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ANALYTICAL AND COMPUTATIONAL METHODS FOR
TWO-PHASE FLOW WITH SOLUBLE SURFACTANT∗
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Abstract. A hybrid method is used to determine the influence of surfactant solubility on two-
phase flow by solution of a reduced transition layer equation near a fluid interface in the limit of large
bulk Péclet number. The method is applied to finding the evolution of a drop of arbitrary viscosity
that is deformed by an imposed linear strain or simple shear flow. A semianalytical solution of
the transition layer equation is given that expresses exchange of surfactant between its bulk and
interfacial forms in terms of a convolution integral in time. Results of this semianalytical solution
are compared with the results of a spatially spectrally accurate numerical solution. Although both
the hybrid method and its semianalytical solution are valid in three dimensions, the two-dimensional
context of this study allows additional validation of results by comparison with those of conformal
mapping techniques applied to inviscid bubbles.
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1. Introduction. Surfactant is a generic term for a surface active agent that
reduces the surface tension between immiscible liquids. Surfactants are in widespread
use in a variety of applications in the chemical, petrochemical, agrochemical, and
biotechnology industries, and they are also used in food processing and in many
commercial and household products. Many types of surfactant are manufactured or
synthesized, but they also occur naturally and are produced by some microorgan-
isms. Surfactants are often used as detergents, dispersants, or emulsifiers, foaming, or
wetting agents. An overview of their use and properties is given in, for example, [1].

The action of surfactants results from the amphiphilic structure of a surfactant
molecule, which has a long hydrophobic tail and a relatively small hydrophilic or
polar head. In a fluid mixture it will therefore typically be present at the interface
between an aqueous phase and a dissimilar phase, for example a gas or a hydrocarbon
liquid. A surfactant is, however, soluble to some extent in either the continuous or
the dispersed phase of a two-phase mixture, so that it can be exchanged between
the bulk fluid and the fluid interface. At sufficiently low concentrations, surfactant
in the bulk flow behaves as a solute of individual molecules that diffuse very slowly
due to their relative lack of mobility and high molecular weight, which is typically
in the range of 200–2,000 amu. At higher concentrations, at and above the critical
micelle concentration, surfactant molecules that are present in the bulk can also occur
as multimolecule aggregates or micelles. This can influence the effects of surfactant
solubility and is not considered here.

We develop a model for the study of surfactant solubility effects in two-phase
flow that was introduced in [2]. This utilizes the small diffusion coefficient of the bulk
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524 KUAN XU, M. R. BOOTY, AND M. SIEGEL

surfactant concentration, or equivalently its large bulk Péclet number Pe, to form a
leading order, local reduction of the dynamics of soluble surfactant in a narrow tran-
sition or boundary layer that forms immediately adjacent to the fluid interface. This
type of approximation is familiar in the context of matched asymptotic expansions,
and it is intended to resolve accurately the exchange of surfactant between its bulk (or
dissolved) and interfacial (or adsorbed) forms in the limit Pe → ∞. Away from the
transition layer, the bulk concentration is taken to be spatially uniform and effectively
diffusion-free.

The study focuses on the canonical example of a single drop or bubble that is
deformed by an imposed flow. This has been the subject of much work since the early
systematic study by Taylor appeared in 1934 [3]. Examples of experimental studies
of drop deformation and breakup, with and without surfactant, have been given by
Grace [4], Bentley and Leal [5], de Bruijn [6], and Janssen, Boon, and Agterof [7, 8].
Numerical studies have been given by, for example, Stone and Leal [9], Milliken, Stone,
and Leal [10], and Bazhlekov, Anderson, and Meijer [11], and recent reviews of the
literature have been given by Stone [12], Eggers [13], Quéré [14], and Basaran [15]. A
notable example of drop dynamics in the presence of surfactant is the phenomenon of
tip-streaming, which is discussed in many of these references and has been the specific
subject of recent numerical [16] and experimental [17] investigations.

A major theme of this study is the presentation and validation of an analytical,
Green’s function–based method for solving the transition layer equation. Derivation
of the result appears in section 5, which gives the net flux of surfactant entering or
leaving each point of the interface in the form of a convolution integral over time. The
surfactant exchange flux appears as a source term in the equation for conservation
of the surface concentration of surfactant. The method can be thought of as mesh-
free, in the sense that no spatial mesh needs to be introduced in the direction normal
to the interface to solve the transition layer equation for bulk surfactant concentra-
tion. Instead, the spatial structure of the transition layer in the normal direction
is contained in the convolution integral, while the spatial structure in the direction
tangential to the interface enters only parametrically, via a Lagrangian fluid marker
on the interface.

We confine our attention to a 2D (two-dimensional) Cartesian geometry and the
zero Reynolds number Stokes flow limit for incompressible flow of two immiscible
Newtonian fluids. The infinite Péclet number limit transition layer equation and the
mesh-free Green’s function–based method can readily be extended to three dimensions
and nonzero Reynolds number, but the 2D geometry allows an additional means of
validation, especially in the limit when the viscosity of the interior or drop fluid is
zero. In this limit, conformal mapping techniques have been applied and show that
for a 2D inviscid drop that is initially circular or elliptical, when placed in either a
pure strain or a linear shear flow, the drop shape remains elliptical for all time with
a time-dependent eccentricity. This has been shown in the absence of surfactant [18],
and with surfactant that is either insoluble [19] or soluble [2], and rests on the exact
truncation of the conformal map to a Joukowski transformation.

Here the interior or drop fluid viscosity is arbitrary; that is, the ratio of the interior
to exterior fluid viscosity, which is denoted by λ, is such that λ ≥ 0. For 2D Stokes
flow the solution for the fluid velocity and pressure can be written in terms of a stream
function that satisfies a boundary value problem for the biharmonic equation, which
can in turn be expressed in terms of the solution of a Sherman–Lauricella integral
equation. This representation is perhaps more familiar in the context of classical 2D
problems of elasticity (see, for example, [20, 21]), but it has also been applied to two-
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METHODS FOR SOLUBLE SURFACTANT 525

phase Stokes flow; see, for example, [28] and other references given at the beginning
of section 3. When the interior fluid is viscous, λ > 0, the Sherman–Lauricella
formulation is more computationally efficient as a means of solving the biharmonic
equation than conformal mapping techniques. However, it is not apparent or built
into the Sherman–Lauricella formulation that the exact elliptical drop profile will be
retained in the inviscid limit when λ = 0. The fact that this is observed provides
validation that the underlying flow solver, together with the technique for including
insoluble surfactant and soluble surfactant effects via either a mesh-based or mesh-free
method, has been implemented correctly.

The formulation of the problem is given in section 2. The Sherman–Lauricella
integral equation for the underlying fluid flow solver is set up in section 3. The
mesh-based method for solving the transition layer equation is given in section 4,
and numerical results that compare this with the Green’s function–based method of
section 5 are given in section 6. Concluding remarks appear in section 7.

2. Formulation. We consider a single fluid drop in an immiscible exterior fluid.
Both fluids are Newtonian, and the flow is incompressible. The drop has undeformed
radius a0 and is deformed by an imposed linear flow. The exterior fluid has molecular
viscosity μ and occupies the region Ω, while the interior or drop fluid has molecular
viscosity μi = λμ and occupies the complementary region Ωi. Throughout this study,
an i superscript denotes a quantity in the interior or drop region. The interface ∂Ω
has surface tension σ0 in the absence of surfactant, which is taken as a reference value.
All lengths are made nondimensional by the undeformed drop radius a0, velocities are
made nondimensional by the capillary velocity in the absence of surfactant U = σ0/μ,
time is made nondimensional by the scale τ = a0/U , and the fluid pressure is made
nondimensional by the drop capillary pressure σ0/a0.

This study focusses on the influence of soluble surfactant on the drop’s shape and
dynamics. The surface surfactant concentration is made nondimensional by the max-
imum monolayer packing concentration Γ∞, and the bulk surfactant concentration
is made nondimensional by a uniform far-field reference value C∞. The surfactant
has bulk diffusion coefficient D and surface diffusion coefficient Ds, both of which are
taken to be small. Surfactant can transfer or exchange between its adsorbed form on
the interface and its dissolved form in the bulk immediately adjacent to the interface,
with a desorption rate κd and adsorption rate κa.

The drop and exterior fluid have the same density, so that the drop is neutrally
buoyant, and gravitational effects are absent. The geometry is 2D, and some notation
is shown in the schematic of Figure 2.1. On ∂Ω the unit normal vector n points from
Ωi to Ω, the unit tangent vector s points in the direction such that the interior Ωi is to
the right as ∂Ω is traversed clockwise, and θ is the angle measured counterclockwise
positive from the positive x-axis to s.

In the zero Reynolds number or Stokes flow limit the nondimensional governing
equations for momentum and mass transport are

∇2u = ∇p , ∇ · u = 0 , x ∈ Ω ,(2.1a)

λ∇2ui = ∇pi , ∇ · ui = 0 , x ∈ Ωi ,(2.1b)

where u is the velocity of the exterior fluid, p is its pressure, and throughout an i
superscript denotes the corresponding quantity for the interior or drop fluid.

The fluid velocity is continuous across the interface, that is,

u(x, t) = ui(x, t) , x ∈ ∂Ω ,
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526 KUAN XU, M. R. BOOTY, AND M. SIEGEL

Fig. 2.1. A drop with viscosity λμ is enclosed by fluid with viscosity μ. The unit normal n
on the interface ∂Ω points from Ωi to Ω, the unit tangent vector s points in the direction shown,
and θ is the angle measured counterclockwise positive from the positive x-axis to s. The curvature
κ = − ∂θ

∂s
is positive where the shape is convex.

and if x is the position of a material particle at the interface, then it satisfies

(2.2)
dx

dt
= u(x, t) , x ∈ ∂Ω .

The evolution of the interface shape is determined by the component of its velocity
along the normal, so that for any point x on the interface we have the kinematic
condition

(2.3)
dx

dt
· n = u · n ≡ un , x ∈ ∂Ω .

In the inviscid limit λ = 0, the interior pressure pi(t) is a function of time t alone,
independent of position, and the interior velocity ui is not specified. The condition
of continuity of velocity across ∂Ω is then dropped, but the kinematic condition still
holds.

The difference in the fluid stress across ∂Ω is equal to the net stress due to
interfacial surface tension, which leads to the stress-balance boundary condition

(2.4) −(p− pi)n+ 2(e− λei)·n = σκn−∇sσ , x ∈ ∂Ω .

See, for example, [22]. Here e is the rate-of-strain tensor with entries eij =
1
2 (∂xiuj +

∂xjui), κ is the local curvature of the interface, and σ is the surface tension, which
depends on the adsorbed or surface concentration of surfactant Γ through a surface
equation of state σ = σ(Γ). The presence of surfactant on an interface reduces its
surface tension, and two specific choices for an equation of state that are widely used
are the equation derived from the Langmuir adsorption isotherm, which is referred to
as the Frumkin equation, and a linearized version for small surfactant concentration.
These are

(2.5) σ =

{
1 + E ln(1 − Γ) the Frumkin equation of state ,
1− EΓ a linearized equation of state ,

where E = RTΓ∞/σ0 is the elasticity parameter, which is a dimensionless measure
of the sensitivity of surface tension to adsorbed surfactant concentration [23]. We
have chosen to use the linearized equation of state. The last term on the right-hand
side of (2.4) is referred to as the Marangoni stress. Here ∇s is the surface gradient
operator, and the Marangoni stress is caused by the nonzero spatial gradient of the
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interfacial surface tension that occurs when the distribution of adsorbed surfactant
on the interface is not spatially uniform.

This study focusses on surfactant that is soluble, so that surfactant is also present
in its bulk or dissolved form away from the interface, where it has bulk concentration
C and is transported as a passive scalar. For simplicity, surfactant is taken to be
soluble only in the external fluid region Ω, so that the bulk concentration C satisfies

(2.6)
∂C

∂t
+ u · ∇C =

1

Pe
∇2C , x ∈ Ω ,

where Pe = Ua0/D is the bulk Péclet number, which is typically large in applications,
and can be of the order of 106 or more.

The surface concentration of surfactant, Γ, satisfies the conservation law

(2.7)
∂Γ

∂t

∣∣∣∣
ξ

− ∂X

∂t

∣∣∣∣
ξ

· ∇sΓ+∇s · (Γus) + Γκun =
1

Pes
∇2
sΓ+ Jn · ∇C|∂Ω , x ∈ ∂Ω ;

see [24]. Here us is the projection of the fluid velocity onto the tangent plane at the
interface, un = u·n is the normal component of velocity of the interface, x = X(ξ, t)
is a parametric representation of the interface, and Pes = Ua0/Ds is the surface
Péclet number. On the left-hand side of (2.7), the first two terms ensure that if the
interface moves, then the time derivative of Γ is taken in the direction n normal to the
interface, while the next two terms account for the change in surfactant concentration
due to advective flux along the interface and the change in local interfacial area
caused by motion along the normal. The first term on the right-hand side represents
the change in Γ due to surface diffusion, which is usually neglected, while the second
term accounts for the transfer or exchange of surfactant between its dissolved form
in the bulk flow immediately adjacent to the interface and its adsorbed form on the
interface. The parameter J = DC∞/UΓ∞ is a measure of the diffusive flux for
exchange of surfactant between the bulk and interface relative to the advective flux
of adsorbed surfactant on the interface.

Exchange of surfactant between the bulk phase neighboring the interface and the
interface itself is a two-step process [1]. In the bulk, surfactant is transported relative
to material on the interface by diffusion, while exchange between the bulk and the
interface occurs via adsorption-desorption kinetics. The net rate of accumulation of
surfactant on the interface is therefore equal to its rate of adsorption minus its rate
of desorption and is also equal to the normal diffusive flux of bulk surfactant at the
interface, so that

(2.8) Jn · ∇C|∂Ω = Bi(K(1− Γ)C|∂Ω − Γ) , x ∈ ∂Ω .

In (2.8), the dimensionless parameter K = κaC∞/κd is an equilibrium partition
coefficient, and the Biot number Bi = κda0/U is the ratio of the time scale of the
flow a0/U to the time scale of the kinetic desorption process κ−1

d . In this study we
consider the limit Bi → ∞, which is realistic in applications when the drop size is
around 0.1 mm or larger and is referred to as the diffusion-controlled regime. The
boundary condition (2.8) then simplifies to the Dirichlet boundary condition

(2.9) C|∂Ω =
Γ

K(1− Γ)
, x ∈ ∂Ω ,

which is the equilibrium adsorption relation of the Langmuir isotherm.
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If the initial distribution of bulk surfactant is spatially uniform and its far-field
value is constant in time, then

(2.10) C(x, 0) = 1 for all x ∈ Ω and C(x, t) → 1 as |x| → ∞ for t > 0 .

The drop is deformed by an imposed linear far-field flow,

(2.11) u∞ =

(
Q B +G/2

B −G/2 −Q
)
· x+O(|x|−2) as |x| → ∞ ,

where the dimensionless parameters (Q,B,G) are equal to their nondimensional coun-
terparts Q∞, etc., times the time scale a0/U ; i.e., (Q,B,G) = (a0/U)(Q∞, B∞, G∞).
Two familiar examples that will be discussed below are (i) a pure strain, hyperbolic
flow, or uniaxial extension given by u∞ ∼ Q(x1,−x2) when B = G = 0, where Q
is the capillary number, and (ii) the linear shear flow given by u∞ ∼ G(x2, 0) when
Q = 0 and G = 2B, where G is the capillary number.

2.1. The infinite Péclet number limit. Equation (2.6) for C is singularly
perturbed in the limit Pe→ ∞. This study follows the approach of matched asymp-
totic expansions taken in [2], where the exact evolution is approximated by its leading
order form in a neighborhood of the interface ∂Ω, which is referred to as a transition
layer, while away from the transition layer the leading order concentration is uniform
and equal to its far-field value C = 1. A brief derivation of this approach is given
here; further detail can be found in [2].

An intrinsic or surface-fitted orthogonal curvilinear coordinate system (ξ, n) is
used that is attached to ∂Ω. It has origin O′, while the laboratory Eulerian reference
frame has origin O. The position vector x of a point P relative to O can be written in

the two coordinate systems as x = X(ξ, t) + nn(ξ, t), where X =
−−→
OP ′ and P ′ is the

projection of P onto ∂Ω in the direction of the unit normal n, so that the interface
∂Ω has equation x = X(ξ, t), as in (2.7).

The fluid velocity in the Eulerian frame u, written in terms of its projection onto
the tangent plane ut and its component in the normal direction up, is u = ut + upn.
The gradient operator is written similarly as ∇ = ∇t + n∂n. In the intrinsic frame,
(2.6) becomes

(2.12)
∂C

∂t
+ vt· ∇tC + vp

∂C

∂n
=

1

Pe
∇2C .

Here vt = ut − U s, where U s is the velocity of O′ relative to O projected onto
the tangent plane at P , and vp = up − un. So, vt is the fluid velocity relative to
O′ projected onto the tangent plane at P and, since un is the normal speed of the
interface relative to O, vp is the normal component of the fluid velocity relative to ∂Ω.
As the interface is approached, ut approaches the tangential interfacial fluid velocity
us, and vp tends to zero.

In the large Pe limit, C can depend on a local normal coordinate N , where
n = εN , ε = Pe−1/2, and N = O(1) as ε → 0 in the transition layer adjacent to the
interface. Although C = C(ξ,N, t; ε) within the layer, there is no mechanism available
to support a similar separation of scales for the fluid velocity, so that v = vt+ vpn =
v(ξ, n, t; ε).

An equation for the evolution of C within the layer that is exact in the limit
Pe → ∞ is given by keeping only the leading terms in an expansion for small ε. In
this approximation, the tangential velocity vt is replaced by its value on ∂Ω,

(2.13) vs = us −U s ,
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which is of order O(1) except, for example, near stagnation points on the surface, and
∇t is replaced by ∇s. Since ∂Ω is a fluid interface, the kinematic condition implies
that vp vanishes on ∂Ω, so that it is replaced by the first nonzero term of its Taylor
expansion, εN∂nvp|s, where the normal derivative ∂nvp|s is evaluated on ∂Ω. The
small O(ε) estimate in size of this coefficient in (2.12) multiplies the normal gradient
of C, which is approximated by (1/ε)∂NC(ξ,N, t; 0). In a similar way, the small
diffusion coefficient of (2.12) is magnified by the Laplacian of C within the layer, so
that the right-hand side of (2.12) is approximated by ∂2NC(ξ,N, t; 0). The reduced
equation that results for the evolution of a first approximation to C within the layer
is therefore

(2.14)
∂C

∂t
+ vs· ∇sC +

∂vp
∂n

∣∣∣∣
∂Ω

N
∂C

∂N
=
∂2C

∂N2
, x ∈ Ωr ,

where Ωr is the transition layer subdomain of Ω. Consideration of higher order terms
in the expansion implies that the error in approximating C by the solution of this
equation is of order O(ε) as ε→ 0.

The large Pe limit implies that outside the transition layer (∂t + u·∇)C = 0
to within O(ε), so that C is constant on particle paths to the same order. The
initial condition of (2.10), that C(x, 0) = 1 everywhere, implies that C ≡ 1 outside
the transition layer for all time, so that (2.14) has initial, boundary, and matching
conditions

(2.15)
C(ξ,N, 0) = 1, C|N=0 = Γ

K(1−Γ) ,

C(ξ,N, t) → 1 as N → ∞ for t > 0.

At a first glance, the coefficient ∂nvp|s in (2.14) appears to require the evaluation
of off-surface data to compute the normal derivative. However, from the incompress-
ibility condition ∇·u = 0 written in the intrinsic frame

1

a

∂

∂ξ
((1 + nκ)ut) +

∂

∂n
((1 + nκ)up) = 0,

where ut is the magnitude of the tangential velocity ut, i.e., ut = uts, up = vp + un,
and the change in position vector due to increments in the intrinsic coordinates with t
fixed is dx = a(1+nκ)dξ s+dnn. When the incompressibility condition is evaluated
in the limit as n→ 0, the first term tends to the surface divergence ∇s·us, and since
the normal speed un of the surface is independent of n, so that ∂nup = ∂nvp, the
condition implies that

(2.16)
∂vp
∂n

∣∣∣∣
∂Ω

= −κun −∇s · us,

where the right-hand side contains surface data alone. Both (2.14) and (2.15) hold
in three as well as two dimensions, while (2.16) is generalized to three dimensions by
replacing κ with the sum of the principal curvatures, κ1 + κ2.

The transfer coefficient J in the bulk-interface surfactant exchange term J∂nC|∂Ω
of (2.7) is rescaled by putting J = εJ0, where J0 = O(1), so that the exchange term
remains O(1) when expressed in terms of the rescaled coordinate N . The equation
becomes

(2.17)
∂Γ

∂t

∣∣∣∣
ξ

− ∂X

∂t

∣∣∣∣
ξ

·∇sΓ+∇s · (Γus)+Γκun =
1

Pes
∇2
sΓ+J0

∂C

∂N

∣∣∣∣
∂Ω

, x ∈ ∂Ω .
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The initial boundary value problem (2.14) and (2.15) for C within the transition
layer and the rescaled bulk-interface exchange term of (2.17) have been constructed
by a leading order singular perturbation rescaling of the full equations in the limit
Pe → ∞. As a result, the expansion parameter Pe does not appear in the rescaled
model.

The bulk and surface surfactant diffusivities, D and Ds, are believed to be of
the same order of magnitude [23], so that the respective Péclet numbers are too.
However, the surface diffusion of adsorbed surfactant, which is represented by the
term Pe−1

s ∇2
sΓ in (2.17), is not given the same asymptotic treatment. One reason for

this is that near-discontinuities in the surface concentration Γ have not been found in
the computations of this study, although we see numerically large changes in the first
derivative of Γ near accumulation points of surfactant in the examples of section 6.
We note that large gradients of surface surfactant concentration have been observed
in a number of studies for which capillary-induced pinch-off occurs; see, for example,
[25, 26, 27]. However, since the dimensionality of a near-discontinuity in Γ on an
interface is one lower than that of a near-discontinuity in the bulk concentration C, it
is less computationally expensive to resolve it by decreasing the mesh size. Although
the influence of surface diffusion can be included in the analysis and computations,
its influence on the results of this study is sufficiently small that it is neglected.

3. The surface-based Stokes flow solver. In principle, any surface-based
method that can be used to solve examples of Stokes flow in the presence of insoluble
surfactant can be adapted to solve examples that include surfactant solubility effects
in the infinite Péclet number limit, as outlined in section 2.1.

Here we use the Sherman–Lauricella formulation of the boundary integral method.
This is an indirect method, for which the primitive variables are expressed in terms
of a single complex density ω that is defined on the drop interface and satisfies a
Fredholm second kind integral equation. It has been used to solve the biharmonic
equation in two dimensions for problems of static elasticity (see, for example, [20, 21])
and more recently to solve Stokes equations for fluid flow (see [28, 29, 30, 31]).

In terms of Cartesian components, the velocity of the exterior flow is u = (u1, u2)
and the velocity of the interior flow is ui = (ui1, u

i
2). A stream function is introduced

for each region, so that

(u1, u2) = (Wx2 ,−Wx1) , x ∈ Ω ,

and (ui1, u
i
2) = (W i

x2
,−W i

x1
) for x ∈ Ωi. Since the formulation in both regions is

similar, we focus on the exterior region Ω and give only the analogous results for the
interior region as needed. The curl of (2.1a) implies that

∇4W = 0 , x ∈ Ω ;

that is, W (x1, x2) is a biharmonic function. Similarly W i(x1, x2) is biharmonic on
Ωi. The stream function W (x1, x2) therefore has a Goursat representation,

W (x1, x2) = Re (z̄f(z) + h(z)) , z ∈ Ω ,

where f(z) and h(z) are analytic functions of the complex variable z = x1 + ix2 on
Ω [21, 32]. The functions f(z) and g(z) = h′(z) are known as Goursat functions.
Similarly, W i(x1, x2) = Re

(
z̄f i(z) + hi(z)

)
for z ∈ Ωi, where f i(z) and hi(z), with

gi(z) = hi′(z), are analytic in Ωi.
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The primitive variables and their spatial derivatives in the exterior and interior
regions can be expressed in terms of the Goursat functions; see, for example, [33]. In
the exterior domain, z ∈ Ω,

−u2 + iu1 = f(z) + zf ′(z) + g(z) ,(3.1a)

q + ip = −4 f ′(z) ,(3.1b)

e11 + ie12 = −e22 + ie21 = −i
(
zf ′′(z) + g′(z)

)
.(3.1c)

Here, q is the fluid vorticity, with ω = ∇×u = (∂x1u2−∂x2u1)e3 = qe3. Analogous
expressions hold for the interior domain, with the exception that qi + i(pi/λ) =
−4f i′(z) for z ∈ Ωi.

The left-hand side of (3.1a) and (3.1b) can be evaluated as |z| → ∞ from the
imposed far-field flow (2.11), which implies that with no mass source in the drop
interior the vorticity q = G + O(|z|−3) and the pressure p = p∞ + O(|z|−3). The
ambient pressure p∞ can be set to zero without loss of generality, and then

f(z) =
G

4
z +H(t) +O(|z|−2) ,

g(z) = −(B + iQ)z −H(t) +O(|z|−2) ,

as |z| → ∞, where H(t) is an as yet arbitrary function of time.
The surface stress exerted on the interface ∂Ω by material in the exterior domain,

per (2.4), is −pn+ 2e · n = (f1, f2), which has complex counterpart

f1 + if2 = 2
∂

∂s

{
lim
z→τ+

(f(z)− zf ′(z))− g(z))

}
,

where the limit indicates that z approaches a point τ on ∂Ω from the exterior domain.
A similar expression multiplied by λ holds for the surface stress due to material in the
interior domain. The difference is equal to the interfacial stress due to surface tension,
which is given by the right-hand side of (2.4) and has complex counterpart −∂s(σ∂sτ).
All terms in the stress-balance boundary condition are seen to be perfect derivatives
with respect to s, and freedom of choice in specifying the Goursat functions allows
us to set to zero a function of time that results in integrating the boundary condition
with respect to s. The result is that the stress-balance boundary condition takes the
form

(3.2) lim
z→τ+

(f(z)− zf ′(z)− g(z))− λ lim
z→τ−

(f i(z)− zf i′(z)− gi(z)) = −στs
2
.

In the Sherman–Lauricella formulation, the Goursat functions are written in terms
of Cauchy-type integrals that contain a single complex density ω(z, t) defined on
the time-evolving interface ∂Ω, and where the integrals give the modification to the
imposed far-field flow that is caused by the drop. The representation is such that, if
we introduce

fo(z) =
1

2πi

∫
∂Ω

ω(ζ, t)

ζ − z
dζ +

Gz

4
+H(t) ,(3.3a)

go(z) =
1

2πi

∫
∂Ω

−ω(ζ, t) dζ + ω(ζ, t) dζ

ζ − z
− 1

2πi

∫
∂Ω

ζω(ζ, t)

(ζ − z)2
dζ

− (B + iQ) z −H(t) ,(3.3b)

D
ow

nl
oa

de
d 

09
/1

1/
14

 to
 1

29
.6

7.
18

6.
11

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

532 KUAN XU, M. R. BOOTY, AND M. SIEGEL

then the Goursat functions are given by

(f(z), g(z)) = (fo(z), go(z)) when z ∈ Ω ,(3.4a)

(f i(z), gi(z)) = (fo(z), go(z)) when z ∈ Ωi .(3.4b)

Here, z is an arbitrary point in the complex plane away from the interface ∂Ω, and
ζ is the variable of integration on the interface contour. In the definitions (3.3a)
and (3.3b),

∫
∂Ω

can denote integration around ∂Ω in either the counterclockwise
direction, as is the usual convention in the complex plane, or clockwise; the difference
is resolved by a change in sign of ω(ζ, t), and we choose the clockwise direction. The
time dependence of ω(ζ, t) and H(t) is indicated explicitly, while the time dependence
of the Goursat functions f(z) and g(z) is taken to be understood. Time enters only
via the time derivative in the kinematic condition (2.3) and in the equations for bulk
and surface concentrations of surfactant (2.14) and (2.17), and, as may be chosen,
parametrically via the parameters Q, B, and G of the imposed flow (2.11).

From the definitions (3.3a) and (3.3b), the Goursat functions are analytic func-
tions of z except for z on the contour ∂Ω. They are also singular as z→∞ to accom-
modate the imposed flow. The Sherman–Lauricella integral equation is constructed
when the representation of the Goursat functions in terms of ω of (3.3a) to (3.4b)
is substituted into the stress-balance boundary condition (3.2). As z approaches a
point τ on ∂Ω, some of the Cauchy-type integrals that result have local, simple pole
contributions from a neighborhood of z = τ that can be evaluated by the Plemelj
formulas [32], and the remaining part of these integrals is of principal value type. The
final form that the equation takes can be written as

ω(τ, t) +
β

2πi

∫
∂Ω

ω(ζ, t) d ln
ζ − τ

ζ − τ
+

β

2πi

∫
∂Ω

ω(ζ, t) d
ζ − τ

ζ − τ

+ β (B − iQ) τ + 2βH(t) = −γ
2
σ(Γ)

∂τ

∂s
,(3.5)

where β = 1−λ
1+λ , γ = 1

1+λ , and it turns out that the apparent singularity at ζ = τ in
the two integrals on the left-hand side is removable. The choice that

H(t) =
1

2

∫
∂Ω

ω(ζ, t)ds

removes a rank deficiency of the integral equation (3.5) in the limit when λ = 0 of
an inviscid drop (see, for example, [20, 29]), and H(t) ≡ 0 as a consequence of the
constant area of the interior region Ωi.

The fluid velocity on the interface is found from (3.1a) by letting z approach a
point τ on ∂Ω from either Ω or Ωi. The representation of the Goursat functions in
terms of ω(z, t) of (3.3a) to (3.4b) is such that the local, simple pole contributions to
(3.1a) from the integrals near z = τ cancel as z → τ±. The fluid velocity is therefore
continuous automatically across the interface and is given by

u1 + iu2|∂Ω = − 1

2π

∫
∂Ω

ω(ζ, t)

(
dζ

ζ − τ
+

dζ

ζ − τ

)

+
1

2π

∫
∂Ω

ω(ζ, t) d

(
ζ − τ

ζ − τ

)
+ (Q + iB) τ − iG

2
τ(3.6)

on the interface. The apparent singularity for ζ near τ in the second integral is
removable, but in the first integral the bar indicates that it is to be interpreted as a
Cauchy principal value integral.
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The fluid velocity on the interface, in terms of its normal and tangential com-
ponents un and us, is u = unn + uss, where the complex counterparts of the unit
vectors n and s are n and sT with sT = −in = ∂sτ . It follows that

(3.7) un = 	{(u1 + iu2) |∂Ωn} and us = −
{(u1 + iu2) |∂Ωn}
on the interface.

For the numerical discretization of (3.5) given below, two different parameter-
izations of the interface ∂Ω are introduced that have different distributions of the
computational mesh points. Both are constructed using an approach due to Hou,
Lowengrub, and Shelley [34], and we include some details here for completeness.

The spatial parameterization of the interface is given by α ∈ [0, 2π), and a point
τ on the interface has Cartesian coordinates (x1, x2), so that τ = x1(α, t) + ix2(α, t).
The unit tangent vector sT and normal n in complex form are sT = ∂τ

∂s = τα/sα = eiθ

and n = isT = ieiθ, where sα = |τα|. Differentiation with respect to time implies that
ταt = sαte

iθ + sαθtie
iθ.

When τ is a material point on the interface its velocity is equal to the local fluid
velocity, per (2.2), so that

(3.8)
dτ

dt
= unie

iθ + use
iθ .

However, the shape of the evolving interface is determined by the normal velocity
component un alone. Although us has physical meaning as the tangential component
of the fluid velocity, if us is replaced by any other smooth function φs(α, t) in (3.8),
then τ still lies on the interface but is no longer a material point, and the role of φs
is simply to implement a specific choice of τ ∈ ∂Ω and the interface parameterization
via α, without changing the interface shape or evolution.

When this is done, differentiation of (3.8) with respect to α gives a second relation
for ταt,

(3.9) ταt = ((φs)α − unθα) e
iθ + ((un)α + φsθα) ie

iθ .

Equating these two expressions for ταt, we have

sαt = (φs)α − unθα ,(3.10a)

θt =
1

sα
((un)α + φsθα) ,(3.10b)

where ∂Ω is now described parametrically by s = s(α, t) and θ = θ(α, t) instead of
x1 = x1(α, t) and x2 = x2(α, t).

The quadratures in (3.5) are evaluated by the trapezoidal rule with a fixed step
size in α ∈ [0, 2π), which gives spectral accuracy. The Cauchy principal value integral
in (3.6) is computed by the Van de Vooren correction [35, 36]. The two parameter-
izations chosen for the interface produce (i) an equal arc length frame, which is used
for the mesh-based computation of the transition layer described in section 4, and (ii)
a Lagrangian frame, which is used for the Green’s function solution of the transition
layer of section 5.

The first of these is determined by setting sα to be constant along the interface,
although it varies in time. Then, since sα is always equal to its mean or average
around ∂Ω, it follows from (3.10a) that

(3.11) sαt = (φs)α − unθα = − 1

2π

∫ 2π

0

unθα′ dα′ .
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Integration of the second of these equations with respect to α implies that

(3.12) φs(α, t) = − α

2π

∫ 2π

0

unθα′ dα′ +
∫ α

0

unθα′ dα′ ,

where an arbitrary function of time has been set to zero. This gives the required
tangential velocity φs of the equal arc length frame.

When (3.12) is substituted into (3.10a) and (3.10b), the system by which the
dynamics of the interface is tracked becomes

sαt = − 1

2π

∫ 2π

0

unθα′ dα′ ,(3.13a)

θt =
1

sα

[
θα

(∫ α

0

unθα′ dα′ − α

2π

∫ 2π

0

unθα′ dα′
)
+ (un)α

]
.(3.13b)

At each time step (3.13a) and (3.13b) are integrated forward in time, and (sα, θ) are
mapped to the Cartesian coordinates (x1, x2) of points on ∂Ω. The map is given by
integration of τα = sαe

iθ with respect to α and is

x1(α, t) = x1(0, t) + sα(t)

∫ α

0

cos (θ (α′, t)) dα′ ,(3.14a)

x2(α, t) = x2(0, t) + sα(t)

∫ α

0

sin (θ (α′, t)) dα′ ,(3.14b)

where (x1(0, t), x2(0, t)) is the position of the point α = 0 at time t, which is evolved
from the kinematic condition and is hence given by (3.8) with us(0, t) = 0.

In the second case, (ii), of a Lagrangian frame, φs = us is the surface tangential
fluid velocity, and α is the initial arc length s0 of a material particle along the interface
relative to a chosen origin O′, which lies in [0, 2π) since the dimensionless initial drop
radius is 1.

4. A mesh-based solution for the transition layer. The transition layer,
where the advection-diffusion equation (2.14) holds, is defined on a rectangular do-
main. For the mesh-based method, α ∈ [0, 2π) is a normalized equal arc length
parameter for the interface ∂Ω, as introduced in (3.11) and (3.12). The bulk surfac-
tant concentration in the transition layer C(α,N, t) is 2π-periodic in α and satisfies
initial and boundary conditions (2.15). The problem for C(α,N, t) is therefore

∂C

∂t
+ vs(α, t)

∂C

∂s
+ ψ(α, t)N

∂C

∂N
=
∂2C

∂N2
,(4.1a)

where vs(α, t) = us(α, t) − Us(α, t) and ψ(α, t) = −
(
κun+

∂us
∂s

)
,

with initial condition C(α,N, t = 0) = 1,(4.1b)

and boundary conditions C(0, N, t) = C(2π,N, t), with

C(α,N = 0, t) =
Γ(α, t)

K(1−Γ(α, t))
, C(α,N, t) → 1 as N → ∞ .(4.1c)

The mesh-based method is spectrally accurate in space and second order in time.
Chebyshev–Lobatto collocation points are introduced in the normal N direction with

Nj =
Nf
2

(
cos

(
jπ

m

)
+ 1

)
, j = 0, 1, . . . ,m ,
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which cluster near the interface N = 0, and a finite far-field boundary location N =
Nf , at which the condition C = 1 is imposed. The computations are usually found
to be well resolved when Nf is set to 20. The second derivative ∂2NC of (4.1a) is
calculated implicitly via a Chebyshev differentiation matrix [37]. The first spatial
derivative terms of (4.1a) as well as the spatial derivatives in the surface surfactant
equation (2.17) are found explicitly via FFTs. The time step uses a semi-implicit,
two-step variation of the Crank–Nicholson method, which is solved by GMRES.

5. A Green’s function solution for the transition layer. When the formu-
lation for bulk-interface surfactant exchange is time-dependent but spatially 1D, with
no flow and a planar interface with no variation in the tangential direction, Ward
and Tordai [38] have expressed the solution for the surface surfactant concentration
in terms of an integral equation over time that relates the surface concentration Γ
to the bulk concentration C|∂Ω neighboring the interface. In the diffusion-controlled
limit of (2.9), this gives a closed, well-posed problem for the surface concentration Γ
as a function of time t. A review of this is given in [23], and a more recent study is
given in [39].

In this section, we take a similar approach but in a more general context. We
consider a nonplanar interface, with flow in the large bulk Péclet number limit, so
that the length scale for quantities such as the fluid velocity and interface curvature
is much greater than the width of the bulk-interface surfactant exchange layer. The
dependent variables are also allowed to vary in the direction tangential to the interface.

In terms of the interface arc length coordinate s, the problem (4.1a)–(4.1c) is

∂C

∂t
+ vs(s, t)

∂C

∂s
+ ψ(s, t)N

∂C

∂N
=
∂2C

∂N2
,(5.1a)

where vs(s, t) = us(s, t)− Us(s, t) and ψ(s, t) = −
(
κun+

∂us
∂s

)
,

with initial condition C(s,N, t = 0) = 1,(5.1b)

and boundary conditions

C(s,N = 0, t) =
Γ(s, t)

K(1−Γ(s, t))
, C(s,N, t) → 1 as N → ∞ ,(5.1c)

with periodicity of C in s.
It is useful to introduce characteristic paths

(5.2) s = f(s0, t) such that
∂s

∂t
= vs(s, t), with s = s0 at t = 0.

Since vs(s, t) is the tangential fluid velocity on the interface in the intrinsic frame,
the characteristic coordinate s0 is a label for material particle paths, or a Lagrangian
coordinate, on the interface. A change of variables from the frame (s,N, t) to the frame
(s0, N, t) given by (5.2) with N and t unchanged absorbs the term vs∂sC of (5.1a)
into the time derivative in the new frame, so that s0 appears only as a parameter. If
we introduce a shift in C,

(5.3) C̃ = C − 1 ,

then drop the tilde and suppress the dependence on s0 by defining

ψ0(t) = ψ(s=f(s0, t), t) , Γ0(t) = Γ(s=f(s0, t), t) ,(5.4a)

and h0(t) =
Γ0(t)

K(1− Γ0(t))
− 1 ,(5.4b)
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the problem becomes

∂C

∂t
+ ψ0(t)N

∂C

∂N
=
∂2C

∂N2
,(5.5a)

with initial condition C(N, t = 0) = 0 ,(5.5b)

and boundary conditions C(N = 0, t) = h0(t) , C(N→∞, t) = 0 .(5.5c)

This can be solved by Duhamel’s principle [40]. If u(N, t, τ) is the solution of
(5.5a) with step function boundary data, so that

∂u

∂t
+ ψ0(t)N

∂u

∂N
=

∂2u

∂N2
,(5.6a)

with u(N, t, τ) = 0 for 0 ≤ t ≤ τ (τ arbitrary) ,(5.6b)

and u(N = 0, t, τ) = 1 for 0 ≤ τ < t , u(N→∞, t, τ) = 0 ,(5.6c)

then the solution of (5.5a)–(5.5c) is

(5.7) C(N, t) = −
∫ t

0

∂u

∂τ
(N, t, τ)h0(τ) dτ .

To solve (5.6a)–(5.6c) we look for an error function-like solution and introduce a
similarity variable

(5.8) η(N, t) =
N

γ(t)
,

where γ(t) is a function of time that is to be found. Although the data (5.6b)–(5.6c)
for u is time-invariant, i.e., it does not change under a translation in t, the PDE (5.6a)
is not time-invariant because of the time dependence of ψ0(t). As a consequence, u
and γ are functions of t and τ separately, not solely via the combination t− τ . They
also depend parametrically on s0, via the dependence of ψ0(t) on s0. The derivatives
with respect to t and N transform as ∂t �→ ∂t − (η/γ) γt ∂η and ∂N �→ (1/γ) ∂η,
and we look for a solution that depends on t through γ alone, so that after some
rearrangement (5.6a) becomes

(5.9) ψ0(t) γ
2 − γ γt =

uηη
η uη

= Θ .

Here, since η and t are independent variables, Θ is a constant. Its value can be chosen
arbitrarily, as is seen by noting that Θ is scaled out of (5.9) by setting η′ = Θ

1
2 η and

γ′ = Θ− 1
2 γ, with η′ = N/γ′. To simplify the calculation, we set Θ = −2, so that

γ γt − ψ0(t) γ
2 = 2 ,(5.10a)

uηη + 2 η uη = 0 .(5.10b)

We anticipate an error function-like solution for u, where γ = 0 for t ∈ [0, τ ] and
γ → 0+ as t→ τ+. From (5.10a), we find that

(5.11) γ2(t− τ, τ) = 4

∫ t−τ

0

e2
∫ t−τ
t̃

ψ0(t
′+τ)dt′ dt̃ ,

which has the required behavior as t → τ+. In terms of the function a(t, τ) defined
by

(5.12) a(t, τ) = 2

∫ t

0

ψ0(t
′ + τ) dt′ ,
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the exponent in (5.11) is a(t− τ, τ) − a(t̃, τ), and the solution for γ can be written

(5.13) γ(t− τ, τ) = 2 e
1
2a(t−τ,τ)

(∫ t−τ

0

e−a(t̃,τ) dt̃
)1/2

.

We note that the argument of ψ0 in the solution (5.11) for γ and in the definition
(5.12) of a is advanced by τ . This is a consequence of the step function boundary
data of (5.6b) and (5.6c) being zero for t ∈ [0, τ ] and u = 1 for t > τ , at which time
ψ0(t) = ψ0(τ). In evaluating ψ0(t), we also note that during the interval t ∈ [0, τ ] the
original arc length coordinate s = f(s0, t) advances from its initial position s = s0 =
f(s0, 0) at time t = 0 to position s = f(s0, τ) before the boundary data switches to
u = 1 for t > τ . This is seen in the definition for ψ0(t) = ψ(s = f(s0, t), t) of (5.4a).

We now turn to (5.10b). The boundary conditions (5.6c) imply that for t > τ the
solution is

(5.14) u(η) = 1− 2√
π

∫ η

0

e−η̃
2

dη̃ ,

where erf(η) = − 2√
π

∫ η
0 e

−η̃2 dη̃ is the error function. The solution to the problem

(5.6a)–(5.6c) with step function boundary condition is therefore

(5.15) u(N, t, τ) = 1− 2√
π

∫ N
γ

0

e−η̃
2

dη̃ , where γ = γ(t− τ, τ) ,

the similarity variable η = N/γ of (5.8) has been substituted, and γ = γ(t − τ, τ) is
given by (5.12) and (5.13).

Duhamel’s principle (5.7) can now be applied, and it gives the solution for C
as a convolution integral in time. The time derivative ∂τu(N, t, τ) is found from
(5.15); then, changing the variable of integration in the integral from τ to u = t− τ
and recalling (5.3), we have the solution of the problem (5.1a)–(5.1c) for C in the
(s0, N, t) frame in the form

(5.16) C(s0, N, t) =
2N√
π

∫ t

0

e−(
N
γ )

2 ∂uγ

γ2
h0(t− u) du+ 1 ,

where γ = γ(u, t− u). The parametric dependence of this solution on s0 appears in
the dependence of ψ0(t) and h0(t) on s0, as defined by (5.4a) and (5.4b), and in the
dependence of a(t, τ) and γ(t − τ, τ) on ψ0(t), as given by (5.12) and (5.13). In the
limit when ψ0(t) = 0, the problem simplifies to the heat equation, and the expression
for γ recovers the familiar result that γ(u, t− u) = 2

√
u.

The result (5.16) can be used to find the normal derivative ∂NC|N=0 at the
interface and to evaluate the bulk-interface surfactant exchange term of (2.7) and
(2.17). However, the limit N → 0 needs to be formulated with some care. To resolve
this, we decompose the integral in (5.16) into two parts, over u ∈ [0, δ] and u ∈ [δ, t]
for some small δ > 0, and treat each part separately. Before doing so, we first need
the behavior of γ(u, t− u) as u→ 0.

To find this, we note from (5.13) that

(5.17) γ(u, t− u) = 2e
1
2a(u,t−u)

(∫ u

0

e−a(t̃,t−u) dt̃
) 1

2

,
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so that from the definition of a at (5.12), for small u,

(5.18) a(u, t− u) = 2

∫ u

0

ψ0(t
′ + t− u) dt′ = 2ψ0(t)u +O(u2)

as u → 0, with a similar result for a(t̃, t − u). From these last results it follows that
as u→ 0

(5.19)

γ(u, t− u) = 2
√
u

(
1 +

ψ0(t)

2
u+O(u2)

)
,

∂uγ(u, t− u) = u−1/2

(
1 +

3ψ0(t)

2
u+O(u2)

)
.

First, consider the contribution C1 to the integral for C in (5.16) when u ∈ [0, δ],
where δ is arbitrary but small and positive and N ≥ 0. From (5.19), expansion of the
integrand, if h0 is sufficiently smooth to have a Taylor expansion about u = 0, implies
that

C1(N, t) =
2Nh0(t)√

π
e
ψ0(t)N

2

4

∫ δ

0

e−
N2

4u

4u
3
2

(1 +O(u)) du

=
2h0(t)√

π
e
ψ0(t)N2

4

∫ ∞

N

2
√
δ

e−s
2

(
1 +O

(
N2

s2

))
ds ,

where s = N/2
√
u. Note that if we let N → 0 in this last result, the integral tends to√

π/2, and C1 approaches h0(t), so that C1 recovers the boundary data of (5.3) and
(5.5c), which is C(s0, N = 0, t) = 1 + h0(t). Returning to the derivative ∂NC1, we
find that the contribution from u ∈ [0, δ] is

(5.20)
∂C1

∂N

∣∣∣∣
N=0

= −h0(t)√
πδ

+O(δ
1
2 ) .

Second, to evaluate the contribution C2 to the integral of (5.16) when u ∈ [δ, t],
we note that since u is bounded away from zero, γ(u, t − u) is bounded away from
zero, and the derivative with respect to N can be taken directly. Then, letting N → 0
and putting γ−2∂uγ = −∂u(γ−1), we have

∂C2

∂N

∣∣∣∣
N=0

= − 2√
π

∫ t

δ

∂

∂u

(
1

γ(u, t− u)

)
h0(t− u) du .

An integration by parts with the relation (5.19) for γ(δ, t− δ) gives the contribution

(5.21)
∂C2

∂N

∣∣∣∣
N=0

=
h0(t)√
πδ

+O(δ
1
2 )− 2h0(0)√

πγ(t, 0)
+

2√
π

∫ t

δ

∂uh0(t− u)

γ(u, t− u)
du .

The integral in this last expression converges as δ → 0, since γ(u, t− u) ∼ 2
√
u and

the 1/
√
u singularity is integrable. Combining the contributions (5.20) and (5.21),

then setting τ = t − u in the convolution integral, we find the result for the normal
derivative of C at the interface:

(5.22)
∂C

∂N

∣∣∣∣
N=0

= − 2h0(0)√
πγ(t, 0)

− 2√
π

∫ t

0

∂τh0(τ)

γ(t− τ, τ)
dτ .
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If the bulk and interface surfactant concentrations are in equilibrium initially, then
h0(0) = 0, and the first term of (5.22) is zero.

The bulk-interface surfactant exchange term J0∂NC|N=0 in (2.17) can now be
evaluated using the convolution integral of (5.22) and, since no spatial mesh in the
direction normal to the interface needs to be introduced to solve the transition layer
equation, the method is referred to as mesh-free. In the implementation of the method
described here, the convolution integral is evaluated directly at each time step by the
trapezoidal rule. The time step for the interface update via the kinematic condi-
tion (2.3) and the evolution of surface surfactant concentration Γ via (2.17) is by
the forward Euler scheme. The spatial parameterization for the interface is by the
Lagrangian fluid marker α = s0, so that the mesh-free method is spectrally accurate
in space and first order in time.

A small time expansion has been developed to start the method, and details of
this are given in [41]. Here we note that in the convolution integral, there is an
integrable singularity as τ → t− since from (5.19), γ(t− τ, τ) ∼ 2(t− τ)1/2, and if the
initial bulk and surface surfactant concentrations are not in equilibrium, ∂τh0(τ) has
a τ−1/2 singularity as τ → 0+.

6. Numerical results and discussion. In each of the three examples described
here, the interface is initially circular, and the surface and bulk surfactant concentra-
tions are in equilibrium. The first two examples are for an inviscid drop, or bubble,
so that the viscosity ratio λ = 0.

In the first example, the imposed flow is a pure strain or extensional flow u∞ =
Q(x1,−x2) with capillary number Q = 0.25. Data are shown in Figure 6.1. In the

(a)
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x
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(b)
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(c)

2 2.5 3 3.5 4 4.5
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
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Γ

(d)

Fig. 6.1. An inviscid bubble is stretched in a pure strain with capillary number Q = 0.25. Data
found by the mesh-based method are indicated by lines, and data found by the mesh-free method
are indicated by markers. (a) Interface profile at times t = 0, (0.5), 3.0. (b) Surface surfactant
concentration Γ versus scaled arc length along the interface α at the same times. (c) Close-up of
data of (b) near a bubble tip. (d) Bulk surfactant concentration C at time t = 3.0 with Pe = 1, 600.
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three panels of Figure 6.1(a)–(c), the results of the mesh-based method of section 4
for solving the transition layer equation (2.14) are shown by lines, while the results of
the mesh-free method of section 5, with the bulk-interface surfactant exchange term
in (2.17) given by the convolution integral of (5.22), are shown by markers.

In Figure 6.1(a) the interface profile is shown at times from t = 0.0 to t = 3.0 in
increments of Δt = 0.5. We noted in the introduction that in the limit of an inviscid
drop, conformal mapping techniques imply that the profile is an ellipse for all time,
but this result is not built into the solution method used here. A least squares fit
of the data shows that the difference between the computed shapes and an ellipse is
close to roundoff error for all times for both the mesh-based and mesh-free methods.
The profile appears to be approaching a steady state at the final time t = 3.0.

Figure 6.1(b) shows the surface concentration of surfactant Γ versus scaled dis-
tance along the interface α ∈ [0, 2π), where α = 0 or α = π at the bubble tips or
poles. This is shown at the same sequence of times as in Figure 6.1(a), and the initial
equilibrium value of Γ(α, 0) = 0.5. In an extensional flow, the tangential component
of the fluid velocity on the interface us is directed toward the bubble poles. In the ab-
sence of surface diffusion of surfactant, which is set to zero here (i.e., Pes = ∞), and
without the inclusion of surfactant solubility effects, this tends to decrease the surface
surfactant concentration Γ near the equator (α = π/2, 3π/2) and increase it near the
bubble poles. This trend is seen in Figure 6.1(b), which shows a relatively broad and
shallow minimum of Γ around the equator and a narrow maximum near the poles.
Figure 6.1(c) shows a close-up of the mesh-based (lines) and mesh-free (markers) data
near the pole α = π. It is in a neighborhood of this point that the agreement between
the data shown for the mesh-based and mesh-free methods is worst, but it is found to
improve if the number of interface fluid markers of the mesh-free method is increased.

Figure 6.1(d) shows the bulk surfactant concentration at the final time t = 3.0.
The ambient far-field bulk concentration C = 1 was in equilibrium with the initial
surface concentration Γ(α, 0) = 0.5 at t = 0, since K = 1.0. At later times, from
the surface surfactant concentration data of Figure 6.1(b), the effect of surfactant
solubility is such that along the broad and relatively flat equatorial section of the
bubble the surface concentration is below equilibrium, and surfactant is drawn across
the transition layer and enters the interface from the bulk. Conversely, at the highly
curved bubble poles there is an excess of surface surfactant concentration, so that
surfactant tends to leave the interface and enter the bulk flow. Other parameter
values are E = 0.1 and J0 = 1.0.

The model for surfactant solubility effects that we use is based on an asymptotic
reduction in the limit Pe→ ∞ that keeps leading order terms only. As a consequence,
as noted after (2.17), the bulk Péclet number is scaled out of the calculation, but a
finite value of Pe must be introduced to display the data for C in terms of the original
unscaled spatial coordinates of the x1, x2-plane, and the transition layer width is scaled
by Pe−1/2. In Figure 6.1(d) the value Pe = 1, 600 is chosen.

For all computations with the mesh-based method the number of Chebyshev–
Lobatto points in the direction normal to the interface is fixed with m = 64. The
computations begin with a chosen number ofM points on the interface in the tangen-
tial or α-direction. FFTs are used to track the interface profile and surface surfactant
concentration Γ, and if the amplitude of Fourier modes near the Nyquist frequency
increases above a threshold value, thenM is doubled. For the computations of Figure
6.1 by the mesh-based method, M = 128 at the initial instant and M = 1024 at the
final time t = 3.0. The time step is fixed at 0.001, and the CPU time is 144 minutes.
For computations with the mesh-free method, α = s0 is a Lagrangian fluid marker,
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Fig. 6.2. An inviscid bubble is deformed by a simple shear with capillary number G = 0.5.
The results of the mesh-based method are indicated by lines, and results of the mesh-free method
are indicated by markers. (a) Interface profile at times t = 0, (0.5), 4.0. (b) Surface surfactant
concentration Γ versus scaled interface arc length α at the same times. (c) Close-up of data of
(b) near a local maximum. (d) Bulk surfactant concentration C at time t = 4.0 with Pe = 3, 000.
Stagnation points on the interface are indicated by × (incoming interfacial flow) or � (outgoing
interfacial flow).

and as time increases these tend to cluster near the high curvature bubble tips. In this
case M = 128 throughout the computation, the time step is 0.01, and the CPU time
is 31 minutes. For both methods, the bubble area is conserved with a relative error
less than 10−8. All computations were performed with a 2.4 GHz, AMD Opteron
model 180 processor.

The second example is of an inviscid bubble in a simple shear flow u∞ = G(x2, 0)
with capillary number G = 0.5. Data are shown in Figure 6.2. It is well known that
the dynamics of a drop in simple shear and pure strain flows are quite different, and
much of this is due to the nonzero vorticity of the simple shear. Figure 6.2(a) shows
the interface profile from time t = 0.0 to t = 4.0 in increments of Δt = 0.5. A least
squares fit of the data shows that, as for the pure strain of the first example, the
exact elliptical shape of the interface is maintained by both the mesh-based and the
mesh-free methods with an error that is close to roundoff. The profile appears to be
approaching a steady state at the final time t = 4.0.

The surface concentration of surfactant Γ is shown versus scaled arc length along
the interface α ∈ [0, 2π) in Figure 6.2(b). The profile has less symmetry than is seen
for a pure strain, it is now twofold as opposed to fourfold, and the maxima of Γ that
develop for t > 0 are not symmetrical; there is a larger gradient of Γ to the right of
the peak than to the left in Figure 6.2(b). Figure 6.2(d) shows the bulk surfactant
concentration C at the final time t = 4.0, plotted with Pe = 3, 000. The initial surface
surfactant concentration Γ(α, 0) = 0.6 was in equilibrium with the ambient bulk value
C(x, 0) = 1, since K = 1.5. Other parameter values are E = 0.1 and J0 = 1.0.
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Figure 6.2(d) shows the location of four stagnation points on the interface at
t = 4.0. At the initial instant t = 0+, these are located symmetrically on the initial
circular, equilibrium bubble shape. Then, as the bubble is deformed, each of the left-
and right-hand pairs of stagnation points move toward each other simultaneously as
the right-hand pair move upward and the left-hand pair move downward, moving
toward unperturbed streamlines of the imposed shear flow. Throughout this part of
the evolution (t ∈ [0, 4.0]), the tangential fluid velocity on most of the interface is in
the clockwise direction implied by the vorticity of the imposed flow.

Since the initial surface surfactant concentration is uniform and surface diffusion
is set to zero (Pes = ∞), in the absence of solubility effects the surface surfactant
concentration Γ would be greatest where Lagrangian fluid markers congregate most
closely during their motion along the interface. We find from the data that, with
solubility effects included as described, these accumulation points of fluid markers
still closely coincide with both the maxima of Γ in Figure 6.2(b) and the maxima of
C|N=0 at the interface in the transition layer, which are indicated by red (in color)
in Figure 6.2(d). The accumulation points are close to but slightly displaced from
the two stagnation points marked by a cross (×) in Figure 6.2(d), at which the flow
separates from the interface.

A separate computation carried out to t = 6.0 with some extrapolation of the data
suggests that the stagnation points on the interface coalesce at a later time t � 7.0,
to form a single stagnation point that moves some distance away from the interface.
The tangential fluid velocity on the interface is then clockwise at all points, and the
resulting interfacial motion is referred to as “tank-treading.”

Agreement between the results of the mesh-based method (shown by lines) and
the mesh-free method (shown by markers) is close, but from Figures 6.2(b) and (c)
is at its worst near maxima of Γ at later times. However, the results of the mesh-
free method approach those of the mesh-based method if the number of mesh-free
Lagrangian markers is increased, as was also found in the example above for a pure
strain.

In this example, the mesh-based computations begin withM = 128 equally spaced
points in the α-direction, which increases to M = 512 by the final time t = 4.0. The
time step is fixed at 0.001, and the CPU time is 276 minutes. The computations with
the mesh-free method have a constant number of M = 256 Lagrangian fluid markers
on the interface throughout, the time step is 0.0025, and the CPU time is 332 minutes.
In both methods, the bubble area is conserved with a relative error of less than 10−8.

The behavior seen in this and the next example is in broad agreement with the
results and conclusions of Lee and Pozrikidis in [42]. They considered the influence
of insoluble surfactant on 2D drops and bubbles in a 2D simple shear flow in the
absence of solubility effects. Other differences are that in [42] the flow is bounded
by moving, rigid, plane top and bottom boundaries in the x2-direction, with periodic
boundary conditions in the x1-direction, and a different numerical approach is used
that can incorporate nonzero Reynolds number effects. They note that, independently,
both nonzero drop viscosity and insoluble surfactant tend to reduce the variation in
tangential velocity around the interface and promote a tank-treading motion.

A nonzero interior or drop viscosity does this simply by opposing local shear.
The mechanism for insoluble surfactant is based on the action of the Marangoni
stress term ∇sσ of (2.4) and the tendency of surfactant to immobilize the interface;
see, for example, [11] for discussion of the influence of insoluble surfactant on a 3D
drop in a simple shear flow. In an initial stage of deformation there is a relatively
large variation in the tangential fluid speed us = us·s around the interface, which sets
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up a spatially nonuniform surface surfactant concentration. As seen in Figures 6.2(b)
and (d) the concentration is low over much of the interface but is high near the high-
curvature bubble ends. This sets up a surface tension gradient, or Marangoni stress,
with high surface tension over much of the flat equatorial sections of the interface and
low surface tension near the bubble ends. The direction of the Marangoni stress is
such as to reduce the variation in tangential fluid velocity around the interface, which
then tends to assume the direction implied by the vorticity of the imposed shear and
promotes tank-treading.

The net influence of surfactant on drop deformation is the result of a combina-
tion of effects. By reducing surface tension, the presence of surfactant tends to reduce
opposition to stretching of an interface and permits deformation that is induced by
an imposed flow. However, in two dimensions the influence of surface gradients of
surfactant and the direction of the resulting Marangoni stress just described act in a
direction that tends to decrease drop length and reduce deformation; this holds for
both a pure strain and a simple shear flow, while in three dimensions out-of-plain
stress can lead to different dynamics. Moreover, the influence of surfactant solubility
in the above examples tends to reduce that of Marangoni stress, as has been noted
elsewhere [43]. Along the relatively large, flat, high-surface-tension regions of the drop
midsections, the low surface surfactant concentration is below equilibrium with the
far-field bulk concentration C = 1, so that surfactant is drawn across the transition
layer, from the bulk to the interface, thereby increasing the surface concentration and
reducing surface tension. In a neighborhood of the surfactant accumulation points,
at or near the high-curvature ends, the mechanism is reversed. The high surface con-
centration is above equilibrium with the far-field bulk concentration, and surfactant
leaves the interface across the transition layer, tending to increase surface tension.

In both of the above examples, up to the time at the end of the computations
there is a stagnation point on the interface that is either at (in Figure 6.1) or near
(in Figure 6.2) a surfactant accumulation point, and the direction of the exterior flow
tends to separate or is directed away from the interface. At later times, flow separation
will continue to advect the relatively high local bulk surfactant concentration away
from the interface in a plume. Our computations do not track this development here.
In a simple shear flow, once the interface begins to tank-tread and the stagnation
points move off the interface, the flow around the drop changes and is accompanied
by a region of more or less closed fluid particle paths encircling the interface. This is
discussed for insoluble surfactant in [42] and is seen in our next example with soluble
surfactant.

Compared to the scenario of Figure 6.2, in this example we take a viscous drop
with viscosity ratio λ = 1.2 and an increased shear rate G = 1.0. All other parameters
remain unchanged (i.e., the initially circular drop is in equilibrium with Γ(α, 0) = 0.6,
K = 1.5, E = 0.1, and J0 = 1.0). The computations are taken up to t = 20.0 and
are shown for the mesh-based method. The number of points in the α-direction is
M = 128 at t = 0 and increases to M = 1024 at t = 20.0. The time step is fixed at
0.001, and the CPU time is 47.6 hours. Data are shown in Figures 6.3 and 6.4.

Figure 6.3(a) shows the interface profile from time t = 0.0 to time t = 20.0 in
increments of Δt = 1.0. The profile elongates and reaches a maximum length at
t � 9.0 and then proceeds to retract. Figure 6.3(b) shows the surface surfactant con-
centration Γ at a subset of the same times. Data for the tangential interface velocity
(not shown) shows that this more viscous drop begins to tank-tread immediately at
t = 0+. There is a brief interval around t ∈ (1.5, 3.5) when two pairs of stagnation
points briefly appear on the interface, but the members of each pair remain close and
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(a) (b)

Fig. 6.3. A viscous drop with λ = 1.2 is deformed by a simple shear flow with capillary number
G = 1.0. (a) Drop profile at times t = 0, (1.0), 20.0. (b) Surface surfactant concentration Γ versus
scaled interface arc length α at times t = 0, (1.0), 4.0 and t = 4.0, (2.0), 20.0.

Fig. 6.4. Bulk surfactant concentration C at times t = 5.0, (5.0), 20.0 (left to right, top to
bottom) for the same viscous drop of Figure 6.3, with λ = 1.2 and G = 1.0. A cross (×) denotes
the point α = 0 on the interface.

coalesce to leave the interface for all later times. Apart from this short interlude, the
interface tank-treads.

In an initial stage of the evolution, for t ∈ [0, 4), the dynamics is broadly similar
to that of the previous example (see Figure 6.2). A similar redistribution of surface
surfactant concentration is set up, although the magnitude of its variation around
the interface is slightly less, as is seen by comparison of the vertical scales of Figures
6.2(b) and 6.3(b). At later times the dynamics are markedly different, and some of
this is attributable to the tank-treading motion of the interface and the nonseparated
recirculation of the flow near the drop interface that accompanies it.

Figure 6.4 shows the bulk surfactant concentration C at times t = 5.0, 10.0, 15.0,
and 20.0. It is useful to compare this with the surface surfactant concentration data
for Γ of Figure 6.3(b). At the time t = 5.0 of the top-left panel of Figure 6.4, just
after the initial stage of redistribution of Γ is complete, a region of relatively low bulk
concentration in the transition layer begins to be swept around the outside of the
surfactant accumulation points near the drop ends. The bulk concentration in the
transition layer becomes nonmonotone in the direction normal to the interface, which
tends to enhance exchange of surfactant away from the interface to the bulk near
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the accumulation points, and this process continues for all later times. The result is
a smearing out or reduction in spatial gradients of the surface and bulk surfactant
concentrations around the interface.

The data for Γ of Figure 6.3(b) show that at times t > 4.0 the broad minima in
Γ over much of the long, flat midsections of the interface steadily increase, although
there is still an appreciable spike in Γ at the surface surfactant accumulation points.
At the time t = 10.0 of the top-right panel of Figure 6.4, the region of low bulk
concentration in the transition layer has swept around just beyond the accumulation
points at the drop ends. There is a small region beyond this where C � 1 almost
completely across the transition layer width, indicating that the surface and bulk
concentrations are close to equilibrium. This is seen in Figure 6.3(b) as a relatively
small-amplitude local maximum that breaks away from the neighboring spike in Γ and
then proceeds as a wave in the direction of increasing α until, at t = 20.0, it is about
to merge with the spike in Γ at the far end of the drop. The same wave is also seen
progressing along the flat midsections of the drop in the two lower panels of Figure
6.4, where t = 15.0 in the bottom-left panel and t = 20.0 in the bottom-right panel.
This is a result of the combined effects of tank-treading and surfactant solubility.
The wave speed agrees with the data for the interface tangential fluid velocity, which
also, for this slender highly deformed drop, is moderately close to that of the imposed
shear.

We noted earlier that the drop profile in Figure 6.3(a) overshoots, or elongates,
to a maximum length at t � 9.0 and later retracts. The drop profile of Figure 6.4 for
times t > 9.0 suggests that the angle α′ of inclination of the drop between its major
axis and the direction of the imposed flow may also be undergoing small-amplitude
oscillations. However, the final time of our computations is not sufficient to determine
details such as whether the oscillations are damped or sustained. The results of
separate computations with constant surface tension confirm that, although features
of the observed dynamics may be modified by surfactant effects, a qualitatively similar
change in the inclination angle and overshoot of the drop deformation numberD′ occur
in the absence of surfactant. We follow the usual definition that the drop deformation
number is D′ = (l − b)/(l + b), where l and b are respectively the maximum and
minimum distances of the drop interface from its centroid.

It is known that a 3D, initially spherical, surfactant-free drop placed in a sim-
ple shear flow can approach a steady state via a sequence of damped oscillations or
“wobble” in both D′ and α′. This has been shown theoretically in the limit of small
deformation and zero Reynolds number for surfactant-free drops [44, 45] and has been
verified experimentally [46]. The theory predicts a relaxation time for approach to
the steady state given by τ = a0μ

i/σ0, which is τ0 = λ in our dimensionless time
units. This agrees with the apparent absence of any overshoot in the deformation
number seen in the 2D inviscid example of Figure 6.2 but predicts a relaxation time
of τ0 = 1.2 for the highly deformed 2D viscous drop example of Figures 6.3 and 6.4,
where we estimate τ0 � 5 to 10. The difference is not explained by simple adjustment
of the relaxation time for reduced surface tension due to interfacial surfactant, since
the surfactant-free value σ0 = 1 and the initial equilibrium value σeq = 0.94 are too
close. Damped oscillations of D′ and α′ on a time scale similar to that found here
have been observed in two dimensions in [42]. On the face of it, surfactant-mediated
immobilization of the interface may cause the dynamics of a surfactant-laden drop
to be more like the dynamics of a capsule. Sustained oscillations in D′ and α′ or
“trembling” (also referred to as swinging or vacillating-breathing) have been shown
to occur for models of a vesicle in a simple shear flow; see, for example, [47].
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7. Conclusion. The main theme of this study is a Green’s function–based meth-
od for the solution of a local transition or boundary layer equation that occurs in a
model for the influence of soluble surfactant on two-phase flow in the infinite bulk
Péclet number limit. This gives the Dirichlet-to-Neumann map that contains the in-
fluence of surfactant solubility on the dynamics in the form of a convolution integral
over time, in which the spatial coordinates on the fluid interface appear paramet-
rically. We refer to the method as mesh-free, since it determines the evolution of
quantities such as the interface shape and surface surfactant concentration but re-
quires no computation of the transition layer in the direction normal to the interface.
The mesh-free method implemented here is spectrally accurate in space and first order
in time.

Sample computations are shown that compare results of the mesh-free method
with those of a more traditional, mesh-based method. A mesh-based method solves
the transition layer equation directly, and we have chosen a mesh-based method that
gives spectral accuracy in space and is second order in time.

The discussion toward the end of section 6 suggests some of the dynamics that
may occur when surfactant effects are included. We hope to explore this in a later
study.

The infinite Péclet number model and both the mesh-based and mesh-free nu-
merical methods can in principle be generalized to three dimensions. In this study we
have restricted attention to two dimensions, since, when the interior fluid is inviscid,
conformal mapping techniques can also be applied and are known to give semianalyti-
cal results, such as elliptical interface profiles for all times and for all other parameter
values. This gives a partial validation of our results and of the results for the mesh-free
method in particular.

The results discussed in section 6 show that the CPU times for the mesh-based
and mesh-free methods as implemented here are comparable. However, a significant
speed-up of the mesh-free method can be achieved if the convolution integral in (5.22)
can be evaluated by accelerated methods, such as those found in [48, 49]. Although a
mesh-based method gives the bulk surfactant concentration throughout the transition
layer automatically, it can also be found from the mesh-free method by calculation of
an additional convolution integral, per (5.16).

We have considered examples where the bulk surfactant concentration outside
the transition layer is spatially uniform. The method we use can also be extended
to examples where this is spatially nonuniform but smooth. In the large bulk Péclet
number limit, per the discussion above (2.15), the bulk concentration there is con-
served or constant on particle paths to within order O(ε). The concentration outside
the transition layer can be tracked by, for example, a semi-Lagrangian method [50, 51]
using a relatively coarse grid. The solution adjacent to the interface as found by this
method is then used to modify the far-field matching condition of (2.15) which in-
fluences the solution within the transition layer. In this case there is an additional
computational expense, which has been avoided here, of calculating the fluid velocity
on the computational grid in the exterior domain.
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