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Abstract Spoofing attacks on biometric systems are one of

the major impediments to their use for secure unattended

applications. This paper explores features for face liveness

detection based on tracking the gaze of the user. In the

proposed approach, a visual stimulus is placed on the dis-

play screen, at apparently random locations, which the user

is required to follow while their gaze is measured. This

visual stimulus appears in such a way that it repeatedly

directs the gaze of the user to specific positions on the

screen. Features extracted from sets of collinear and

colocated points are used to estimate the liveness of the

user. Data are collected from genuine users tracking the

stimulus with natural head/eye movements and impostors

holding a photograph, looking through a 2D mask or

replaying the video of a genuine user. The choice of

stimulus and features are based on the assumption that

natural head/eye coordination for directing gaze results in a

greater accuracy and thus can be used to effectively dif-

ferentiate between genuine and spoofing attempts. Tests are

performed to assess the effectiveness of the system with

these features in isolation as well as in combination with

each other using score fusion techniques. The results from

the experiments indicate the effectiveness of the proposed

gaze-based features in detecting such presentation attacks.

Keywords Biometrics � Liveness � Spoofing � Fusion �
Presentation attacks � Feature extraction

1 Introduction

Despite the widespread adoption of biometric recognition

systems in recent decades, there still remain vulnerabilities

to increasingly sophisticated spoofing attacks that can

undermine the trust in such systems. The artefacts used for

such attacks may be created from the biometric information

of genuine users and presented at the system sensor(s). An

impostor can present a fake biometric sample of a genuine

user to a biometric recognition system to gain access to

unauthorized data or premises. This type of spoofing is a

direct attack on the sensor (also known as ‘‘presentation

attack’’); the impostor does not require any prior knowl-

edge about the internal operation of the biometric system.

To prevent such sensor-level attacks, biometric systems

need to establish the ‘‘liveness’’ of the source of an

acquired sample. In the context of biometric counter-

spoofing, liveness detection refers to such situations where

the attacker uses an artefact presented at the sensor to

subvert the system. In this sense, there may still be a live

human operator manipulating the artefact that mimics some

attribute of the ‘‘live’’ subject whose identity is being

compromised.

Amongst biometric modalities, face recognition has

emerged as being widely adopted, accurate and convenient

and is, therefore, used for a variety of security applications.

But face recognition systems are more vulnerable to abuse

compared to other biometric modalities, because a simple

photograph or video of a genuine user can be used to

deceive such systems [1]. Therefore, by introducing a

liveness detection mechanism, the security of such systems

can be substantially improved.

Photographs, masks and video replay are some of the

means for spoofing that may be used for attacks at sensor

level. Photograph spoofing can be prevented by detecting
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motion, smiles, eye blinks, etc. Such techniques can be

deceived by presenting a video of the genuine user to the

face recognition system. However, the subtle differences

between a photograph (or video) of an individual and the

live person can be used to establish liveness of the pre-

sentation at the sensor.

Another potential source of liveness information could

be the nature of user interactions with the system, which

can be captured and analysed in real time. Vision is an

active process where the viewer seeks out task-relevant

visual information by actively controlling their gaze using

eye, head and body movements. Similarly, sophisticated

hand/eye coordination is essential for performing sports,

handwriting, etc. All animals with developed visual sys-

tems learn, practice and improve such coordination acts

throughout their lifetime to reach a level of subconscious

spontaneity. Such spontaneity is usually absent when a task

demands coordination of body parts which has not been

practiced naturally for a long time. This observation is

exploited in the work reported here to ascertain liveness.

In this paper, we present a novel challenge/response

mechanism for face recognition systems by tracking the

gaze of a user in response to a moving visual stimulus or

target using a standard webcam. The stimulus is designed

to facilitate the acquisition of distinguishing features from

collinear and colocated sets of points along the gaze

trajectory.

This paper provides a unified and formal framework for

bringing together the authors’ previous work that dealt with

features based on gaze stability [2, 3]. The novel contri-

butions of this work include a mathematical generalization

of the originally proposed features to incorporate more

complex stimulus trajectories used as a challenge and

extension of the experimental work to include more test

subjects and presentation attack scenarios. Additionally,

fusion of liveness information from different gaze-based

features is also explored in the present work, resulting in

enhanced performance.

The paper is organized as follows. In Sect. 2, a brief

overview of the state of the art is presented. Section 3

describes the proposed techniques while Sect. 4 reports on

their experimental evaluation. Finally Sect. 5 provides

conclusions and offers suggestions for further work.

2 Related work

Various approaches have been presented in the literature to

establish liveness and to detect presentation attacks. Live-

ness detection approaches can be grouped into two broad

categories: active and passive. Active approaches require

user engagement to enable the biometric system to estab-

lish the liveness of the source through the sample captured

at the sensor. Passive approaches do not require user

cooperation or even user awareness but exploit involuntary

physical movements, such as spontaneous eye blinks, and

3D properties of the image source.

2.1 Passive techniques

Passive anti-spoofing techniques are usually based on the

detection of signs of life, e.g. eye blink and facial expres-

sion. For example, Pan et al. [4] proposed a liveness

detection method by extracting the temporal information

from the process of the eye blink. Conditional random fields

were used to model and detect eye blinks over a sequence of

images. Jee et al. [5] proposed a method that uses an ordi-

nary camera and analyses sequences of images captured.

The centres of both eyes in the facial image are located, and

if the variance of each eye region is larger than a preset

threshold, the image is considered to be live, and if not, the

image is classified as a photographic artefact. Wang

et al. [6] presented a liveness detection method in which

physiological motion is detected by estimating the eye blink

with an eye contour extraction algorithm. They use active

shape models with a random forest classifier trained to

recognize the local appearance around each landmark. They

also showed that if any motion in the face region is detected,

the sample is considered to be captured from an impostor.

Kollreider et al. [7–9] combined facial components (e.g.

nose, ears) detection and optical flow estimation to deter-

mine a liveness score. They assumed that a 3D face pro-

duces a special 2D motion. This motion is higher at the

central facial parts (e.g. nose) compared to the outer

regions (e.g. ears); the parts nearer to the camera move

differently to those which are further away in a live face. A

photograph, by contrast, generates constant motion at

various face regions. They also proposed a method, which

uses lip motion (without audio information) to assess

liveness [9].

Some anti-spoofing techniques are based on the analysis

of skin reflectance, texture, noise signature, etc. Li

et al. [10] explored a technique based on the analysis of 2D

Fourier spectra of the face image. Their work is based on

the principles that the size of a photograph is smaller than

the real image and the photograph is flat. It therefore has

fewer high-frequency components than real face images.

Kim et al. [11] proposed a multi-classifier method for

detecting fake attempts by combining frequency informa-

tion from the power spectrum and texture information

obtained using local binary pattern (LBP) features. They

utilized support vector machine (SVM) classifiers to train

separate liveness detectors using the two types of feature

vectors extracted. The decision values of these two SVM

classifiers were then used as 2D feature vectors for the

subsequent trainable fusion stage.

438 Pattern Anal Applic (2018) 21:437–449

123



Komulainen et al. [12] explored the use of dynamic

texture information for spoofing detection. They argued

that masks and 3D head models are rigid, whereas real

faces are non-rigid with contractions of facial muscles

resulting in temporal deformation of facial features, such as

moving eyelids and lips. The structure and dynamics of the

micro-textures that characterize real faces were used in

their proposed approach to spoof detection. They used

spatiotemporal (dynamic texture) extensions of the local

binary pattern in this approach. Komulainen et al. [13]

further extended their work and explored the fusion of

micro-texture with motion. The motion-based technique

measures the correlation between the head movement and

background scene. They also explored the potential of the

fusion of different visual cues and showed that the per-

formance of each method can be improved by performing

score-level fusion.

Lagorio et al. [14] proposed a liveness detection

method, based on the 3D structure of the face, to identify

an impostor presenting a 2D image of a genuine user to

spoof a face recognition system. The method computed the

3D features of the captured facial image data to detect

whether a human face has been presented to the acquisition

camera. They collected a 3D face database using a stereo

camera system for performance evaluation. Skin reflec-

tance models, based on non-thermal hyperspectral imagery,

have been used to develop skin/face detection and classi-

fication algorithms [15, 16] which can be used for face

liveness detection.

Replay of pre-recorded video can be used to spoof facial

liveness detection measures. Many of the algorithms used

for detecting photograph spoofing attacks are likely to be

susceptible to such video-based attacks. Video spoofing

thus presents an even greater challenge. Pinto et al. [17]

investigated a method for detecting video-based face

spoofing. They used the noise signatures generated by the

recaptured video to discriminate between live and fake

attempts. They used the Fourier spectrum, computation of

the visual rhythm and extraction of the grey-level co-oc-

currence matrices as feature descriptors. These were clas-

sified using a support vector machine (SVM) and partial

least squares regression to detect liveness.

2.2 Active techniques

Systems based on the challenge–response approach belong

to the active category, where the user is asked to perform

specific activities to ascertain liveness such as uttering

digits or changing their head pose. For instance, Frischholz

et al. [18] investigated a challenge–response approach to

enhance the security of a face recognition system. The

users were required to look in certain directions (chal-

lenge), which were chosen by the system randomly and the

head pose (response) is estimated and compared in real

time to establish liveness. Sharma [19] presented a similar

technique in which the user was asked to perform some

activities such as chewing or smiling. The camera captured

sequences of images and extracted the features from the

facial images using a correlation coefficient and image

extension feature. They calculated skin elasticity, using a

discriminant analysis method. Then the output was com-

pared with the stored database to discriminate between fake

and real images.

The liveness detection technique presented here is based

on gaze tracking, estimated by measuring the movement of

the pupil centre. Pupil centres can be easily extracted with

limited computational effort. Pupil centre positions, while

not indicating the true direction of gaze, are strongly cor-

related with it and provide a useful indicator of gaze,

especially on platforms where computational resources are

limited (e.g. mobile devices). The underlying hypothesis is

that gaze stability and consistency should be greater in

genuine user attempts when compared with spoofing

attacks. This phenomenon is then exploited to differentiate

between such presentations. Clearly, using additional facial

landmarks may help improve the accuracy and robustness

of the system. However, the aim of this paper is to indicate

the general principles involved and pave the way for future

explorations.

2.3 Gaze stability

The algorithms proposed in this paper are based on the

assumption that the spatial and temporal coordination of

the movements of eye, head and hand involved in the task

of following of a visual stimulus is significantly different

when a genuine attempt is made compared with certain

types of spoof attempts. The task requires head/eye fixa-

tions on a simple target that appears on a screen in front of

the user, and in the case of a photograph spoofing attack,

visually guided hand movements are also required to ori-

entate the photographic artefact to point in the correct

direction towards the challenge item on the screen.

It is expected that the head pose and direction of gaze

will be different when photograph spoofing is attempted as

coordination may only be maintained by delaying the hand

movements until the eye is available for guiding the

movement [20]. The introduction of hand movements is

also likely to change the relationship between head and eye

movements, as the coordination of eye and head in gaze

changes is usually a consequence of synergistic linkage

rather than an obligatory one [20–22]. Therefore, it is

assumed that accurately directing the photograph to a

particular orientation indicated by the visual stimulus on

the screen is likely to be less repeatable than merely

looking at the stimulus. Hence, the variances in measured
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gaze parameters can be used to distinguish genuine from

fake attempts as described in the rest of the paper.

Although the proposed approach may require additional

resources compared to simpler techniques such as blink

detection, it provides protection for a wider range of attack

scenarios than possible with such techniques. The proposed

technique may also provide an effective basis for liveness

detection on devices where a display screen and image

sensor are inherently available. Clearly any liveness

detection approach presents a trade-off between conve-

nience and security and it is expected that the present

contribution will further enrich the available options to

system designers.

3 Liveness detection through gaze tracking

The scenario considered in this paper is that of a face

recognition system using an ordinary camera (webcam).

The spoofing attack is by means of an impostor attempting

authentication by holding a photograph or a photograph

mask or playing a recorded video of a genuine client to the

camera. A typical setting is depicted in Fig. 1. A visual

stimulus appears on the display which the client is asked to

follow and the camera (sensor) captures facial images at

various positions of the stimulus on the screen. A control

mechanism is used to ensure the placement of the target

and the image acquisition are synchronized. The system

extracts facial landmarks in the captured frames, computes

various features from these landmarks, which are then used

to classify the attempt as either genuine or fake.

In Fig. 2a, a genuine user is seen to be tracking the

challenge to establish liveness, while the impostor is

responding to the challenge by carefully moving a high-

quality printed photograph in Fig. 2b, holding a mask in

Fig. 2c or replaying a video in Fig. 2d to gain access to the

system.

3.1 Visual stimulus and user response acquisition

A small shape is randomly presented, one after another, at

D distinct locations on the screen. A simple cross sign was

used as the challenge stimulus as shown in Fig. 3. In this

figure, the dots indicate the chosen locations in which the

cross sign may randomly appear. The cross sign is chosen

as it is commonly used to direct attention to a specific

point. One could use other symbols, shapes or words as the

stimulus to direct the user gaze to certain locations on the

screen. Let C be a set of these coordinates.

C ¼ fc1; c2; . . .; cd; . . .; cDg
where; cd ¼ x; yð Þ; d ¼ 1; . . .;D

ð1Þ

It is not necessary to space these locations uniformly, but

ideally these should not be too close to one another to

encourage greater head/eye movements. It is so arranged

that some of these locations are visited by the stimulus

several times during a challenge session. Let P be the

sequence of M such presentations.

P ¼ fp1; p2; . . .; pm; . . .; pMg
where; pm 2 C;m ¼ 1; . . .;M

ð2Þ

The stimulus appears in a random sequence to prevent

predictive video attacks. Face images are then captured at

each presentation of the stimulus.

3.2 Facial landmark detection and feature

extraction

The images thus captured during the challenge–response

operation were processed using STASM [23] in order to

extract facial landmark points. STASM returns 68 different

landmarks on the face region using an active shape model

algorithm. The coordinates of some of these landmarks

were used for feature extraction in the proposed scheme.

Feature extraction methods proposed here are based on

collinearity and colocation properties of the presented

stimulus during the challenge.

3.3 Collinearity features

A set of points lying on a straight line is referred to here as

a collinear set of points, and this property of this set of

points is hereby referred to as collinearity. Collinearity

features are, therefore, extracted from sets of images

Fig. 1 Proposed system block

diagram
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captured when the stimulus is on a given line. In the

investigations reported here, only horizontal or vertical

collinearity cases were studied.

Let Sl be a collinear subset of C, where the stimuli are

horizontally aligned. Sl � C; l ¼ 1; . . .; Lwhere L is the

number of horizontally aligned sets of stimulus locations.

For ðx; yÞ 2 Sl; y ¼ al where al is constant. Let R be the set

of landmark locations in the captured images. For a given

landmark k (e.g. centre of the left eye)

R ¼ frp1 ; rp2 ; . . .; rpi ; . . .; rpMg ð3Þ

where, rpi ¼ fðuik; vikÞg 1� i�M; 1� k�K and (u, v) are

the pixel positions in the image coordinate system andK is the

total number of such landmarks. Individual subjects moved

their eyes and heads by different amounts in response to the

movement of the stimulus. They may also be sitting in

different positions relative to the screen and camera in each

session. So in order to remove these user- and session-de-

pendent factors in estimating gaze-based features, the data

were normalized. The spatial coordinates of the landmarks for

each session were normalized using the Min–Max normal-

ization technique [24] prior to feature extraction. Min–Max

algorithmwas used in this application due to its simplicity and

the absence of outliers in the genuine attempts. The (u, v) co-

ordinates used in this paper refer to these normalized values.

For each Sl there is a corresponding subset of R. Let this

be denoted by Tl.

Tl � R; l ¼ 1; . . .; L ð4Þ

For any given landmark, k, let vik ¼ f ðuikÞ denote the tra-

jectory of the facial landmark in response to the challenge.

Since the trajectory of the challenge Sl is horizontal, a

horizontal response can be assumed and this may be

approximated by the equation of a horizontal line.

v̂k ¼ bk where bk is a constant ð5Þ

The particular value of bk depends on the system set-up.

Let, eik denote the deviation between the estimated v̂ik and

observed vik (see Fig. 4), i.e.

eik ¼ vik � v̂ik ð6Þ

For simple horizontal collinearity, v̂ik is calculated as the

mean of the observed vik. So, the mean square error (MSE)

for Tl will be

Elk ¼
1

N

X

i

e2ik ¼
1

N

X

i

ðvik � v̂ikÞ2 ð7Þ

Fig. 2 Example of a genuine

attempt, b photograph spoof

attempt, c 2D mask spoof

attempt and d video spoof

attempt

Fig. 3 Stimulus shape and selected display positions
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where N is the cardinality of Tl. A similar expression can be

derived when the challenge is vertically aligned. A gener-

alized form of the expression for collinearity feature along

any straight line is given in ‘‘Appendix’’. As there are mul-

tiple face landmarks as well as several stimulus challenge

trajectories, a feature vector, Fcolin, can be constructed from

the concatenation of these MSE values (and optionally other

feature values) and used for liveness detection.

Fcolin ¼ ½E11;E12; . . .;E1K ;E21; . . .;Eik; . . .;ELK � ð8Þ

3.4 Colocation features

The colocation features are extracted from the images

acquired when the stimulus is presented at a given location

several times. This stimulus can be considered as a special

case of collinear trajectory where the line is reduced to a

single point. Since the coordinates of the stimulus are

identical, it can, therefore, be expected that the coordinates

of the facial landmarks in the corresponding frames should

also be closely spaced if not coincident. This should result

in a significantly smaller variance in the observed landmark

coordinates in genuine attempts than that in fake attempts.

Figure 5 illustrates the observed coordinates ðuik; vikÞ of
a given landmark k in response to the stimulus presented at

the same location at different times. To quantify the

deviation from perfect colocation, the variances in the

observed landmarks are calculated.

Let Qw be a subset of P where the stimuli appeared at

the same location cw on the screen at different times.

Qw � P; w ¼ 1; . . .;W where W is the number of such

colocation sets used in the challenge. Let Tw be the cor-

responding subset of R.

Tw � R;w ¼ 1; . . .;W ð9Þ

Let r2uk and r2vk denote the variances of the observed

landmarks along u the v and directions, respectively.

r2uk ¼
1

N

X

i

d2iu ¼
1

N

X

i

ðuik � �ukÞ2

r2vk ¼
1

N

X

i

d2iv ¼
1

N

X

i

ðvik � �vkÞ2
ð10Þ

where ðuik; vikÞ 2 Tw; ð�uk; �vkÞ is the mean of the observed

landmark locations and N is the cardinality of Tw.

Let Cwk ¼ ½r2uk; r2vk�. As there are K different landmarks

as well asW colocation subsets, a colocation feature vector,

Fcoloc, can be constructed from the concatenation of these

values and used for liveness detection.

Fcoloc ¼ ½C11;C12; . . .;C1K ;C21; . . .;Cwk; . . .;CWK � ð11Þ

Many other features can be extracted from these facial

landmarks. All these can be combined into a global feature

vector,

F ¼ ½Fcolin;Fcoloc;Fother; . . .�: ð12Þ

In order to spoof the system the attacker may hold the

photograph still (without moving the photograph in

response to the stimuli) to generate near-perfect

collinearity and colocation features. However, such an

attack is easily detected by measuring the overall spread of

landmark locations in the captured images during the entire

presentation session, R, and check that this value is above a

certain threshold to detect such presentation attacks [2]. In

fact, two thresholds are used in the operation of the pro-

posed system. One movement threshold is used to check if

the attacker is trying to subvert the liveness detection

system by minimizing movements of the artefact in

response to the stimulus. The other threshold is used to

detect if the movements of the artefact are resulting in

repeatable positioning of the eyes in response to the stim-

ulus. Therefore, if a skilled attacker intentionally makes

micro-movements to defeat the system they will be caught

by the first detection system and if they do not use micro-

movements, they will be caught by the second detection

Fig. 4 Observed locations (bullet symbols) and expected locus of the

landmark positions (dash symbols)
Fig. 5 Observed (bullet symbols) and expected (asterisk) landmark

positions
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system. There thresholds were empirically set for the given

test configuration. However, it is relatively easy to adjust

these to match any application scenario.

4 Experiments

The data acquisition system set-up was similar to the one

shown in Fig. 6. It consists of a webcam, a PC and a dis-

play monitor. The distance between the camera and the

user was approximately 750 mm. This distance was not a

tight constraint but had to be such that the facial features

could be clearly acquired by the camera.

Data were collected from 30 volunteers of both genders

aged between 20–45 years. Three potential presentation

attack scenarios were studied: photograph attack, mask

attack and video replay attack. Each subject provided data

for genuine attempts as well as for the three attack sce-

narios, thus creating 30 sets of data for each scenario. For

hand-held photograph spoofing attacks, a high-quality

colour photograph of a genuine user was held in front of

the camera while the volunteer attempted to follow the

stimulus. In the case of photograph mask spoofing attacks,

a high-quality colour photograph of a genuine user with

holes made in the place of the pupils was held by the user

in front of the eyes as a mask and used to follow the

stimulus.

Photographs of both male and female subjects were

chosen for the hand-held photograph and the photograph

mask spoofing trials. The photographs were printed on A4

matt paper, which bends easily. These photographs were

from two subjects. All volunteers used one of these two

subjects for the spoofing attempt. Photographs from more

subjects could have been used, but as in this study only

spoofing attack detection (and not face recognition) was the

focus there was no need to include a wide range of faces in

the construction of attack artefacts. Hard cardboard was

attached to the back of the photograph to attempt to

minimize any unintended deformation of the paper. For the

photograph mask attempt, three different photograph sizes

(small, medium and large) with different pupillary distance

(PD) were printed. The reason for producing a set of

photographs with pupillary holes at different distances was

to better fit the facial dimensions of the attackers with

different PDs. Before the mask was given to the attacker

the pupillary distance was measured, using a pupillary

distance ruler. The photograph with the PD closest to the

attackers PD was used for the attempt. The diameter of the

hole in pupil centre was 4 mm. The 4-mm hole was large

enough to see through to follow the challenge. A bigger

hole could have made the task of gaze direction easier for

the attackers but may have exposed other biometric indi-

cators of the attacker (e.g. iris) that would have undermined

their spoofing attempt [25]. During a real attempt, the video

of the genuine user was recorded and used for subsequent

replay attacks. This database is comparable in size to other

databases used for evaluation of liveness detection algo-

rithms such as replay attack database which has 50

clients [26].

In this implementation, the stimulus was displayed on

the screen at 30 distinct locations (i.e. D = 30), as shown

in Fig. 3, in a random order visiting each position 3 times

(thus, M = 90). Typically 225–275 ms is needed for gaze

fixation in reading tasks [22]. In this work, a 1 s delay

between each presentation is used to provide ample time

for the users to fixate their gaze. Total duration of the

challenge was about 2 min. The challenge duration for the

data collection sessions used in these experiments is rela-

tively long for most practical applications. However, the

initial experiments used a large number of points covering

the whole screen to explore the sensitivity of the algorithm

to the various challenge locations. Nevertheless, the live-

ness check can be achieved using a much smaller number

of locations to reduce the duration of the challenge. Results

supporting this assertion are given in Sect. 4.C.

In this particular challenge, the locations are so arranged

that there are 33 collinear sets and 30 colocation sets (i.e.

L = 33, W = 30). For each presentation of the stimulus,

the camera acquires a facial image. The image resolution

was 352� 288 pixels. This resolution provided adequate

picture quality for locating the facial landmarks. Using

higher-resolution images with STASM may not improve

landmark detection but will increase the processing time

[23]. The maximum expected gaze deviation from the

normal to the screen is approximately 15 degrees for the

experimental set-up. If the subject turns their head beyond

this pose angle, they are not following the instructions for

using the system. In such a case, landmark detection may

be compromised. Such frames are excluded in the feature

extraction phase. If this occurs 5 times or more in a single

presentation attempt, the whole attempt is excluded fromFig. 6 Data acquisition set-up
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the experiment, and the user is asked to try again in a new

attempt. The choice of this number is determined by the

number of points and their placement in the stimulus. Such

attempts are considered to be cases of failure to detect

liveness. If the number of such frames is 5 or less, then the

missing landmark values were substituted by estimated

data from the remaining landmarks. The presentation

attempts where there are more than 5 frames in which face

(or facial landmarks) cannot be detected by the system

were not used in subsequent experiments. There were 21

out of 120 attempts where facial landmarks were not

detected in more than 5 frames. Only 3 of them were

genuine attempts. If the system policy was changed so that

all such as attempts were classified as impostor attacks, the

overall performance of the proposed system would be

further improved. However, in this work only attempts with

good landmark detection were considered in order to focus

on the evaluation of the proposed features.

For the experiments reported here, a subset of the

database composed of 92 presentation attempts comprising

of genuine attempts and attacks using hand-held pho-

tographs, photograph masks and video replays were used.

65% of the data were used for training and the remaining

was used for testing. Therefore, for each individual attack

scenario (photograph, mask, video) 15 genuine and 15

impostor attempts were randomly selected for training.

However, for scenarios where different attack artefacts are

combined in the evaluation 15 genuine and 45 impostor

attempts were randomly selected for training. These data

are available to other researchers upon request.

4.1 Facial liveness detection system

In the works reported here, the effectiveness of the two

proposed features, collinearity and colocation, in detecting

liveness were investigated. Subsequently, the use of both

these sources of information in combination with each other

was investigated. Several schemes were set up to explore the

gain in accuracy achieved by combining features extracted

from both eyes in a multi-classifier configuration [27].

Fusion of information from multiple sources can be

achieved in a number of ways. In the first scheme investi-

gated, feature vectors from right and left eyes were

concatenated as shown in Fig. 7. Various classifiers were

then used to obtain classification results for the fused fea-

ture set.

Alternatively, using score fusion, classifiers were inde-

pendently trained to obtain the individual classification

score for each eye. The score from the primary classifiers

were combined at the fusion stage for liveness detection.

The scheme is illustrated in Fig. 8.

4.2 Liveness detection performance measures

Face liveness detection is a two-class problem. There are

four possible outcomes of the classification process hereby

referred to as: true positive, true negative, false negative

and false positive, with ‘‘positive’’ indicating a live/gen-

uine detection decision. When a genuine (live/non-spoof)

attempt is classified as genuine and a false (fake/spoof)

attempt is classified as genuine, these are termed true

positive (TP) and false positive (FP) classifications,

respectively. Similarly, when a genuine attempt is classi-

fied as a fake and fake attempt is classified as fake these are

called false negative (FN) and true negative (TN),

respectively. FP and FN are the error outcomes of the

process and the likelihoods of their occurrence are reported

as false positive rate (FPR) and false negative rate (FNR) in

this report in order to facilitate the assessment and com-

parison of system performance. The term true positive rate

(TPR) is also used and is equal to (1-FNR). The term true

negative rate (TNR) is equal to (1-FPR) [28]. The total

error rate (TER) is also used to quantify the overall per-

formance of the system at a particular operating point and

is defined in Eq. 13.

TER ¼ ðFPþ FNÞ
ðTPþ TNþ FPþ FNÞ ð13Þ

4.3 Experimental results

Error rates were calculated for a range of system parame-

ters and are reported in this section. Each experiment was

run 400 times with random partitioning of the data into

disjoint training and test sets and the average performances

from these runs were reported in the paper. True positive

Fig. 7 Proposed liveness

detection scheme using feature

fusion
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rates at a set of pre-defined FPR values were obtained and

used for comparison.

Table 1 shows the performance for various classification

schemes for feature fusion using photograph and mask

attacks. It is clear from the table that the k-NN classifier

performs better than the alternatives explored. Hence, the

k-NN classifiers were used to investigate the performance

of the system for the remaining experiments.

In the score fusion schemes, only the k-NN classifiers

were employed as the primary classifier to obtain the

individual classification scores and then the product rule

was employed for the fusion phase. Table 2 presents the

TPR values for three spoofing attack detection scenarios.

It is obvious that, for both the collinearity and the

colocation feature-based implementations, the error rates

are lower, in most cases, than what was achieved while

using the feature fusion scheme. The video replay attack

detection outperformed the other two types of attacks.

The collinearity features were superior to the colocation

features.

In the subsequent implementation, the collinearity and

the colocation feature schemes themselves are combined

using the product rule, as shown in Fig. 8, and the corre-

sponding TPR values are presented in the bottom row of

Table 2. The TPR for hand-held photograph attack detec-

tion further improved, whereas the photograph mask

detection performance was slightly decreased, and video

replay attack detection remained the same. These experi-

ments indicate that the score-based fusion was more

effective than the feature fusion scheme.

All subsequent experiments were, therefore, carried out

for the score fusion scheme using the k-NN classifier only.

The value of k was optimized with respect to the leave-one-

out error rate on the training data. Each experiment was run

400 times with random partition of available data for

training and testing, which resulted in different optimum

k values for each run. The mean optimal k values were

found to be 7 and 6 for collinearity and colocation

schemes, respectively.

Figure 9 shows the receiver operating characteristic

(ROC) curves [28] for combined collinearity and colo-

cation features using the proposed fusion scheme. The

system displayed a near-perfect performance in the case

of video attack detection for a range of FPRs. The per-

formance of the system for mask attack detection was

marginally better than that achieved for photograph

attack detection.

Fig. 8 Proposed liveness

detection scheme using score

fusion

Table 1 Comparison of feature fusion performance for different

classifiers (TPR at FPR = 0.10)

Feature Attack type Classifier

k-NN SVM LDC

Collinearity Photograph 0.53 0.37 0.12

Mask 0.60 0.44 0.19

Colocation Photograph 0.25 0.25 0.20

Mask 0.18 0.24 0.15

Table 2 TPR at FPR = 0.10 using the entire feature set

Feature sets Photograph Mask Video replay

Collinearity 0.55 0.71 0.99

Colocation 0.43 0.25 0.83

Collinearity and colocation 0.58 0.69 0.99
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In order to establish the trade-off between the feature

dimensionality and liveness detection, a forward feature

selection method [14] was used. The feature selection

method was run 400 times with random sets of data for

training and testing. This resulted in different rankings of

features for each run. The feature that most frequently had

the first rank was assigned the first overall ranking. This

procedure was repeated for all the other ranks so that the

feature that appeared most frequently at rank N was given

rank N in the overall ranked list. Figure 10 presents total

error rates as a function of the number of features selected

to find reduced feature subsets for collinearity and colo-

cation features. In this experiment, the photograph and

mask attack modalities were combined as a single attack

class. The combination of these attack modalities allows

the establishment of an optimal feature subset that can be

used for all of these major spoofing challenges. Video

attack data were excluded from this feature ranking

exercise as the system already performs very well in

detecting video spoofing attacks.

As shown in Fig. 10, the lowest total error rate was

observed when the feature dimension was significantly

reduced. As referred to previously, a decreased number of

features implies that the challenge will need to be pre-

sented at fewer locations; therefore, the time duration of

the challenge can be substantially shortened. Feature

reduction can, therefore, not only shorten the time duration

for this approach but also improve its performance. The

collinearity and colocation feature performance for pho-

tograph, mask and video spoofing attacks using this

reduced feature set is illustrated in Fig. 11. Video replay

attack detection gives best performance while the pho-

tograph mask attack detection ranks second in performance

followed by hand-held photograph attack detection using

the collinearity feature. At 10% FPR, TPR of 70, 78 and

100% are achieved for photograph, mask and video replay

attacks, respectively. The colocation feature performance is

much weaker compared to the collinearity performance. At

10% FPR about 70, 38 and 65% TPR are achieved for

photograph, mask and video replay detection, respectively.

Figure 12 shows the ROC curves for the reduced feature

sets for fusion of collinearity and colocation information.

The performance of the system was found to be worse

when collinearity or colocation features were used sepa-

rately for most scenarios as can be seen in comparison with

Fig. 11. At 10% FPR, video replay performance is 100%

and photograph attack TPR increased to about 90%. The

mask attack detection performance marginally decreased

after fusion and is lower compared to the video and pho-

tograph spoof detection performance.

Table 3 summarizes some of the key results from

Fig. 11 and Fig. 12 and presents results for each feature

type separately along with the results for the combined

Fig. 9 ROC curve using entire feature vector

Fig. 10 Variation in total error rate with feature dimension

Fig. 11 ROC curve of the proposed system using reduced feature set
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collinearity and colocation features using the reduced

feature sets. The video replay attack detection rate using

the colocation feature has decreased when using the

reduced feature set. However, this is expected as the video

attack data were not used for establishing the optimum

feature set. For video replay attack detection, the proposed

combined system is error-free (for this data set). Using the

reduced features, the TPRs of combined collinearity and

colocation features increased by 32, 12 and 1% for pho-

tograph, mask and video replay attack detection, respec-

tively, when compared to using the entire feature set.

In the following experiments, all attack types were

treated as one class (fake) rather than as three separate

attack scenarios. Figure 13 illustrates the ROC curves for

real and fake attempts. Combination of collinearity and

colocation data again gave better performance. The colo-

cation feature performance is much weaker compared to

the performance of collinearity and fusion-based schemes.

The performance of collinearity features is very close to

that achieved by the performance of the combined features.

At 10% FPR, TPR of about 87, 63 and 91%, were achieved

for collinearity, colocation and their fusion, respectively.

Table 4 shows a comparison of our experimental results

(GS for gaze stability) with the performances reported for

similar photograph spoofing attacks published in the liter-

ature. Although the results are based on different databases,

they indicate the relative promise of the proposed methods.

Given the novel nature of the challenge–response system

used in this work, it has not been possible to make direct

comparison with other algorithms which use different

approach to liveness. The performance of our proposed

approaches can be seen to compare favourably with the

other methods considered and results lend support to its

potential applicability in detecting spoofing attacks.

Fig. 12 Score fusion performance using reduced feature sets

Table 3 TPR at FPR = 0.10 using reduced feature sets

Feature sets Photograph Mask Video replay

Collinearity 0.70 0.78 1.00

Colocation 0.70 0.38 0.65

Collinearity and colocation 0.90 0.81 1.00

Fig. 13 Genuine versus fake

(photograph, mask, video)

performance using reduced

feature sets
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5 Conclusion

The work presented here explores the notion of gaze sta-

bility and features based on it for the task of detecting

presentation attacks which is one of the major challenges

facing the use of biometric systems. An active challenge–

response approach is adopted using a visual stimulus to

direct the gaze, and the system provides gaze stability

measures to discriminate between genuine and fake

attempts. Two gaze-based features, collinearity and colo-

cation, have been introduced and extensively evaluated.

Three attack scenarios were investigated, and data were

collected to evaluate the performance of the proposed

system using different combinations of features and attack

modalities. Feature selection together with a multi-classi-

fier approach, combining information from separate feature

sets using score fusion, provided the best results showing

the potential effectiveness and viability of this approach. In

case of photograph and mask attacks, there may be a

possibility to circumvent the system depending on the

ability of the attacker to manipulate the artefact in way

similar to natural head/eye movements. The potential for

this type of ‘‘skilled’’ attack will be considered in future

work.
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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Appendix: Collinearity and colocation feature
extraction

The collinearity feature provided in Sect. 3.C, derived for

horizontal stimulus loci, may be generalized to include any

linear trajectory. Let Sl be a collinear subset of C, where

the stimuli are linear. Sl � C; l ¼ 1; . . .; Lwhere L is the

number of linear sets of stimulus locations. For ðx; yÞ 2
Sl; y ¼ al1xþ al0 where al1 is constant.

Let R be the set of landmark locations in the captured

images.

For each Sl there is a corresponding subset in R. Let this

be denoted by Tlk

Tlk � R; l ¼ 1; . . .; L ð14Þ

for any given facial landmark k, and let vik ¼ f ðuikÞ denote
the trajectory of the landmark in response to the challenge.

Since the trajectory of the challenge Sl is linear, a linear

response can be assumed and this can be approximated by

the equation of a line

v̂k ¼ bk1uk þ bk0 where bk1; bk0 are constants. ð15Þ

bk1 should be the same as al1 (the slope of the challenge

trajectory), whereas bk0 depends on the system set-up, user

interaction, etc.

Let, elk denote the deviation between the estimated v̂ik
and observed vik (see Fig. 14), i.e.

eik ¼ vik � v̂ik ð16Þ

So, the mean square error (MSE) for Tlk will be

Elk ¼
1

N

X

i

e2ik ¼
1

N

X

i

ðvik � v̂ikÞ2 ð17Þ

where N is the cardinality of Tlk.

By substituting Eq. (15) in Eq. (17) and replacing with

bk1 with al1

Elk ¼
1

N

X

i

ðvik � ðal1uik þ bk0ÞÞ2

¼ 1

N

X

i

ðv2ik þ a2l1

X

i

u2ik þ b2k0N

 

� 2al1
X

i

vikuik þ 2al1bk0
X

i

uik � 2bk0
X

i

vik

!

ð18Þ

Table 4 Comparison of performance reports

Method FPR FNR

Kollreider et al. [29] 0.02 0.19

Tan et al. [29] 0.09 0.18

Peixoto et al. [30] 0.07 0.07

IGD [31] 0.17 0.01

MaskDown [31] 0.00 0.05

GS photograph attack 0.05 0.13

GS all attack 0.05 0.16

Fig. 14 Observed locations (bullet symbols) and expected locus of

the landmark positions (dash symbols)
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Here, bk0 should be such chosen that Elk is a minimum.

Hence,

oElk

obk0
¼ 0

)2bk0 þ
2al1

N

X

i

uik �
2

N

X

i

vik ¼ 0

)bk0 ¼
P

i vik � al1
P

i uik

N

ð19Þ

Equation 19 can be used to calculate Elk. As there can be

multiple face landmarks as well as several distinct linear

challenge trajectories, a feature vector Fcolin can be con-

structed from the concatenation of these values and used

for liveness detection.

Fcolin ¼ ½E11;E12; . . .;E1K ;E21; . . .;Elk; . . .;ELK � ð20Þ

The colocation features are extracted from the images

acquired when the stimulus is presented at a given location

several times. This stimulus can be considered as a special

case of collinear trajectory where the line is reduced to a

single point.
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