Recent papers of particular interest have been highlighted as: • Of importance •• Of major importance 1. Johnson NPAS, Mueller J. Updating the accounts: global mortality of the 1918-1920 ‘Spanish' Influenza Pandemic. Bull Hist Med. 2002;76(1):105-15. 2. Wang SQ, Du QS, Huang RB, Zhang DW, Chou KC. Insights from investigating the interaction of oseltamivir (Tamiflu) with neur aminidase of the 2009 H1N1 swine flu virus. Biochem Biophys Res Commun. 2009;386(3):432-6. 3. Shrestha SS, Swerdlow DL, Borse RH, Prabhu VS, Finelli L, Atkins CY, et al. Estimating the burden of 2009 pandemic influenza a (H1N1) in the United States (April 2009-April 2010). Clin Infect Dis. 2011;52 Suppl 1:75-82. 4. Lamb RA, Choppin PW. The gene structure and replication of influenza virus. Annu Rev Biochem. 1983;52:467-506. 5. Molinari NAM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, Weintraub E, et al. The annual impact of sea sonal influenza in the US: measuring disease burden and costs. Vaccine. 2007;25(27):5086-96. 6. WHO. Influenza data and statistics. [Online]. Available: http://www.euro.who.int/en/health-topics/communicable diseases/influenza/data-and-statistics. 7. WHO. Influenza seasonal. Geneva: Media Center; 2014. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs211/en/.8. Parrish CR, Murcia PR, Holmes EC. Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza 27. Schmidt NW, Mishra A, Wang J, Degrado WF, Wong GCL. virus exposure of humans. J Virol. 2015;89(6):2990-4. 9. Sharp GB, Kawaoka Y, Jones DJ, Bean WJ, Pryor SP, Hinshaw V, Webster RG. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. J Virol. 1997;71(8):6128-35 10. Cowling BJ, Jin L, Lau EHY, Liao Q, Wu P, Jiang H, et al. Comparative epidemiology of human infections with avian influ enza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet. 2013;382(9887):129-37. 11. Portela A, Digard P. The influenza virus nucleoprotein: a multifunc tional RNA-binding protein pivotal to virus replication. J Gen Virol. 2002;83(4):723-34. 12. Elton D, Simpson-holley M, Archer K, Hallam R, Mccauley J, Digard P, et al. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol. 2001;75(1):408-19. 13. Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333(6172):426-31. 14. Edinger TO, Pohl MO, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014;95(PART 2):263-77. 15. Lenten LV, Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. J Biol Chem. 1971;246(6):1889-94. 16. Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, et al. Influenza neuraminidase inhibitors possessing a novel hydro phobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent 17. Palese P, Tobita K, Ueda M, Compans RW. Characterization of temperature sensitive influenza virus mutants defective in neur aminidase. Virology. 1974;61(2):397-410. 18. Gubareva LV. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res. 2004;103(1-2):199-203. 19. Lamb RA, Choppin PW. Identification of a second protein (M2) encoded by RNA segment 7 of influenza virus. Virology. 1981;112(2):729-37. 20. Wharton SA, Belshe RB, Skehel JJ, Hay AJ. Role of virion M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. J Gen Virol. 1994;75(4):945-8. 21. Helenius A. Unpacking the incoming influenza virus. Cell. 1992;69(4):577-8. 22. Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010;142(6):902-13. 23. Scheiffele P, Rietveld A, Simons K, Wilk T. Influenza viruses select ordered lipid membrane influenza viruses select ordered lipid do mains during budding from the plasma membrane. J Biol Chem. 1999;274(4):2038-2044 24. Zhang J, Pekosz A, Lamb RA. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol. 2000;74(10):4634-44. 25. Chen BJ, Leser GP, Morita E, Lamb RA. Influenza virus hemag glutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol. 2007;81(13):7111-23. 26.•• Chlanda P, Schraidt O, Kummer S, Riches J, Oberwinkler H, Prinz S, et al. Structural analysis of the roles of influenza A virus membrane-associated proteins in assembly and morphology. J Virol. 2015;89(17):8957-66. An investigation of the individual and cumulative roles of HA, NA and M1 in driving VLP bud ding and viral morphogenesis. Influenza virus A M2 protein generates negative gaussian mem brane curvature necessary for budding and scission. J Am Chem Soc. 2013;135(37):13710-9. 28. Choppin PW, Murphy JS, Tamm I. Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med. 1960;112(18):945-52. 29. Chu CM, Dawson IM, Elford WJ. Filamentous forms associated with newly isolated influenza virus. Lancet. 1949;1(6554):602. 30. Elton D, Bruce EA, Bryant N, Wise HM, Macrae S, Rash A, et al. The genetics of virus particle shape in equine influenza A virus. Host Microbe. 2014;15(2):239-47. Influenza Other Respi Viruses. 2013;7(Suppl4):81-9. 31. Itoh Y, Shinya K, Kiso M, Watanabe T, Sakoda Y, Hatta M, et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature. 2009;460(7258):1021-5. 32. Hayase S, Uno Y, Nii F. Ultrahigh-resolution scanning electron microscopy of MDCK cells infected with influenza viruses. J Electron Microsc (Tokyo). 1995;44:281-8. 33. Kilbourne ED, Murphy JS. Genetic studies of Influenza Virus. I. Viral morphology and growth capacity as exchangable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates ogy. Proc Natl Acad Sci U S A. 1998;95(10):5746-51. by combination with PR8. J Exp Med. 1960;111:387-406. 34. Lang G, Narayan O, Rouse BT, Ferguson AE, Connell MC. A new influenza A virus infection in turkeys II. A highly pathogenic varA virus occurs via a VPS4 and VPS28-independent pathway. iant, a/turkey/ontario 772/66. Can Vet J. 1968;9(7):151-160. 35.•• Seladi-Schulman J, Steel J, Lowen AC. Spherical influenza viruses 55. Bruce EA, Digard P, Stuart AD. The Rab11 pathway is required for have a fitness advantage in embryonated eggs, while filament producing strains are selected in vivo. J Virol. 2013;87(24): 13343-53. Demonstration of the morphological changes that occur in influenza viruses during in vivo adaptation to both embryonated chicken eggs and guinea pigs. 36. Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, et al. Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology. 1998;252(2):331-42. 37. Basu A, Shelke V, Chadha M, Kadam D, Sangle S, Gangodkar S, et al. Direct imaging of pH1N1 2009 influenza virus replication in alveolar pneumocytes in fatal cases by transmission electron microscopy. J Electron Microsc (Tokyo). 2011;60(1):89-93. 38. Kilbourne ED. Studies on influenza in the pandemic of 1957-1958. III. Isolation of influenza A (Asian strain) viruses from influenza Goldenring JR, et al. The Rip11/Rab11-FIP5 and kinesin II com patients with pulmonary complications; details of virus isolation plex regulates endocytic protein recycling. J Cell Sci. 2008;121(Pt and characterization of isolates, with quantitative comparison of 22):3824-33. isol. J Clin Invest. 1959;38(1 Part 2):266-74. 39. Zebedee SL, Lamb RA. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. Mol Biol Cell. 2004;16(2):849-60. J Virol. 1988;62(8):2762-72. 40. Zebedee SL, Lamb RA. Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc cytoplasm before viral budding as shown by single-molecule sen- Natl Acad Sci. 1989;86(3):1061-5. 41. Roberts PC, Lamb RA, Compans RW. The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle AD, et al. A Rab11- and microtubule-dependent mechanism for formation. Virology. 1998;240(1):127-37. 42. Elleman CJ, Barclay WS. The M1 matrix protein controls the fila mentous phenotype of influenza A virus. Virology. 2004;321(1): 144-53. 43. Bourmakina SV, García-Sastre A. Reverse genetics studies on the filamentous morphology of influenza A virus. J Gen Virol. 2003;84(3):517-27. 44. Gómez-Puertas P, Albo C, Pérez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major driving force in virus Cellular proteins in influenza virus particles. PLoS Pathog. budding. J Virol. 2000;74(24):11538-47. 45. Fujiyoshi Y, Kume NP, Sakata K, Sato SB. Fine structure of influ65. Martin K, Helenius A. Nuclear transport of influenza virus ribonu enza A virus observed by electron cryo-microscopy. EMBO J. 1994;13(2):318-26. 46. Nayak DP, Hui EKW, Barman S. Assembly and budding of influ enza virus. Virus Res. 2004;106(2):147-65. 47. Rossman JS, Jing X, Leser GP, Balannik V, Pinto LH, Lamb RA. Influenza virus M2 ion channel protein is necessary for filamentous cal wild-type. PLoS One. 2014;9(11):1-10. In direct relevance to virion formation. J Virol. 2010;84(10):5078-88. 48. McCown MF, Pekosz A. Distinct domains of the influenza a virus M2 protein cytoplasmic tail mediate binding to the M1 protein and activity gained from the morphological change may support a facilitate infectious virus production. J Virol. 2006;80(16):8178- 89. 49. Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A LC3-interacting motif in the influenza A virus M2 protein is re quired to subvert autophagy and maintain virion stability. Cell 50. Grantham ML, Stewart SM, Lalime EN, Pekosz A. Tyrosines in the influenza A virus M2 protein cytoplasmic tail are critical for pro duction of infectious virus particles. J Virol. 2010;84(17):8765-76. 51. Mosley VM, Wyckoff RWG. Electron micrography of the virus of influenza. Nature. 1946;157(3983):263-3. 52. Burnet FM, Lind PE. Studies on filamentary forms of influenza virus with special reference to the use of dark-ground-microscopy. Arch Gesamte Virusforsch. 1957;7(5):413-28. 53. Roberts PC, Compans RW. Host cell dependence of viral morphol- 54. Bruce EA, Medcalf L, Crump CM, Noton SL, Stuart AD, Wise HM, et al. Budding of filamentous and non-filamentous influenza Virology. 2009;390(2):268-78. influenza A virus budding and filament formation. J Virol. 2010;84(12):5848-59. 56. Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol. 1996;135(4):913-24. 57. Hales CM, Griner R, Hobdy-Henderson KC, Dorn MC, Hardy D, Kumar R, et al. Identification and characterization of a family of Rab11-interacting proteins. J Biol Chem. 2001;276(42):39067-75. 58. Hales CM, Vaerman JP, Goldenring JR. Rab11 family interacting protein 2 associates with myosin Vb and regulates plasma mem brane recycling. J Biol Chem. 2002;277(52):50415-21. 59. Schonteich E, Wilson GM, Burden J, Hopkins CR, Anderson K, 60. Wilson GM. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. 61. Ying Chou Y, Heaton NS, Gao Q, Palese P, Singer R, Lionnet T. Colocalization of different influenza viral RNA segments in the sitivity FISH analysis. PLoS Pathog. 2013;9(5). 62.• Amorim MJ, Bruce EA, Read EKC, Foeglein A, Mahen R, Stuart cytoplasmic transport of influenza A virus viral RNA. J Virol. 2011;85(9):4143-56. The report demonstrates that the cellular microtubule network is used by IAV, whereby the viral RNP/ PB2 complex interacts with Rab11 for transport to the site of viral assembly. 63. Eisfeld AJ, Neumann G, Kawaoka Y. At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol. 2014;13(1):28-41. 64. Shaw ML, Stone KL, Colangelo CM, Gulcicek EE, Palese P. 2008;4(6):1-13.cleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell. 1991;67:117-30. 66.•• Seladi-Schulman J, Campbell PJ, Suppiah S, Steel J, Lowen AC. Filament-producing mutants of influenza A/Puerto Rico/ 8/1934 (H1N1) virus have higher neuraminidase activities than the spheri clinical infections, this report shows that filamentous viruses have increased neuraminidase activity. This higher enzymatic mucus clearing hypothesis for the function of filamentous viruses. 67. Cohen M, Zhang X-Q, Senaati HP, Chen H-W, Varki NM, Schooley RT, et al. Influenza A penetrates host mucus by cleaving sialic acids with neuraminidase. Virol J. 2013;10:321. 68. Yang X, Steukers L, Forier K, Xiong R, Braeckmans K, Van Reeth K, et al. A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus. PLoS One. 2014;9(10):1-11. 69. Vijayakrishnan S, Loney C, Jackson D, Suphamungmee W, Rixon FJ, Bhella D. Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a ge nome at their distal end. PLoS Pathog. 2013;9(6). 70. Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng RH, et al. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature. 2006;439(7075):490-2. 71. Calder LJ, Wasilewski S, Berriman JA, Rosenthal PB. Structural organization of a filamentous influenza A virus. Proc Natl Acad Sci U S A. 2010;107(23):10685-90. 72. Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol. 2005;150(9):1783-96. 73. de Vries E, Tscherne DM, Wienholts MJ, Cobos-Jiménez V, Scholte F, García-Sastre A, et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 2011;7(3):e1001329. 74. Rossman JS, Leser GP, Lamb RA. Filamentous influenza virus enters cells via macropinocytosis. J Virol. 2012;86(20):10950-60.