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Abstract. CLOUDMAKE is a software utility that automatically builds executable

programs and libraries from source code—a modern MAKE utility. Its design gives

rise to a number of possible optimizations, like cached builds, and the executables

to be built are described using a functional programming language. This paper

formally and mechanically verifies the correctness of central CLOUDMAKE algo-

rithms.

The paper defines the CLOUDMAKE language using an operational semantics,

but with a twist: the central operation exec is defined axiomatically, making it

pluggable so that it can be replaced by calls to compilers, linkers, and other tools.

The formalization and proofs of the central CLOUDMAKE algorithms are done

entirely in DAFNY, the proof engine of which is an SMT-based program verifier.

0 Introduction

Building binary versions of software from source code is a central part of software engi-

neering. For larger projects, this is much more involved than just invoking a compiler on

a set of source files. One cares about making the process repeatable and efficient (e.g.,

by rebuilding only those artifacts whose sources have changed since the last build). To

facilitate a good build process, it is essential to keep track of which artifacts depend

on which other artifacts. A well-known utility for building software is MAKE, where

the dependencies are given by users [2]. Realizing that the desired output artifact is

a function of the source artifacts, the VESTA-2 system provides a functional program-

ming language with which to describe the build recipe [3]. The correctness of the build

system and any optimizations it performs is vital to the whole software development

organization, so it makes sense to spend the effort required to ensure the correctness of

the system.

CLOUDMAKE is a MAKE-like utility for building target artifacts from source artifacts.

In this paper, we describe and formally verify the basic algorithm used by CLOUDMAKE

and a key optimization it employs. Build recipes in CLOUDMAKE are, like in VESTA-2,

captured by programs written in an eponymous functional programming language. The

extensible nature of CLOUDMAKE owes to a primitive operation called exec, which,

given a set of dependencies, invokes an external build tool to derive a set of artifacts.

⋆ The work of this author was mostly done while visiting Microsoft Research.

C. Jones, P. Pihlajasaari, and J. Sun (Eds.): FM 2014, LNCS 8442, pp. 643–657, 2014.

c© Springer International Publishing Switzerland 2014
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Because this operation is monitored by CLOUDMAKE, the range of available optimiza-

tions is greater than for MAKE. CLOUDMAKE is currently deployed at Microsoft, but it

is not our intent in this paper to report on that experience. We are instead highlight-

ing that the formalization and verification of the CLOUDMAKE algorithms is done in an

industrial context since CLOUDMAKE affects a crucial part of software development at

Microsoft and has a large number of users.

On the way to formally verifying the algorithms of CLOUDMAKE, our work con-

tributes in two additional ways. First, we define CLOUDMAKE by an operational se-

mantics, but with a twist: the extensible operation exec is described axiomatically, thus

allowing a confined range of external tools to be invoked by exec. We believe that other

pluggable systems can be defined in a similar way. Second, the kind of tool we use for

the formalization and proof is to this day still to be considered novel in light of how

other semantics and optimizations have been proved (famously, cf. COMPCERT [9]): we

use an SMT-based program verifier, namely DAFNY [4]. We use the functional subset of

the DAFNY language to describe CLOUDMAKE’s algorithms, and we state and prove the-

orems using methods (otherwise known as procedures or subroutines) with code (see,

e.g., [5,6]). In effect, this means the human verifier may provide various hints to make

the proofs go through, but the human verifier never invokes any prover commands ex-

plicitly as would have been the case in an interactive proof assistant like COQ [0] or

ISABELLE [12]. As a result, we perceive our tool chain as leading to a net reduction in

human effort for the proof.

We proceed as follows. Sec. 1 shows the use and operation of CLOUDMAKE through

a simple example. We define the formal semantics of the CLOUDMAKE language in

Sec. 2, which also gives the basic algorithm and proves that it correctly allows parallel

builds. We develop an optimized version of the algorithm in Sec. 3, highlighting the

proof structure and typical or interesting parts of the proof. To give a sense of the effort

involved in obtaining the correct theorems, we give a few statistics about the proofs

in Sec. 4. The full proofs are available online1. We discuss related work in Sec. 5 and

conclude in Sec. 6.

1 CloudMake

Syntactically, CLOUDMAKE is a purely functional subset of JAVASCRIPT. We show its

abstract syntax in Fig. 0. In CLOUDMAKE, all variables are single assignment, and all

global variables are evaluated on first use (whereas in JAVASCRIPT global variables are

evaluated in declaration order).

We illustrate CLOUDMAKE and its potential for optimization by building a calculator.

The calculator is written in C; it consists of source files calc.c, add.c, sub.c, and

header file num.h, all found in the same directory. Given functions cc and ln (defined

later) for invoking the C compiler and linker, respectively, a simple CLOUDMAKE script

introduces a variable declaration for each tool call:

1 The versions as of this writing are available at http://rise4fun.com/Dafny/n7Dm ,

http://rise4fun.com/Dafny/5iMO , and http://rise4fun.com/Dafny/GGnEP , and we

are maintaining any updated versions in the open-source DAFNY test suite at

http://dafny.codeplex.com .

http://rise4fun.com/Dafny/n7Dm
http://rise4fun.com/Dafny/5iMO
http://rise4fun.com/Dafny/GGnEP
http://dafny.codeplex.com
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Program ::= Stmt∗

Stmt ::= VarStmt | ReturnStmt
VarStmt ::= var id = Expr;
ReturnStmt ::= return Expr;
Expr ::= Lit | id | Expr InfixOp Expr | PrefixOp Expr | Expr ? Expr : Expr

| Expr (Expr∗) | Expr .id | Expr[Expr] | LambdaExpr
Lit ::= false | true | undefined | number | string | path | ObjLit | ArrLit
ObjLit ::= {Binding∗}
Binding ::= id:Expr
ArrLit ::= [Expr∗]
InfixOp ::= && | || | + | - | * | >= | . . .

PrefixOp ::= - | !
LambdaExpr ::= id+ ⇒Expr

Fig. 0. The abstract grammar of the CLOUDMAKE language, which is a subset of JAVASCRIPT.

We use | to separate alternatives, ∗ to denote 0 or more repetitions, and + to denote 1 or more

repetitions; other punctuation is suggestive of the concrete syntax. Note that calls to the primitive

operation exec are denoted as any other function invocations.

var main = ln("calc.exe", [calc, add, sub])

var calc = cc("calc.c", ["num.h"])

var add = cc("add.c", ["num.h"])

var sub = cc("sub.c", ["num.h"])

Evaluating this program consists in evaluating variable main. Evaluating the right-

hand side of the main declaration requires the values of calc, add, and sub. Evaluating

these requires evaluating cc on each source file, which produces the corresponding ob-

ject files represented by paths calc, add, and sub. The derived object files are passed to

the pending linker invocation in the main declaration, which then creates the executable

calc.exe. While there is no internal mutable state, CLOUDMAKE modifies external state

(the system state), in this case, the file system. Despite this, the evaluation in CLOUD-

MAKE can still be done safely in parallel, as discussed in Sec. 2.3.

Functions cc and ln are defined with calls to the primitive operation exec:

var cc = (src, deps) ⇒ exec({ tool: "//bin/cl", args: [src],

deps: deps.add(src),

exps: [src.changeExtension(".obj")] })[0]

var ln = (exe, objs) ⇒ exec({ tool: "//bin/link", args: objs,

deps: objs, exps: [exe]) })[0]

This operation is key for the extensibility of CLOUDMAKE: any external tool may be

invoked as part of a build (e.g., compilers, linkers, documentation generators, installers).

The primitive exec takes as argument an object of the form:

{ tool: . . ., args: . . ., deps: . . ., exps: . . . }

where tool denotes the path of the tool to invoke, args are the arguments passed to

the tool, deps are the paths of the artifacts that the tool is allowed to read, and exps

describe the artifacts that the tool must produce2. If the evaluation of exec succeeds, it

2 In the actual implementation of CLOUDMAKE, exec takes many more arguments, e.g., the

current working directory, the environmental variables used by the tool, the expected return

codes, etc.
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returns paths to artifacts exps in the order specified by the argument. Note that tools

like cl and link must comply with the axiomatization of exec in order to preserve the

correctness of the CLOUDMAKE algorithms.

The formal semantics of CLOUDMAKE makes it possible to reason about build speci-

fications. For example, we can prove that the program above has the same net effect on

the system state as the following program does (where map is defined as usual):

var main = ln("calc.exe",

["calc.c", "add.c", "sub.c"].map(c ⇒ cc([x], ["num.h"])))

Moreover, CLOUDMAKE enables a number of optimizations, like cached, staged, incre-

mental, and distributed builds, only the first of which is discussed in this paper. As an

example of an optimization, imagine a scenario in which one builds the above calcula-

tor, modifies calc.c, and rebuilds. In this case, most dependency-based build systems

first evaluate main in the above program, and then, based on computed dependencies

and additional time-stamp or content-hash information, determine that (only) calc.c

must be recompiled before the linker is called for a second time with the new calc.obj

artifact and the add.obj and sub.obj artifacts in the cache. Instead of four tool calls,

a cached build for this scenario requires only two such calls. Some existing build sys-

tems can be fragile when it comes to cached builds since it is easy to miss a dependency

or get time stamps wrong. CLOUDMAKE uses content-based hashing for sources and

fingerprints for derived artifacts, and enforces that all cached artifacts do exist in the

system state. As a result, we can prove that CLOUDMAKE cached builds are equivalent

to clean builds, see Sec. 3. Optimizations like this can improve performance substan-

tially. In fact, incremental builds with caching reduce the build time of a major product

shipped by Microsoft up to 100 times.

2 Formal Semantics

In this section, we define the formal semantics of CLOUDMAKE. We do so using the

syntax of DAFNY, explaining its less obvious constructs as we go along. Because we do

not have space to explain everything, we sometimes omit or simplify various details.

2.1 Domains

Programs The abstract syntax of CLOUDMAKE is modeled in the usual way of defining

an algebraic datatype corresponding to each non-terminal in the grammar. For example,

we define CLOUDMAKE’s expressions in DAFNY along the following lines:

datatype Expr =

exprLiteral(lit : Literal) | exprIdentifier(id : Identifier) | . . .

exprIf(cond : Expr, ifTrue : Expr, ifFalse : Expr) |

exprInvocation(fun : Expr, args : seq〈Expr〉) | . . .

exprError(r : Reason)

In addition to the various expression forms in Fig. 0, we add a special “error” expres-

sion, which we use to signal evaluation errors.
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For every datatype constructor C, DAFNY defines a discriminator C?, and the user-

defined names of constructor parameters define destructors. For example, if e is an Expr

and e.exprIf? evaluates to true, then e denotes a CLOUDMAKE if-then-else expression

and e.cond denotes its guard subexpression.

Note that DAFNY builds in finite sequences, so seq〈α〉 denotes the type of sequences

of elements of type α. In other places, where ordering is irrelevant, we use set〈α〉,
which denotes a finite set.

For some components in the CLOUDMAKE grammar, the internal structure is irrele-

vant, so we simply define them as uninterpreted types:

type Path

type Artifact

System State. CLOUDMAKE is a strict higher-order functional language, which can also

read and write global system state during evaluation. The system state is represented as

a finite map from Path to Artifact, which we roll into a record (because we will add

more components of the state later on):

datatype State = StateCons(m : map〈Path, Artifact〉)

We define function GetSt(p, st) as st.m[p], which returns the artifact for path p, and

function DomSt(st) to return the domain of state st.

The system state can be written, but only in restricted ways. For one, it can only be

extended—once a mapping for a path (to an artifact) has been added, it can never be

changed. Also, only the exec operation can extend the state, which it does determinis-

tically by reading some set of dependency artifacts. Abstractly speaking, from a given

state A , there exists some infinite map A∗ such that any state of any CLOUDMAKE

program executing from A will be a finite subset of A∗ . We can therefore imagine an

oracle that, for a given path p and state A , tells us the artifact to which A∗ maps p .

Every path in the domain of a reachable state must have received its artifact at some

point, either being authored by the user or being built by the system. In the latter case,

the artifact was built from other artifacts already in the state. We capture this property

by saying that in a valid state, all the paths follow some well-founded order:

predicate ValidState(st : State)

{ forall p • p ∈ DomSt(st) =⇒ WellFounded(p) }

predicate WellFounded(p : Path)

The definition of WellFounded is not important until the proof of consistency of our

axiomatization, see Sec. 2.4.

We now define a relation Extends(st, st’) on states. It says that st’ extends st,

and that any mapping added conforms to the oracle:

predicate Extends(st : State, st’ : State) {

DomSt(st) ⊆ DomSt(st’) ∧
(∀ p • p ∈ DomSt(st) =⇒ GetSt(p, st’) = GetSt(p, st)) ∧
(∀ p • p 	∈ DomSt(st) ∧ p ∈ DomSt(st’) =⇒ GetSt(p, st’) = Oracle(p, st))

}
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A property about the oracle is that state extension, which conforms to the oracle,

preserves the predictions of the oracle. This is the only property of the oracle that we

need for now, so we formulate it as a lemma:

function Oracle(p : Path, st : State) : Artifact

lemma OracleProperty(p : Path, st0 : State, st1 : State)

requires Extends(st0, st1);

ensures Oracle(p, st0) = Oracle(p, st1);

The antecedent of the lemma is stated in a precondition (keyword requires) and its

conclusion is stated in a postcondition (keyword ensures). This terminology comes

from the fact that lemmas are actually methods—that is, code procedures—in

DAFNY [5,6]. The proof of the lemma would go into the method body, but we omit

it for now. We will prove it once we also give a function body that defines Oracle.

We can now prove that Extends is transitive:

lemma Lemma_ExtendsTransitive(st0 : State, st1 : State, st2 : State)

requires Extends(st0, st1) ∧ Extends(st1, st2);

ensures Extends(st0, st2);

{

forall p { OracleProperty(p, st0, st1); }

}

The proof of this lemma invokes the oracle property for every path p. The DAFNY verifier

works hard for us and supplies all other details of the proof.

2.2 Evaluation

We give the operational semantics by defining an interpreter. The central function of

interest is eval, which reduces an expression to a value, while passing the system state.

Figure 1 shows an excerpt of eval. It shows that literals evaluate to themselves and

that, depending on the evaluation of its guard, an if-then-else evaluates to one of its

arguments or to the error rValidity. Note that a var in a DAFNY expression context

is simply a let binding, and the left-hand side can be a pattern like Pair(a, b), which

let-binds a and b such that Pair(a, b) equals the right-hand side.

The most interesting case is invocation. It evaluates the expression expr.fun and

those in expr.args. Each such evaluation starts from the same state, st, and the result

is a set sts’’ of next-states. Hence, for example, any side effects on the system state

caused by the evaluation of expr.fun are not available during the evaluation of the ar-

guments, allowing for parallelism in CLOUDMAKE. Two states are compatible if they

map paths in their common domain to the same artifacts. A test is performed (func-

tion Compatible) to see if the set of next-states are compatible. If they are not, an

rCompatibility error is returned; but if they are, the next-states are combined and, if

the function denotes exec and the arguments are valid for exec, then function exec is

called.

We declare function exec as follows:

function exec(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State) :

Tuple〈set〈Path〉, State〉



Formalizing and Verifying a Modern Build Language 649

function eval(expr : Expr, st : State, env : Env) : Tuple〈Expr, State〉
requires ValidEnv(env);

{

if expr.exprLiteral? then

Pair(expr, st)

. . .

else if expr.exprIf? then

var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue then

eval(expr.ifTrue, st’, env)

else if cond’.exprLiteral? ∧ cond’.lit = litFalse then

eval(expr.ifFalse, st’, env)

else

Pair(exprError(rValidity), st)

. . .

else if expr.exprInvocation? then

var Pair(fun’, st’) := eval(expr.fun, st, env);

var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);

var sts’’ := {st’} ∪ sts’;

if ¬Compatible(sts’’) then

Pair(exprError(rCompatibility), st)

else

var stCombined := Combine(sts’’);

if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? then

if fun’.lit.prim.primExec? then

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) then

var ps := exec(args’[0].lit.str, args’[1].lit.paths,

args’[2].lit.strs, stCombined);

Pair(exprLiteral(litArrOfPaths(ps.fst)), ps.snd)

else

. . . // various rValidity error cases

}

Fig. 1. Three cases from CLOUDMAKE’s expression evaluation. Function evalArgs essentially

maps eval over the expressions given as its second argument.

where cmd is the command to be executed (e.g., "//bin/cl" and its arguments), deps

are the paths of all the artifacts that the command is allowed to read (e.g., "calc.c"

and "num.h"), and exps (for “expectations”) are the artifacts that a successful invo-

cation of the command has to return (e.g., "calc.obj"). The result value contains

a possibly updated state along with the set of paths to the expected artifacts (e.g.,

"//derived/8208/calc.obj"). (For brevity, we assume that all calls to exec succeed;

to model the possibility of failure, exec would return an error code that eval would

pass on.)

In our interpreter, we do not give function exec a body. Instead, we axiomatize the

properties of exec using an unproved lemma:
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lemma ExecProperty(cmd : string, deps : set〈Path〉, exps : set〈string〉, st : State)

requires ValidState(st) ∧ deps ⊆ DomSt(st) ∧ Pre(cmd, deps, exps, st);

ensures

var Pair(paths, st’) := exec(cmd, deps, exps, st);

Extends(st, st’) ∧
(∀ e • e ∈ exps =⇒ Loc(cmd, deps, e) ∈ paths) ∧
Post(cmd, deps, exps, Restrict(deps, st’));

These properties say that exec produces an extension st’ of st and that the result value

contains a path for every expectation. The definition of Post (not shown here) also

says that those paths are in the extension. Note that ExecProperty has a precondition

whereas exec does not. This is because the correctness theorem we show next only

needs to consider those behaviors that emanate from this precondition.

The use of Loc requires more explanation. It determines the paths that will hold the

derived artifacts. These are to be thought of as being placed in some temporary storage

that is not directly accessible. The CLOUDMAKE program can use these paths as stated

dependencies of other exec calls. In order for exec to be implementable, it is crucial

that Loc be injective (but it need not be onto).

2.3 Race Freedom

We are now ready to show the first correctness theorem. It says that an evaluation of

a CLOUDMAKE program will not result in an rCompatibility error. In other words,

the compatibility test in eval will always succeed. This means that the evaluation of a

function and its arguments can be done safely in parallel.

To verify in DAFNY that a method satisfies a (pre- and postcondition) specification,

the specification is included in the signature of the method and any necessary proof hints

are placed inline with the code, “intrinsically”. To verify that a function satisfies a spec-

ification, the proof style tends to be different: typically, the specification is stated and

verified as a separate lemma. We follow this “extrinsic” style here, where EvalLemma

gives the property of eval to be verified. In this style, the structure of the proof of the

lemma tends to mimic that of the function; in fact, sometimes it even repeats some of

the computation, if for no other reason than to give names to subexpressions that are

mentioned in the proof.

Figure 2 gives the race-freedom theorem as it pertains to expressions, along with

an excerpt of its proof, showing the same three cases we showed for function eval in

Fig. 1.

The case for literals is trivial, so nothing needs to be done in that branch of the proof.

In the case for if-then-else expressions, it is easy to see that the proof structure matches

that of function eval. The proof invokes the induction hypothesis for the various subex-

pressions of the if-then-else and then uses the transitivity of Extends to complete the

proof. Note that invoking another lemma or the induction hypothesis is just like making

a (possibly recursive) call in the proof.

The proof case for exec is similar, but uses more lemmas. Not surprisingly, it also

uses the axiomatized property of exec. Note that, other than manually spelling out the

required lemma invocations, the myriad of “boring” proof details are all taken care of

automatically by the DAFNY verifier.
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lemma EvalLemma(expr : Expression, st : State, env : Env)

requires ValidState(st) ∧ ValidEnv(env);

ensures

var Pair(expr, st’) := eval(expr, st, env);

Extends(st, st’) ∧
(expr.exprError? =⇒ expr.r = rValidity);

{

if expr.exprLiteral? {

} . . . else if expr.exprIf? {

EvalLemma(expr.cond, st, env);

var Pair(cond’, st’) := eval(expr.cond, st, env);

if cond’.exprLiteral? ∧ cond’.lit = litTrue {

EvalLemma(expr.ifTrue, st’, env);

Lemma_ExtendsTransitive(st, st’, eval(expr.ifTrue, st’, env).snd);

} else if cond’.exprLiteral? ∧ cond’.lit = litFalse {

EvalLemma(expr.ifFalse, st’, env);

Lemma_ExtendsTransitive(st, st’, eval(expr.ifFalse, st’, env).snd);

} else { }

} . . . else if expr.exprInvocation? {

EvalLemma(expr.fun, st, env);

var Pair(fun’, st’) := eval(expr.fun, st, env);

EvalArgsLemma(expr, expr.args, st, env);

var Pair(args’, sts’) := evalArgs(expr, expr.args, st, env);

var sts’’ := {st’} ∪ sts’;

if Compatible(sts’’) {

var stCombined := Combine(sts’’);

Lemma_Combine(sts’’, st);

if fun’.exprLiteral? ∧ fun’.lit.litPrimitive? {

if fun’.lit.prim.primExec? {

if |args’| = Arity(primExec) ∧
ValidArgs(primExec, args’, stCombined) {

var cmd, deps, exp :=

args’[0].lit.str, args’[1].lit.paths, args’[2].lit.strs;

ExecProperty(cmd, deps, exp, stCombined);

var Pair(_, stExec) := exec(cmd, deps, exp, stCombined);

Lemma_ExtendsTransitive(st, stCombined, stExec);

. . .

}

Fig. 2. Theorem that justifies parallel builds of the arguments to exec. More precisely, the theorem

shows that eval will never result in an rCompatibility error, which means that the recursive

calls to eval do not produce conflicting artifacts, that is, do not build different artifacts for any

result path.

2.4 Consistency of Axiomatization

Our proofs make use of the axiomatized properties of exec. With any axiomatization,

there is a risk of inadvertently introducing an inconsistency in the formalization. There-

fore, we prove the existence of functions exec, Oracle, and WellFounded that satisfy
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the properties we axiomatized. We achieve this in DAFNY by introducing a refinement

module where we give bodies to these functions and to the previously unproved lemmas

we used to state axioms.

We build up the well-founded order on paths by computing well-founded certificates,

which order the paths. (Note, these certificates, like the other things we describe in this

subsection, are not part of the CLOUDMAKE algorithms; although they could in principle

be built, they are used only to justify the consistency of our axiomatization.) We define

our previously introduced predicate WellFounded to say that there exists a certificate:

datatype WFCertificate = Cert(p : Path, certs : set〈WFCertificate〉)
predicate CheckWellFounded(p : Path, cert : WFCertificate)

decreases cert;

{

cert.p = p ∧
(∀ d • d ∈ LocInv_Deps(p) =⇒ ∃ c • c ∈ cert.certs ∧ c.p = d) ∧
(∀ c • c ∈ cert.certs =⇒ CheckWellFounded(c.p, c))

}

predicate WellFounded(p : Path)

{ ∃ cert • CheckWellFounded(p, cert) }

Function LocInv_Deps gives the inverse function for the second argument of Loc (re-

call from Sec. 2.2 that Loc is injective). Note, DAFNY’s inductive datatypes guarantee

that certificates are well-founded, but the data structure itself does not provide any or-

dering on paths. It is the CheckWellFounded predicate that gives the necessary proper-

ties of paths; the certificates are used to prove the termination of the recursive calls of

CheckWellFounded. (In a system like COQ [0] with inductive constructions, the predi-

cate itself can be used as an inductive structure.)

Next, we define a function RunTool to model an actual tool, like a compiler, or rather,

a collection of tools:

function RunTool(cmd : string, deps : map〈Path, Artifact〉, exp : string) : Artifact

Argument cmd says which tool to invoke and exp says which of the tool’s outputs we

are interested in. Note that RunTool does not take the entire system state as a parameter.

Instead, it takes a path-to-artifact mapping whose domain is exactly those paths that the

tool invocation is allowed to depend on. By writing this as a function without a precon-

dition, we are modeling tools that are deterministic and always return some artifact. To

allow for tools that fail, perhaps because they need more dependencies than are given,

we can think of RunTool sometimes as returning some designated error artifact.

We define function exec to invoke RunTool for each expectation exp in exps. The

essential functionality is this:

var p := Loc(cmd, deps, exp);

if p ∈ DomSt(st) then st else

SetSt(p, RunTool(cmd, Restrict(deps, st), exp), st)

where Restrict(deps, st) returns st with its domain restricted to deps.

Function Oracle(p, st) returns an arbitrary artifact if p is not well-founded; other-

wise, it uses Skolemization (again, remember that this is for the proof only) to obtain a

certificate cert for p and returns the following:
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var cmd, deps, e := LocInv_Cmd(p), LocInv_Deps(p), LocInv_Exp(p);

RunTool(cmd, CollectDependencies(p, cert, deps, st), e)

where CollectDependencies recursively calls the oracle to obtain artifacts for the de-

pendencies of p.

From these definitions, we can prove that exec does have the properties stated by

ExecProperty. The proof is about 250 lines. One main lemma of the proof says that the

calls above to CollectDependencies and Restrict return the same state map. A major

wrinkle in the proof deals with the case when the path p given to exec already exists in

the domain of the state, in which case it is necessary to prove that this is indeed what

the oracle would have said.

3 Cached Builds

In this section, we formally verify the correctness of cached builds, a key optimization

employed by CLOUDMAKE. This optimization effectively reduces the build times of

CLOUDMAKE by making use of the fact that code changes software developers typically

make between successive versions of a program are small, especially in comparison to

the size of the modified program.

Cached builds enable the reuse of artifacts that have already been derived during

previous, similar builds. The theorems that we show here say that cached builds are

equivalent to clean builds, that is, building a program without using cached artifacts is

indistinguishable from any cached build, and that, starting from any consistent cache, a

cached build never fails due to the cache being inconsistent and the new state also has

a consistent cache.

The state is now extended with a cache component represented as a hash map from

paths. The cache is consistent when for each hashed path there exists a matching derived

artifact in the system state:

predicate ConsistentCache(stC : State) {

∀ cmd, deps, e • Hash(Loc(cmd, deps, e)) ∈ DomC(stC.c) =⇒
Loc(cmd, deps, e) ∈ DomSt(stC.m)

}

To verify the equivalence of cached and clean builds, we implement a wrapper

around function exec described in the previous section. Specifically, the wrapper checks

whether all expectations of a given command exist in the cache. If this is the case, it

returns the paths to these expectations, otherwise it calls the previous, axiomatized ver-

sion of exec to derive the expectations of the command, and then it consistently updates

the cache by caching each derived expectation:

function execC(cmd : string, deps : set〈Path〉, exps : set〈string〉, stC : State) :

Tuple〈set〈Path〉, State〉
{

if ∀ e | e ∈ exps • Hash(Loc(cmd, deps, e)) ∈ DomC(stC) then

var paths := set e | e ∈ exps • Loc(cmd, deps, e);

Pair(paths, stC)

else
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var Pair(expr’, st’) := exec(cmd, deps, exps, stC);

var stC’ := UpdateC(cmd, deps, exps, st’);

Pair(expr’, stC’)

}

Note that for these proofs, we had to thread a new boolean useCache parameter

through the definitions of the previous section and adjust the theorems proved before

accordingly.

4 Proof Experience and Proof Statistics

Our file ParallelBuilds.dfy contains a formalization of the basic CLOUDMAKE al-

gorithm, a proof that subexpressions of invocation expressions can be done in any or-

der or in parallel, and a proof that the axioms used for these are consistent. Our file

CachedBuilds.dfy contains a formalization of caches, proves again (but this time in the

context of caches) that subexpressions of invocations can be done in any order or in par-

allel, proves a theorem that the cache handling maintains the correspondence of states,

but does not again prove the consistency of axioms (which are essentially the same as

before, except for the addition of the boolean useCache parameter that says whether or

not to ignore the cache). Currently missing among the lemmas in CachedBuilds.dfy

is a proof that the arguments of an invocation are considered valid in the cached ver-

sion just when they are considered valid in the non-cached version. Finally, our file

ConsistentCache.dfy shows that, starting from any consistent cache, a cached build

never fails due to an rInconsistentCache error and the new state also has a consistent

cache. Moreover, a consistent-cache state is reachable from any state by deleting all

cache entries of the latter state.

The following table shows file sizes and verifier running times (in seconds) for the

three files.

number of lines verification time

ParallelBuilds.dfy 835 237

CachedBuilds.dfy 1321 194

ConsistentCache.dfy 659 40

The times are in seconds on a 2.4 GHz laptop with eight logical cores, averaged over

three runs (with a variation of less than 10 seconds among different runs). The file

CachedBuilds.dfy is much larger because the proofs require much more manual guid-

ance; however, we have not tried to clean up these proofs, which could make them

shorter.

To develop the formalization and proofs, we used the DAFNY IDE [7] in Visual Stu-

dio, and found it to do a good job with verification-result caching and continuous back-

ground verification. The biggest annoyance we found (and saw a lot of) was time-outs.

In such cases, we were not given much useful information from the verifier, and we had

to wait longer (more than 10 seconds) to be given anything at all. The time-outs were

mostly due to missing parts of the proof—once the proof was in place, verification times

were usually low. To reduce frustrating waits, we divided up the proof in pieces—this

can sometimes lead to good modularization, but in some cases it can become tedious.
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It seems that the proving system should be able to do such restructuring automatically

and behind the scenes. To reduce the information available to the prover—in hopes of

reducing the ways in which the automatic prover can get lost in its proof search—we

also sometimes turned off the automatic induction and several times marked functions

as “opaque”, a recent feature in DAFNY that hides the definition of the functions unless

the proof requests the definition to be revealed. In general, after having verified the ba-

sic algorithm used by CLOUDMAKE, we found the verification process to be incremental

and require less effort.

The formalization presented in this paper has contributed to the development of

CLOUDMAKE. In particular, we found parts of the English specification document for

CLOUDMAKE either inadequate or more complex than necessary for our theorems to

hold. Our work has led to identifying and fixing such mistakes in this document, for

example in the evaluation of statements and the specification of exec. Moreover, we

substantially simplified the formalization for cached builds while threading the cache

through our proofs.

5 Related Work

There are almost as many build systems as there are programming languages (since em-

bedded, domain-specific build systems have been developed for almost all languages).

But only a few such systems remain in active use. Here are the ones that had an im-

pact on CLOUDMAKE. MAKE [2] introduced dependency-based builds, which are key

to CLOUDMAKE’s optimizations. VESTA-2 [3] used, for the first time, a functional pro-

gramming language to describe dependencies, which are computed based on finger-

prints instead of time stamps like in MAKE. VESTA-2 also introduced caching based on

fingerprints. Moreover, Google’s build language and Facebook’s BUCK
3 had an impact

on CLOUDMAKE’s incremental and distributed builds.

Build optimizations, akin to compiler optimizations, should be correctness preserv-

ing. However, such optimizations are typically difficult to verify since the proof must

demonstrate that the semantics of the original program is equivalent to the semantics of

the transformed program. Early compiler verification showed the equivalence of source

and target programs with commutative diagrams [10] and presented the first mechani-

cally verified compiler [11]. Other work of formally verifying the correctness of com-

piler optimizations was done by Lerner et al. [8]. The recent rise in the power of proof

tools revitalized the area of compiler and optimizer verification. The most notable ex-

ample is the COMPCERT project [9], which involved developing and proving correct a

realistic compiler for a large subset of C, usable for critical embedded systems. A for-

mal proof of correctness of function memoization has been done in the interactive proof

assistant ACL2 [1].

6 Conclusion

We have formally presented and mechanically verified the central algorithms of CLOUD-

MAKE, a modern build language whose design allows for a number of possible opti-

mizations. We have defined the CLOUDMAKE language using a pluggable operational

3
http://facebook.github.io/buck/

http://facebook.github.io/buck/
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semantics: the primitive operation exec is defined axiomatically and can be used to call

any tool as part of a build as long as the tool complies with the axiomatization. To define

the CLOUDMAKE semantics and verify its algorithms, we have used the SMT-based pro-

gram verifier DAFNY. Given that CLOUDMAKE is a functional language, we have found

it sufficient to use only the functional subset of the DAFNY language in our proofs.

A limitation of our work is that we have not targeted verification of the CLOUDMAKE

implementation, but only of its algorithms.

In the future, we plan on proving the equivalence of more optimized builds, like

staged and incremental builds, to clean builds. A staged build uses dependency infor-

mation from the last successful build to reduce the number of exec operations. Specif-

ically, there are two stages in a staged build. First, we do a “lazy” build during which

exec operations are not evaluated but are, instead, used to compute a dependency graph.

For any given exec, this graph shows which other exec operations must be evaluated

first for the given exec to succeed, that is, which dependency artifacts of the given exec

must be previously derived by other exec operations, recursively. Second, we traverse

the dependency graph top-down and evaluate all the exec operations we postponed dur-

ing the first stage. In practice, we only evaluate those exec operations that correspond to

the changed system state between two successive builds. The main difference between

staged and incremental builds is that during the second stage of an incremental build,

the dependency graph is traversed bottom-up instead of top-down. We already have

such a proof for staged builds, but we still aspire to formalize and prove the bottom-up

algorithm of incremental builds, which is the optimization mostly used by CLOUDMAKE.

By verifying these algorithms, we are ensuring that nothing can go wrong during

such optimized builds. Our work already affects many product groups at Microsoft that

rely on these optimizations to speed up the build times of large software products.
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