p-Dock180\(^{Y722}\) mediates downstream EGFRvIII-signaling and glioblastoma growth and invasion. This study highlights four important points. First, Dock180 is required for EGFRvIII-stimulated glioblastoma cell migration and survival in vitro. Second, EGFRvIII induces a specific p-Y of Dock180 at Y722 and mutation of this site inhibits EGFRvIII-promoted glioblastoma cell migration and survival in vitro and tumor growth and invasion in vivo. Third, SFKs, Src, Fyn, and Lyn mediate EGFRvIII induction of phosphorylation of Dock180\(^{Y722}\) in glioblastoma cells stimulating tumorigenesis. Fourth, p-Dock180\(^{Y722}\) and p-Src\(^{Y418}\) are coexpressed with EGFRvIII in clinical glioblastoma specimens. Coexpression of EGFRvIII, p-Dock180\(^{Y722}\) and p-Src\(^{Y418}\) is correlated with an extremely poor prognosis in patients with glioblastomas. A total of 57 patients that express EGFRvIII and/or p-Dock180\(^{Y722}\) and p-Src\(^{Y418}\) are listed in Table S1. Representative images of GBM (grade IV) tissue stained by anti-EGFRvIII (a and d), anti-p-Src\(^{Y418}\) (b and e), and anti-p-Dock180\(^{Y722}\) (c and f) antibodies. Arrows, positive staining for EGFRvIII, p-Src\(^{Y418}\), and p-Dock180\(^{Y722}\). (Scale bars, 50 μm.) (D) IB analysis of a separate and independent cohort of 38 snap-frozen GBM specimens. Dock180 and p-actin were used as loading controls. (E) Kaplan-Meier curves with long-rank analyses for patients with high EGFRvIII−p-Dock180\(^{Y722}\)–expressing tumors (red line) versus low-expression tumors (blue line) of two separate cohorts of glioblastomas examined in A and B. P values were determined by using the log-rank test. Black bars, censored data. Data represent three independent experiments with similar results.
of Dock180 (8) and modulates cell growth, survival, and motility (17). Consistent with this finding, inhibition of Dock180 by siRNA knockdown, overexpression of a Dock180 Y722S mutant, or suppression of SFKs impaired EGFRIII-stimulated Rac1 activity and tumorigenesis. Moreover, EGFRIII also activates the PISK-Akt and MAPK pathways (3, 4) and induces a cytokine circuit that stimulates EGF-signaling in neighboring tumor cells (18). Separate disruption of these downstream pathways inhibits EGFRIII function, underscoring the heterogeneity of clinical glioblastomas. This heterogeneity is also illustrated by the fact that activated p-Src is detected in all 38 clinical glioblastoma samples, whereas EGFRIII and p-Dock180 are only expressed in 8 of 38 specimens. Similarly, in a total of 724 clinical glioblastoma specimens analyzed by IHC, p-Dock180 was detected in a number of tumors that express EGFRIII, suggesting that other signaling pathways are also involved in EGFRIII-driven tumorigenesis. The heterogeneity of glioblastomas involved p-Y of Dock180 is further demonstrated by our recent study, showing that a Src-dependent p-Y of Dock180 mediates PDGFRα, another RTK that is often overexpressed in pronuclear subtype of human glioblastomas (1–3), and promoted glioblastoma tumorigenesis. Moreover, PDGFRα/Src-induced p-Y of Dock180 is at another tyrosine residue of Dock180 (19), indicating a distinct signaling pathway. Taken together, our results show that SFK-dependent stimulation of Dock180 mediates EGFRIII and PDGFRα stimulation of Rac1 signaling, cell growth, survival, and invasion in glioblastomas.

Src, Lyn, and Fyn are expressed in clinical glioblastoma samples and EGFRIII-expressing glioblastoma cells. Inhibition of Src, Lyn, or Fyn attenuated EGFRIII-promoted tumorigenesis and invasion (13, 14). Our data are consistent with and extend these findings. We found that Src directly induces phosphorylation of Dock180 Y722 and interaction of Dock180 with Rac1 in vitro and in glioblastoma cells. Moreover, inhibition of Src, Lyn, and Fyn by pharmacological inhibitors or shRNA knockdown reduces EGFRIII-induced p-Dock180 Y722, Rac1 signaling and migration of glioblastoma cells (18). Moreover, a Src-induced p-Y of Vav1 at its N terminus opens the DH domain for Rac1 binding (7). Our data are consistent with this mechanism. We show that SFK-dependent p-Dock180 Y722 is required for Dock180 activation of Rac1, thereby mediating EGFRIII-promoted tumorigenesis. However, Y722 is not located in the identified functional domains but at the boundary of a helix/coil configuration in the DHR-1/DHR-2 interdomain of Dock180 (20). With the helix/coil repeats of the interdomain, the DHR-1 domain is brought into close apposition with DHR-2 and Rac1, bringing the membrane binding elements of DHR-1 and Rac1 into the same coplanarity, thereby enabling simultaneous membrane association of the ELMO1-Dock180-Rac1 complex. Additionally, a Dock180-Rac1 dimer is formed that binds to the membrane (20). Therefore, SFK-induced p-Y722 could be critical for the interdomain of Dock180 that holds DHR-1 adjacent to DHR-2 to form a dimeric complex and to achieve the activation of Rac1.

In summary, our data connect the sustained activation of EGFRIII and SFKs to the p-Dock180 Y722 that stimulates Rac1 signaling and malignant behavior of human glioblastoma cells. This unique link is underscored by coexpression of EGFRIII, p-Src, and p-Dock180 Y722 in clinical glioblastoma specimens and association with extremely poor prognosis. Because activation of EGFRIII and SFKs renders an aggressive glioblastoma phenotype, the induced p-Y of Rho GEF is a common mechanism that activates Rac1 signaling, our results suggest that targeting the EGFRIII-SFK-Dock180-Rac1 pathway could offer hope in treating malignant glioblastomas with EGFRIII overexpression.

Materials and Methods

For descriptions of cell lines, cell cultures, reagents, antibodies, DNA constructs, IB and IP, purification of recombinant proteins, in vitro Src tyrosine phosphorylation, pull-down assays of the binding of Dock180 with Rac1, and statistical analysis, see SI Materials and Methods. Experiments using animals were performed using a protocol that was reviewed and approved by the University of Pittsburgh Institutional Animal Care and Use Committee. Studies using human tissues were reviewed and approved by the Institutional Review Board involving Human Subjects at the University of Pittsburgh, Pittsburgh, PA.

Acknowledgments. We thank M. Matsuda, S. Courtneidge, R. Pieper, E. van Meir, and Y. Zhou for providing reagents. This work was supported by National Institutes of Health Grants CA130966 (to S.-Y.C.) and CA102583 (to K.V.); a grant from the James S. McDonnell Foundation (to B.H.); a grant from the Pennsylvania Department of Health, and Innovative Research Scholar Awards (to S.-Y.C. and B.H.); Mayo Specialized Program of Research Excellence Grants CA108961 (to J.N.S.), CA106429 (to C.K.T.), and CA95516 (to W.K.C., and F.B.F.); Grant HL070561 and the National Basic Research Program of China Grant 2011CB964801 (to T.C.); an award from the University of Pittsburgh Foundation (to E.v.M.); and a Clinical Faculty Fellowship from the University of Pittsburgh Cancer Center (to T.G.I.). W.K.C. is a fellow of the National Foundation for Cancer Research. This project used the shared facilities at the University of Pittsburgh Cancer Institute that were supported in part by National Institutes of Health Grant P30CA047904.