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Spectral discretizations based on rectangular differentiation matrices have recently been demonstrated

to be a convenient means of solving linear and nonlinear ordinary differential equations with general

boundary conditions and other side constraints. Here, we present explicit formulae for such matrices.
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1. Introduction

In a recent paper Driscoll and Hale introduce rectangular differentiation matrices, which they demon-

strate to be a novel and convenient approach for implementing boundary conditions in Chebyshev spec-

tral collocation (Driscoll & Hale, 2015). The standard approach in Chebyshev spectral methods for

many years has been to form square n × n systems, and in, say, the case of two-point boundary value

problems (TBVPs), replace the top and bottoms rows with others which enforce the required boundary

constraints (see, for example, Trefethen, 2000, p. 135; Boyd, 2001, Section 6.4). Whilst for TBVPs this

is clear and unambiguous, the row replacement or ‘boundary bordering’ strategy quickly becomes ad

hoc when applied to more complicated situations, such as third- or higher-order problems or integral-

type constraints. From the rectangular point of view, a pth-order differential operator is naturally dis-

cretized by an n × (n + p) matrix, allowing p boundary constraints to be appended to form an invertible

(n + p) × (n + p) system.1

Driscoll and Hale define the first-order rectangular differentiation matrix, which in this paper we

denote by Dn,n+1 ∈ R
n×(n+1), as that which maps function values of a polynomial on an (n + 1)-point

Chebyshev grid of the second kind to the derivative of that polynomial on an n-point Chebyshev grid

of the first kind. Since the traditional Chebyshev differentiation matrix, Dn+1, maps function values of

a polynomial on a second-kind Chebyshev grid to the derivative of the polynomial on that same grid

(Trefethen, 2000, Chapter 6), they achieve this downsampling by simply pre-multiplying by the rectan-

gular matrix which interpolates between the (n + 1)- and n-point grids. They call this matrix the down-

sampling matrix, which we shall denote by Pn,n+1, and show that it can be efficiently computed using

1 The reason for considering an n × (n + p) rectangular matrix rather than an (n − p) × n one is that the former is more

convenient when extending to coupled systems of equations. See (Driscoll & Hale, 2015, Section 4.4) for further details.

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 of 15 K. XU AND N. HALE

the barycentric interpolation formula (Berrut & Trefethen, 2004). Thus, the rectangular differentiation

matrix is constructed via Dn,n+1 = Pn,n+1Dn+1, and the idea extends naturally to higher-order derivatives

so that D
(p)
n,n+p = Pn,n+pD

(p)
n+p. The combined use of first- and second-kind Chebyshev grids has also been

exploited by Kopriva & Kolias (1996) and Kopriva (1998).

The main result of this paper is to show how Dm,n can be constructed explicitly, that is, without first

forming Dn and downsampling, for any m and n. We also derive a simple recurrence for computing

D(p)
m,n. The explicit construction has the advantage that it requires O(n2) floating point operations, rather

than O(n3) for the matrix–matrix multiplication (although this can be reduced by applying Pm,n using

fast Fourier transforms (FFTs)—see Section 6), and may also be useful in providing more theoretical

insight into rectangular spectral collocation.

The outline is as follows. In Section 2 we give some preliminaries before deriving the explicit

construction of the first-order rectangular differentiation matrix in Section 3. In Section 4 we show

that recurrence relations similar to those used in the standard square case can be used to extend the

construction to higher-order derivatives, and in Section 5 we make some remarks regarding accurate

implementation for both the first- and higher-order cases. Section 6 introduces some alternative

constructions of rectangular differentiation matrices, and Section 7 compares these numerically with

the explicit construction.

2. Preliminaries

In this paper we denote the Chebyshev points of the first kind (sometimes known as Chebyshev ‘nodes’

or ‘roots’, or more formally as ‘Gauss–Chebyshev points’) by

τk,n = cos
(2k + 1)π

2n
, k = 0, . . . , n − 1, (2.1)

and the Chebyshev points of the second kind (referred to as Chebyshev ‘extrema’ or more formally

‘Gauss–Chebyshev–Lobatto points’) by

tk,n = cos
kπ

n − 1
, k = 0, . . . , n − 1. (2.2)

These points are, respectively, the roots and extrema of Tn(x) and Tn−1(x), where Tn(x) = cos(n arccos x)

is the degree-n Chebyshev polynomial of the first kind. The second-kind points (2.2) are also the roots

of (1 − x2)Un−2(x), where Un(x) = sin((n + 1) arccos x)/ sin(arccos x) is the degree-n Chebyshev poly-

nomial of the second kind. For convenience, we write τ n = {τk,n}
n−1
k=0 and tn = {tk,n}

n−1
k=0.

Defining the nodal polynomial ℓ(x) for an arbitrary set of n points xn = {xk}
n−1
k=0 by

ℓ(x) =

n−1
∏

k=0

(x − xk), (2.3)

the Lagrange polynomials may be written as

ℓj(x) =
ℓ(x)

ℓ′(xj)(x − xj)
, j = 0, . . . , n − 1, (2.4)
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RECTANGULAR DIFFERENTIATION MATRICES 3 of 15

so that ℓj(x) is the unique polynomial of degree n − 1 satisfying

ℓj(xk) =

{

1, k = j,

0, k |= j.
(2.5)

Lemma 2.1 If the nodes xn are the Chebyshev points of the second kind, tn, then

ℓ(x) = 2−n+2(x2 − 1)Un−2(x) = 2−n+1(Tn(x) − Tn−2(x)). (2.6)

Proof. The first equality follows from the observation that ℓ(x) and 2−n+2(x2 − 1)Un−2(x) are both

monic polynomials of degree n with the same zeros. The second follows directly from Olver et al.

(2010, (18.9.10)). �

Lemma 2.2 (Trefethen, 2013, p. 40) If ℓ(x) is the nodal polynomial corresponding to the points tn, then

ℓ′(tj,n) = 2−n+1(T ′
n(tj,n) − T ′

n−2(tj,n)) =

{

2−n+2(n − 1)(−1)j, 1 � j � n − 2,

2−n+3(n − 1)(−1)j, j = 0, n − 1.
(2.7)

Proof. By definition of Tn(x) and Tn−2(x),

T ′
n(tj,n) − T ′

n−2(tj,n) =
2 sin(n − 1)θj cos θj + 2(n − 1) sin θj cos(n − 1)θj

sin θj

, j = 0, 1, . . . , n − 1, (2.8)

where θj = jπ/(n − 1). Simplification of this expression, along with the second equality in (2.6), leads

to (2.7). �

Lemma 2.3 If tj,n is a Chebyshev point of the second kind, then

Tn(tj,n) = (−1)jtj,n = Tn−2(tj,n). (2.9)

Proof. The first equality follows immediately from expanding Tn(tj,n) = cos(jπ + jπ/(n − 1)) using

the standard cosine double angle formula. The second equality is essentially the same. �

Lemma 2.4 If ℓ(x) is the nodal polynomial corresponding to the points tn, then

ℓ′′(tj,n) = 2−n+2(−1)j+1(n − 1)
tj,n

1 − t2
j,n

, 1 � j � n − 2. (2.10)

Proof. By the second equality in (2.6) we have

ℓ′′(tj,n) = 2−n+1(T ′′
n (tj,n) − T ′′

n−2(tj,n)). (2.11)

Using the differential equations satisfied by Tn(x) and Tn−2(x) (Olver et al., 2010, (18.8.1)), we find

ℓ′′(tj,n) = 2−n+1

(

tj,nT ′
n(tj,n) − n2Tn(tj,n)

1 − t2
j,n

−
tj,nT ′

n−2(tj,n) − (n − 2)2Tn−2(tj,n)

1 − t2
j,n

)

(2.12)

=
2−n+1

1 − t2
j,n

(tj,n(T
′
n(tj,n) − T ′

n−2(tj,n)) − n2Tn(tj,n) + (n − 2)2Tn−2(tj,n)). (2.13)
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4 of 15 K. XU AND N. HALE

Using (2.7) to remove the T ′
n(tj,n) and T ′

n−2(tj,n) terms, substituting (2.9) for the Tn(tj,n) and Tn−2(tj,n)

and then rearranging gives the required result. �

Lemma 2.5 For any x ∈ [−1, 1],

n−1
∑

k=0

1

x − tk,n

=
U ′

n−2(x)

Un−2(x)
−

2x

1 − x2
. (2.14)

Proof. By Lemma 2.1,

Un−2(x) = 2n−2 ℓ(x)

x2 − 1
= 2n−2

n−2
∏

k=1

(x − tk,n). (2.15)

Taking the derivatives of both sides we find

U ′
n−2(x) = 2n−2

n−2
∏

j=1

(x − tj,n)

n−2
∑

k=1

1

x − tk,n

= Un−2(x)

n−2
∑

k=1

1

x − tk,n

, (2.16)

from which we have
n−2
∑

k=1

1

x − tk,n

=
U ′

n−2(x)

Un−2(x)
. (2.17)

Together with the terms corresponding to t0,n = 1 and tn−1,n = −1, this amounts to (2.14). �

3. Rectangular differentiation matrix

Suppose a function f (x) is approximated by the Lagrange interpolant of the n sampled values

{(xj, fj)}
n−1
j=0 . The Lagrange interpolant of f is

p(x) =

n−1
∑

j=0

fjℓj(x), (3.1)

and the derivative of f (x) can be approximated by p′(x):

p′(x) =

n−1
∑

j=0

fjℓ
′
j(x). (3.2)

Denoting the column vector consisting of fj by f, the vector of values vi = p′(yi) at another set of points

y
m

= {yi}
m−1
i=0 can be computed by

v = Dm,nf, (3.3)

where Dm,n is an m × n differentiation matrix with (i, j) entry

[Dm,n]ij = ℓ′
j(yi). (3.4)

This idea forms the basis of spectral collocation methods (see, for example, Trefethen, 2000, Chapter 6;

Boyd, 2001, Chapter 4).
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Lemma 3.1 The derivative of the jth Lagrange polynomial corresponding to the nodes xn may be

written as

ℓ′
j(x) = ℓj(x)

n−1
∑

k=0
k |= j

1

x − xk

. (3.5)

Proof. Rewriting (2.4) as ℓ′(xj)ℓj(x)(x − xj) = ℓ(x), and then taking the logarithm and differentiating

yields

ℓ′
j(x)

ℓj(x)
+

1

x − xj

=
ℓ′(x)

ℓ(x)
.

Noting that

ℓ′(x)

ℓ(x)
=

n−1
∑

k=0

1

x − xk

, (3.6)

we obtain (3.5). �

Corollary 3.2 If the nodes xn in Lemma 3.1 are the second-kind Chebyshev grid tn, then

ℓ′
j(x) = ℓj(x)

(

U ′
n−2(x)

Un−2(x)
−

2x

1 − x2
−

1

x − tj,n

)

. (3.7)

Proof. Simply replace xk by tk,n in (3.5) and replace the summation with the expression from (2.14).

�

Theorem 3.3 Denote by Dm,n the m × n rectangular differentiation matrix which maps from the n-point

Chebyshev grid of the second kind tn to the m-point Chebyshev grid of the first kind τm. If m < n and

τi,m �= tj,n, then the entries of Dm,n are given by

[Dm,n]′′ij =
(−1)jTn−1(τi,m)

τi,m − tj,n
+

(−1)jUn−2(τi,m)(1 − τi,mtj,n)

(n − 1)(τi,m − tj,n)2
, (3.8)

where the double prime indicates that the first and last columns are halved. If τi,m and tj,n coincide, then

[Dm,n]ij = −
τi,m

2(1 − τ 2
i,m)

. (3.9)

Proof. For j = 1, . . . , n − 2, substituting (2.6) from Lemma 2.1 and (2.7) from Lemma 2.2 into (2.4)

gives

ℓj(τi,m) =
ℓ(τi,m)

ℓ′(tj,n)(τi,m − tj,n)
(3.10)

=
2−n+2(τ 2

i,m − 1)Un−2(τi,m)

2−n+2(n − 1)(−1)j(τi,m − tj,n)
(3.11)

=
(−1)j+1(1 − τ 2

i,m)Un−2(τi,m)

(n − 1)(τi,m − tj,n)
, (3.12)
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6 of 15 K. XU AND N. HALE

with half of this value for j = 0 and j = n − 1. Setting x = τi,m in (3.7) and substituting (3.12) leads to

[Dm,n]i,j = ℓ′
j(τi,m) =

(−1)j+1(1 − τ 2
i,m)Un−2(τi,m)

(n − 1)(τi,m − tj,n)

(

U ′
n−2(τi,m)

Un−2(τi,m)
−

2τi,m

1 − τ 2
i,m

−
1

τi,m − tj,n

)

, (3.13)

for j = 1, . . . , n − 2, again with the corresponding values for j = 0 and j = n − 1 being halved. Substi-

tuting the relation

U ′
n−2(τi,m) =

−(n − 1)Tn−1(τi,m) + τi,mUn−2(τi,m)

1 − τ 2
i,m

(3.14)

into (3.13) and rearranging yields (3.8).

For (3.9), observe that differentiating (2.4) and applying l’Hôpital’s rule to evaluate ℓ′
j(xj) leads to

ℓ′
j(xj) = ℓ′′(xj)/(2ℓ′(xj)). Setting xj = tj,n and substituting (2.7) and (2.10) gives the required result. �

Corollary 3.4 When m = n − 1, (3.8) simplifies to2

[Dn−1,n]′′ij =
(−1)i+j(1 − τi,n−1tj,n)

(n − 1)(1 − τ 2
i,n−1)

1/2(τi,n−1 − tj,n)2
. (3.15)

Proof. When m = n − 1, the first term in (3.8) vanishes as τm are the roots of Tn−1. For the second

term, we observe that

Un−2(τi,n−1) =
sin((2i + 1)π/2)

sin((2i + 1)π/(2n − 2))
=

(−1)i

(1 − τ 2
i,n−1)

1/2
. (3.16)

�

Analogous results for rectangular differentiation matrices which map from function values on an

n-point first-kind Chebyshev grid to an m-point grid also of the first kind can be found in the Appendix.

See Section 5 for a discussion of how to accurately evaluate the expressions in (3.3) and (3.15).

4. Recursion for high-order differentiation matrices

Welfert (1997) derives an expression for the entries of a (p + 1)th-order square differentiation matrix in

terms of its pth-order counterpart, and based on this gives a recursive algorithm to compute higher-order

square differentiation matrices in O(n2) operations. Following the same approach we derive a similar

recursive method for high-order rectangular differentiation matrices.

Theorem 4.1 (Welfert, 1997, Theorem 2.1) For an arbitrary grid xn, the pth and (p + 1)th derivatives

of the Lagrange polynomial ℓj(x) are related by

ℓ(p+1)(x) = ℓ′(xj)((x − xj)ℓ
(p+1)
j (x) + (p + 1)ℓ

(p)
j (x)), j = 0, . . . , n − 1, (4.1)

where ℓ(x) is the nodal polynomial defined by (2.3).

2 The corresponding formula for (3.9) when m = n − 1 is not required as an (n − 1)-point first-kind grid and an n-point second-

kind grid never have a point in common.
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RECTANGULAR DIFFERENTIATION MATRICES 7 of 15

Proof. Another form of the nodal polynomial can be obtained by writing (2.4) as

ℓ(x) = ℓj(x)ℓ
′(xj)(x − xj). (4.2)

Differentiating both sides of the above by the Leibniz rule, (4.1) follows immediately. �

Theorem 4.2 Denote by D(p)
m,n the m × n rectangular differentiation matrix of order p which maps from

an n-point Chebyshev grid of the second kind tn to an m-point Chebyshev grid of the first kind τm. If

τi,m �= tj,n, the entries of D(p+1)
m,n are given by

[D(p+1)
m,n ]′′ij =

1

τi,m − tj,n

[

(−1)j

2(n − 1)
(T (p+1)

n (τi,m) − T
(p+1)

n−2 (τi,m)) − (p + 1)[D(p)
m,n]ij

]

, (4.3)

where the double prime indicates that, for j = 0 and j = n − 1, the first term in the square brackets on

the right-hand side is halved. If τi,m and tj,n coincide, the corresponding entry becomes

[D(p+1)
m,n ]ij = (−1)j T (p+2)

n (τi,m) − T
(p+2)

n−2 (τi,m)

2(n − 1)(p + 2)
. (4.4)

Proof. Recalling that ℓ
(p)
j (τi,m) = [D(p)

m,n]ij, substituting this into (4.1) and rearranging, we find

[D(p+1)
m,n ]ij =

1

τi,m − tj,n

(

ℓ(p+1)(τi,m)

ℓ′(tj,n)
− (p + 1)[D(p)

m,n]ij

)

. (4.5)

From (2.6) in Lemma 2.1 and (2.7) in Lemma 2.2 we have

ℓ(p+1)(τi,m)

ℓ′(tj,n)
=

2−n+1(T (p+1)
n (τi,m) − T

(p+1)

n−2 (τi,m))

2−n+2(n − 1)(−1)j
, (4.6)

which when substituted into (4.5) gives (4.3).

For the case when τi,m and tj,n coincide we apply l’Hôpital’s rule to (2.4) in a similar way as in the

proof of Theorem 3.3, giving

[D(p+1)
m,n ]ij =

ℓ(p+2)(tj,n)

(p + 2)ℓ′(tj,n)
. (4.7)

Using Lemmas 2.1 and 2.2 in the same way as above, we obtain (4.4). �

5. Implementation details

Much as in the square case, there are a number of useful identities which can be used to ensure that the

rectangular differentiation matrices are constructed accurately. In the literature these are often referred

to as ‘tricks’, and we briefly review those which are relevant here.
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8 of 15 K. XU AND N. HALE

5.1 Trigonometric identities

Following Canuto (1988) and Tang & Trummer (1996) we evaluate τi,m − tj,n in (3.8) and (4.3) using

the trigonometric identity

τi,m − tj,n = −2 sin

(

θi + φj

2

)

sin

(

θi − φj

2

)

, (5.1)

where θi = (2i + 1)π/(2m) = arccos(τi,m) and φj = jπ/(n − 1) = arccos(tj,n). As noted by others, this

trick reduces the cancellation error and offers improvements in accuracy in the computation of dif-

ferentiation matrices. Unfortunately, a similar trick is less forthcoming for the 1 − τi,mtj,n term in the

numerators of (3.8) and (3.15). However, in the corner entries of the rectangular matrix this term can-

cels with the τi,m − tj,n discussed above. In particular, the first entry of (3.15) simplifies to

[Dn−1,n]0,0 = −

(

4(n − 1) sin

(

π

2(n − 1)

)

sin2

(

π

4(n − 1)

))−1

, (5.2)

which can be accurately evaluated. If required, the 1 − τi,mtj,n term can be accurately evaluated for

τi,mtj,n ≈ 1 by using a Taylor series expansion in m and n.

Additionally, terms of the form (1 − τi,n)
1/2, such as in (3.15), should be evaluated as

sin((2i + 1)π/(2n)) to avoid rounding error near ±1.

5.2 The ‘flipping’ trick

As pointed out by Solomonoff (1992) and Don & Solomonoff (1995), the n × n square differentiation

matrix has the skew-symmetry property

[Dn]ij = −[Dn]n−i−1,n−j−1. (5.3)

Since values of θi and φj nearer zero can be computed to a higher relative accuracy, this can lead to

improved accuracy (Baltensperger & Trummer, 2003). The m × n rectangular differentiation matrices

have an analogous property.

Theorem 5.1 The rectangular differentiation matrices (3.8) and (4.3) satisfy the skew-symmetry

properties

[Dm,n]ij = −[Dm,n]m−i−1,n−j−1 (5.4)

and

[D(p)
m,n]ij = (−1)p[D(p)

m,n]m−i−1,n−j−1. (5.5)

Proof. It suffices to note that τm−i−1,m = −τi,m, tn−j−1,n = −tj,n, Tn−1(x) = (−1)n−1Tn−1(−x) and

Un−2(x) = (−1)n−2Un−2(−x). Substituting these expressions into (3.8) for [Dm,n]m−i−1,n−j−1 readily

verifies (5.4).

For (5.5) we can apply induction using (4.3), noting that differentiating Tn(x), a function of definite

parity, changes the parity if the differentiation is performed an odd number of times, while leaving it

unchanged if performed an even number of times (see, for example, Boyd, 2001, Theorem 25). �
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5.3 The ‘negative-sum’ trick

It has been standard practice to improve the accuracy in computing the square differentiation matrix by

employing the ‘negative-sum trick’ (Bayliss et al., 1995; Baltensperger & Berrut, 1999; Baltensperger

& Trummer, 2003). That is, for the usual square differentiation matrix, the diagonal entry in each row

is computed as the negated sum of all off-diagonal entries. This idea follows from the fact that constant

functions should evaluate to zero when differentiated.

Constant functions must evaluate to zero when differentiated using rectangular matrices too, so we

may employ a similar idea. For the rectangular differentiation matrix Dm,n in (3.8), it is the entry in row i

corresponding to the smallest value of |τi,m − tj,n| which suffers most from cancellation error. Therefore,

we assign it the negated sum of all other entries in the same row, i.e.,

[Dm,n]il =

n−1
∑

j=0
j |= l

[Dm,n]ij, where |τi,m − tl,n| = min
j=0,...,n−1

|τi,m − tj,n|. (5.6)

The exception is in the first and last row, where the corner entries on the diagonal can be accurately

evaluated by (5.2). In this case we use the negative-sum trick to improve the value of the neighbouring

entry.

The negative-sum trick can also be applied to the higher-order differentiation matrices D(p)
m,n in (4.3).

6. Other approaches

In this short section we outline other approaches for constructing rectangular differentiation matrices,

and comment briefly on how they compare with the explicit constructions derived in Sections 3 and 4.

Numerical comparisons are given in Section 7.

6.1 Downsampling via interpolation

In Driscoll & Hale (2015) the m × n rectangular differentiation matrix Dm,n is computed by first forming

the standard n × n square differentiation matrix Dn and then pre-multiplying by a downsampling matrix

Pm,n.3 That is, Dm,n = Pm,nDn, where Pm,n is a rectangular matrix which interpolates function values from

an n-point grid to an m-point grid. Barycentric interpolation (Berrut & Trefethen, 2004) is a natural

choice for this operation, and the matrix Pm,n mapping between {yi}
m−1
i=0 and {xj}

n−1
j=0 can be explicitly

written as

[Pm,n]i,j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

wk

yi − xj

(

n−1
∑

k=0

wk

yi − xk

)−1

, yi |= xj,

1, yi = xj,

(6.1)

where the wk are the barycentric weights corresponding to the points {xj}
n−1
j=0 . Basic MATLAB code for

computing Pm,n can be found in Driscoll & Hale (2015, Fig. 3.1), but this can be improved upon by

applying the trigonometric and flipping tricks from Section 5.

Though the costs for constructing Pm,n and Dn are O(mn) and O(n2) flops respectively, the mul-

tiplication of Pm,n and Dn requires O(mn2) flops, which dominates. However, the implied constant is

small and the complexity is comparable to the O(n3) cost of directly solving the linear system when,

3 In Driscoll & Hale (2015) the notation Pn,m−n is used instead.
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m

Fig. 1. The aliasing matrix, Am,n ∈ R
m×n, which results from downsampling from an n-point Chebyshev grid of the second kind

to an m-point Chebyshev grid of the first kind.

for example, solving a boundary value problem (BVP). As such, the additional overhead of construct-

ing Dm,n in this way is not usually significant. The additional motivation of this approach is that the

discretized linear operators representing the BVP can be constructed in the traditional square sense, and

the entire operator downsampled as a final step before applying boundary constraints.

6.2 Downsampling via aliasing

The downsampling described above is equivalent to a specific aliasing in the Chebyshev coefficients

of the polynomial interpolant p(x) from (3.1); see Driscoll & Hale (2015, Section 3.2). In particular,

the m × n rectangular downsampling matrix Pm,n can be constructed as the product of three matrices

Pm,n = VmAm,nCn, where Vm ∈ R
m×m is the discrete cosine transform (DCT) of Type I which maps from

Chebyshev coefficients to a first-kind Chebyshev grid, Cn ∈ R
n×n is a scaled inverse DCT of Type

I which maps from a second-kind Chebyshev grid to Chebyshev coefficients and Am,n ∈ R
m×n is the

aliasing matrix

[Am,n]ij =

⎧

⎪

⎨

⎪

⎩

1, j = 4km ± i,

−1, j = 2(2k + 1)m ± i,

0, otherwise,

(6.2)

where i = 0, 1, . . . , m − 1 and k = 0, 1, . . . so that 0 � j � n − 1. See Fig. 1 for a graphical illustration.

The connection to the DCT means that both Vm and Cn can be efficiently applied using FFTs in

O(n2 log n) and O(mn log m) flops, respectively. Taking advantage of its sparsity, multiplication by

Am,n can be carried out in O(n2) flops, making the total complexity O(n2 log n). Whilst this reduced

complexity over the interpolation approach may not be significant when compared with solving the

resulting linear system, the reduced number of operations may have a positive effect on the accumulation

of rounding error.

In the usual case, where (n − 1)/2 � m < n, A takes the simpler form

[Am,n]ij =

⎧

⎪

⎨

⎪

⎩

1, j = i,

−1, j = 2m − i,

0, otherwise,

(6.3)

where again i = 0, 1, . . . , m − 1. Furthermore, as pointed out in Driscoll & Hale (2015), if m = n − 1,

then

[An−1,n]ij = [In]ij, i = 0, . . . , n − 2, j = 0, . . . , n − 1, (6.4)

where In is the n × n identity matrix.
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6.3 Constructing in coefficient space

In the previous section we started with the standard square Chebyshev spectral collocation differen-

tiation matrix and moved to coefficient space using DCTs to achieve the downsampling via aliasing.

An alternative construction can be achieved by forming the differentiation matrix in coefficient space

and then using DCTs to map back to physical space. In particular, the required recurrence relation can

be written in matrix form so that β = D (p)α, where f (x) =
∑n−1

k=0 αkTk(x) and f (p)(x) =
∑n−1

k=0 βkTk(x).

A convenient decomposition of D (1) is given by the ultraspherical formulation (Olver & Townsend,

2013), D (1) = S
−1

0 D0, where

S0 =

⎛

⎜

⎜

⎜

⎝

1 − 1
2

1
2

− 1
2

1
2

− 1
2

. . .
. . .

⎞

⎟

⎟

⎟

⎠

∈ R
n×n, D0 =

⎛

⎜

⎜

⎜

⎝

0 1

2

3

. . .

⎞

⎟

⎟

⎟

⎠

∈ R
n×n. (6.5)

Hence, if Am,n is as in (6.2), the first-order rectangular differentiation matrix may be expressed as

Dm,n = VmAm,nS
−1

0 D0Cn. (6.6)

Higher-order derivatives can be expressed in a similar way, so that

D(p)
m,n = VmAm,n(Sp−1 . . . S0)

−1
Dp−1Cn, (6.7)

where S0, . . . , Sp−1 and Dp−1 are defined in Olver & Townsend (2013, Section 3). The sparseness and

structure of these matrices means they can be both applied and inverted efficiently.

We note also that D(p)
m,n = VmAm,n(Sp−1 . . . S0)

−1Dp−1 gives a convenient way of computing the

values of the form Tp
n (τi,m) appearing in Theorem 4.2.

7. Numerical results

In this section we test the accuracy of the explicit construction of the first-order rectangular differen-

tiation matrices and compare with the other approaches outlined in the previous section. Results for

higher-order derivatives are similar, and MATLAB code to reproduce these results can be found at Hale

& Xu (2014). Implementations of the formulae can also be found in the diffmat function of Chebfun

(Driscoll et al., 2014, v5.1.0).

There are differing opinions in the literature as to whether one should test the accuracy of the matrix

entries themselves (Breuer & Everson, 1992; Baltensperger & Trummer, 2003), or the action and inverse

of the matrix when applied to a function (Bayliss et al., 1995; Don & Solomonoff, 1995; Baltensperger

& Berrut, 1999). Here we do both. We first construct Dn−1,n in extended precision using the MAT-

LAB symbolic toolbox and compute the elementwise maximum norm of the difference in the entries

when constructing in double precision using the explicit construction from Section 3 and each of the

approaches in Section 6. The left panel of Fig. 2 shows the absolute error and the right panel shows the

elementwise relative error for a range of values of n. In the former case the standard square construction

is included for reference, but this is omitted from the latter to avoid issues with zero entries.

We find that, when looking at the absolute error, the aliasing approach of Section 6.2 provides

an accuracy comparable with the square case, with the barycentric and coefficient-based approaches
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12 of 15 K. XU AND N. HALE

Fig. 2. Errors in Dn−1,n for different methods, when compared with a construction using extended precision. Although the absolute

error in the explicit construction (left) is worse than the other approaches outlined in Section 6, the relative error (right) is

significantly improved.

being only slightly worse. The explicit construction performs poorly here, eventually growing at a rate

proportional to n4, and this can be traced back to the difficulty of computing (1 − τitj) when τi and tj
are both close to ±1. It is worth noting that the coefficient-based approach obtains remarkable accuracy,

almost full precision, along the matrix diagonal.

However, the situation is reversed when we look at the relative error. The explicit expression can be

accurately evaluated away from the ‘diagonal’ (i.e., away from τi ≈ tj), and in particular the small entries

of Dn−1,n near the boundaries of the matrix are evaluated to a good relative precision. Conversely, the

DCT used in the aliasing and coefficient-based approaches means that the error is smeared out uniformly

amongst all the matrix entries and a larger relative error is observed near the boundaries, leading to the

observed O(n3) growth in Fig. 2 (right). The barycentric approach, if applied using the tricks described

in Section 5, performs somewhere between these two extremes.

For the second stage of testing we investigate the accuracy of the different rectangular differen-

tiation matrix constructions when applied to a vector and when appended with a boundary condi-

tion and inverted. For simplicity, we consider the function f (x) = exp(x). We first consider the error

‖f ′(τ n−1) − Dn−1,nf (tn)‖∞ for increasing values of n, and include ‖f ′(tn) − Dnf (tn)‖∞ for reference. In

Fig. 3 (left) we see that error growth in each of the approaches follows the expected O(n2) shown by

the square case (Breuer & Everson, 1992).

The story is different in Fig. 3 (right), however, where we solve

u′ = exp(x), x ∈ [−1, 1], (7.1a)

u(−1) = exp(−1), (7.1b)

and compute the maximum norm error against the true solution, u(x) = exp(x), at resulting grid points.

Here, although the error for each of the different constructions of each of the rectangular differentiation

matrices grows roughly like O(n), the implied constant in the case of the aliasing and coefficient-based

approaches is significantly worse than the barycentric and explicit approaches.
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Fig. 3. Left: error in applying Dn−1,n to exp(tn). Right: error in solving (7.1). In both cases the maximum norm of the error on

the resulting grid points is used. On the left we see little difference between the numerous approaches when Dn−1,n is applied to a

smooth function. However, on the right we see that when solving the BVP system the aliasing and coefficient-based approaches

are less accurate.

8. Conclusion

We have shown how it is possible to derive explicit expressions for the entries in the rectangular dif-

ferentiation matrix Dm,n, which maps from function values at an n-point Chebyshev grid of the second

kind to derivative values on an m-point grid of the first kind. As well as being potentially useful for

developing the theory underlying the rectangular spectral collocation as described in Driscoll & Hale

(2015), it was demonstrated that the explicit formula could allow faster and, in some sense, more accu-

rate construction of the matrix than existing approaches. A simple recurrence for higher-order rectan-

gular differentiation matrices was also derived, and the analogous results for rectangular differentiation

matrices that map from first-kind grids to first-kind grids can be found in the Appendix.
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Appendix. Rectangular differentiation matrices for first-kind points

Here we give the analogous formulae to those in Theorems 3.3 and 4.2 for explicit construction of

rectangular differentiation matrices which map between first-kind Chebyshev grids of different sizes.

Proofs are omitted, since they are similar to those in Sections 3 and 4.

Theorem A1 Denote by Dm,n the m × n rectangular differentiation matrix which maps from the n-point

Chebyshev grid of the first kind τ n to the m-point Chebyshev grid of the first kind τm. If m < n, then the

entries of Dm,n are given by

[Dm,n]ij =
1

Un−1(τj,n)(τi,m − τj,n)

(

Un−1(τi,m) −
Tn(τi,m)

n(τi,m − τj,n)

)

, (A.1)

with the exception that if τi,m and τj,n coincide, then

[Dm,n]ij =
τi,m

2(1 − τ 2
i,m)

. (A.2)
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Theorem A2 Denote by D(p)
m,n the m × n rectangular differentiation matrix of order p which maps from

an n-point Chebyshev grid of the first kind τ n to an m-point Chebyshev grid of the first kind τm. The

entries of D(p+1)
m,n are given by

[D(p+1)
m,n ]ij =

1

τi,m − τj,n

[

T (p+1)
n (τi,m)

nUn−1(τj,n)
− (p + 1)[D(p)

m,n]ij

]

. (A.3)

If τi,m and τj,n coincide, then

[D(p+1)
m,n ]ij =

T (p+2)
n (τi,m)

n(p + 2)Un−1(τi,m)
. (A.4)
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