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Summary 28 

1. Carbon-based policies provide powerful opportunities to unite tropical forest conservation 29 

with climate change mitigation. However, their effectiveness in delivering biodiversity 30 

co-benefits is dependent on high levels of biodiversity being found in high carbon areas. 31 

Previous studies have focussed solely on the co-benefits associated with Reducing 32 

Emissions from Deforestation and forest Degradation (REDD+) over large spatial scales, 33 

with few empirically testing carbon-biodiversity correlations at management unit scales 34 

appropriate to decision-makers. Yet, in development frontiers, where most biodiversity 35 

and carbon loss occurs, carbon-based policies are increasingly driven by commodity 36 

certification schemes, which are applied at the concession-level.  37 

2. Working in a typical human-modified landscape in Southeast Asia, we examined the 38 

biodiversity value of land prioritised via application of REDD+ or the High Carbon Stock 39 

(HCS) Approach, the emerging land-use planning tool for oil palm certification. Carbon 40 

stocks were estimated via low- and high-resolution datasets derived from global or local-41 

level biomass. Mammalian species richness was predicted using hierarchical Bayesian 42 

multi-species occupancy models of camera-trap data from forest and oil palm habitats.  43 

3. At the community level, HCS forest supported comparable mammal diversity to control 44 

sites in continuous forest, while lower carbon strata exhibited reduced species occupancy.   45 

4. No association was found between species richness and carbon when the latter was 46 

estimated using coarse-resolution data. However, when using high-resolution, field-47 

validated biomass data, diversity demonstrated positive relationships with carbon for 48 

threatened and disturbance-sensitive species, suggesting sensitivity of co-benefits to 49 

carbon data sources and the species considered.  50 

5. Policy implications. Our work confirms the potential for environmental certification and 51 

REDD+ to work in tandem with conservation to mitigate agricultural impacts on tropical 52 
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forest carbon stocks and biodiversity, especially if this directs development to low carbon, 53 

low biodiversity areas. 54 

Keywords: High Carbon Stock Approach; REDD+; mammals; occupancy modelling; oil 55 

palm; mitigation; certification.  56 
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Introduction 57 

Agricultural expansion has emerged as a pervasive threat to tropical forests and biodiversity 58 

(Wilcove et al. 2013), and has been implicated in the loss of ~150 million ha of tropical 59 

forest over the last three decades (Gibbs et al. 2010; Hansen et al. 2013). A key driver of 60 

recent deforestation has been rising demand for cheap vegetable oil such as that from oil 61 

palm (Elaeis guineensis), which now covers 16 million ha across 43 countries, often at the 62 

expense of tropical forest (Pirker et al. 2016).  63 

The potential economic and social benefits associated with oil palm (Potter 2015) 64 

contrast with severe and well-documented ecological impacts. Conversion of forest to oil 65 

palm plantation results in major biodiversity decline, which disproportionately affects forest 66 

specialists and species of conservation concern, resulting in assemblages dominated by 67 

disturbance-tolerant generalists (Fitzherbert et al. 2008; Yaap et al. 2010). With around 19% 68 

of land suitable for oil palm coinciding with areas of high biodiversity (Pirker et al. 2016), 69 

across forested Asia, Africa and South America, the full ecological impact of this commodity 70 

crop is yet to be fully realised. Mitigation measures that reconcile environmental 71 

sustainability, biodiversity conservation and production of crops such as oil palm are 72 

therefore essential in tropical regions. 73 

Retaining native habitat in oil palm estates is known to enhance the biological value 74 

of plantation landscapes by providing ecological refugia and improved connectivity (Gillies 75 

& St Clair 2010; Struebig et al. 2011). However, in practice, the designation of conservation 76 

set-asides can be hindered by agricultural profitability, with income exceeding US$11,240 ha-
77 

1 over a 25 year growing cycle (Fisher et al. 2011). Thus, conservation efforts seeking to 78 

preserve forest within plantations may be more successful when economic incentives are 79 

provided to offset the opportunity costs associated with foregoing development. Amongst 80 
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several mitigation tools available, two incentive-driven policies based on carbon stocks have 81 

gained traction in tropical regions: (1) REDD+ (United Nations Reducing Emissions from 82 

Deforestation and forest Degradation) and related carbon credit schemes, and (2) improved 83 

land-use planning via commodity certification (Yaap et al. 2010). 84 

REDD+, a payment for ecosystem services tool to mitigate climate change, aims to 85 

compensate stakeholders in developing nations for conservation initiatives and sustainable 86 

management practices that protect and restore the carbon sequestered by forests (Venter & 87 

Koh 2012). If REDD+ were to achieve its economic potential, payments generated could 88 

make forest conservation financially competitive compared to oil palm cultivation (Butler, 89 

Koh & Ghazoul 2009). REDD+ is also attractive to conservation because it may deliver co-90 

benefits, whereby safeguarding high carbon areas also protects biodiversity at no additional 91 

cost (Gardner et al. 2012). However, this assumes spatial congruence between areas of high 92 

carbon and biodiversity. In reality it is difficult to generalise on the nature, strength and 93 

extent of these co-benefits because outcomes vary both within and between spatial scales 94 

(e.g. global: Naidoo et al. 2008 vs. Strassburg et al. 2010; national: Egoh et al. 2009 vs. 95 

Murray et al. 2015; landscape: Ruiz-Jean and Potvin, 2010 vs. Kessler et al. 2012). The 96 

extent to which carbon-biodiversity co-benefit assumptions hold at management unit scales 97 

appropriate to decision-makers remains an open question. 98 

REDD+ is largely implemented at sub-national levels. While an increasing number of 99 

studies are recognising the importance of fine-scale assessments (e.g. Magnago et al. 2015; 100 

Beaudrot et al. 2016; Sollmann et al. 2017), most information on biodiversity co-benefits is 101 

derived from global- and national-scale studies that demonstrate overreliance on coarse-102 

grained, secondary data sources. Carbon data are typically derived from global maps (e.g. 103 

Baccini et al. 2012; Avitabile et al. 2016), which have limited application at local-scales 104 

pertinent to management (Mitchard et al. 2014). Furthermore, field-based species data are 105 
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widely underrepresented in the co-benefits literature due to the costs associated with 106 

biodiversity surveys in the tropics (Gardner et al. 2008). Researchers predominantly rely on 107 

coarse species range delineations (e.g. Murray et al. 2015), which are fraught with 108 

uncertainty (Rodríguez-Castañeda et al. 2012) and may not account for localised extirpation 109 

due to anthropogenic pressure (Harrison et al. 2016). Despite statistical advances that account 110 

for imperfect detection in biodiversity indices (Royle & Dorazio 2008), these methods have 111 

received relatively limited application in a co-benefits context (but see Gilroy et al. 2014; 112 

Sollmann et al. 2017), resulting in possible underestimates of species assemblages. 113 

Consequently, biodiversity co-benefits assessments at local-scales, using primary, fine-114 

grained data would provide valuable policy insights.  115 

While the potential importance of REDD+ cannot be overstated, agricultural 116 

certification schemes show promise to ensure sustainable practices as companies benefit from 117 

greater access to environmentally conscious markets and increased price premiums of 118 

certified products (Yaap et al. 2010). The Roundtable on Sustainable Palm Oil (RSPO) is 119 

often seen as an exemplar scheme within the agricultural sector, currently certifying 21% of 120 

the global palm oil market across 2.48 million ha of land (RSPO 2017). RSPO certification 121 

prohibits the conversion of high conservation value habitat in oil palm estates. However, 122 

associated assessment procedures have attracted criticism, raising concerns that current 123 

methodologies do not afford adequate biodiversity protection (Yaap et al. 2010; Edwards, 124 

Fisher & Wilcove 2012).  125 

The High Carbon Stock (HCS) Approach has emerged as a land-use planning tool to 126 

demarcate conservation priority areas based on carbon value, and is being explored within the 127 

RSPO architecture and that of other certification schemes. The HCS methodology seeks to 128 

conserve biodiverse and ecologically functional forest networks within agricultural 129 

concessions by directing conversion towards heavily degraded land of low carbon value 130 
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(Rosoman et al. 2017). This is achieved by stratifying land into discrete classes according to 131 

vegetation density and structure, which are then adopted as proxies for above-ground carbon 132 

stocks and assumed to support varying levels of biodiversity. These strata are subsequently 133 

validated using ground-based above-ground carbon estimates, before land parcels are 134 

prioritised for conversion based on area and connectivity (Rosoman et al. 2017).  135 

The HCS Approach has attracted widespread interest amongst agricultural industries 136 

with 10 million ha of land being evaluated across five oil palm producing countries 137 

(Rosoman, unpublished data). As a model scheme, the successful integration of the HCS 138 

Approach within the RSPO framework may encourage uptake across other certifiable 139 

agricultural commodities, such as rubber and soya. Nevertheless, the extent to which HCS 140 

strata correspond to areas of high biodiversity value is dependent on the accurate partitioning 141 

of vegetation classes according to their carbon value, as well as the underlying association 142 

between carbon and biodiversity. Before the HCS Approach is formally adopted within 143 

certification standards, these assumptions should be tested to understand the conservation 144 

merit of the tool.   145 

Here, we determine the effectiveness of incentive-driven carbon-based mechanisms to 146 

safeguard biodiversity, and provide the first validation of both the carbon and biodiversity 147 

credentials of the HCS land-use planning tool. Our appraisal focuses on a landscape 148 

undergoing conversion from forest to oil palm in Borneo, a region characterised by high 149 

deforestation and forest degradation (Gaveau et al. 2014; Struebig et al. 2015) that is typical 150 

of most HCS applications. First, we validate the accuracy of the HCS classification procedure 151 

and quantify the biodiversity value of the vegetation strata. We then assess the potential for 152 

REDD+ to deliver biodiversity co-benefits using primary and high-resolution data sources. 153 

To assess the influence of spatial grain on the nature of co-benefit relationships, we compare 154 

global- and local-scale measures of carbon. Throughout, we employ biodiversity indices that 155 

Page 8 of 74

Confidential Review copy

Journal of Applied Ecology



9 

 

explicitly account for imperfect detection to provide a more accurate representation of species 156 

assemblages than simple species counts. Our work evaluates the extent to which policy 157 

options that attach greater economic significance to conservation protect vulnerable tropical 158 

forests and safeguard biodiversity.   159 
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Materials and Methods 160 

Study system 161 

The study was conducted over a 13,153 ha development area comprising the Stability of 162 

Altered Forest Ecosystems project (SAFE; www.safeproject.net) and surrounding plantations 163 

in Kalabakan Forest Reserve, Sabah, Malaysian Borneo (4⁰ 46’N, 116⁰ 57’ E; Fig. 1). SAFE 164 

is a landscape-scale forest modification experiment (Ewers et al. 2011) comprising highly 165 

disturbed lowland and hill dipterocarp forest that was logged multiple times between 1978 166 

and 2008. The wider landscape includes forest in Brantian-Tatulit Virgin Jungle Reserve, 167 

twice-logged forest in Ulu Segama Forest Reserve, and plantations (primarily oil palm).  168 

 169 

HCS classification and validation 170 

The HCS Approach uses high-resolution remotely-sensed images to stratify concessions into 171 

six vegetation classes, each with unique structural characteristics (in descending order of 172 

carbon value): (1) ‘High Density Forest’; (2) ‘Medium Density Forest’; (3) ‘Low Density 173 

Forest’; (4) ‘Young Regenerating Forest’; (5) ‘Scrub’; and, (6) ‘Open Land’ (see Appendix 174 

S1 in Supporting Information). In practice, the High, Medium and Low Density Forest strata 175 

are aggregated as ‘Dense Forest’ and earmarked for conservation. Young Regenerating Forest 176 

can also comprise valuable carbon stocks and is also spared from development. The threshold 177 

for allocating land for production rests on distinguishing these strata from heavily degraded 178 

Scrub and Open Land. Therefore, we mapped Dense Forest, Young Regenerating Forest, 179 

Scrub and Open Land as separate classes.  180 

All spatial data processing was implemented in ArcGIS 10.2.1 (ESRI). We used 181 

Landsat 8 and SPOT5 satellite imagery (15 m and 2.5 m resolution respectively; temporal 182 
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range: 2012-2014) to stratify forest habitat using HCS assessment protocols (see Appendix 183 

S1). Multiple data sources were chosen to minimise classification difficulties associated with 184 

cloud cover and haze. We undertook a supervised classification of satellite images, 185 

supplemented with visual interpretation techniques to correct for the potentially confounding 186 

effects of topographic shadow (Wulder et al. 2004). The resulting classes were then 187 

calibrated using above-ground carbon values derived from forest inventory data (N=139), 188 

collected as part of the core SAFE monitoring programme. These data conform to 189 

standardised forest inventory protocols (http://www.rainfor.org), calculating carbon as a 190 

function of above-ground biomass (trees >10 cm DBH) using an established pantropical 191 

algorithm (Chave et al. 2014). Resulting HCS classes were validated using independently 192 

derived carbon estimates (Pfeifer et al. 2016; see Appendix S2). 193 

 194 

Camera-trap sampling of medium-large mammals 195 

We delineated terrestrial mammal diversity as these taxa are consistently prioritised in policy, 196 

land-use planning and certification schemes. Remotely-operated digital cameras (HC500 197 

Hyperfire, Reconyx, Wisconsin, U.S.A.) were deployed at 130 locations across the landscape 198 

between May and September 2015 (Fig. 1). These locations were separated by a mean 199 

distance of 1.4 km and distributed across an elevational gradient (mean=376 m.a.s.l.; 200 

range=64-735 m.a.s.l.). Accounting for theft, vandalism and malfunction, data were retrieved 201 

from 121 locations. We stratified our sampling according to HCS strata, while capturing the 202 

broader heterogeneity of the landscape using reference classes (protected ‘Continuous 203 

Logged Forest’ and well-established ‘Oil Palm Plantation’) for comparative purposes. As the 204 

extent of Scrub and Open Land was relatively low compared to the other classes, these strata 205 

were pooled into a single class, ‘Developed Land’, for biodiversity analyses: Continuous 206 
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Logged Forest, N=27; Dense Forest, N=23; Young Regenerating Forest, N=16; Developed 207 

Land, N=26; and, Oil Palm Plantation, N=23.  208 

Due to the number of cameras available, data collection was completed over two 209 

rotations, each comprising 65 locations. Single units were deployed for 42 consecutive nights 210 

per location, yielding a total survey effort of 4,669 camera nights. Cameras were positioned 211 

at a standardised height of 30cm, on low resistance travel routes (e.g. riparian areas, logging 212 

roads, skid trails) and off-trail to account for inter- and intra-specific differences in habitat 213 

use.  214 

Prior to analyses, all images that could not be identified to species level were 215 

discarded (blurred images and photos of non-target species, equating to 17.6% of 142,294 216 

images). Species encounters were considered independent events if they contained different 217 

individuals or were separated by a period of >60 minutes. A detection matrix was developed 218 

for each species, whereby 42-day sampling periods were divided into six, seven-day temporal 219 

replicates. Any camera site active for fewer than seven days was excluded from analysis, 220 

leaving 115 analytical units each with 2-6 replicates.  221 

 222 

Modelling framework 223 

We employed hierarchical Bayesian multi-species occupancy modelling (Dorazio & Royle 224 

2005) to estimate species diversity from camera data. Hierarchical models permit the 225 

separation of ecological and sampling processes that may influence the data (Gelman & Hill 226 

2007). In the context of occupancy, this means that true absences can be differentiated from 227 

non-detection by explicitly defining models for occurrence and detection.  228 
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Multi-species occupancy models take single-species occupancy detection models as 229 

building units (Guillera‐Arroita 2016). Following Zipkin et al. (2010), we denote the 230 

occurrence of species i at site j by the binary variable zi,j (1=species presence; 0=species not 231 

detected). The occurrence state is described as the outcome of a Bernoulli process, zi,j ~ 232 

Bern(ψi,j), where ψi,j denotes the occurrence probability. The true occurrence state is 233 

imperfectly observed, so the model includes a second Bernoulli process, xijk ~ Bern(pi,j,k*zi,j), 234 

where xi,j,k is the observed detection/non-detection data, k is the survey replicate and pi,j,k 235 

represents the corresponding detection probability conditional to species presence. The 236 

product pi,j,k*zi,j reflects that detection at sites where the species is present (zi,j=1) happens 237 

with detection probability pi,j,k, and that detection is not possible at sites where the species is 238 

absent (zi,j=0). We assume that variation in the abundance of a species across sampling sites 239 

does not affect species detection probabilities pi,j,k (Royle & Dorazio 2008). 240 

Occurrence and detection models for individual species were linked via a hierarchical 241 

component that modelled regression coefficients as realisations from a common community-242 

level distribution with (hyper)parameters. Under this approach, species are assumed to 243 

respond to environmental conditions in a similar, but not identical, manner. Derived species 244 

estimates are, therefore, a compromise between individual response and the average response 245 

of the community. This results in shrinkage (the borrowing of information by individuals 246 

across the community), which has been shown to improve estimation precision, particularly 247 

for rare or elusive species that are infrequently detected during surveys (Pacifici et al. 2014). 248 

We report (hyper)parameters to provide an indication of community-level responses to 249 

covariates. 250 

 251 

Spatial concordance between HCS classes, carbon and biodiversity 252 
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To assess how mammal community representation could vary according to policy relevant 253 

carbon variables, we described occupancy and detectability using three models: 254 

Model 1: logit(ψi,j) ═ µ(i)HCS Class(j) 

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 2: logit(ψi,j) ═ µ i+ α1iCC1000j + α2iCC1000
2
j  

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 3: logit(ψi,j) ═ µ i+ α1iCC25j + α2iCC25
2
j 

logit(pi,j,k) ═ υ(i)HCS Class(j) 

 255 

Occupancy and detection probabilities were modelled with intercepts on the logit 256 

scale specific for each species and HCS class (Model 1). Continuous measures of carbon, 257 

including quadratic terms, were incorporated into occurrence models alongside species-258 

specific intercepts to determine the potential for REDD+ to deliver biodiversity co-benefits 259 

(Models 2 and 3). These carbon data were from two sources: coarse-grained 1 km resolution 260 

global maps ('CC1000'; Avitabile et al. 2016), and 25 m resolution maps derived from 261 

biomass estimates from the study site linked to RapideyeTM satellite imagery ('CC25'; Pfeifer 262 

et al. 2016; for a subset of sites not obscured by cloud cover, N=66). HCS-specific intercepts 263 

were retained in the detection components of Models 2 and 3 as they broadly describe the 264 

influence of habitat type. We chose to model HCS, CC1000 and CC25 separately due to 265 

strong evidence of collinearity between these variables (|r≥|0.7). Continuous carbon and HCS 266 

covariates were calculated as average values extracted from a 100 m buffer (ca. 3.1 ha area) 267 

around each camera location. Covariates were centred and standardised prior to analysis. We 268 

found no evidence of spatial autocorrelation in the detection dataset (Moran’s 269 

I=0.08≤P≤0.92), indicating that assumptions of independence in occupancy modelling were 270 

met (Royle & Dorazio 2008). 271 
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The models were fitted to include inference about the number of potential species not 272 

observed during sampling (Dorazio & Royle 2005). To achieve this, detection data were 273 

augmented with 50 hypothetical species, with all-zero encounter histories, following Royle et 274 

al. (2007). Predicted species richness was calculated for each camera location allowing for 275 

post-hoc comparison between HCS classes. 276 

We compared mammal richness between HCS classes using a Bayesian linear model. 277 

We follow a two-stage analytical approach described by Kéry & Royle (2015), whereby 278 

estimation uncertainty associated with predicted species richness is propagated by the 279 

inclusion of an additional residual component into the model (standard deviation of richness 280 

estimates from the hierarchical Bayesian multispecies occupancy models). In principle, 281 

parameter estimates could be derived directly from a single model, but this resulted in much 282 

lower precision. Since land-use change disproportionately affects species of conservation 283 

concern and disturbance-sensitive forest specialists, we report our findings for: (1) all 284 

species; (2) threatened species (IUCN red-listed as vulnerable, endangered or critically 285 

endangered); (3) non-threatened species (IUCN least concern); (4) disturbance-sensitive 286 

species (listed as medium-high sensitivity according to Wilson et al. 2010), and; (5) 287 

disturbance- tolerant species (low sensitivity; see Appendix S3 for species-specific group 288 

assignment). 289 

 290 

Biodiversity co-benefits of REDD+ 291 

To assess the potential biodiversity co-benefits of REDD+, we extracted predicted species 292 

richness values from the hierarchical occurrence model and explored their association with 293 

carbon. To determine if these relationships were grain-dependent, we derived carbon data 294 

from coarse- (CC1000, 1 km) and fine-grained (CC25, 25m) satellite-derived datasets. 295 
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Associations between levels of mammal species richness and carbon at the two different 296 

spatial resolutions, and for a priori groupings, were assessed via Bayesian two-stage linear 297 

models incorporating quadratic terms.  298 

All analyses were conducted in WinBUGS version 1.4.3 through R version 3.3.0 299 

using the package “R2WinBUGS” (Sturtz, Ligges & Gelman 2005); see Appendix S4 for 300 

further information on model specification and predictive performance checks.  301 
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Results 302 

Camera-trapping yielded 3,237 independent capture events of 28 species, comprising 24 303 

genera distributed across 16 families.  In contrast, our models predicted 30.6 species across 304 

the landscape (95% Bayesian Credible Interval, BCI=28.0-37.0), suggesting that few 305 

mammal species were missed by our sampling. The effect of imperfect detection was more 306 

apparent at the camera-trap level, where predicted richness was consistently greater than 307 

observed richness (mean=4.35, range=0.02-12.26).  308 

 309 

Spatial concordance between biodiversity and HCS classes 310 

Hierarchical Bayesian multi-species models indicated reduced mammalian occupancy in the 311 

low carbon strata (Fig 2). Community (hyper)parameters revealed comparable estimates of 312 

mean occupancy between Continuous Logged Forest (mean=0.49, BCI=0.32-0.63), Dense 313 

Forest (0.36, 0.17-0.60) and Developed Land (0.32, 0.12-0.56). However, community 314 

occupancy was low in Young Regenerating Forest (0.23, 0.11-0.45) and Oil Palm plantation 315 

(0.05, 0.01-0.31).  316 

Our models demonstrated species-specific associations with HCS classes (Fig. 2). For 317 

example, occupancy estimates indicate that Sus barbatus Müller (bearded pig) and Macaca 318 

nemestrina Linnaeus (southern pig-tailed macaque) were common in Continuous Logged 319 

Forest (S. barbatus: 0.71, 0.53-0.85; M. nemestrina: 0.71, 0.53-0.86) and Dense Forest (S. 320 

barbatus: 0.74, 0.53-0.90; M. nemestrina: 0.74, 0.52-0.92), with occupancy of M. nemestrina 321 

also high in Developed Land (0.71, 0.51-0.87). Conversely, species such as Tragulus kanchil 322 

Raffles (lesser mouse-deer: 0.20, 0.08-0.40) and Helarctos malayanus Raffles (sun bear: 323 

0.21, 0.08-0.44) were rare in Dense Forest. In the Oil Palm plantation five species 324 
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demonstrated low occupancy, four of which were threatened taxa (Fig. 2e). Species-specific 325 

detection summaries for the HCS model are available in Appendix S5.3. 326 

Extremes in predicted species richness were identified between the reference habitat 327 

classes (Fig. 3); Continuous Logged Forest was found to have the highest richness (14.12, 328 

13.20-15.07), while Oil Palm plantation supported the most depauperate community (4.54, 329 

3.58-5.52). Estimates of total richness were similar between the Dense Forest (11.38, 10.30-330 

12.51) and Developed Land (10.63, 9.52-11.02), while the number of species found in Young 331 

Regenerating Forest was significantly lower (8.15, 7.13-9.27). These patterns were consistent 332 

across groupings. 333 

 334 

Biodiversity co-benefits of REDD+ 335 

The global- versus local-scale carbon values at camera locations were inconsistent. The 1 km 336 

resolution global data tended to produce much higher carbon estimates compared to those 337 

derived from higher resolution imagery (global mean=152.23 t C ha-1, range=50.39-236.53; 338 

local mean=22.95t C ha-1, range= 0.31-94.98). Carbon values from the global- and local-scale 339 

maps corresponded broadly with biomass values derived from field inventories (N=164; 340 

rs=0.55 global; rs=0.51; local-scale). However, local-scale carbon estimates were found to be 341 

much more precise (RMSE: local=29.05 t C ha-1; global=130.94 t C ha-1). We found no 342 

influence of continuous measures of carbon on mammalian occupancy using either global- or 343 

local-scale carbon data (see Appendix S5.4/S5.6). Species-specific detection summaries for 344 

the continuous carbon models are available in Appendix S5.5/S5.7.   345 

Grain-dependency between the association of carbon and mammal richness was 346 

evident. Using global carbon data no relationship between the two variables was apparent, 347 
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regardless of the species grouping (Figs. 4a,c,e). However, at the local-scale, positive 348 

associations with carbon were identified for threatened and disturbance-sensitive species 349 

(Figs. 4d,f). This trend was not consistent across groupings with all species, non-threatened 350 

and disturbance-tolerant taxa demonstrating no relationship with carbon (Figs. 4b). 351 

  352 

Page 19 of 74

Confidential Review copy

Journal of Applied Ecology



20 

 

Discussion  353 

The extent to which biodiversity and carbon spatially align is fundamental to our 354 

understanding of whether carbon-based policies can deliver positive results for conservation 355 

in human-modified tropical landscapes. Among the few studies that assess biodiversity and 356 

carbon covariance using primary and/or high-resolution data (Magnago et al. 2015; Sollmann 357 

et al. 2017), ours is the first to verify an association within a tropical landscape mosaic 358 

undergoing certification. We show that the strength, nature and extent of biodiversity co-359 

benefits are dependent on how carbon stocks are characterised (i.e. categorical or 360 

continuous), the spatial resolution of the carbon data employed, and the species considered.  361 

 362 

Contribution of the HCS approach to biodiversity conservation 363 

When evaluating community-level responses to HCS classes, we found comparable levels of 364 

mammalian occupancy between Continuous Logged Forest, Developed Land and Dense 365 

Forest, while occupancy was reduced in Young Regenerating Forest and Oil Palm. 366 

Occupancy can be a viable surrogate for abundance under certain conditions (Efford & 367 

Dawson 2012). Our results could therefore suggest the persistence of certain mammal species 368 

at lower densities within carbon-poor classes, which confirms previous reports of reduced 369 

mammalian abundance in impoverished forest habitats (Bicknell et al. 2014).  370 

Occupancy and species richness estimates for the total mammal community highlight 371 

comparable levels of biodiversity between the Dense Forest and Developed Land classes, 372 

supporting previous studies that demonstrate the conservation value of heavily degraded 373 

forest for a range of taxonomic groups (Struebig et al. 2013; Edwards et al. 2014; Wearn et 374 

al. 2016). However, we advise caution when interpreting the biodiversity value of Developed 375 
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Land, which may not be fully realised for long-lived mammal species until extinction debts, 376 

owed to a legacy of disturbance, are repaid (Rosa et al. 2016). The biodiversity value of 377 

Developed Land that we found is also crucially dependent on the low levels of hunting at our 378 

study site. Hunting has been shown to have substantial impacts on mammal communities 379 

elsewhere in the region (Harrison et al. 2016). Our study adds to the growing body of 380 

evidence that shows oil palm plantations to have depauperate mammalian communities, 381 

comprised of few generalist species occurring at low densities (Yue et al. 2015; Wearn et al. 382 

2016). While our data generally conform to the pattern of declining biodiversity relative to 383 

structural complexity, Young Regenerating Forest demonstrated comparably lower 384 

biodiversity value regardless of the metric examined. Given the difficulties in differentiating 385 

between the Young Regenerating Forest and Scrub strata (see Appendix S2), we believe this 386 

finding reflects ambiguities in the HCS classification process. 387 

While our analyses demonstrate differences in conservation value between the HCS 388 

strata, the ability of land parcels to support biodiversity will also be limited by habitat 389 

fragmentation effects. This process is pervasive in human-modified landscapes, and has 390 

contributed to species richness declines of up to 75% (Haddad et al. 2015). While efforts to 391 

account for habitat fragmentation in the HCS prioritisation process are underway, a definitive 392 

toolkit is still in development. Therefore, while we have not explicitly accounted for the 393 

independent and interactive effects of fragmentation metrics (e.g. patch size, isolation and 394 

connectivity) on biodiversity in our analyses, it warrants further consideration as the HCS 395 

Approach gains traction across the agricultural sector. 396 

 397 

Contribution of REDD+ to biodiversity conservation 398 
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Our results indicate that spatial concordance between biodiversity and carbon can be 399 

overlooked if the latter is calculated via low-resolution data. Using carbon information from a 400 

commonly utilised global dataset, no association with mammal diversity was identified, 401 

suggesting that REDD+ initiatives would not provide biodiversity co-benefits in heavily 402 

degraded landscapes. However, when high-resolution carbon maps were employed, a positive 403 

relationship with species richness was found for threatened and disturbance-sensitive taxa, 404 

demonstrating the value of REDD+ to those species most vulnerable to land-use change. 405 

When all species were considered these relationships were obscured by non-threatened, 406 

generalist species that are resilient to disturbance. Our findings provide further support for 407 

biodiversity co-benefits in agricultural land-use mosaics, as previously demonstrated for a 408 

range of taxonomic groups (birds and dung beetles: Gilroy et al. 2014; amphibians: Basham 409 

et al. 2016), while highlighting important nuances in the carbon-biodiversity relationship. We 410 

advocate the use of fine-grained, field-validated carbon data when determining the extent and 411 

nature of biodiversity co-benefits and suggest an emphasis on species of conservation 412 

concern.  413 

Our detailed landscape appraisal is the first to identify biodiversity co-benefits for 414 

mammals, a taxonomic group that occupies key trophic positions in tropical forest 415 

ecosystems and is frequently prioritised by conservation initiatives. Previous studies have 416 

proved less convincing. Across a pantropical network of sites, Beaudrot et al. (2016) found 417 

no association between forest carbon and three measures of mammalian diversity. However, 418 

by aggregating fine-scale biomass data at the site level, the authors compromised the 419 

resolution of their data, potentially obscuring intra-site relationships that would be more 420 

representative of a REDD+ management unit. Similarly, Sollmann et al. (2017) found little 421 

correspondence between above-ground biomass and mammal occupancy in a certified forest 422 
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reserve in Malaysian Borneo, despite adopting a comparable methodology to the present 423 

study. Contrasting findings may be attributed to spatial variability in hunting pressure. 424 

 425 

Implications for HCS implementation 426 

Given that RSPO members have little obligation to protect highly disturbed forest of 427 

uncertain conservation value, the HCS Approach is a useful tool to designate high carbon, 428 

high biodiversity land in areas that would otherwise be converted to plantation. High Carbon 429 

Stock areas can also contribute to national and regional spatial planning initiatives that 430 

mitigate the effects of environmental change on tropical biodiversity by promoting 431 

connectivity in human-modified landscapes (Struebig et al. 2015). 432 

Under current HCS guidelines, 62% (8,150 ha) of the remaining forest in the study 433 

system would qualify for protection from agricultural conversion, equating to a net gain of 434 

15.72 t C ha-1 (see Appendix S2) at an annual opportunity cost of US$3.7 million (based on 435 

Fisher et al. 2011). The success of certification depends on financial returns from sustainable 436 

production offsetting the economic losses associated with sustainable practices. While the 437 

zero deforestation principle of the HCS Approach aligns with consumer goods forum calls to 438 

eliminate deforestation from global commodity supply chains, reducing reputational risks, it 439 

has been considered economically restrictive for nations with extensive pristine forests 440 

(Senior et al. 2015), indicating that current guidelines may be too stringent. Strata such as 441 

Young Regenerating Forest might, therefore, end up being earmarked for conversion rather 442 

than conservation in some circumstances. However, with the conservation value of this 443 

stratum likely to increase as forests regenerate, the impact of such a policy change needs to 444 

be fully evaluated. Carbon neutral conversion represents an alternative to the current 445 

emphasis on zero deforestation. While the specific carbon threshold for delineating forest has 446 
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proved contentious, Pirker et al. (2016) for example, demonstrated that protecting areas 447 

exceeding 100 t C ha-1 would safeguard 73% of the climatically suitable area for oil palm 448 

expansion. Ultimately, compromise begets progression, and while the industry should still 449 

strive for zero deforestation, carbon neutral conversion may be more viable in specific 450 

countries and circumstances, if agricultural expansion, economic development and forest 451 

conservation are to be reconciled. 452 

 453 

Implications for REDD+ implementation 454 

The considerable enthusiasm for biodiversity co-benefits often obscures the fact that REDD+ 455 

is fundamentally a carbon-orientated mechanism with limited scope for increasing 456 

biodiversity conservation (Venter et al. 2013). While we provide further evidence to verify 457 

biodiversity co-benefits in human-modified landscapes it is unlikely that REDD+ will be 458 

economically viable in carbon-poor environments. Given current economic pressures and 459 

weak carbon markets, REDD+ projects currently prioritize carbon gains at low operating 460 

costs.  Acting optimally for carbon will therefore place increasing agricultural pressure on 461 

secondary or degraded forests that are comparatively low in carbon value but retain 462 

appreciable levels of biodiversity (Edwards et al.2014). Conservationists must ensure that 463 

safeguards are in place to support vulnerable species in disturbed habitats that fall beyond the 464 

remit of carbon-financing mechanisms. 465 

The viability of REDD+ in human-modified landscapes is further hindered by the 466 

profitability of oil palm. Under current voluntary markets avoided deforestation through 467 

REDD+ was found to have an opportunity cost of $3221–8636 ha-1 over a 30 year period 468 

when compared to potential profits generated from oil palm (Butler, Koh & Ghazoul 2009). 469 

For REDD+ to be an economically competitive alternative to oil palm cultivation, climate 470 
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change policies must legitimise REDD+ carbon credits to facilitate their trade on financially 471 

lucrative compliance markets (Butler, Koh & Ghazoul 2009).  472 

 473 

Conclusions  474 

Our work highlights the potential for environmental certification and REDD+ financing 475 

mechanisms to work in tandem with conservation to mitigate the effects of agricultural 476 

expansion on tropical forest carbon stocks and biodiversity. REDD+ is well placed if it 477 

prioritises large tracts of contiguous forest, especially if commitments to carbon stock 478 

enhancement safeguard degraded forest of biological value. Certification schemes, coupled 479 

with land-use planning tools such as HCS, can help secure sizeable forest patches of high 480 

conservation value in agricultural estates, and offer a further safeguard to minimise 481 

encroachment. Conservationists should capitalise on both types of carbon-based policy to 482 

maximise the potential for developed lands to provide ecological stepping stones for 483 

threatened wildlife between a network of high-carbon, high-biodiversity areas.  484 
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Figures  671 

 672 

Figure 1: HCS classification of the study landscape in Sabah, Borneo. Forest cover was 673 

delineated into four strata on the basis of vegetation density (Dense Forest, Young 674 

Regenerating Forest, Scrub, Open Land) and supplemented with two reference classes 675 

(Continuous Logged Forest, Oil Palm) to act as forest and agricultural controls. Points 676 

indicate camera-trap locations (N=115). 677 
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Figure 2: Caterpillar plots of outputs from the hierarchical Bayesian multi-species occupancy 680 

model. Graphs show species-specific baseline occupancy estimates (including 95% Bayesian 681 

Credible Interval) relative to habitat class (a-e). Mean community (hyper)parameter 682 

occupancy values and their associated credible intervals are represented in the shaded 683 

(orange) background to each plot. Species exhibiting deviations from a baseline occupancy of 684 

0.5 are shown with shaded (blue) bars. 685 

 686 

 687 

Figure 3: Boxplots demonstrating species richness in relation to habitat class for: (1) all 688 

species; (2) threatened species (IUCN red-listed as vulnerable, endangered or critically 689 

endangered); (3) disturbance sensitive species. Colour coded capitalised letters indicate 690 

significant differences between habitat classes within broader species groupings (different 691 

letters suggest significance while identical letters indicate non-significance). 692 

 693 

 694 
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 695 

Figure 4: Bayesian linear model outputs demonstrating significant positive relationships 696 

between predicted species richness and carbon stock estimates derived from a 25 m 697 

resolution local dataset (d: threatened species; f: disturbance-sensitive species). All other 698 

associations presented were found to be non-significant. Blue lines indicate predicted mean 699 

posterior distribution values, dashed lines refer to predicted 95% Bayesian Credible Intervals 700 

and vertical grey lines highlight the error associated with each estimated species richness 701 

value. 702 
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Supporting Information S1: Definitions of strata delineated by the High Carbon Stock 

(HCS) Approach (Rosoman et al. 2017)  

 

The High Carbon Stock (HCS) methodology seeks to conserve biodiverse and ecologically 

functional forest networks within agricultural concessions by directing conversion towards 

heavily degraded land of low carbon value (Greenpeace International, 2013). This is achieved 

by using high resolution satellite imagery to stratify the landscape into discrete strata 

according to vegetation density and structure, which are then adopted as proxies for above-

ground carbon stocks and assumed to support varying levels of biodiversity. The HCS 

Approach recognises six distinct vegetation classes (detailed below), each with unique 

structural characteristics.  
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Habitat Classes Analytical 

Classification  

 

Continuous Logged Forest contains similar 

structural properties to Dense Forest. This class 

is not considered for development due to its 

protected status.  

 

This class was incorporated as a control against 

which carbon and biodiversity of other strata 

could be compared. 

Continuous 

Logged Forest  

 

Dense Forest comprises three classes, 

high/medium/low density forest, and refers to 

closed-canopy natural forest characterised by: 

• >50% canopy cover; 

• Significant proportion of trees >30cm dbh; 

• Dominated by climax community trees. 

 

Development status: Conserved 

Dense Forest 

 

Young Regenerating Forest is highly disturbed 

remnant forest characterised by: 

• 30-40% canopy cover; 

• Significant proportion of trees between 10 

and 30cm dbh; 

• Dominated by pioneer tree species. 

 

Young 

Regenerating 

Forest 
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Development Status: Conserved 

 

Scrub refers to land that has previously been 

cleared but experienced some regeneration. It is 

characterised by: 

• <25% canopy cover; 

• Dominated by tall grasses and ferns but 

containing some pioneer species. 

 

Development status: Converted 

Developed Land 

 

Open Land represents a post-clearance habitat 

dominated by grass or crops with few woody 

plants.  

 

Development status: Converted 

 

Oil palm (Elaeis guineensis) represents the final 

phase of land-use change in the study system 

when natural forest habitat has been displaced by 

commodity agriculture. 

 

This class was incorporated as a control against 

which carbon and biodiversity of other strata 

could be compared. 

Oil Palm 

Plantation 
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Supplementary Information S2: Validating the carbon credentials of the High Carbon 

Stock (HCS) Approach 

 

Rationale 

The High Carbon Stock (HCS) land-use planning tool is gaining traction in oil palm 

certification as companies seek to honour their commitments to sustainable production. 

However, there is a paucity of information in the scientific literature to validate the accuracy 

of the HCS stratification process to delineate high carbon conservation priority areas. Here, 

we provide an assessment of the carbon credentials of the HCS toolkit. 

 

Methods and Materials 

HCS classes were delineated across the Stability of Altered Forest Ecosystems (SAFE) 

Project study site using standardised protocols (HCS Steering Group 2015). These strata were 

validated using independent high-resolution satellite data of above-ground biomass 

(RapidEye, 5 m resolution; temporal coverage 2012-2013; Pfeifer et al. 2016), across cloud-

free areas of the study landscape. Carbon stocks were calculated using a conversion factor of 

0.47 (Martin & Thomas 2011), and values were extracted from 200 random points per HCS 

class (N=800) separated by a minimum distance of 50 m. A Bayesian linear model was 

employed to determine the distribution of carbon values across classes, thus testing the 

accuracy of the classification process. 
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Results 

Following our land-cover stratification, 62 % of the remaining forest in the study landscape, 

comprising 6,031 ha of High Carbon Stock forest and 2,120 ha of Young Regenerating 

Forest, would qualify for conservation under current HCS guidelines (Fig. 1). The classes 

appropriately reflected modelled carbon content, which was greatest for Dense Forest (45.86t 

C ha
-1

, 95% BCI=42.32-49.44) and significantly lower in the other classes (Young 

Regenerating Forest: 31.30t C ha
-1

, 27.85-34.80; Scrub: 29.62 t C ha
-1

, 26.19-33.05; Open 

Land: 16.09t C ha
-1

, 12.59-19.62). Pairwise comparisons of carbon content revealed 

significant differences between all habitat classes with the exception of Young Regenerating 

Forest and Scrub. On average, land earmarked for conservation contained 41% more carbon 

than that designated for development (i.e. Scrub and Open Land strata combined) under the 

HCS Approach, equating to a net value of 15.72 t C ha
-1

 across the landscape. 

 

Discussion 

There is a general consensus in the scientific literature that field-derived carbon estimates are 

laborious, costly and time consuming to implement over large spatial scales (Gibbs et al. 

2007; Petrokofsky et al. 2012). Consequently, there is a need for cost-effective, efficient 

protocols that can be followed to delineate high carbon stock areas. Our results provide 

empirical support for the prioritisation of high carbon stock areas for conservation in the 

humid tropics via the HCS Approach. High Carbon Stock Forest (Dense Forest and Young 

Regenerating Forest combined) was estimated to store 45.86 t C ha
-1

, which falls within the 

range of estimates for highly degraded forest habitat in Borneo (40-100 t C ha-1; Lucey et al. 

2014), but is considerably lower than pristine lowland tropical forest (477 t C ha-1; Budiharta 

et al. 2014).   
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Our analyses demonstrate that carbon stocks are similar between land classified as 

Young Regenerating Forest and Scrub, suggesting that the HCS toolkit cannot reliably 

distinguish between these strata. This has direct implications for conservation, as Young 

Regenerating Forest should be retained within the landscape, yet Scrub can be developed. 

This reflects the concerns of Annisa (2014), who stressed the difficulties associated with 

partitioning heterogeneous vegetation into categorical carbon classes, as habitat transitions 

are gradual and not discrete. While the initial version of the HCS toolkit offered a clear 

carbon threshold value (35 t C ha
-1

) with which to differentiate between strata suitable for 

development and conservation, it has been omitted in subsequent revisions, introducing 

subjectivity and misinterpretation into the classification process. We recommend the adoption 

of explicit carbon threshold values defining each HCS stratum, to improve calibration and 

thus classification accuracy. Threshold values would make the HCS methodology more 

transparent, objective and comparable across concessions. In practice, the thresholds should 

be regionally-specific, accounting for the recognised geographic variation in standing carbon 

stock across tropical forests globally (Banin et al. 2014; Avitabile et al. 2016). 
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Supplementary Information S3: Species assignment to grouping categories 

Species Threat Status Disturbance Response 

Asian Elephant Threatened Sensitive 

Banded Civet Threatened Sensitive 

Bearded Pig Threatened Tolerant 

Binturong Threatened Sensitive 

Clouded Leopard Threatened Sensitive 

Common Palm Civet Non-threatened Tolerant 

Greater Mousedeer Non-threatened Sensitive 

Leopard Cat Non-threatened Tolerant 

Lesser Mousedeer Non-threatened Sensitive 

Long tailed Macaque Non-threatened Tolerant 

Long tailed Porcupine Non-threatened Tolerant 

Malay Civet Non-threatened Tolerant 

Malay Porcupine Non-threatened Tolerant 

Marbled Cat Threatened Sensitive 

Masked Palm Civet Non-threatened Tolerant 

Moonrat Non-threatened Sensitive 

Orangutan Threatened Sensitive 

Pig tailed Macaque Threatened Tolerant 

Red Muntjac Non-threatened Tolerant 

Sambar Deer Threatened Sensitive 

Short tailed Mongoose Non-threatened Tolerant 

Stink Badger Non-threatened Tolerant 

Sun Bear Threatened Sensitive 

Sunda Pangolin Threatened Tolerant 

Thick spined Porcupine Non-threatened Tolerant 

Tufted Ground Squirrel Threatened Sensitive 

Yellow Muntjac Non-threatened Sensitive 

Yellow throated Marten Non-threatened Tolerant 
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Supplementary Information S4: Model Specification and predictive performance checks 

 

All analyses were conducted in WinBUGS version 1.4.3 called through R version 3.3.0 using 

the package “R2WinBUGS” (Sturtz, Ligges & Gelman 2005). All statistical models were 

constructed using uninformative priors. Unless stated otherwise, parameter estimates are 

presented as means alongside 95% Bayesian Credible Intervals (BCIs) and considered 

statistically significant if their 95% BCIs did not overlap zero. For the hierarchical Bayesian 

multispecies occupancy model, three parallel chains were run for 75,000 iterations, 25,000 of 

which were discarded during the burn-in; posterior chains were thinned by 10. For all 

Bayesian two-stage linear models, three parallel chains were run for 12,000 iterations, 

following a burn-in of 2,000; posterior chains were thinned by 5. Convergence was assessed 

using visual inspection of trace plots and the Gelman-Rubin statistic, values ≥1.1 indicate 

failure to converge (Gelman & Hill 2007). Model fit was assessed statistically using a 

posterior predictive check, which compares model fit for the actual data against a simulated, 

idealised dataset (Gelman, Meng & Stern 1996). Bayesian p-values were extracted as a 

numerical summary of the posterior predictive distribution, with quantities close to 0.5 

indicating adequate model fit. We identified quantitative and visual support for convergence 

in all models presented, while obtained Bayesian p-values did not provide evidence of lack of 

fit (0.43≤ p≤0.52). 
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Model code 

 

WinBUGS code for hierarchical Bayesian community occupancy model used to assess spatial 

concordance between biodiversity and HCS classes. 

 

    model{ 

     

    #Define prior distributions for community-level model parameters 

    omega ~ dunif(0,1) 

     

    CLF.mean ~ dunif(0,1) 

    mu.uCLF <- log(CLF.mean) - log(1-CLF.mean) 

    HCS.mean ~ dunif(0,1) 

    mu.uHCS <- log(HCS.mean) - log(1-HCS.mean) 

    YRF.mean ~ dunif(0,1) 

    mu.uYRF <- log(YRF.mean) - log(1-YRF.mean) 

    DEV.mean ~ dunif(0,1) 

    mu.uDEV <- log(DEV.mean) - log(1-DEV.mean) 

    OP.mean ~ dunif(0,1) 

    mu.uOP <- log(OP.mean) - log(1-OP.mean) 

 

    CLF2.mean ~ dunif(0,1) 

    mu.vCLF <- log(CLF2.mean) - log(1-CLF2.mean) 

    HCS2.mean ~ dunif(0,1) 

    mu.vHCS <- log(HCS2.mean) - log(1-HCS2.mean) 
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    YRF2.mean ~ dunif(0,1) 

    mu.vYRF <- log(YRF2.mean) - log(1-YRF2.mean) 

    DEV2.mean ~ dunif(0,1) 

    mu.vDEV <- log(DEV2.mean) - log(1-DEV2.mean) 

    OP2.mean ~ dunif(0,1) 

    mu.vOP <- log(OP2.mean) - log(1-OP2.mean) 

     

    tau.uCLF ~ dgamma(0.1,0.1)   

    tau.uHCS ~ dgamma(0.1,0.1) 

    tau.uYRF ~ dgamma(0.1,0.1) 

    tau.uDEV ~ dgamma(0.1,0.1) 

    tau.uOP ~ dgamma(0.1,0.1) 

    tau.vCLF ~ dgamma(0.1,0.1)  

    tau.vHCS ~ dgamma(0.1,0.1) 

    tau.vYRF ~ dgamma(0.1,0.1) 

    tau.vDEV ~ dgamma(0.1,0.1) 

    tau.vOP ~ dgamma(0.1,0.1) 

     

    sigma.uCLF <- 1/sqrt(tau.uCLF) 

    sigma.uHCS <- 1/sqrt(tau.uHCS) 

    sigma.uYRF <- 1/sqrt(tau.uYRF) 

    sigma.uDEV <- 1/sqrt(tau.uDEV) 

    sigma.uOP <- 1/sqrt(tau.uOP) 

    sigma.vCLF <- 1/sqrt(tau.vCLF) 

    sigma.vHCS <- 1/sqrt(tau.vHCS) 
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    sigma.vYRF <- 1/sqrt(tau.vYRF) 

    sigma.vDEV <- 1/sqrt(tau.vDEV) 

    sigma.vOP <- 1/sqrt(tau.vOP) 

 

    for (i in 1:(n+nzeroes)) { 

     

    #Create priors for species i from the community level prior distributions 

    w[i] ~ dbern(omega) 

    u.CLF[i] ~ dnorm(mu.uCLF, tau.uCLF) 

    u.HCS[i] ~ dnorm(mu.uHCS, tau.uHCS) 

    u.YRF[i] ~ dnorm(mu.uYRF, tau.uYRF) 

    u.DEV[i] ~ dnorm(mu.uDEV, tau.uDEV) 

    u.OP[i] ~ dnorm(mu.uOP, tau.uOP) 

    v.CLF[i] ~ dnorm(mu.vCLF, tau.vCLF)  

    v.HCS[i] ~ dnorm(mu.vHCS, tau.vHCS) 

    v.YRF[i] ~ dnorm(mu.vYRF, tau.vYRF)  

    v.DEV[i] ~ dnorm(mu.vDEV, tau.vDEV) 

    v.OP[i] ~ dnorm(mu.vOP, tau.vOP) 

 

     

    #Create a loop to estimate the Z matrix (true occurrence for species i  

    #at point j).       

    for (j in 1:J) { 

    logit(psi[j,i]) <- u.CLF[i]*Ind1[j] + u.HCS[i]*Ind2[j] + u.YRF[i]*Ind3[j] +  

    u.DEV[i]*Ind4[j] + u.OP[i]*Ind5[j] 
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    mu.psi[j,i] <- psi[j,i]*w[i] 

    Z[j,i] ~ dbern(mu.psi[j,i]) 

     

    #Create a loop to estimate detection for species i at point j during  

    #sampling period k.       

    for (k in 1:K[j]) {   

    logit(p[j,k,i]) <-  v.CLF[i]*Ind1[j] + v.HCS[i]*Ind2[j] + v.YRF[i]*Ind3[j] +  

    v.DEV[i]*Ind4[j] + v.OP[i]*Ind5[j] 

     

    mu.p[j,k,i] <- p[j,k,i]*Z[j,i] 

    X[j,k,i] ~ dbern(mu.p[j,k,i]) 

 

    # Create simulated dataset to calculate Bayesian p value 

    Xnew[j,k,i] ~ dbern(mu.p[j,k,i]) 

    d[j,k,i]<-  abs(X[j,k,i] - mu.p[j,k,i])  

    dnew[j,k,i]<- abs(Xnew[j,k,i] - mu.p[j,k,i])  

    d2[j,k,i]<- pow(d[j,k,i],2)   

    dnew2[j,k,i]<- pow(dnew[j,k,i],2)  

    }    

     

    dsum[j,i]<- sum(d2[j,1:K[j],i])  

    dnewsum[j,i]<- sum(dnew2[j,1:K[j],i]) 

    }} 
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    # Calculate discrepency measure, which is then defined as mean(p.fit > p.fitnew) in R 

    p.fit<-sum(dsum[1:J,1:n])  

    p.fitnew<-sum(dnewsum[1:J,1:n]) 

    } 

     

    #Sum all species observed (n) and unobserved species (n0) to find the  

    #total estimated richness 

    n0 <- sum(w[(n+1):(n+nzeroes)]) 

    N <- n + n0 

     

    #Create a loop to determine point level richness estimates for the  

    #whole community and for subsets or assemblages of interest. 

    for(j in 1:J){ 

    Nsite[j]<- inprod(Z[j,1:(n+nzeroes)],w[1:(n+nzeroes)]) 

    Nleast[j]<- inprod(Z[j,1:n],least.concern[1:n]) 

    Nthreat[j]<- inprod(Z[j,1:n],threatened[1:n]) 

    Ntolerant[j]<- inprod(Z[j,1:n],tolerant[1:n]) 

    Nsensitive[j]<- inprod(Z[j,1:n],sensitive[1:n]) 

    } 

    } 
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WinBUGS code for hierarchical Bayesian community occupancy model used to assess the 

potential for biodiversity cobenefits under REDD+. 

 

model{ 

   #Define prior distributions for community-level model parameters 

    omega ~ dunif(0,1) 

     

    psi.mean ~ dunif(0,1) 

    a <- log(psi.mean) - log(1-psi.mean) 

    mu.alpha1 ~ dnorm(0,0.001) 

    mu.alpha2 ~ dnorm(0,0.001) 

    tau1 ~ dgamma(0.1,0.1)   

    tau.alpha1 ~ dgamma(0.1,0.1) 

    tau.alpha2 ~ dgamma(0.1,0.1) 

 

    CLF2.mean ~ dunif(0,1) 

    mu.vCLF <- log(CLF2.mean) - log(1-CLF2.mean) 

    HCS2.mean ~ dunif(0,1) 

    mu.vHCS <- log(HCS2.mean) - log(1-HCS2.mean) 

    YRF2.mean ~ dunif(0,1) 

    mu.vYRF <- log(YRF2.mean) - log(1-YRF2.mean) 

    DEV2.mean ~ dunif(0,1) 

    mu.vDEV <- log(DEV2.mean) - log(1-DEV2.mean) 

    OP2.mean ~ dunif(0,1) 

    mu.vOP <- log(OP2.mean) - log(1-OP2.mean) 
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    tau.uCLF ~ dgamma(0.1,0.1)   

    tau.uHCS ~ dgamma(0.1,0.1) 

    tau.uYRF ~ dgamma(0.1,0.1) 

    tau.uDEV ~ dgamma(0.1,0.1) 

    tau.uOP ~ dgamma(0.1,0.1) 

    tau.vCLF ~ dgamma(0.1,0.1)  

    tau.vHCS ~ dgamma(0.1,0.1) 

    tau.vYRF ~ dgamma(0.1,0.1) 

    tau.vDEV ~ dgamma(0.1,0.1) 

    tau.vOP ~ dgamma(0.1,0.1) 

   

    sigma.tau1 <- 1/sqrt(tau1) 

    sigma.alpha1 <- 1/sqrt(tau.alpha1) 

    sigma.alpha2 <- 1/sqrt(tau.alpha2) 

    sigma.vCLF <- 1/sqrt(tau.vCLF) 

    sigma.vHCS <- 1/sqrt(tau.vHCS) 

    sigma.vYRF <- 1/sqrt(tau.vYRF) 

    sigma.vDEV <- 1/sqrt(tau.vDEV) 

    sigma.vOP <- 1/sqrt(tau.vOP) 

 

    for (i in 1:(n+nzeroes)) { 

     

    #Create priors for species i from the community level prior distributions 
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    w[i] ~ dbern(omega) 

     

    u[i] ~ dnorm(a, tau1) 

    alpha1[i] ~ dnorm(mu.alpha1, tau.alpha1) 

    alpha2[i] ~ dnorm(mu.alpha2, tau.alpha2) 

 

    v.CLF[i] ~ dnorm(mu.vCLF, tau.vCLF)  

    v.HCS[i] ~ dnorm(mu.vHCS, tau.vHCS) 

    v.YRF[i] ~ dnorm(mu.vYRF, tau.vYRF)  

    v.DEV[i] ~ dnorm(mu.vDEV, tau.vDEV) 

    v.OP[i] ~ dnorm(mu.vOP, tau.vOP) 

     

    #Create a loop to estimate the Z matrix (true occurrence for species i  

    #at point j.       

    for (j in 1:J) { 

    logit(psi[j,i]) <- u[i] + alpha1[i]*carbon1[j] + alpha2[i]*carbon2[j] 

     

    mu.psi[j,i] <- psi[j,i]*w[i] 

    Z[j,i] ~ dbern(mu.psi[j,i]) 

     

    #Create a loop to estimate detection for species i at point j during  

    #sampling period k.       

    for (k in 1:K[j]) {   

    logit(p[j,k,i]) <-  v.CLF[i]*Ind1[j] + v.HCS[i]*Ind2[j] + v.YRF[i]*Ind3[j] +  

    v.DEV[i]*Ind4[j] + v.OP[i]*Ind5[j] 
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    mu.p[j,k,i] <- p[j,k,i]*Z[j,i] 

    X[j,k,i] ~ dbern(mu.p[j,k,i]) 

 

    # Create simulated dataset to calculate Bayesian p value 

    Xnew[j,k,i] ~ dbern(mu.p[j,k,i]) 

    d[j,k,i]<-  abs(X[j,k,i] - mu.p[j,k,i])  

    dnew[j,k,i]<- abs(Xnew[j,k,i] - mu.p[j,k,i])  

    d2[j,k,i]<- pow(d[j,k,i],2)   

    dnew2[j,k,i]<- pow(dnew[j,k,i],2)  

    }    

     

    dsum[j,i]<- sum(d2[j,1:K[j],i])  

    dnewsum[j,i]<- sum(dnew2[j,1:K[j],i]) 

    }} 

     

    # Calculate discrepency measure, which is then defined as mean(p.fit > p.fitnew) 

    p.fit<-sum(dsum[1:J,1:n])  

    p.fitnew<-sum(dnewsum[1:J,1:n]) 

    } 

     

    #Sum all species observed (n) and unobserved species (n0) to find the  

    #total estimated richness 

    n0 <- sum(w[(n+1):(n+nzeroes)]) 

    N <- n + n0 
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    #Create a loop to determine point level richness estimates for the  

    #whole community and for subsets or assemblages of interest. 

    for(j in 1:J){ 

    Nsite[j]<- inprod(Z[j,1:(n+nzeroes)],w[1:(n+nzeroes)]) 

    Nleast[j]<- inprod(Z[j,1:n],least.concern[1:n]) 

    Nthreat[j]<- inprod(Z[j,1:n],threatened[1:n]) 

    Ntolerant[j]<- inprod(Z[j,1:n],tolerant[1:n]) 

    Nsensitive[j]<- inprod(Z[j,1:n],sensitive[1:n]) 

    } 

 

    #Finish writing the text file into a document we call covarmodel.txt 

    } 
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Supporting Information S5: Model description and parameter estimates for hierarchical 

Bayesian multispecies occupancy models 

 

Table S5.1: Model description, where µ and υ refer to the intercept terms for the occupancy 

and detection probability models respectively, α1 and α2 represent parameters describing 

carbon standard and quadratic covariates at 5m- (‘CC5’) and 1km resolution (‘CC1000’) and 

‘HCS class’ refers to coarse delineations of carbon designated by the High Carbon Stock 

(HCS) Approach. 

 

Model 1: logit(ψi,j) ═ µ(i)HCS Class(j)  

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 2: logit(ψi,j) ═ µ(i,j) + α1iCC1000j + α2iCC1000
2

j  

logit(pi,j,k) ═ υ(i)HCS Class(j) 

Model 3: logit(ψi,j) ═ µ(i,j) + α1iCC5j + α2iCC5
2

j  

logit(pi,j,k) ═ υ(i)HCS Class(j) 
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Table S5.2: Model 1: Species-specific posterior summaries for occupancy as a function of 

HCS class (Continuous Logged Forest: CLF; Dense Forest: DF; Young Regenerating Forest: 

YRF; Developed Land: DEV; Oil Palm: OP). We visualise mean predicted posterior 

distribution values (horizontal lines), accompanied by 95% Bayesian Credible Intervals 

(vertical lines). 
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Table S5.3: Model 1: Species-specific posterior summaries of detection probability as a 

function of HCS class (Continuous Logged Forest: CLF; Dense Forest: DF; Young 

Regenerating Forest: YRF; Developed Land: DEV; Oil Palm: OP). We visualise mean 

predicted posterior distribution values (horizontal lines), accompanied by 95% Bayesian 

Credible Intervals (vertical lines). 
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Table S5.4: Model 2: Species-specific posterior summaries of occupancy as a function of 

continuous carbon derived from a 1 km resolution dataset (Avitabile et al. 2016). We present 

predicted mean posterior distribution values (blue line) and 95% Bayesian credible intervals 

(blue shaded region). 
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Table S5.5: Model 2: Species-specific posterior summaries of detection probability as a 

function of HCS class (Continuous Logged Forest: CLF; Dense Forest: DF; Young 

Regenerating Forest: YRF; Developed Land: DEV; Oil Palm: OP), broadly representing the 

influence of habitat type. We visualise mean predicted posterior distribution values 

(horizontal lines), accompanied by 95% Bayesian Credible Intervals (vertical lines). 
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Table S5.6: Model 3: Species-specific posterior summaries of occupancy as a function of 

continuous carbon derived from a 25 m resolution dataset (Pfeifer et al. 2016). We present 

predicted mean posterior distribution values (blue line) and 95% Bayesian credible intervals 

(blue shaded region). 
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Table S5.7: Model 3: Species-specific posterior summaries of detection probability as a 

function of HCS class (Continuous Logged Forest: CLF; Dense Forest: DF; Young 

Regenerating Forest: YRF; Developed Land: DEV; Oil Palm: OP), broadly representing the 

influence of habitat type. We visualise mean predicted posterior distribution values 

(horizontal lines), accompanied by 95% Bayesian Credible Intervals (vertical lines). 
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