Citation for published version


DOI

https://doi.org/10.1049/ic:20060135

Link to record in KAR

http://kar.kent.ac.uk/58697/

Document Version

UNSPECIFIED

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Collaborations Among In-Vehicle and Infrastructure-Based Sensing Technology for Automotive Applications: The EMMA and TRACKSS EU Projects

Sergio Grosso, Dr Alan Tully, and Dr Budi Arief
University of Newcastle upon Tyne, UK

Antonio Marques and Manuel Serrano Matoses
ETRA, Spain
Abstract

- New synergetic approach to sensing data for automotive applications;
- Software development to build networks of non-homogeneous technologies
- Approach dealing with parts of the engine, detectors within the car and the car itself in connection to the outside world

About the Speaker

Sergio Grosso is Researcher at the University of Newcastle upon Tyne and Senior Transport Consultant for PTV. He has started traffic modelling in 1993 and since then he has worked on a wide range of applications related to consultancy, training, auditing, student supervision, project work, demonstrations, and software development. Models dealt with are either at a macro or micro scale, urban and motorways, mostly private transport. Currently involved with the TRACKSS EU project, he has previously worked on the CLEOPATRA, COSMOS and SENSOR EU projects. He has developed programs for macroscopic assessment of traffic and pollution/noise estimation from microsimulation.
Collaborations Among In-Vehicle and Infrastructure-Based Sensing Technology for Automotive Applications: The EMMA and TRACKSS EU Projects

Sergio Grosso, Dr Alan Tully, and Dr. Budi Arief
University of Newcastle upon Tyne (UK)
Contact: Sergio.Grosso@ncl.ac.uk

Antonio Marques and Manuel Serrano Matoses
ETRA (Spain)

Summary

Description of EMMA and TRACKSS projects

Objectives and common goal

Validation activities

A test scenario for collaborative sensing at Haymarket, Newcastle

References and acknowledgments
**State of the Art - Problems**

- Current sensor technology uses wired communication in a car (CAN, LIN, FlexRay, MOST) but
  - Bus technologies have different interfaces
- Cars react to other cars (e.g. Adaptive Cruise Control), but do not cooperate between them and
  - Communication technology is also different from wired technology
- Communication between cars and infrastructure (e.g. Floating Car Data in Germany) can be improved
  - Infrastructure devices are usually more powerful than car’s
- Interactions altogether form an highly complex system!
  - Many interfaces required
  - Many dependencies to be taken into account
Sensing cooperation for EMMA and TRACKSS

- Within automotive system:
  - Several sensors within one system such as elements of the engine

- At a car level:
  - Different sub-systems such as radar and video sensor

- At outside-the-car level with cars and infrastructure

Visionary scenario for EMMA
More in detail: TRACKSS main objectives (1/2)

1) To develop and/or improve a number of sensing technologies:

**On-board vehicle sensors:**
- Ice-detection [CRF];
- Video-camera with enhanced night vision, lane/road side recognition, detection vulnerable users [BOSCH];
- Infrared sensor to detect an infrared emitter with vehicle ID [LCPC];
- Smart dust for in-vehicle applications [UNEW];
- Electromagnetic sensor for pedestrian detection [TRL];

**External sensing technologies:**
- In-road inductive loops [TACA];
- Laser scanners (for infrastructure) [ITACA];
- Video cameras for infrastructure [CTL];
- Smart dust for infrastructure [UNEW];
- Spaceborne/airborne sensors [DLR];
- Advanced radar sensor [TRW];
2) To embed knowledge sharing capabilities into the above sensing technologies

3) To develop a Data Integration Module (DIM), a Decision Support System (DSS), and a Knowledge Management Administrator (KMA) to firstly reorganize, correct and optimize the data collected and then assess and predict the ambient conditions affecting the safety and efficiency of transport.

4) To validate the project results in three scenarios:
   i. A controlled environment – test track (Berlin)
   ii. An intersection (Paris)
   iii. A section of network (Valencia)

### More on TRACKSS validation: Envisaged cooperation

- **Test tracks (DLR)**
  - Remote sensing DLR
  - Passive mm Wave

- **Berlin**
  - Smart dust infrastructure UNEW
  - Adv. Vehicle Identification LOC
  - CMOS Camera BOSCH

- **Crossing section (INRETS)**
  - Adv. ACC
  - Camera INRETS
  - Super loop ITACA
  - Smart dust infrastructure UNEW
  - Passive mm Wave TLS
  - Smart dust vehicle UNEW

- **Paris**
  - Smart dust vehicle UNEW

- **Network (VLC)**
  - Smart dust vehicle UNEW
  - Laser scanner ITACA
  - LIDAR detector CRF
  - Smart dust infrastructure UNEW
  - Super loop ITACA

30 November 2006
RFID and Electronic Vehicle Identification in Road Transport
EMMA’s main objectives and validation

To build a middleware platform for Wireless COoperative sensing objects (wicos). 3 levels of wicos are to be tested (and validated):

1a) Engine sensors prototyped by CRF such as:
- exhaust gas sensors;
- oil conditions sensors;
- pressure sensors;
- position sensors for VVA – variable valve actuator;

1b) Car-level sensors with:
- the engine (1a) as a single wico plus
- radar sensor
- video sensor
- EPAS (Electronic Power-Assisted Steering)

1c) Supra-car level sensors, using the car (1b) as a wico itself. Smart dust would be used for the communication

State of the work

1) For TRACKSS (11 months into the project):
   1a) Defined requirements
   1b) Currently working on a Knowledge Sharing Model (KSM) capable of integrating at least the technologies specified by the 3 test cases

2) For EMMA (7 months into the project)
   2a) Defined requirements
   2b) Work on solutions for different operating systems for smart dust, namely Tiny-OS (used by UNEW’s smart dust) and Nano-Q+ (used by ETRI’s) to become “compatible”
Examples for Haymarket (Newcastle)

Collaboration in-vehicle smart dust with infrastructure-based smart dust to implement improved Puffin (Pedestrian User-Friendly Intelligent crossings) control at junctions

Collaboration loop detector – video camera to implement intermittent bus lane

References


The authors wish also to thank the colleagues of the University of Stuttgart (Daniel Minder) for their collaboration in the preparation of this presentation.