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Abstract In this paper, we develop the theory of the discrete moving frame in two
different ways. In the Þrst half of the paper, we consider a discrete moving frame
deÞned on a lattice variety and the equivalence classes of global syzygies that result
from the Þrst fundamental group of the variety. In the second half, we consider the
continuum limit of discrete moving frames as a local lattice coalesces to a point. To
achieve a well-deÞned limit of discrete frames, we construct multispace, a general-
isation of the jet bundle that also generalises OlverÕs one-dimensional construction.
Using interpolation to provide coordinates, we prove that it is a manifold containing
the usual jet bundle as a submanifold. We show that continuity of a multispace mov-
ing frame ensures that the discrete moving frame converges to a continuous one as
lattices coalesce. The smooth frame is, at the same time, the restriction of the multi-
space frame to the embedded jet bundle. We prove further that the discrete invariants
and syzygies approximate their smooth counterparts. In effect, a frame on multispace
allows smooth frames and their discretisations to be studied simultaneously. In our last
chapter we discuss two important applications, one to the discrete variational calculus,
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and the second to discrete integrable systems. Finally, in an appendix, we discuss a
more general result concerning equicontinuous families of discretisations of moving
frames, which are consistent with a smooth frame.

Keywords Discrete moving frame· Discrete invariants· Local and global syzygies
of invariants· Multispace· Discrete and smooth MaurerÐCartan invariants· Finite
difference calculus of variations· Discrete integrable systems

Mathematics Subject Classi�cation 14H70· 17B80· 49M25· 53A55· 53C99·
58A40

1 Introduction

The theory and the applications of Lie group-based moving frames are now well
established, and provide an Òinvariant calculusÓ to study differential systems which
are either invariant or equivariant under the action of a Lie group. Associated with
the name of Cartan [7], who usedrepères mobileto solve equivalence problems in
differential geometry, the ideas go back to earlier works, for example by Cotton [9]
and Darboux [14].

Moving frames were further developed and applied in a substantial body of work,
in particular to differential geometry and exterior differential systems; see for example
papers by Green [19] and GrifÞths [20]. From the point of view of symbolic computa-
tion, a breakthrough in the understanding of CartanÕs methods for differential systems
came in a series of papers by Fels and Olver [16,17], Olver [51,52], Hubert [27Ð29],
and Hubert and Kogan [30,31], which provide a coherent, rigorous, and constructive
moving frame method. The resulting differential invariant calculus is the subject of the
textbook, [38]. There are now an extensive number of applications, including to the
integration of Lie group invariant differential equations [38], to the Calculus of Varia-
tions and NoetherÕs Theorem, (see for example [21,22,37]), and to integrable systems
(for example [40,43Ð45]). Moving frame methods have been extended to Lie pseudo-
groups [54]. We note that the calculation of invariants of Lie group actions, using
older ÒinÞnitesimalÓ methods, are well documented in many texts (see for example,
[2,53]). The use of moving frames to calculate invariants compares favourably to the
older methods in those cases where the frame can be explicitly calculated, since then
the invariants are obtained by the substitution of the frame into the group action, while
inÞnitesimal methods rely on the solution of Þrst-order quasi-linear partial differential
equations. Even where the frame cannot be calculated, the full symbolic Òinvariant
calculusÓ using moving frames, is still available, as is explained in detail in the text,
[38]. For calculating Lie symmetry groups, however, the inÞnitesimal methods will
always be needed, as the equations for the inÞnitesimals are linear, while those for the
group parameters themselves are highly nonlinear.

The Þrst results for the computation of discrete invariants using group-based mov-
ing frames were given by Olver who called them joint invariants in [52]; modern
applications to date include computer vision [50] and numerical schemes for systems
with a Lie symmetry [34Ð36,41,56]. While moving frames for discrete applications
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as formulated by Olver do give generating sets of discrete invariants, the recursion
formulae for differential invariants which were so successful for the application of
moving frames to calculus-based results, do not generalise well to joint invariants. In
particular, joint invariants do not seem to have recursion formulae under the shift oper-
ator that are computationally useful. To overcome this problem, the authors, together
with Jing Ping Wang, introduced the notion of adiscrete moving framewhich is
essentially a sequence of frames [42]. In that paper we prove discrete recursion for-
mulae for small computable generating sets of invariants, which we call thediscrete
Maurer–Cartan invariants, and investigated theirsyzygies, that is, their recursion rela-
tions. The main application to date has been to discrete integrable systems, with the
authors of [47] proving that discrete Hamiltonian structures forWn-algebras can be
obtained via a reduction process. We note that a sequence of moving frames was
also used in [35] to minimise the accumulation of errors in an invariant numerical
method.

In this paper, we extend the theory of discrete moving frames in two ways. The
Þrst is to consider a discrete moving frame deÞned on a lattice variety, which can be
thought of as the vertices, or 0-cells, together with their adjacency information, in a
discrete approximation of a manifold. We describe their associated cross sections and
deÞne MaurerÐCartan invariants and local syzygies. In Sect.3.2 we further classify
global syzygies and prove that they are associated with topological aspects of the
variety, like representatives of the discrete fundamental group of the lattice variety,
with properties like twisting.

The second extension, beginning in Sect.4and for the rest of the paper, is to consider
families of discrete frames and how their continuum limits may deÞne smooth frames.
Our interest in this second case is how discrete invariants and their recursion relations
limit to differential invariants and their differential syzygies. We show not only that
the limits exist, but also that a well-deÞned continuum limit of discrete frames may
be achieved by embedding it in a smooth family of discrete ones.

In order to provide a general framework, we construct a manifold which we call
the lattice-based multispaceand which generalises, in some sense, the curve-based
multispace of Olver [51]. The multispace is a generalisation of the jet bundle which
contains the jet bundle as a submanifold. It also contains the space of lattices as an
open subset. The main problem with the deÞnition of the lattice multispace is the fact
that multivariate interpolation is not well-deÞned in general. To avoid this problem we
restrict the lattices to sets of points covered by the general construction of de Boor and
Ron [11Ð13], to what we callcorner lattices. A corner lattice is one with just enough
data to guarantee the approximation of a smooth jet. We restrict as well the types of
coalescencing that can take place to be those along hyperplanes. We show that de Boor
and RonÕs interpolating family is well deÞned on corner lattices and is smooth under
coalescing, smooth in the sense that the associated Lagrange polynomials converge
to the Hermite ones as the vertices of the lattice coalesce (Fig.1). Once the choice of
lattice and conditions on coalescing are settled, we can use the interpolating coefÞcients
to deÞne the coordinate system in the multispace manifold. We notice that one can
possibly consider other forms of lattices and coalescing, and that our theory will hold
true as far as the smoothness of de BoorÐRonÕs family is preserved.
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Fig. 1 Under coalescence of the points at which the interpolation is calculated, Lagrange interpolation
becomes Hermite interpolation, ending with the Taylor approximation to a surface when all the interpo-
lation points coalesce. By taking coordinates for the lattice-based multispace to be thegrid pointsand
the Lagrange interpolation coefÞcients, the jet bundle is naturally embedded.a Lagrange interpolation,b
Hermite interpolation,c Taylor approximation

Once the multispace is proved to be a smooth manifold, we can naturally deÞne a
group action on it, and hence we can talk about smooth moving frames on multispaces.
A moving frame on the lattice-based multispace is, simultaneously, a smooth moving
frame deÞned on the jet bundle, and a frame deÞned on local difference approximations
to the derivatives, depending on what point of the multispace the moving frame is
evaluated. By deÞning a moving frame on multispaces, one has simultaneously the full
power of both the smooth and the discrete frames, and the smoothness of the multispace
frame will ensure that we can move freely between discrete, discrete/differential and
smooth frames, ensuring that the discrete frame converges to the continuous one as
the points in the corner lattices coalesce to create the jet. We also show that the
continuity carries over to invariants and syzygies as well. Therefore, any smooth
geometric construction carried out with a multispace lattice, invariants and syzygies,
ensures that the Þnal discrete, or discrete/differential result, is an approximation of the
corresponding continuous construction.

In Sect.5 we use the multispace construction in two different applications. The
Þrst application is to a class of Þnite difference variational shallow water systems,
which have both the correct continuum limit as well as the necessary symmetries
for NoetherÕs theorem to yield conservation laws for energy, and linear and angular
momenta, in both the Þnite difference case and the smooth limit. This is motivated
by the desire to achieve an analogue of the conservation of potential vorticity in a
numerical approximation to these equations.

The second application concerns discretisations of completely integrable systems.
Most well-known completely integrable PDEs are linked to some geometric back-
ground and the PDE can be interpreted as, for example, the equation induced on
invariants by a geometric evolution of curves, or like the CodazziÐMainardi equations,
are associated with the geometry of some type of surface. Discrete lattice systems also
have similar interpretations [3]. The question to ponder is whether or not the same
geometric construction performed in the continuous case to generate the PDEs can
be carried out in the discrete case, while guaranteeing that the result will be a dis-
cretisation of the PDE; this might be useful as a base to study the more interesting
questions of when the discretisation will be also completely integrable. Here we show
two such processes. The Boussinesq equation is induced on centro-afÞne invariants
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by an evolution of star-shaped curves. We construct the multispace version of the
construction to obtain a geometric discretisation. We show that a modiÞcation of the
construction generates an integrable discretisation which appeared in [47]. The study
of how these different discretisations might be related is underway. In the second
example we describe the multispace version of the well-known construction of the
SineÐGordon equation as the CodazziÐMainardi equations for Euclidean surfaces of
negative constant curvature. This interpretation has been widely used to study pseudo-
spherical surfaces as generated by solutions of SineÐGordon, see [8] and [57]. Every
step of the construction is guaranteed to discretise the continuous version, while pre-
serving the geometric meaning of the elements involved. The SineÐGordon is in fact
one of several equations describing the surface, but which decouples from the oth-
ers. In this discretisation the equations remains coupled and its integrability is not
clear, but the construction itself is a non-trivial example of the use of mixed discrete-
smooth moving frames. The connection between multispace and integrability is under
study.

Finally, in an appendix, we discuss a more general result concerning the discreti-
sation of smooth moving frames, and the continuum limit of equicontinuous families
of discrete moving frames, with an example.

2 Background

2.1 Moving Frames

Given a Lie groupG acting on a manifoldM with a left action, so that

G × M � M, h · (g · z) = (hg) · z,

one can deÞne a right (resp. left) group-based moving frame as a map which is equivari-
ant with respect to the action onM and the inverse right (resp. left) action ofG on
itself, speciÞcally,

� : M � G, �( g · z) = �( z)gŠ1 (resp.�( g · z) = g�( z)) .

We call such an equivariant map a right (resp. a left) moving frame. The inverse of a
right moving frame is a left one, and vice versa.

Given a groupG acting on a manifoldM, the existence of a moving frame on the
open subsetU � M is guaranteed if:

(i) the orbits of the group action all have the same dimension and foliateU,
(ii) there is a transverse cross sectionK to the orbits such that for each orbitO, the

intersectionO � K contains a single point, and
(iii) the group element takingz � O(z) (whereO(z) is the orbit throughz) to O(z) �

K, is unique.

In this case, a right moving frame� : U � G is given by�( z)·z � K, that is,�( z) is the
unique element ofG takingz to the unique element ofK � O(z). SinceK is transverse
to the orbits, the frame deÞnes local coordinates given byz �� (�( z), �( z)·z) � G× K.
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In the continuous case of moving frames, the manifoldM could be the jet space
J(�) (Rp, M). In this case it is known [17] that provided the action is locally effective
on subsets, as� grows the prolonged action ofG on J(�) (Rp, M) becomes locally
free. The work of Boutin [5] discusses what happens for productsMq asq grows,
with G acting with the diagonal action. In any event, we make the assumption that
for large enough dimension, there is a neighbourhood of the identity in the group in
which a moving frame can be obtained locally.

A common way to obtain the moving frame is through a normalisation process.
One can describe normalisation equations as those deÞning the transverse section,
K, to the orbits of the group. If the normalisation equations are given as{� = 0},
then the conditions above for the existence of a moving frame are the conditions
under which the implicit function theorem can be applied to solve�( g · z) = 0 for
g = �( z). Since bothg = �( h · z) andg = �( z)hŠ1 solve�( g · (h · z)) = 0, and
the implicit function guarantees a unique solution, then�( h · z) = �( z)hŠ1, that is,�
is equivariant. Typically, the normalisation equations, for whichK is the zero set, are
algebraic. Indeed, in many applications, the cross section is a coordinate plane, so that
the normalisation equations involve certain coordinates being set to a constant. Since
there will be many transverse cross sections to the orbits, the choice ofK can greatly
decrease (or increase) the calculations involved. Part of the ÒartÓ of the moving frame in
applications is the choice of cross section, or equivalently, the choice of normalisation
equations.

Given a moving frame (left or right) one can generate all possible invariants of the
action. Indeed, if� is a right moving frame, the expressions

�( u) · v

for any u, v � M are clearly invariant; their coordinates are called thenormalised
invariants. One can easily see that any invariant of the action is a function of these,
using thereplacement rule: If I : M � R is invariant under the action, so that
I (g · v) = I (v) for all g � G, then settingg = �( u), one obtains

I (�( u) · v) = I (v).

Different choices of the manifoldM gives rise to different familiar cases. For
example, if M is the jet spaceJ(� )(Rp, P) for some manifoldP whereG acts,
and G acts onM via the naturalprolonged actiongiven by the chain rule, then�
would generate moving frames onp-submanifolds and the invariants will be standard
differential invariants (curvatures, torsions, etc). IfM = Pk is the Cartesian product
of a manifoldP whereG acts, andG acts onM through the diagonal action, then the
invariants are the so-calledjoint invariants(see [52]).

Remark 2.1In this portion of the paper, we are interested in the induced action on
N-gons, that is, on sets ofN points inM, or alternatively, an element ofM N .

The authors of [42] deÞned discrete moving frames, essentially a choice of group
element associated with each vertex in an equivariant way. The discrete moving frame
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can be deÞned to act naturally under the shift operator, greatly simplifying calculations
with discrete (difference) equations. We next review this deÞnition.

Let GN denote the Cartesian product ofN copies of the groupG. Allow G to act
on the left onGN using the diagonal actiong · (gr ) = (ggr ). We also consider what
we have called the Òright inverse actionÓg · (gr ) = (gr gŠ1).

De�nition 2.2 (Discrete moving frame) We say a map

� : M N � GN

is a right (resp. left)discrete moving frameif � is equivariant with respect to the
diagonal action ofG on M N and the inverse right (resp. left) diagonal action ofG on
GN . Since�(( xr )) � GN , we will denote by� s its sth component, that is� = (� s),
where� s((xr )) � G for all s. Equivariance means,

� s(g · (xr )) = � s((g · xr )) = � s((xr ))gŠ1 (resp.g� s((xr )))

for everys. Clearly, if � = (� s) is a right moving frame, then� = (� Š1
s ) is a left

moving frame.

Remark 2.3In any given application, it is advisable to ensure the parity of an action
and of the equivariance of a frame; see [38] for a discussion of the subtleties involved.
In what follows, we will use� to denote a right frame, and� to denote a left frame.

As in the original group-based moving frame deÞnition, if(us) � M N , one can
deÞne invariants,

I r
s = � s · ur

for a right frame, orI r
s = � Š1

s · ur for a left frame. The coordinates of these invariants
for anyr generate all other invariantseven when s is �xed(see [42]). We note that the
action induces an action on the coordinate functions, the same as it induces an action
on any function, speciÞcally,g · f (ur ) = f (g · ur ). The components ofI r

s will be
invariant asI r

s is, and they are called thenormalised invariants.
We next describe a smaller set of invariants, the so-called MaurerÐCartan invariants.

De�nition 2.4 Let (� s) be a right (resp. left) discrete moving frame evaluated along
an N-gon. Then the element of the group

Ks = � s+ 1� Š1
s

�
resp.� Š1

s � s+ 1

�

is called the right (resp. left)s-MaurerÐCartan element for� (resp.� ). We call the
equation� s+ 1 = Ks� s (� s+ 1 = � sKs) the discrete right (resp. left)s-FrenetÐSerret
equation.
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(a) (b)

(c) (d)

Fig. 2 In b andc, � is connected. The subsets ina, d are not connected; the subset inahas four components
and that ind has three

The coordinates of the MaurerÐCartan elements, together with the normalised
invariantsI s

s , generate all other invariants. See [42] for more details. Note that for
G � GL(n, R) a matrix group, the MaurerÐCartan invariants will be the components
of the MaurerÐCartan matrices.

2.2 Lattices

Lattices are subsets ofZ p with a variety of properties. We Þrst deÞne adjacency.

De�nition 2.5 Two pointsm, n � Z p are said to beadjacentif

�

j

|m j Š n j | = 1.

De�nition 2.6 We say that a subset� � Z p is a connected latticeif it consists of
a single point, or, if between any two pointsm1, m2 � � there is a path,m =
n1, n2, . . . nN = m2 such thatni is adjacent toni + 1 for i = 1, . . . , N Š 1.

This deÞnition is illustrated in Fig.2. Natural operators onZ p are the well-known
shift operators, namelyTi , i = 1, . . . , p where

Ti (n1, . . . , ni , . . . , np) = (n1, . . . , ni + 1, . . . , np).

We will also consider lattices in a manifold.

De�nition 2.7 The image of a lattice� � Z p in a manifoldM by a map� : � � M
is denoted byL, and is also called a lattice. We assume this map to be injective, a
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condition which will be relaxed under controlled conditions in the second part of this
paper. The adjacency inL is determined from that of� .

Since we will be working in coordinate charts, we can assume from the beginning
that the latticeL � M is contained within one coordinate chart for the manifold, so
that for all practical purposes we can assume the manifold isRn, or a parametrised
surface with the parameters serving as local coordinates. We will also assume that
lattices are connected as one can study each connected component separately.

The lattice itself does not need to be covered with one lattice neighbour-
hood,however. We deÞne next a lattice variety, which will allow us to work on lattice
models of spheres and tori.

Remark 2.8Another name for our lattice variety could be ÔlattifoldÕ, since we deÞne
it to be a manifold like object but modelled onZ p rather thanRp. The construction
given here is related to that given in [39].

De�nition 2.9 A lattice varietyL � M is a set that can be covered by a countable
number of latticesL � � M, each of which is the image under an injection� � of a
connected lattice� � � Z p for some Þxedp. Every adjacency inL is contained in at
least one of theL � . Furthermore, in the overlapL � � L 	 , the gluing map� � 	 � Š1

	
preserves adjacency. We call(L � , � � ) a local lattice coordinate system.

Lattice coordinates essentially introduce a local order in the lattice (inherited from
Z p through� � ) so one can clearly deÞne shifts. We say that a shift map is deÞned
at a point inL , if it is deÞned in at least one chart. Since the chart interchange maps
preserve adjacency, the existence of a shift map is well deÞned.

3 Moving Frames on Lattices and Lattice Varieties

Let L be a lattice variety and letN be the number of vertices inL , which we assume
to be either Þnite or at most countable. LetL N be the set ofp-lattice varieties inM
with N vertices.

3.1 Moving Frames, Invariants and Maurer–Cartan Invariants

Let G be a group acting onL N (for example, if the lattice lives inside a manifold with
a group action, the action would be the one induced on the lattice), and for simplicity
assume that it is a left action (that is,g · (h · u) = (gh) · u. A parallel description can
be made for right actions.

A discrete moving frame will associate an element of the group to each vertex in
the lattice in an equivariant fashion.

De�nition 3.1 (Moving frames on lattices) Let U be a subset ofL N . We say

� : U � GN
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is a right (resp. left)discrete moving frameon U whenever� is equivariant with
respect to the action ofG on L N and the inverse right (resp. left ) diagonal action of
G on GN . That is, if � = (� i )N

i = 1 denotes the components of� in GN , then

� i (g · L ) = � i (L )gŠ1 (resp. � i (g · L ) = g� i (L )),

with |� | = N.

If � is a right frame, then� = � Š1 is a left frame, and it sufÞces to develop the
theory for only one of the parities. Henceforth, we restrict ourselves to right frames.
In general, moving frames exist only locally, which is the reason why we need to
restrict its domain inL N . Given a lattice varietyL , and a coordinate system indexed
by � � Z p, the moving frame� assigns group elements at each vertex (thusN of
them). We will call� R the moving frame at the vertex R� � . Note when the index is
applied we are assuming the use of local variety coordinates.

It is a simple matter to go from a moving frame to a discrete moving frame by taking
a family of cross sections, one per lattice vertex, as stated in the following result.

Proposition 3.2 Let {SR � M N | R � � }, be a family of sections, indexed locally by
� , with SR transverse to the orbit of G atL viewed as a point of MN (recall that G
acts on MN by the diagonal action; transversality is with respect to the orbit in MN).
Let g = (gR) � GN be uniquely determined by the condition

gR · L � SR (1)

for L � L N and R� � in some coordinate system forL . Then(gR) = (� R) is a local
right discrete moving frame.

The proof of this statement is straightforward from the discussion of the moving
frame. We note that a moving frame is deÞned as an element of the group on the entire
lattice, but normalisation equations give frames deÞned only locally. The interchange
maps from one domain to another will play a role in what follows.

Remark on NotationFrom now on a multi-index will denote the use of local lattice
coordinates, while the lack of it will indicate global deÞnitions. Also, we will denote
by � R an individual component of� , or the moving frame at the vertexuR. Notice also
that even though we will denote by�( L ) the moving frame alongL , each� R will, in
the examples, depend on only Þnitely many vertices.

Example 3.3Consider 1-latticesÑor polygonsÑin the Euclidean plane. The group
E(2) can be identiÞed with the subgroup of GL(3, R) given by

g =
�

1 0
b 


�
(2)

with 
 � O(2) andb � R2. It acts onR2 as
�

1 0
b 


� �
1
u

�
=

�
1


 u + b

�
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with u � R2. We choose as our transverse cross section, the one given in coordinates
by � n · un = 0 and� n · un+ 1 = e1||� un||, where� un = un+ 1 Š un. If � n is displayed
in the matrix representation as in (2), solving the system

� n · un = 
 nun + bn = 0, � n · un+ 1 = 
 nun+ 1 + bn = 
 n� un = || � un||e1

results in theleft moving frame

� n = � Š1
n =

�
1 0

Š
 Š1
n bn 
 Š1

n

�
=

�
1 0 0

||� un||e1
un

||� un|| Š J un
||� un||

�

whereJ =
�

0 1
Š1 0

�
is the canonical symplectic matrix.

De�nition 3.4 (Invariants and normalised invariants) We say the function onL N

I : L N � R

is a lattice invariant under the action ofG if I (g · L ) = I (L ) for anyg � G, L � L N .
A local invariant will have the same property in some coordinate chart.

Given a right moving frame� on p-lattices, we call the invariants

I R = � R(L ) · L

thenormalised invariants, where�( L ) = (� R(L )) with � R(L ) � G. Once we choose
coordinates inL , given by(uJ), the local invariants are deÞned to be

I M
R = � R((uJ)) · uM

for R, M � � . These are clearly invariants of the action.

The normalised invariants generate all other local invariants. In fact, they do gen-
erate them even whenR is �xed.

Proposition 3.5 If I is any lattice invariant, then I can be written as a function of the
normalised invariants INR for any �xed R� � .

Proof This is an immediate consequence of the so-calledreplacement rule. Let (uN)
represent the vertices of the lattice variety. IfI = I ((uN)) is an invariant of the action,
thenI (g · (uN)) = I ((uN)) for all g � G, and in particular for� R((uJ)). Thus

I (� R((uJ)) · (uN)) = I (( I N
R )) = I ((uN))

which shows us how to writeI in terms of the normalised invariants withR Þxed. 
�
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From this wealth of invariants we will be selecting a few, the so-called MaurerÐ
Cartan invariants. They are the discrete analogue of the invariants deÞning the classical
FrenetÐSerret equations and, like their continuous counterpart, together with the set
{ I R

R | R � � } they will form a generating system.
From now on we will extend the shift operators in the standard way to algebraic

functions ofuJ using the propertiesTi (uJuR) = Ti uJTi uR. We can also apply a shift
to � J by sending� J to � J+ ei or we could apply it to� J by shifting the variablesuR
that � J depends on. But notice that unless the sections in (1) are shifts of each other
(i.e. SR+ ei = Ti SR for all i = 1, . . . p and all R � � ), these two operations do not
need to produce the same result. Given that in many of our situations and in all of our
exampleswe do assume the sections to be invariant under the shifts, we will abuse the
notation and denote all these maps byTi , so that, for example,Ti � J = � J+ ei .

De�nition 3.6 (Maurer–Cartan invariants) Let � be a right moving frame alongp-
lattices. We deÞne the right(R, i )-MaurerÐCartan group element to beK(R,i ), the
element of the group given by

K(R,i ) = (Ti � R) � Š1
R = � R+ ei �

Š1
R .

Its local coordinates (or the entries of the matrix, ifG � GL(n, R)) will be called the
(R, i )-Maurer–Cartan invariants.

De�nition 3.7 (Diagonal invariants) We denote further the set{� R((uJ)) · uR =
I R
R | R � � } to be the set ofdiagonal invariants.

Theorem 3.8 Let� be any right moving frame. The(R, i ) Maurer–Cartan invariants,
i = 1, . . . , p, R � � , together with the diagonal invariants,� R((uJ)) ·uR = I R

R , R �
� , generate all other invariants for the action of G onL N .

Proof The proof is based on what are commonly known as therecursion formulae.
Directly from the deÞnitions we get that

K(R,i ) · I M
R = (Ti � R)� Š1

R · (� R · uM ) = � R+ ei · uM = I M
R+ ei

and from
K(R,i ) · I M

R = I M
R+ ei

(3)

we have

I M
R = K Š1

(R,i ) · I M
R+ ei

.

Now, since� is connected, givenM � Z p, any R � Z p is related toM � Z p

through either recurrently increasing or decreasing its individual components, using
the shift operator. At each step the invariant obtained when increasing or decreasing
the components inM is generated by those in previous steps and by MaurerÐCartan
invariants. Thus, we can start usingI M

M and reachI M
R , for anyR, using both versions

of the recursion formulas. This proves the statement of the theorem. 
�
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Example 3.9The simplest example is the translation group viewed as a subgroup of
GL(n + 1, R) and acting onRn as

g · u = �
��

1 0
a I

� �
1
u

��
= �

��
1

a + u

��
= a + u,

where� is the projection in the lastn components. If(uR) is a p-lattice in Rn, a
transverse section to the orbit of the group atuR is given byuR = 0. Thus, the moving
frame is determined byg·uR = 0, which impliesa = Š uR. The normalised invariants
areI M

R = � R·uM = uM Š uR, while the MaurerÐCartan matrices are� R+ ei �
Š1
R whose

only non-constant entries are the MaurerÐCartan invariantsuR Š uR+ ei , R � � ,
i = 1, . . . , n. It is straightforward to show that theI M

R can be written in terms of the
MaurerÐCartan invariantsI R+ ei

R . Note that in this example,I R
R = 0 for all R � � and

they do not contribute to the generating set of invariants.

Example3.3cont. In the case of the Euclidean plane, we found a right moving frame
given by

� n =
�

1 0
Š
 nun 
 n

�
(4)

where


 Š1
n =

�
un

||� un|| Š J un
||� un||

�
.

The normalised invariants in this case are given by

� n · um = 
 n(um Š un) =
1

||� un||

�
un · (um Š un)

det(un, um Š un)

�

for anyn, m. Notice that� n · un+ 1 = || � un||e1. The MaurerÐCartan matrix is given
by

� n+ 1� Š1
n =

�
1 0

Š
 n+ 1
 bn + bn+ 1 
 n+ 1
 Š1
n

�
(5)

where

Š
 n+ 1
 nbn + bn+ 1 = Š 
 n+ 1(un+ 1 Š un) =
1

||� un+ 1||

�
Šun+ 1 · � un
det(un+ 1, un)

�

and


 n+ 1
 Š1
n =

1
||� un+ 1||

1
||� un||

�
un+ 1 · un det(un, un+ 1)

Š det(un+ 1, un) un+ 1 · un

�

=
�

cos� n sin� n
Š sin� n cos� n

�
,

where� n is the angle betweenun+ 1 andun. Therefore, a generating set for the MaurerÐ
Cartan invariants are||� un|| and� n, for all n. Since the normalised invariants are also
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generated by||� un|| and the angle betweenun andum, the MaurerÐCartan invariants
generate all the basic ones. Note that, as in the previous example,I R

R = 0 for all R � �
and they do not contribute to the generating set of invariants.

3.2 Maurer–Cartan Syzygies

In this section, we analyse in detail the relationships that can exist among the MaurerÐ
Cartan invariants.

Remark 3.10(Syzygies involving the diagonal invariants) In some cases, the addi-
tional generating invariants, the Òdiagonal invariantsÓI R

R (see DeÞnition3.7) may
be non-constant. These invariants obey the trivial recurrence relations,Ti I R

R =
Ti (� R · uR) = (Ti � R) � Š1

R+ ei
I R+ ei
R+ ei

= I R+ ei
R+ ei

. It can happen that the MaurerÐCartan
and the diagonal invariants are not independent of each other, and these dependen-
cies can then be regarded as syzygies between them. Indeed, consider the group
G = (R, + ) as a scaling action on the positive real line, · un = exp() un with
the normalisation equation,� n · un+ 1 = 1. Then� n = Š logun+ 1, I n

n = un/ un+ 1
and� n+ 1 · � Š1

n = log I n
n . We conjecture that there are no syzygies involving the diag-

onal invariants that do not arise from either the trivial recurrence relations between
them given above, or those involving the MaurerÐCartan invariants described in this
section, together with the dependencies between the diagonal and the MaurerÐCartan
invariants.

3.2.1 Basic Local Syzygies

From the deÞnition of MaurerÐCartan element,K(N,i ) = (Ti � N) � Š1
N , we have

T j K( J,i ) = (T j Ti � J)T j �
Š1
J = (T j Ti � J)� Š1

J K Š1
(J, j )

and also

Ti K( J, j ) = (Ti T j � J)Ti �
Š1
J = (Ti T j � J)� Š1

J K Š1
(J,i ).

Given that shifts commute, we obtain

�
T j K( J,i )

�
K( J, j ) =

�
Ti K( J, j )

�
K( J,i ). (6)

This expression gives us a number of algebraic relationships between the different
MaurerÐCartan invariants. We will refer to these asbasic local syzygies, a discrete
generalisation of the differential syzygies that are satisÞed by differential invariants,
such as the CodazziÐMainardi equations for Euclidean invariants deÞned on surfaces.
The above syzygies generate most of the possible algebraic relations among MaurerÐ
Cartan invariants. Further independent syzygies may be created by the topology of the
latticeL .
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De�nition 3.11 We say two syzygies are equivalent up to basic syzygies if one of
them is an consequence of the other together with syzygies of the form (6).

To describe global syzygies, we need Þrst to deÞne the discrete fundamental group
of the lattice and related material standard in the study of the topology of graphs [48].

3.2.2 Discrete Fundamental Group

Let L be ap-lattice inM, that is, the image of a map from a connectedp-dimensional
subset� of Z p to M. As before, we will denote the image ofJ � � as�( J) = uJ � M.
For simplicity, let us assume that� = Z p, although one can apply much of what we
will say next to other cases. Notice that, in principle, we are allowing cases when the
map� is not 1-to-1 soL does not need to have a trivial topology.

De�nition 3.12 (Paths) We say a subset� � L isa path of length rjoining two points
a, b � M, if it can be ordered as� = { xi }r

i = 0, with x0 = a, xr = b andxi adjacent to
xi + 1, for all i = 0, . . . r Š 1. We say the path isclosedif a = b; we say it issimpleif
xi �= x j for anyi �= j (except perhapsx0 = xr if closed). Notice that by giving the
vertices of the path in a certain order we are implicitly assigning an orientation to it.
This will be relevant once we associate syzygies to closed paths.

De�nition 3.13 (Edge) Given a path� in a lattice,� = { xi }r
i = 0, we say the ordered

pair [xi , xi + 1] is anedgeof the path. The ordering gives an orientation of the edge.

De�nition 3.14 (Sum of paths) Consider the set of all closed paths with base point
a. One can deÞne thesumof two such paths by concatenation; that is, if{xi }r

i = 0 and
{y j }s

j = 0 are two paths, their sum is given by{xi } + { y j } = { zk}r + s+ 1
k= 0 with

zi = xi , i = 0, . . . , r, zr + j + 1 = y j , j = 0, . . . , s.

If the paths are not closed, butxr = y0, one can equally deÞne the sum of the paths
by concatenation.

De�nition 3.15 (Basic homotopy) A transformation of a path{xi }, �( {xi }) = { y j } is
a basic homotopy if{y j } is equal to{xi } except for

(1) adding or removing a subpath of the form[xi , xi + 1] + [ xi + 1, xi ];
(2) changing a subpath of the form[xi , xi + 1] + [ xi + 1, xi + 2] by one of the form

[xi , z] + [ z, xi + 2], wherexi , xi + 1, xi + 2, z form a basic square of the lattice.

Transformations (1)Ð(2) are called the twobasic homotopies.

Figure3 shows examples of basic homotopies.

De�nition 3.16 We say the two paths{xi }r
i = 0 and{y j }s

j = 0 joining a andb, arehomo-
topically equivalentif x0 = a = y0, xr = b = ys and either the paths are equal, or
one can be transformed to the other by a Þnite sequence of basic homotopies.

By construction, homotopy of paths joininga and b is an equivalence relation.
Figure4 shows pairs of homotopic and nonhomotopic paths.
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Fig. 3 Examples of the two
basic homotopies applied to the
blue paths

Fig. 4 Thered andblue pathson theleft are homotopically equivalent, with theyellowandgreen paths
showing the sequence of basic homotopies required, while the ones on theright are not (Color Þgure online)

De�nition 3.17 (Discrete fundamental group) Consider the space of all closed paths
based ata, and let� 1(L, a) be the set of homotopy classes of these paths. The oper-
ation above endows� 1(L, a) with a group structure. We call� 1(L, a) the discrete
fundamental group ofL.

The fundamental group does not depend on the pointa chosen, as far as the lattice
is connected. (It sufÞces to joina to a different pointb using a path� , and use� to
relate closed paths based ona to those based onb by conjugation, as done in the
continuous case.)

3.2.3 Syzygies Associated with Closed Paths on a Lattice and Global Syzygies

Assume we have a moving frame along a path. To each edge of the path we can
associate a MaurerÐCartan matrix of invariants as follows:

Assume either thatxi = uJ andxi + 1 = TkuJ = uJ+ ek , or thatxi + 1 = T Š1
k uJ =

uJŠek . To [xi , xi + 1] we associate the matrix

K( J,k) = Tk(� J)� Š1
J = � J+ ek � Š1

J (7)
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in the Þrst case, and

K Š1
(JŠek,k) =

�
Tk(� JŠek )� Š1

JŠek

� Š1
= � JŠek � Š1

J (8)

in the second case.
We note that the choice of MaurerÐCartan matrix depends on the orientation of

the path, with an edge being associated with the inverse matrix if the orientation is
reversed.

Next we will associate a group elementK (� ) to each path� on the lattice, namely,
the product of the MaurerÐCartan matrices along the path. From the deÞnition of
the MaurerÐCartan matrices in terms of the discrete frame, it will be evident this
product telescopes to involve only the discrete frame at the endpoints of the path,
provided the discrete frame is deÞned along the whole path.Nevertheless, in terms of
the components of the Maurer–Cartan matrices, the Maurer–Cartan invariants, the
product will not telescope—this is the syzygy.EvaluatingK(� ) for closed paths� ,
leads to relations on the invariants. It becomes important to Þnd those relations which
are non-trivial, in the sense that they are not an algebraic consequence of basic local
syzygies, given in Eq. (6).

In what follows, we will show thatK (� ) is a homotopy invariant. EvaluatingK(� )
on closed paths which are not homotopic to the constant trivial path leads to relations
on the MauerÐCartan invariants which cannot be obtained in terms of the basic local
syzygies.

We start with paths which lie in the domain of a discrete frame. This, of course,
need not be the case since the existence of moving frames is guaranteed only locally. If
we need to cover the lattice with several coordinate patches on which discrete moving
frames exist, we will obtain invariant transition matrices associated with the cover of
the lattice deÞned by the domains of the discrete moving frames. We discuss this more
involved case later in this section.

De�nition 3.18 Assume a discrete frame exists along a path� . The product of the
MaurerÐCartan matrices along� is denotedK(� ) . SpeciÞcally, for the path{xi }r

i = 0,
we have

K
�
{xi }i = r

i = 0

�
= K ([xr Š1, xr ]) · · · K ([x0, x1]),

whereK([xi , xi + 1]) is the MaurerÐCartan element associated with the edge[xi , xi + 1]
as in (7) and (8) so thatK ([xi , xi + 1]) = K Š1([xi + 1, xi ]). If � is the constant (trivial)
path, we deÞneK(� ) = e.

It is evident that if� = � 1+ � 2, thenK(� ) = K (� 2) · K (� 1). (See DeÞnition3.14).
In Fig. 5, we illustrate the basic local syzygy, in the formK({x1, x2, x3, x1}) = e

along a closed path of length four.

Proposition 3.19 Let� 1 and� 2 be two paths joining a and b in the lattice L for which a
discrete moving frame exists. Assume that� 1 is homotopic to� 2, then K(� 1) = K (� 2).
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Fig. 5 In this Figure, we see
that along the closed path
(x1, x2, x3, x4 = x1) we have
K4K3K2K1 = e, the identity in
G. This is equivalent to the basic
local syzygy, Eq. (6)

Proof Since a homotopy is a Þnite composition of basic homotopies, it sufÞces to
show that if� 1 and� 2 differ by a basic homotopy, thenK(� 1) = K (� 2).

In the case (1), this is trivial since the only difference betweenK(� 1) andK(� 2)
is a product of the formK i K

Š1
i = e. In the case (2) it is equally simple since they

differ only by a productK i K i + 1 appearing inK (� 1) andK j K j + 1 appearing inK (� 2),
with K i K i + 1 = K j K j + 1 being a local syzygy since their vertices form a square in
the lattice. 
�

The discussion thus far lifts naturally to lattice varieties, since adjacency and local
shift maps are well deÞned. The following corollary is an immediate consequence of
the previous proposition.

Corollary 3.20 If our lattice variety is covered by one coordinate system and there
exists a moving frame de�ned everywhere, each class[� ] of the fundamental group of
the lattice de�nes what we will call a global syzygy of the Maurer–Cartan invariants,
in the form K(� ) = e.

For example, if a discrete frame is deÞned on an annular latticeL, then there will
be a path not homotopic to the constant path withinL, but K (� ) = e for all closed
paths.

Before turning to consider paths which move through different domains, we note
the following.

Important AssumptionsWe already have the assumption on the coordinate chartsL �
which cover our lattice variety, that every edge appears in at least oneL � , and so every
MaurerÐCartan matrix can be written in (at least one) coordinate system. We assume
further that every edge is in a domain of a discrete frame. In this way, every MaurerÐ
Cartan matrix, every transition matrix, and their local products can be expressed with
respect to a single set of coordinates. By taking a reÞnement of our coordinate cover
as necessary, we therefore assume that our cover consists of sets which are domains of
both frames and coordinate charts and that every edge appears in at least one element
of the cover.

We can associate a group elementK to a path moving through different domains,
by patching local products of MaurerÐCartan matrices, assuming the local neighbour-
hoods where the different discrete frames are deÞned overlap. Overlapping conditions
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are often used to coordinate the geometry in different coordinate domains; in our
case, the existence of overlap in the domains of the frames is needed to coordinate
the frame on adjacent parts of the path where the domains change. On paths in our
lattice varieties, overlapping of domains is guaranteed by the condition that every
edge, that is, every pair of adjacent points, lies in at least one of the domains. Indeed,
suppose we have two subpaths{x0, . . . , xi } and{xi + 1, . . . , x j } of a path, and assume
we can Þnd a moving frame� s at xs, s = 0, . . . i and a different moving frame�� s for
s = i + 1, . . . , j . Since the edge[xi , xi + 1] must lie in a domain, then at least one of
xi or xi + 1 must lie in both domains, or there is a third domain so that we can split our
path into three subpaths,{x0, . . . , xi }, {xi , xi + 1}, {xi + 1, . . . , x j }, each of which lie in
the domain of a frame.

So, consider two subpaths{x0, . . . , xi } and {xi , xi + 1, . . . , x j } of a path, where
xi is the guaranteed point of overlap, and where we have a moving frame� s at xs,
s = 0, . . . i and a different moving frame�� s for s = i , i + 1, . . . , j . Then we
deÞneM(xi ) = �� i �

Š1
i so that �� i = M(xi )� i . Clearly, since both� i and �� i are right

equivariant, the matrixM(xi ) is invariant. Then, to the path� = { x0, . . . , x j } we can
associate the product of invariant matrices

K (� ) = ( �� j �� Š1
j Š1)( �� j Š1 �� Š1

j Š2) · · · ( �� i + 1 �� Š1
i )M(xi )(� i �

Š1
i Š1) · · · (� 1� 0)

= 	K j Š1 . . . 	K i M(xi )K i Š1 . . . K0

with the invariant matrixM(xi ) linking the MaurerÐCartan matrix in one coordinate
system to the next.

De�nition 3.21 If a vertexx lies in the domains of both the discrete frame� and the
discrete frame	� , we say the group element

M(x; 	�, �) = 	�( x)�( x)Š1 (9)

is the transition MaurerÐCartan matrix at the vertexx, associated with the change of
frame from� to 	� .

If a vertex lies in the intersection of several frame domains, there will beco-cycle
conditions. For example, ifx � dom(� � ) � dom(� 	 ) � dom(� � ), then clearly

M(x; � � , � 	 )M(x; � 	 , � � )M(x; � � , � � ) = e. (10)

Two equal closed paths can have different group elementsK (� ) if the choices of
either the initial or the Þnal moving frames are different. Thus, our element of the
group depends not only on� but also on the initial and Þnal choice of moving frame.
In this case we will denote the group element above

K(� ; �, 	)

for the element of the group that starts in dom(� � ) and ends in dom(� 	 ), and where
these are the choices of frame for the calculation of the initial and Þnal MaurerÐCartan
matrices. By analogy, we will also denote byM(x; �, 	) the matrixM(x; � � , � 	 ).
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Fig. 6 Several ways a path can
move through an interchange

Lemma 3.22 K(� ; �, 	) does not depend on the choice of coordinates or moving
frames one chooses along� , only on the initial and �nal ones.

Proof Assume at some pointx we make different choices of moving frame at a pointx
in the overlap of (at least two) different frame domains, so we move from� µ to � � for
one path and from� µ to � � for the other. In that case we introduce the transition factor
M(x; �, µ) in one of the lifts, andM(x; �, µ) in the other one, and we continue the
different paths using the corresponding choices. At some point we need to come back
to a common choice, even if that happens only at the end of the path. But when we
expand the different factors ofK (� ; �, 	) in terms of moving frames, the intermediate
factors all vanish as we saw before, and the difference is only at the beginning and at
the end of the product. Thus, without losing generality we can assume that we come
back to a common moving frame right after we introduce the split.

That is, a path includes the factor

M(x; 	, �) M(x; �, µ),

while the other includes

M(x; 	, �) M(x; �, µ).

But using (10) we have that both these factors are equal toM(x; 	, µ) , and hence they
are equal. 
�

We now argue thatK (� ; �, 	) is still a homotopy invariant for paths that start
and end with the� and	 choice of moving frame, even if the path moves through
changing domains of discrete frames (and changing coordinate systems). Consider
Fig.6, in which we assume that[x, y], [ y, z] are edges in the domain of� , while [x, t ]
and[t, z] are edges in the domain of	� .
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We consider paths� i running fromx0, in the domain of� , to y0 in the domain of	� .
If � 1 goes viax andt, then we must switch from� to 	� at x. We achieve this by using
the matrixM(x) = 	�( x)�( x)Š1 (which is invariant as the frames are right frames),
and then deÞningK(� 1) to be

K(� 1) = 	K ([t, y0]) 	K ([x, t ])M(x)K ([y, x])K ([x0, y])

= 	�( y0)	�( t)Š1
�

	�( t)	�( x)Š1
� �

	�( x)�( x)Š1
�

�( x)� Š1(y)�( y)�( x0)Š1

= 	�( y0)�( x0)Š1.

Considering the path� 2 from x0 to y0 via z results in

K (� 2) = 	K ([t, y0]) 	K ([z, t ])M(z)K ([y, z])K ([x0, y])

which is also equal to	�( y0)�( x0)Š1 by a similar argument, and thus we have

K(� 1) = K (� 2). (11)

Since we have homotopy invariance of theK element within domains, in this way
we can see that even passing through a change of domain, we maintain homotopy
invariance.

In order to prove homotopy invariance in general, we construct a ÒliftÓL̄ , of L , with
respect to a cover, satisfying our assumptions, ofL . We can use this lift to keep track
of which discrete frame we are using at each point on our paths inL . The lift L̄ that
we construct is not a lattice variety in general, and does not lie inM, but nevertheless
serves our purpose here. To constructL̄ , we take the disjoint union of the charts,
together with their edges (adjacencies), and for everyx � L � � L 	 , we take a new
adjacency, or edge,[x|� , x|	 ], and let this be a new edge in̄L , with the associated
MaurerÐCartan element being� 	 � Š1

� , the transition MaurerÐCartan matrix. See Fig.7,
which shows the lifting for the case of Fig.6. DeÞne the projection from̄L to L as
the natural projection that collapses the different copies of the vertices which lie in
intersections of charts. That is

� : L̄ � L , �( xi ) =



xi if xi belongs only to one domain
x if xi = x� wherex� is a lift of x � L �

.

A path �̄ in L̄ is a lift of a path inL when the projection of̄� is � . Lifts may not
be unique, as they depend, for example, on the element of� Š1(a) at which the path
begins, wherea is the initial vertex of� .

Changing from one frame to another along a path is, inL̄ , simply proceeding from
one vertex to another, with the transition MaurerÐCartan elements, DeÞnition3.21,
being the group element associated with the new edge. We note that a change of
coordinates simply changes the local labelling of the points, and so is less important
when considering the group element associated with a path.
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Fig. 7 The situation of Fig.6
translated toL̄ , the ÒliftÓ ofL

We now show that inL̄ we have new basic local syzygies obtained from the transi-
tion MaurerÐCartan matrices. These new local syzygies allow us to obtain a result
similar to that of Proposition3.19, but for the more general situation where we
need to change domains of our moving frames. Consider Fig.8. Let the domain
of � be L � and the domain of	� be L 	 . Consider the simple closed path� =
{x|� , x|	 , y|	 , y|� , x|� }. If K ([y	 , x	 ]) = 	�( y)	�( x)Š1, K ([x	 , x� ]) = 	�( x)�( x)Š1,
K ([y	 , y� ]) = 	�( y)�( y)Š1, K ([y� , x� ]) = �( y)�( x)Š1, theK element for this path
is,

K (� ) =
�
�( x)Š1�( y)

� �
�( y)	�( y)Š1

� �
	�( y)	�( x)Š1

� �
	�( x)�( x)Š1

�
= e

showing this path deÞnes a basic syzygy inL̄ .
Finally, we deÞne the monodromy of a closed path inL . When such a path is lifted

to L̄ it need not be closed, as it may begin in one frame domain and return in another.
Consider the lift�̄ of a path� beginning atx0 in the domain of the frame� � , and
ending atx0 in the domain of the frame� 	 . We can close the path in̄L , by adding to�̄ ,
the edge[x0|	 , x0|� ], but in principle this need not happen. Therefore, the element of
the group associated with the lift would not be equal toe, but rather toM(x; �, 	) (or
its inverse, depending on the orientation). We call this group elementthe monodromy
of the lift.

We can now state the more general theorem concerning homotopy invariance.

Theorem 3.23 To each path� in the lattice varietyL , and to each choice of initial
and �nal moving frame, we can associate a group element, K(� , �, 	) , such that if� 1
and� 2 are homotopic inL , then K(� 1, �, 	) = K (� 2, �, 	) .
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Fig. 8 New edges inL̄ give rise to new local syzygies, here,K ([y	 , x	 ])K ([x	 , x� ]) = K ([y	 , y� ])
K ([y� , x� ])

Proof We Þrst note that̄L has essentially a global moving frame, in the sense that
every vertex has an equivariant group element associated, namely� � for x� and� 	
for x	 . Hence we can deÞneK(� ) for any path, the same way we did previously.

We Þrst note that if{ā} is any closed path lifting the trivial path{a} to L̄ , then the
co-cycle conditions (10) are given byK(ā) = e. When we lift a path� to L̄ , we need
to keep track of which discrete frame we are working in, but as we saw before, the
elementK (� ; �, 	) is affected only by the beginning and end choices.

Assume two paths are homotopically equivalent, and let us lift the homotopy. By
construction ofL̄ , we can assume the endpoints of the lift of the homotopic paths also
remain Þxed and determined by the� and	 choices. As in the proof of Proposition
3.19, it will sufÞce if we show that two paths that differ by one of the basic homotopies
have the sameK(� ; �, 	) , even if we need to change the moving frame domain. But
this was already proved in the argument concerning Eq. (11). 
�

The syzygy of any closed path� , where the domain of the discrete frames are
considered to be the same at the end and at the beginning, isK (� ; �, �) = K (� ) = e,
while those where� �= 	 will have a non-trivial monodromyK(� ; �, 	) = M �= e.
Furthermore, different choices of� give rise to the same syzygy: the group elements
are related by conjugation

K(� ; �, �) = � � � Š1
	 K(� ; 	, 	)� 	 � Š1

� ,

and the transition matrices� � � Š1
	 are essentially a change of coordinates. Indeed, a

frame deÞnes a local coordinate system of the formU × K whereU is a neighbourhood
of the identity inG andK is the cross section which has invariants for coordinates
[38, Chapter 4]. We thus have the following corollary.

Corollary 3.24 Let [� ] be the homotopy class of a closed path� in L . Each element
[� ] of � 1(L ) gives rise to a syzygy on the Maurer–Cartan invariants, in the form
K(� ) = e.
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Fig. 9 Discrete toroidal lattice
variety, with periodicities
T1 = 8 andT2 = 6 (Color Þgure
online)

Notice that associating a syzygy to a closed path with a monodromy is essentially
the same as associating a syzygy to the closed path for which the beginning and end
moving frames are the same. Indeed,K (� ; �, �) = K (� , �, 	) M(x; 	, �) , and hence
K(� ; �, �) = e is the same syzygy asK(� ; �, 	) = M(x; �, 	) .

Example 3.25Consider a bi-periodic latticeL = { zn,m}n,m� Z with zn+ kT1,m = zn,m
andzn,m+ kT2 = zn,m for some periodsT1, T2 � Z. For simplicity, assume we can Þnd
a global moving frame� = (� n,m). The topology of this lattice is comparable to that
of a torus, and one can easily show that

� 1(L) = Z2.

The two generators of� 1(L) (marked in Fig.9 with different colours) are represented
by the two global syzygies

K0,mK1,m . . . KT1Š1,m = e, Kn,0Kn,1 . . . Kn,T2Š1 = e.

If a global moving frame does not exist, then the product might be equal to a mon-
odromy matrix that will depend on the choice of moving frame at the beginning and
the end of the closed path. If we choose the same moving frame, then the syzygy will
be independent of the point chosen as beginning and end, and it will be as above.

4 Continuous Limits of the Discrete Picture: Lattice-Based Multispace

In this section we show how one can construct a continuous moving frame embedded
in a smooth family of discrete frames by coordinating the transverse sections that
determine them in a way that guarantees the convergence of the discrete family to the
continuous one. This is achieved using ourlattice-based multispace, in which deriv-
atives and their Þnite difference approximations exist in a single manifold containing
both the jet bundle and Cartesian products of the base space. Both smooth and discrete
frames are then part of a single frame on this multispace, and their relationship is given
by the continuity of the multispace frame under coalescence. We show in this case
that not only moving frames but also discrete invariants and local discrete syzygies
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converge to differential invariants and differential syzygies respectively. We will use
our multispace constructions to describe discretisations of integrable systems, and to
Þnite difference models of variational systems, in Sect.5. In the Appendix, we will
show that more generally, an equicontinuous family of discrete frames will converge
to a smooth frame.

First of all, we recall the deÞnition of Òmultispace for curvesÓ, as developed by
Olver in [51]. Olver provides coordinates for his space of pointed curves in terms of the
Lagrange approximation of the curve via interpolation at speciÞc (given) points. The
coordination of the discrete and the smooth pictures is a consequence of the fact that
Lagrange interpolation becomes Hermite interpolation under coalescence. In order to
provide coordinates for our higher-dimensional generalisation of OlverÕs construction,
we need to restrict our Ôpointed surfacesÕ to those where the Lagrange and Hermite
interpolations are similarly related and to where the interpolations vary in a smooth
manner with respect to the data. The details of the interpolation are critical, since the
coefÞcients of the interpolation polynomial will deÞne the desired coordinates. We use
the theory of multivariate polynomial approximation due to de Boor and Ron, [11Ð13],
described in Sect.4.2. We then describe our lattice-based multispace and prove that it
is a manifold. In fact, we detail two related versions of multispace, one containing the
jet bundleJ(M, R) and one containing the jet bundleJ(U, M) whereU � Rp for
any p  dim M. Both arise in the applications. Thereafter we show that the limit of
the discrete MaurerÐCartan matrices are the smooth MaurerÐCartan matrices and that
the local syzygies (Eq.6) limit to the so-called zero curvature condition of the smooth
MaurerÐCartan matrices, in Sect.4.4. We also describe mixed discrete/continuous
cases.

4.1 Olver’s Multispace for Curves

The idea behind the deÞnition of multispace is to create a manifold where both dis-
crete and continuous cases coexist in one overarching smooth construction, where
the continuous frame is a limit of the discrete, and the limit of the discrete data is
the continuous data. Multispace resembles the jet spaces, but includes also discrete
versions of the jet spaces.

Given a manifoldM, deÞne thenth jet space of M at p� M, and denote it byJn
p ,

to be the equivalence class of submanifolds ofM with order of contactn at p. Thejet
bundleis deÞned as

Jn(M) = � p� M Jn
p ,

with the standard bundle structure. We letC(n) = C(n)(M) denote the set of all(n+ 1)-
pointed curvescontained inM; that is, the set of(z0, . . . , zn; C), whereC is a curve
andzi aren + 1 points inC, not necessarily distinct. We denote by

ni = #{ j | z j = zi }

the number of points that coincide withzi .
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De�nition 4.1 (Multispace for curves) Let C and�C be two(n + 1)-pointed curves

C = (z0, . . . , zn; C); �C = (�z0, . . . , �zn; �C).

The distinguished points can coincide. We say thatC and�C haventh order multicontact
if, and only if there exists a permutation� : {0, 1, . . . , n} � { 0, 1, . . . , n} such that

zi = �z�( i ), and jni Š1C|zi = jni Š1�C|z�( i ) , for each i = 0, . . . , n,

where jkC denotes thekth jet of the curveC.
Thenth-order multispace, denotedM (n), is the set of equivalence classes of(n+ 1)-

pointed curves inM under the equivalence relation ofnth-order multicontact. The
equivalence class of an(n + 1)-pointed curveC is called itsnth-order multijet and is
denoted byjnC � M (n).

When all the points are distinct, then two curves belong to the same equivalence
class whenever they have the distinguished pointszi in common. Thus, we can identify
this special subset with the off-diagonal Cartesian product, denoted byM � (n+ 1) in [51].
On the other hand, if all the points coincide, then the class is equal to the jet class.
Thus, both extremes can be found in one space, together with all the intermediate
cases. In the Þrst part of [51] the main result is the following theorem.

Theorem 4.2 If M is a smooth m-dimensional manifold, then its nth order multispace
M (n) is a smooth manifold of dimension(n + 1)m, which contains the off-diagonal
part M� (n+ 1) of the Cartesian product space as an open, dense submanifold, and the
nth order jet bundle Jn(M) as a smooth submanifold.

The topology is inherited from that of the manifoldM, and the proof is based
on Þnding coordinate systems in a neighbourhood of an equivalence classjnC. The
coordinate system is given by the classical divided differences and their limits. That is,
given a curveC with n + 1 distinguished points{z0, . . . , zn} and with a certain order
of contactni Š 1 at each point, there exists a unique polynomialp of degreen such that
p(zi ) = C(zi ) and such thatp(k)(zi ) = C(k)(zi ) for anyk  ni and anyi = 0, . . . , n.
The polynomial is a natural representative of the classC and its coefÞcients provide
smooth coordinates in a neighbourhood ofC. Of particular importance is that the
coordinates are smooth under the coalescence of pointszi . For more details, see [51].

In the second part of the paper [51], the author assumes there is a Lie groupG
acting on the manifoldM, and he deÞnes the action of this group on the multispace as
that naturally induced by it: the action on the differential part is the prolonged one, and
explicit formulae for the action of the group on classical divided differences are given.
He also explains how, assuming that one chooses a cross section to the orbit of the
group at a pointC, andrequiring the local cross section to be transverse also to the jet
space(thus deÞning a cross section for the prolonged action onJn); then one can Þnd
a moving frame for the action of the group on the multispace with the desired property,
that is, the resulting moving frame will be the standard continuous moving frame when
restricted to jets, and the discrete one when restricted toM � (n+ 1). The overarching
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Fig. 10 Coalescence of distinguished points in a pointedcurvedoes not require the points to be adjacent,
in some sense, on thecurve. Here the coalescence takes place along thestraight line. Note there needs to
be a well-deÞned tangent ofC at the point of coalescence

continuity of the multispace manifold guarantees that one is the continuous limit of
the other as the points coalesce.

We note several features of OlverÕs multispace for pointed curves:

(i) the curveC is not parametrised and the pointszi on the curve need not be labelled
in order with respect to some parametrisation,

(ii) coalescence can take place between any two of thezi on the curve, see Fig.10,
(iii) none of thezi are distinguished in the sense that one of them is a natural base

point for a projection of the multispace toM,
(iv) the pointed curvejnC is essentially a set of points with a contact condition at

each point.

In our construction of a higher-dimensional lattice-based multispace, and hence its
restriction to a single variable, only a version of property (iv) remains.

Our next section describes an interpolation scheme which can be applied to our
geometric construction.

4.2 Multivariate Interpolation

One of the main problems with multivariate interpolation is that the solution to the
interpolation problem is not unique in general and it might not even exist; a well-
known theorem describing this phenomena is the MairhuberÐCurtis Theorem [60].
For example, if we Þx the values of a functionf (x, y) at the two points(1, 2), (Š1, 1)
and we want to Þnd a polynomial inx andy of minimum order, such that it coincides
with the function at those points, we can usef (x, y) = a + bx or f (x, y) = a + by,
and there is no reason why we would chose one over the other. On the other hand,
if we Þx the value of the function at(1, 2) and(1, Š1), then the Þrst choice is not
appropriate unless the function has the same value at both points, while the second
one works. Thus, the choice of interpolating polynomial might depend on the data, it
might not be unique, or even exist, and sometimes there is no reason to favour one
choice over a different one. In thep = 1 interpolation case none of these problems
exist.
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Thus, a main question in multivariate interpolation is: is there a family of polyno-
mials which can interpolate the values of a given function and which has properties
like generality, minimal degree, uniqueness and having a well-deÞned Hermite poly-
nomial (one for which not only the values of the polynomial, but also its derivatives
at the points coincide with those of the function) as points coalesce? These are the
properties we will need if we want to use them to deÞne smooth coordinates in our
multispace. This question was answered by de Boor and Ron in [11Ð13]; we describe
below their solution to the interpolation problem as it applies to our particular case.

Interpolation NotationLet � be the set ofp-variate polynomials, and� � its algebraic
dual. Let� be a subspace of� �. We will denote by� k the subset of polynomials of
degree less than or equal tok.

De�nition 4.3 We say thatP � � is correct for � if for any continuous linear
functionalF on � , there exist a uniqueq � P such that

F(�) = �( q)

for any� � � . We also sayP interpolates� .

The dual space� � can be identiÞed with functions analytic at the origino, using
the bilinear form

� f, q� =
�

J� Z p
+

DJ f (o)DJq(o)
J!

, (12)

whereq is a p-variate polynomial andf is a function analytic at the origin. One can
also use formal power expansions at the origin instead of analytic functions in the
obvious way, without too much trouble. See [11,12] for more details.

Example 4.4(Lagrange Interpolation) If � is spanned by point-evaluations,� =
� � � � � � 
 with � � ( p) = p(�) , � � Rp, ÞndingP correct for� solves aLagrange
interpolation problem. Indeed, if
 represents a Þnite number of points in the parameter
spaceD � Rp, and� � is evaluation at an element of
 , then one can check that
the power series representing� � is the Taylor expansion ofe� ·x (see [11,12]). An
analytic functionF deÞnes a continuous linear functional on� via (12) andF(� � ) =
� F, e� ·x� = F(�). Thus,P is correct if for anyF there existsp � P such that

F(� � ) = F(�) = � � ( p) = p(�)

for all � � 
 , which is the deÞnition of Lagrange interpolation, see Example4.9.

Example 4.5(Hermite Interpolation) If we choose instead the set

� = { � q,� }� � 
, q� V� �

where

� q,� ( p) = � � (q(� )( p)) = q(� )( p)(� )
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and where� is the gradient vector andq � V � � is a properly chosen polyno-
mial with coefÞcients reßecting the differential data we need to match (for example,
q(x, y) = x2 if we wish to match the second derivative inx), then the associated power
series representing� q,� is q(x)e� ·x (see [11,12]). Therefore, ÞndingP correct for�
is equivalent to Þnding a family of polynomialsP such that for any linear functional
on � represented by an analytic functionF, there exists a unique polynomialp � P
with the property

F(� q,� ) = � F, q(x)e� ·x� = q(� )( F)(� ) = � q,� ( p) = q(� )( p)(� )

for all � � 
 and all q � V. The different choices ofV allow us to Þnd unique
polynomials that coincide withF and different choices of derivatives, or combinations
of derivatives, on
 . This is the solution tothe Hermite interpolation problem, see
Example4.10.

De�nition 4.6 Given a formal power series atx = 0, call it f , we denote byf� the
homogeneous term in the power expansion off of lowest order.

For example, if� , x � Rp, e� ·x
� = 1.

De�nition 4.7 Given a Þnite subset� � � �, we can identify each of its elements
with formal power series at the origin using (12), and we can consider	� to be the
vector space spanned by� as represented by these series. DeÞne the vector space

� � := span{ f� , f � 	� }.

For example, if we consider the planar case, and
 = { (1, Š1), (0, 2)}, then
e(1,Š1)·x = 1 + x Š y + · · · ande(0,2)·x = 1 + 2y + · · · . Sincee(1,Š1)·x Š e(0,2)·x =
x Š 3y + · · · , we have that� � is the linear space spanned by the polynomials
p1(x, y) = 1 = e(1,Š1)·x

� and p2(x, y) = x Š 3y =
�
e(1,Š1)·x Š e(0,2)·x

�
� .

From now on, if
 is a data set, we say that� � is continuous on
 if whenever the
data
 � is close to
 in the standard product topology, then� �

� is close to� � in the
standard topology of polynomial spaces.

The following theorem is a compilation of results found in [13]. Since our construc-
tions are lattice based, we assume that� is deÞned as in the Lagrangian interpolation
associated with a lattice of points
 � Rp, in which case we also write� as� 
 . We
omit the superscript
 where the dependence of� on 
 is clear.

Theorem 4.8 [13] The space� � has the following properties:

(1) Well de�ned . For any �nite 
 , the assignment� � � � exists, is unique and
� � is correct for� .

(2) Continuity . Recall that� k is the set of p-variate polynomials of degree less or
equal to k. If� k � � � � � k+ 1, then the assignment� � � � is continuous
with respect to
 .

(3) Coalescence �� Osculation. That is, the Lagrange interpolation becomes
the Hermite interpolation under coalescence, provided the coalescence is well
controlled, so that data points coalesce along embedded curves.
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(4) � � is closed under differentiation and it is spanned by a homogeneous basis.
(5) Minimal degree. � � has minimal degree.
(6) Monotonicity . If 
 � 
 �, then� 


� � � 
 �

� .
(7) Cartesian product �� tensor product. If 
 and
 � are two data sets, then

� 
 × 
 �

� = � 

� � � 
 �

� . (13)

(8) Constructible. The space� � can be constructed in �nitely many arithmetic
steps.

Notice that once an interpolating family is chosen, the actual interpolation problem
reduces to solving a linear system of equations. Indeed, one would choose a linear
combination of a basis generating� � and write a linear system for the coefÞcients
using the values of the function we wish to interpolate on the interpolating data. The
solution of the linear system will deÞne the proper combination of the basis and hence
the interpolating polynomial for the function.

It is essential that our construction of multispace ensures that the interpolation
problem satisÞes Properties (2) and (3) of the above theorem. To quote de Boor and
Ron [13], concerning Property (2) in the above theorem, (note that� � is denoted as
� 
 in the original [13])

ÒÉIf 
 � R3 consists of three points, then one would choose� 
 � � 1 (as our
scheme does) but if one of the three points approaches some point between the
two other points, this choice has to change in the limit and hence cannot change
continuously. As it turns out, our scheme is continuous at every
 for which
� k � � 
 � � k+ 1, for somek.Ó

Next, we quote de Boor and Ron [13], concerning Property (3) in the above theorem.

ÒÉIf, eg, a point spirals in on another, then we cannot hope for osculation. But
if, eg, one point approaches another along a straight line, then we are entitled to
obtain, in the limit, a match at that point also of the directional derivative in the
direction of that line.Ó

These limitations on continuity and coalescence mean that in our construction of our
multispace, we cannot be as free in our choice of generalisation of the one-dimensional
pointed curves used to construct OlverÕs one-dimensional multispace, as might seem
possible. We return to this discussion in Sect.4.3.

Example 4.9In the Lagrange interpolation case, assume
 � Rp is given, as before,
by (1, 2) and(Š1, 1), and assume{� � }� � 
 are the associated point-evaluation func-
tionals. Thus, we have two series generating	� , namely

ex+ 2y = 1 + x + 2y + o(||x||), eŠ x+ y = 1 Š x + y + o(||x||).

A basis for the vector space generated by these two series are the series ofex+ 2y =
1 + x + 2y + o(||x||) andex+ 2y Š eŠ x+ y = 2x + y + o(||x||), and so

� � = span{1, 2x + y}.
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If we choose as
 the points(1, 2) and(1, Š1), then the generators of	� are the same
as before, but

� � = span{1, y}

as expected.
If we choose four points of the form(1, 2), (1 + , 2), (Š1, 1), (Š1, 1 + ) , then

the four series generating	� are

f1 = 1 + (1 + ) x + 2y +
1
2

((1 + ) x + 2y)2 + o(||x||2),

f2 = 1 Š x + (1 + ) y +
1
2

(Š x + (1 + ) y)2 + o(||x||2)

and

f3 = 1 + x + 2y +
1
2

(x + 2y)2 + o(||x||2),

f4 = 1 Š x + y +
1
2

(Š x + y)2 + o(||x||2).

Since( f1 Š f3)� =  x and( f2 Š f4)� =  y, if  �= 0, then 1, x andy will be three
of the four generators for� � . A fourth will be given by

�
1


(2( f1 Š f3) + f2 Š f4) Š f3 + f4

�

�
= (2 + ) x2 Š

1 Š 
2

y2,

and hence

� � = span
�

1, x, y, (2 + ) x2 Š
1 Š 

2
y2



will generate the interpolating polynomials.

Example 4.10In the Hermite interpolation case, assume we would like to instead Þnd
interpolating polynomials that coincide with a function at(1, 2) and(Š1, 1), and, say,
with its partial with respect tox at (1, 2) and with respect toy at (Š1, 1). In this
case, the polynomialsqi generating the Hermite data are, at(1, 2), q1(x, y) = x, and
at (Š1, 1) q2(x, y) = y. One can see (see [11,12]) that � q1,(1,2) is represented by
the analytic functionf (x) = xex+ 2y, while � q2,(Š1,1) is deÞned byg(x) = yeŠ x+ y.
Since� = span{� (1,2), � (Š1,1), � q1,(1,2), � q2,(Š1,1)}, 	� has four generators, namely

f1 = xex+ 2y = x + x2 + 2yx + o(||x||2), f2 = yeŠ x+ y = y Š xy + y2 + o(||x||2)
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and

f3 = ex+ 2y = 1 + x + 2y +
1
2

(x + 2y)2 + o(||x||2),

f4 = eŠ x+ y = 1 Š x + y +
1
2

(Š x + y)2 + o(||x||2).

Some simple and direct calculations show that( f3)� = 1, ( f1)� = x, ( f2)� = y and
(2 f1 + f2 Š f3 + f4)� = 2x2 Š 1

2 y2. Thus,

� � = span
�

1, x, y, 2x2 Š
1
2

y2


.

The interpolating polynomials in the previous example converge to these as � 0.

We are now ready to deÞne a lattice-based multispace in several variables.

4.3 Multispaces in Several Variables

We deÞne two related versions of multispace, the Þrst containing the jet bundle
J � (M, R) and the second containing the jet bundleJ � (U, M) whereU � Rp is
open.

We Þrst recall that a point in the jet bundleJr (M, R) is represented by a triple
[x, f, U]r wherex � U � M, the setU is open, andf : U � R, is aCr function.
We say that the triple[x, f, U]r � [ x�, f �, U �]r if x = x� and if, in some coordinate
chart containingx, f and f � have the same derivatives up to orderr , [26, p. 60]. The
equivalence class[x, f, U]r is known as ther -jet of f at x. If Tr ( f )(x) is the order
r Taylor polynomial of the (sufÞciently smooth) functionf at x, then[x, f, U]r �
[x, Tr ( f )(x), U]r , so we speak ofTr ( f )(x) as being ther -jet of f at x. Further,
the coefÞcients of ther th-order Taylor polynomials form local coordinates of the jet
bundleJr (M, R). It is this construction that we generalise Þrst.

To construct our multispace which both contains and generalises the jet space
J � (M, R), we proceed as follows:

1. We Þrst deÞne the kinds of lattices� that we will take as the models of domains for
a mixed discrete-continuous jet at a point inM. They will be sets of points inZ p

with Òdirectional multiplicitiesÓ or more precisely, Òrequired contact conditionsÓ
attached. Our model lattices will come equipped with a base point. We show
further that these models have the properties required for the de Boor and Ron
interpolation of functions on them to be smooth, both as their image inM is varied
and under coalescence.

2. Next, for a model lattice� � Z p � Rp, we letU � Rp be an open set, diffeo-
morphic to the unit disc inRp, containing� . Let � be a diffeomorphic map of
U into M, and f : �( U) � R a function. Our multijet will then be an equiv-
alence class of quadruples[�, �, f, U], where[�, �, f, U] � [ � �, � �, f �U �], if
the base points of�(�) and�(� �) agree; if�(�) = � �(� �) as sets; if whenever
uJ = �( xJ) = � �(x�

J � ) the required contact conditions onxJ andx�
J � are the
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Fig. 11 After coalescence, the zeroth-order contact condition atuJ� is replaced byD( f �)|uJ (v) =
D( f )|uJ (v) wherev = D(�) |xJ (w)

same; and if the contact conditions induced on�(�) by those on� are all zero
when evaluated onf Š f �, see Fig.11.

3. Finally, the multispace Þbre overx will be deÞned as the union of all equivalence
classes of multispace jets with base pointx. Our coordinates on the Þbre are those
which assign to each[�, �, f, U], both the coefÞcients of the image of� and the
coefÞcients of the de Boor and Ron interpolant polynomial. In this way, we have
the usual bundle topology on our multispace which relates naturally to both local
coordinates onM and to the coordinates on the Þbre overx. Our multispace con-
tains the jet bundleJ � (M, R) for each� , as an embedded submanifold, speciÞcally
as multijets where the lattice is a single point with multiplicity

� p+ �
p

�
(the number

of derivative terms up to order� on p-space), and the interpolation is given by the
� th order Taylor polynomial.

The second multispace we will deÞne, containingJ � (�, M) where� is an open set
of Rp, is related to the Þrst, by considering the functionf , in the above construction,
to be each of the coordinate functions onM, evaluated on the image ofU.

4.3.1 Basic De�nitions

As before, from now on we will assume that our lattices are connected.

De�nition 4.11 We say the lattice� has an� -corner distribution, or a corner distri-
bution of length� , if it has the following inductive description:

If p = 1, the lattice is a connected lattice with� + 1 vertices. Notice that the number
� refers to the degree of the derivative one gets when all points coalesce into one point,
not to the number of points in the sublattice.

123



Found Comput Math

Fig. 12 Corner lattices will
allow the deÞnition of Þnite
differences needed to
approximate a Taylor
polynomial

Fig. 13 A forward p = 3
corner lattice of length� = 3

For anyp the lattice is a connected lattice containing� + 1, (p Š 1)-dimensional
disjoint corner lattices of lengths 0, 1, . . . , � . Figure12 shows four corner lattices
for p = 2 of lengths 4, 3, 2 and 2 (clockwise from the Þrst quadrant). Figure13
shows a forwardp = 3 corner distribution. We will consider corner lattices with a
distinguished pointx0.

Corner distributions contain exactly enough points to deÞne interpolating poly-
nomials that will converge to Taylor polynomials upon coalescing. For example, if
p = 2, and� = 2, andu0,0 is the base point, a possible interpolating polynomial will
have coefÞcients which are a linear combination of the terms

1, � x f (u0,0), � y f (u0,0), � 2
x f (u0,0), � 2

y f (u0,0), � y� x f (u0,0)

where� x|u0,0 is the operator� x|u0,0( f ) = f (u1,0) Š f (u0,0), and similarly with
� y|u0,0. To be able to uniquely determine an interpolating polynomial with those
coefÞcients we will need to use all the vertices in a corner distribution like the one in
the Þrst quadrant of Fig.12, with length� = 2 instead of 3. Different corner lattices
will produce different types of interpolating polynomials, using forward, backwards
or other types of differences.
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From now on we will assume that all lattices� have a corner distribution of length
� with base pointx0. When several lattices are involved we will denote the base point
of � by x� and the base point of�(�) by u� = �( x� ).

Lemma 4.12 Assume our data
 is given by evaluating a function on the points of a
corner lattice� of length� . Then

� � = � � .

Proof Consider the monomials corresponding to polynomials of order� . That is all
monomials of the formx I where|I |  � is a multi-index I = (i1, . . . , i p) and

x I = xi1
1 . . . x

i p
p . We want to show that these monomials are generators for� � . Thus,

we want to show that they generatef� , where f is any possible linear combination
of e� ·x, � � 
 . Therefore, it sufÞces to show that the coefÞcients of the monomials
x I , | I |  � , in the Taylor expansions ofe� ·x form an invertible matrix. Notice that we
have the same number of monomials as points and hence the matrix is square.

Next, notice that the coefÞcients of these Taylor expansions are multiples of the
monomials themselves evaluated at the point� (since we are simply substitutingxi
by � i xi in the expansion). Therefore, the matrix of coefÞcients is given by a multiple
of the matrix with rows(� I ), � � 
 , where� I has the different monomials in some
prescribed order. This means that if the matrix were not to be invertible, we would
have a combination

�
I aI � I = 0 for aI � R which will be valid for all � � 
 . That

is, the points in
 lie in an algebraic variety of order� .
But this is not possible: Our points lie on� + 1 distinct hyperplanes, and� of them

contain enough points to make the hyperplane unique (only one of them contains a
single point and does not determine it). That means the polynomial must factor through
the� linear equations that deÞne the hyperplanes and must have at least order� . But
the extra single point left does not belong to any of the hyperplanes, and hence to
ensure the point also lies in the variety we will need to use a polynomial of order at
least� + 1. Therefore, the matrix of coefÞcients is invertible and

� � = � � .


�

This lemma ensures that property (2) in Theorem4.8is satisÞed when we use corner
lattices. Next, we consider coalescence of the points in the lattice, leading to a change in
the lattice, an increase in the contact order and to our Lagrange interpolation becoming
a Hermite interpolation. We restrict the coalesce to be along coordinate hyperplanes
in the model lattices; we call these kinds of coalescencehyperplane coalescence. See
Fig.14. Forbidden coalescences are also illustrated in Fig.15. We note that hyperplane
coalescence maintains the basepoint of the lattice, although not in general the contact
condition there. Coalescence means, in effect, that we consider some lattice points to
not be distinct.

Since we want the multispace to be closed under hyperplane coalescence, we
consider coalesced model lattices to come equipped with certain required contact
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Fig. 14 Corner lattices under repeated coalescence of hyperplanes, indicated byblack arrows. A red arrow
indicates a zeroth- and a Þrst-order contact condition is required at that point in the interpolation, anarc
indicates a zeroth-, Þrst- and second-order contact condition, aplaneindicates all zeroth-, Þrst- and second-
order contact conditions in the plane are required. Thesquared pointsare the base points (Color Þgure
online)

Fig. 15 Examples of forbidden coalescence. We restrict coalescence to being along coordinate hyperplanes,
which maintains a coordinate structure

conditions speciÞed at particular points of the lattice. Suppose two points,u0 and
u1 = u0 + hv coalesce ash � 0. Then the interpolation goes from matching the
values of the functionf at u0 andu1, to matching the valuesf (u0) andD( f )|u0(v).
See Fig.11.
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Repeated coalescence leads to higher-order Hermite interpolation problems. If you
begin with a corner lattice and coalesce along hyperplanes repeatedly, you will arrive
at a single point at which the interpolation for a functionf is simply the Taylor
polynomial for f , with the order of the Taylor polynomial being the length of the
corner lattice. In this way, the jet bundleJ � (M, R) is a subset of our multispace. See
Fig. 14.

From now on we will abuse the notation and denote the (coalesced) model lattice
also as� and the contact conditions on it byC(�) . Under the map� : U � � � M,
�(�) inherits contact conditions which we will denote byC(�(�)) .

The result of Lemma4.12remains unchanged under coalescence, as shown in the
next lemma.

Lemma 4.13 Assume� is a hyperplane coalesced corner lattice of length� . Then
� � = � � .

Proof We can show this by induction. Assume that	� �J = � J + hei approaches� J along
theei direction, that is, ash � 0, for J � � , �J � 	� (that is for those data points in a
hyperplane coalescing into another one,� and	� are indexing the two hyperplanes).
Except for the coalescing of a corner, we would have more than one point coalescing
into one since we are using limits of hyperplanes. That is, for a givenJ, we will have
more than one�J limiting it. Once more we want to prove that the coefÞcients of the
monomialsx I in the expansion of exp(� · x), for any� �= 	� �J andxi exp(� J · x) for a
givenJ � � , and any�J � 	� related under the limit, deÞne an invertible matrix. Let us
Þx J � � and let us number those limiting� J as� j , j = 1, . . . , p. As in the proof of
Lemma4.12, the coefÞcient ofx I in exp(� i · x) is given by� I

i / I !, and one can directly
check that the coefÞcient ofx I in xi exp(� j · x) is given by

1
I !

� I Šei
j ki

if I = (k1, . . . , kp) andI Š ei = (k1, . . . , ki Š 1, . . . , kp), for j � J . Assume that the
matrix formed by these coefÞcients is not invertible. It means that there is a polynomial
of degree� of the form �

| I | �

aI x I (14)

that vanishes on all� � 
 except for	� j . As we saw in the proof of Lemma4.12,
we would need an� -order polynomial to describe a polynomial vanishing on those
points, given by the product of� linear equations representing the� hyperplanes (one
of them will not be unique if it corresponds to a corner, since it is determined only
by one point, but we can just make any choice). Now, if the lemma were not true, we
would additionally need to satisfy the relation
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Fig. 16 The data for a multispace element. The Þgure shows functionsf and f � which agree on the contact
conditions at the lattice points,�(�) . We have[�, �, f, U] � [ �, �, f �, U]

�

| I | �

aI � I Šei
j ki = 0,

where I = (k1, . . . , kp). This is simply the derivative of the polynomial (14) with
respect toxi . Thus, the polynomial (14) needs to have order of contact 2 at the points
on the hyperplane that coalesced, Typically one would need a second-order polynomial
along the hyperplane to achieve that, which would increase the degree of (14) to � + 1.
Higher orders of contact would result from a higher number of coalescing hyperplanes
and the order of the polynomial would generically increase accordingly, proving the
lemma. 
�

The deÞnition of elements of our multispace as equivalence classes of functions
which agree on images of lattices, is illustrated in Fig.16.

De�nition 4.14 We deÞne the multispace(M, R)(�)
p as the set of equivalence classes of

quadruples[�, �, f, U], where(�, C(�)) is a (possibly hyperplane coalesced) corner
lattice of length� ; U is an open set ofRp for somep  dim(M), diffeomorphic to the
unit disc and containing� ; the map� : U � M is an embedding ofU into a single
coordinate chart ofM, and the mapf : �( U) � R is smooth of order� . We say two
quadruples are equivalent,[�, �, f, U] � [ � �, f �, � �, U �], if the base points of�(�) ,
�(� �) agree, that is�( x� ) = � �(x� � ), if � (�) = � �(� �), C(�(�)) = C(� �(� �)) and

123



Found Comput Math

the contact conditions evaluate to zero onf Š f �, that is, bothf and f � satisfy the
same contact conditions on each vertex of�(�) . (We note the contact conditions are
linear.)

4.3.2 The Main Theorem: Multispaces are Manifolds Which Contain the Jet Bundle

Denote byL �
p(M, R) the subset of(M, R)(�)

p given by non-coalesced lattices, that is a
lattice with zeroth-order contact conditions at every vertex. Denote also byJ �

p(M, R)
the space of regular jets of maps fromp-dimensional submanifolds ofM to R. The
main purpose of this section is to prove the following theorem.

Theorem 4.15 Let M be a manifold of dimension m. Then, there exists a topology
and a differential structure that makes(M, R)(�)

p into a smooth manifold of dimension
(m+ 1)

� p+ �
p

�
, with the jet space J�p(M, R) as a smooth submanifold and withL �

p(M, R)
as an open submanifold.

Before we start proving the theorem we recall that the main difÞculty in deÞning
interpolating polynomials is determining the family of polynomials with which we
choose to interpolate. Once this is determined, the actual interpolating coefÞcients
are simply given by the solution of a linear system of equations deÞned by the equal-
ity conditions we need to satisfy at the chosen points. Therefore, they will change
smoothly insofar as the linear system (and hence the family of interpolating polyno-
mials) changes continuously. Lemmas4.12and4.13together with Theorem4.8show
that we are indeed in the smooth regime of the de Boor and Ron interpolation method.

Proof First of all, let us show that(M, R)(�)
p is a bundle over the manifoldM. Let us

call x� the base point of� . The Þbre overu � M is the set of equivalence classes,
[�, �, f, U] whereu satisÞes�( x� ) = u. DeÞne� : (M, R)(�)

p � M to be the
projection map

�( [�, �, f, U]) = �( x� ) = u. (15)

Let us Þrst restrict toL �
p(M, R). In order to have a well-deÞned coordinate labelling

on the lattice, we need to describe an ordering on the vertices. The Þrst point will always
be the base point. Although any ordering will do, we can order them by induction: if
the lattice is one-dimensional we move from smallest coordinate to largest coordinate
in R. If the lattice is two-dimensional, then we order the hyperplanes from smallest
length to largest length, and then order in each hyperplane as in the one-dimensional
case. In addition to its place in the ordering of the lattice points, each point in the
lattice will have a coordinate inM. Since the image of the lattice lies in a single
coordinate chart, these coordinates are consistent across the lattice, once the chart is
designated. Thus the dimension of the set of embedded lattices ism

� p+ �
p

�
. This set

can be considered as a submanifold ofM N , whereN =
� p+ �

p

�
, with the subspace

topology, and evidently has coordinates in terms of the coordinates onM.
If the lattices are coalesced, the coalesced vertices will have repeated coordinates,

as many as the multiplicity requires. The set of coalesced lattices will have measure
zero since it is the level set of some functions depending on coordinates.
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If we now consider the relevant polynomial interpolationp f of a (sufÞciently
smooth) functionf on the embedded image of the corner lattice, we Þnd that it can be
described by

� p+ �
p

�
coefÞcients. Since, by construction,[�, �, f, U] � [ �, �, p f , U],

we may add these coefÞcients to the coordinates of the equivalence class. That these
coefÞcients can be used as coordinates follows from knowing that we are in the regime
where the de Boor and Ron interpolation is unique and depends smoothly on the data,
and from the fact that the coordinates of interpolations on the coalesced lattices are
well behaved limit points of those on the non-coalesced lattices.

A simple counting tells us that we have, in total,(m + 1)
� p+ �

p

�
coordinates needed

to specify the equivalence class in each element of the Þbre.
The bundle(M, R)(�)

p is taken to be the disjoint union of the Þbres, and� as in (15)
is its projection. We may take the usual bundle topology given by the smoothness of
the local trivialisations deÞned by the coordinates

V � (M, R)(�)
p � Rm( p+ �

p ) × R( p+ �
p )

which turns the space into a manifold. The map� is clearly smooth since the basepoint
is simply the Þrst element in the list of lattice points.

We have already shown thatJ �
p(M, R) � (M, R)(�)

p , indeed, it is embedded as the

submanifold whose Þrst set of coordinates is the diagonal� in M N , whereN =
� p+ �

p

�
.

We note the standard jet space isJ � (M, R) = J �
m(M, R).

Notice that if we perturb slightly an uncoalesced lattice� , the lattice will remain
uncoalesced, and so the subspace of classes of the form[�, �, f, U], with � an unco-
alesced corner lattice, is open. 
�

Remark 4.16Although we have required the image of a lattice inM to be within a
single coordinate chart ofM, this restriction is perhaps not vital. The generalisation
requires, Þrstly, keeping track of which chart as well as the coordinate given by the
chart, in the lattice part of the coordinates for the multispace element. Secondly, it
requires the construction of interpolations which agree on intersections of coordinate
charts.

We now construct our second multispace,(�, M)(�)
p , where� � Rp, p  dim M,

which represents local approximations to embedded parametrisedp-submanifolds in
M.

De�nition 4.17 We deÞne the multispace(�, M)(�)
p to be the set of equivalence

classes of triples[�, �, U] where � � U � � � Rp is a (possibly coalesced)
lattice of length� ; U is an open set of� � Rp, diffeomorphic to the unit disc, where
� : U � M is smooth of order� and where�( U) is contained in a single coordi-
nate chart ofM. We say two triples are equivalent,[�, �, U] � [ � �, � �, U �] if the
base points of� , � � agree; if�(�) = � �(� �); if C(�(�)) = C(� �(� �)); and if �( U)
and� �(U �) have the same order of contact (as submanifolds) at�(�) as indicated by
C(�(�)) .
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Theorem 4.18 Let M be a manifold of dimension m. There exists a topology and
a differential structure that makes(�, M)(�)

p into a smooth manifold of dimension
2m

� p+ �
p

�
.

Proof The proof of this theorem is almost identical to that of Theorem4.15. In local
coordinates inM, we can write� = (� 1, . . . , � m). We would then apply the process in
Theorem4.15to producem

� p+ �
p

�
coordinates that determine the lattice, plusm

� p+ �
p

�

coordinates determining the interpolating polynomial for� k with data� , for each
k = 1, . . . , m. The remainder of the proof is identical to that of Theorem4.15. 
�

The main purpose of our multispace construction is to show that a frame on a
multispace is simultaneously a frame on the jet bundle and a frame on the set of all
local lattice-based discretisations. We now proceed to discuss how the group action
on M induces a group action on multispace. We then show that a moving frame on
multispace is simultaneously a smooth and a discrete frame, with the smooth frame
being the limit of the discrete, and that the discrete MaurerÐCartan invariants and their
syzygies coalesce to the smooth ones.

4.3.3 The Action of a Group on(M, R)(�)
p

Let G be a group acting onM × R,

G × M × R � M × R.

Recall the equivalence classes in(M, R)(�)
p have the form[�, �, f, U] where� �

U � Rp, � : U � M and f : �( U) � R. Then for eachg � G there is an induced
action on the map(�, f ) : U × �( U) � M × R given by (g · (�, f )) (x, z) =
g · (�( x), f (z)).

Denote the components ofg·(�, f ) to beg·(�, f ) = ((g · (�, f ))1, (g · (�, f ))2) �
M × R. Then the action ofG on (M, R)(�)

p is given by

g · [�, �, f, U] = [ �, ( g · (�, f ))1, (g · (�, f ))2, U].

We note that(g · (�, f ))1 may be an embedding only forg in a neighbourhood of
the identity. In this case we would have a local group action as deÞned in [53]. Since
the action ofG on M × R preserves the order of contact, this action is independent of
the representative of the class and is thus well deÞned on(M, R)(�)

p .
If, in a particular applicationG acts only onM, one can extend to an action on

M × R by takingg · (z, t) = (g · z, t), that is the identity action on theR coordinate.
If � is a single point so that[�, �, f, U] is an element ofJ �

p(M, R), the induced
action is the standard prolonged action, that is, as induced by the chain rule, while if
the lattice� is uncoalesced and the group does not act on the parameterR, the action
is the diagonal action onM N whereN =

� p+ �
p

�
.
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4.3.4 The Action of a Group on(�, M)(�)
p

Let G be a group acting onM

G × M � M

and let[�, �, U] � (�, M)�
p be an element of our multispace. Since� : U � � � M,

we may deÞneg · � : U � M by (g · �)( x) = g · (�( x)). DeÞne the action ofG on
M (�)

p to be

g · [�, �, U] = [ �, g · �, U].

Again, since the action ofG on U × M preserves the order of contact, this action is
independent of the representative of the class and is thus well-deÞned on(�, M)(�)

p .
Further, the action restricted toJ �

p(�, M) � (�, M)(�)
p is the standard prolonged

action induced by the chain rule.
Notice that one could consider more general actions onM × U, but we will omit

it here to avoid further complications.

4.3.5 Moving Frames on(M, R)(�)
p , (�, M)(�)

p

We are now in a familiar situation: we have a smooth manifold(M, R)(�)
p , or(�, M)(�)

p
and the action of a Lie groupG on it. Thus, we can investigate the use of the standard
moving frames method developed in [17] to establish the existence of a moving frame
for the multispace.

Assume the action of the groupG on (M, R)(�)
p , or (�, M)(�)

p , is such that the
existence of a local moving frame is guaranteed (see Sect.2.1). Let us choose a point
in L � (M, R)(�)

p or (�, M)(�)
p and letS be a section transverse to the orbit ofG

throughL. Using the standard moving frame method, we would get a local moving
frame� , deÞned for all�L � (M, R)(�)

p , or (�, M)(�)
p in some neighbourhood ofL, as

the group element such that� · �L � S. That is,� is an equivariant continuous map

� : U � (M, R)(�)
p � G (resp.� : U � (�, M)(�)

p � G)

whereU is an open neighbourhood ofL.

Remark 4.19We note that there are results detailing conditions under which an action
on a jet bundle will become free and regular for a sufÞciently large prolongation, that
is, by considering sufÞciently high-order derivative terms [17]. A discussion of the
related results for a product action, under a sufÞciently large number of products,
is given by Boutin [5]. We conjecture that similar results will hold for actions on
multispace.

Before proving our results, we give a simple example. The Þrst example refers to
the multispace,(R2, R)(�)

1 .
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Example 4.20We consider the two-dimensional groupG = R+ � R acting onM ×
R = R2 × R as(�, ) · (x, y, u(x, y)) = (x, y, � u + ) . We take� to be the identity
map for simplicity. At the corner lattice� = { (x0, y0), ( x0 + h, y0), ( x0, y0 + k)}
with (x0, y0) the base point, the multijet coordinates are the lattice coordinates, and
the coefÞcients of the linear interpolant to some functionu on these three points. The
interpolant is

p(u)(x, y) = A + B · (x Š x0) + C · (y Š y0)

= u(x0, y0) +
u(x0 + h, y0) Š u(x0, y0)

h
(x Š x0)

+
u(x0, y0 + k) Š u(x0, y0)

k
(y Š y0).

Thus the coordinates coming from the interpolant are

( A, B, C) =
�

u(x0, y0),
u(x0 + h, y0) Š u(x0, y0)

h
,

u(x0, y0 + k) Š u(x0, y0)
k

�
.

We see that the coefÞcients are functions ofu at the lattice points and so the induced
group action on these coordinates is the natural action on functions. We thus have

(�, ) · ( A, B, C) = (� A + , � B, � C).

Under coalescence,A � ux and B � uy, and the group action is indeed then that
obtained via prolongation (i.e. the chain rule) on the jet coordinates.

Remark 4.21(The restriction of a multispace frame to the embedded jet bundle de�nes
a smooth frame) In the above example, we have given the normalisation equations as
being for the uncoalesced lattice. The normalisation equations for the frame on the
coalesced lattices and the embedded jet bundle are given implicitly by the relevant
continuum limit (if this does not exist, or the result is not smooth on all multispace,
then we do not have a frame on multispace). We note that normalisation equations for a
frame on multispace in a domain which includes the embedded jet bundle, necessarily
deÞnes normalisation equations for a smooth frame on the embedded jet bundle, by
restriction, even where their deÞnition is given implicitly by a continuum limit. This
is illustrated in Example4.23.

Theorem 4.22 Assume� is a local moving frame for the action of G on(M, R)(�)
p

(resp.(�, M)�
p) determined by a section transverse to an orbit of G. Assume that

the section is also transverse to the orbit through a point L� J(�)
p (M, R) (resp.

J � (�, M)), that is, the domain of the multispace frame includes L.
Denote by�( Q) the multispace frame at Q, and by�( L) the smooth moving frame

which is obtained by the restriction of the normalisation equations for� to the jet
space, evaluated at L. If L and Q have the same base point, then as Q coalesces to
L,

�( Q) � �( L).
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Proof We prove the result for(M, R)(�)
p , the other case being similar. Notice that�( L)

is the standard moving frame on jet spaces obtained through a section transverse to
the prolonged orbits, which is the multispace section restricted to the jet bundle. We
note thatJ �

p(M, R) is a submanifold of(M, R)(�)
p , invariant under the action of the

group, so that the orbit ofG through a pointL � J �
p(M, R) is equal to the prolonged

orbit.
The proof is now immediate from the fact that the moving frame on(M, R)(�)

p is a
smooth map. 
�

In Appendix, we will show a different convergence theorem for families of discrete
frames.

Example 4.23Continuing with our previous Example4.20, a moving frame� is
deÞned by(�, ) · ( A, B, C) = (0, 1,� ) where� will be the invariant,(�, ) · C|� .

This yields(�, ) |� =
�

h
u(x0+ h,y0)Šu(x0,y0) , Š hu(x0,y0)

u(x0+ h,y0)Šu(x0,y0)

�
or in the standard

matrix representation of this group,

� =

�

�
h

u(x0 + h, y0) Š u(x0, y0)
Š

hu(x0, y0)
u(x0 + h, y0) Š u(x0, y0)

0 1

�

� . (16)

We saw that ash � 0, we obtain the correct induced group action onux. We now see
further that the limiting frame

�( x, u, ux) =

�

�
1
ux

Š
u
ux

0 1

�

� (17)

is obtained both from the limit of the normalisation equations,(�, ) · (ux, u) = (1, 0)
as well as being the limit of the frame itself. We therefore have a frame on multispace,
so that both the discrete and the smooth cases are handled by the one calculation of
the frame on multispace.

4.4 The Continuous Limit of Invariants and Syzygies

We return to our discussion of discrete moving frames in the previous section, in which
we have a lattice varietyL N embedded in some manifold, and a discrete frame is a
map� : L N � GN whereN is the number of points in the lattice. Suppose now that
adjacent vertices in the lattice variety begin to coalesce. Under what conditions will
the discrete frame converge to a smooth frame,¯� ? Furthermore, under what kinds of
conditions will we have

� n+ 1� Š1
n � ¯�( z + v) ¯�( z)Š1 � exp

�
 (D ¯� ) ¯� Š1

�
(18)

whereD is an invariant differential operator? And when will the discrete local syzygies
converge to the local differential syzygies?
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Example 4.24Let us go back to our running Example4.20. Setting � i = �( xi ,
yi , u(xi , yi ), u(xi + hi , yi ), u(xi , yi + ki )) and calculating� 1� Š1

0 , we have, using
Eq. (16),

� 1� Š1
0 =

�

�
h1(u(x0 + h0, y0) Š u(x0, y0)
h0(u(x1 + h1, y1) Š u(x1, y1))

h1(u(x0, y0) Š u(x1, y1)
u(x1 + h1, y1) Š u(x1, y1)

0 1

�

� .

If we now set(x1, y1) = (x0 + h̄, y0) andh0 = h1 = h (say), so that the second lattice
is the shift of the Þrst, by(h̄, 0), then

d

dh̄

�
�
h̄= 0� 1� Š1

0

=

�

� Š
ux(x0 + h, y0) Š ux(x0, y0)
u(x0 + h, y0) Š u(x0, y0)

Š
hux(x0, y0)

u(x0 + h, y0) Š u(x0, y0)
0 0

�

�

� h� 0

�
Š

uxx

ux

�
�
(x0,y0) Š1

0 0

�

= � x � Š1|J2(M).

Alternatively, using the method we will apply in Example4.29, we have settingu(x +
h̄, y) = u(x, y) + h̄ux(x, y) + O(h̄2), that

� 1� Š1
0

=

�

� 1 Š
ux(x0 + h, y0) Š ux(x0, y0)
u(x0 + h, y0) Š u(x0, y0)

h̄ + O(h̄2)
hux(x0, y0)

u(x0 + h, y0) Š u(x0, y0)
h̄ + O(h̄2)

0 1

�

�

� exp

�

� h̄

�

� Š
ux(x0 + h, y0) Š ux(x0, y0)
u(x0 + h, y0) Š u(x0, y0)

Š
hux(x0, y0)

u(x0 + h, y0) Š u(x0, y0)
0 0

�

�

�

�

� exp
�
h̄� x � Š1�

(19)

as above. We note that�/� x is an invariant operator since the independent variables
are invariant under the action, so that� x � Š1 is invariant. Cases where the independent
variables participate in the action require more care, as we indicate below.

Our Þrst theorem concerns the convergence of the discrete MaurerÐCartan invariants
to the smooth MaurerÐCartan invariants of the smooth frame.

We consider the case where the discrete frame(� R) on the lattice varietyL N � M
can be viewed as a multispace frame� , with

� J = �( [� J , �, U]), uJ = �( xJ),

wherexJ is the basepoint of� J .
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Assume the pointTi xJ is also part of� J so thatTi uJ = �( Ti xJ). If we have a
path fromTi (uJ) to uJ in the multispace indicating their coalescence, we can use the
multispace frame to differentiateTi (� J)� Š1

J with respect to the path parameter atuJ .
We state and prove the next theorem for a multispace of the formM = (�, M)�

p, and
then we discuss the other case in Remark4.26.

Theorem 4.25 Let a multispaceM with the embedded jet bundleJ be given. Let a
path inM be given, �� [ �(), �, U] for 0    1. Let u() be the base point of
�(�()) . Assume that both paths and the coalescence�(�()) � � (� 0) lie in the
domain of a multispace frame� . Set�() = �( [�(), �, U]), that is,� evaluated at
the point[�(), �, U]. If v = d/ d | = 0u() , then

lim
�( 0)� � 0

�
d
d

�
�
�
 = 0

�()� Š1(0)
�

= (D(v)� ) � Š1 (20)

where D(v) =
�

vi �/� xi is the directional derivative.

The theorem follows from standard results concerning smooth functions on mani-
folds.

Remark 4.26For a multispace of the formM = (M, R)(�)
p , it is possible that the

independent variables participate in the group action, and then(D(v)� ) � Š1 may not
be invariant. We recall that a smooth frame on a jet bundle yields a canonical, maximal
set of invariant differential operators. Indeed, on a manifold with coordinatesu, if
g · u = �u, then we deÞne

Di =
�

� �ui

�
�
�
g= �

=
�

� �u
� u

� ŠT

i j

�
�
�
g= �

�
� u j

(21)

Rewriting the partial derivatives in (20) in terms of the invariantised derivatives, by
inverting Eq. (21), yields an expression from which the right hand side of Eq. (18)
may be obtained, provided we are careful about the curve � u() used in Theorem
4.25to obtainv.

Consider the example of a scaling action on a single independent variable, soM
is the positive real line, andG is the group of positive real numbers under standard
multiplication. Supposef : M � R is invariant under the group action. Let the
frame be given by�( [�, �, f, U]) = 1/ u whereu is the image of the basepoint of
� . Then the single invariant operator isu�/� u. If we take our path of coalescence to
be u() = u +  , then D(v) in the statement of the Theorem will not be invariant.
However, if we takeu() = (1 + ) u, then it will be.

Suppose thatD(v) =
�

i vi �/� ui . Inverting Eq. (21) yields expressions of the
form �/� ui =

�
k AikDk, so that

D(v) =
�

i

vi

�

k

AikDk =
�

k

�
�

i

vi Aik

�

Dk =
�

k

v̄kDk = D(v̄)
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where the last equality deÞnes the vectorv̄. To ensure thatD(v̄) is an invariant direc-
tional derivative, we must have that the components ofv̄ are either constants or more
generally, invariants.

We note that for the operatorsDi deÞned in (21), thatDi �� Š1 can be calculated
using only the equations for the transverse section that determines the frame and the
inÞnitesimal action, see [38] for details.

Example 4.27(Special Euclidean group action on curves in the plane) The group is
SO(2) � R 2 with the standard linear action of translation and rotation of curves on the
plane, speciÞcally,

�
x(t)
y(t)

�
��

�
�x(t)
�y(t)

�
=

�
cos� sin�

Š sin� cos�

� �
x(t) Š a
u(t) Š b

�
.

If one takes the standard matrix representation of SO(2) � R 2, so that the action
involves the inverse of the group element, then the equivariance of the frame will be
�( g · z) = g�( z).

The multispace frame calculation is as follows. We take an order 2 interpolation as
we wish to achieve a multispace approximation of the curvature. If we interpolate the
curve(x(t), u(t)) at � = { t0, t0 + h1, t0 + h2} with base pointt0, we get

p(x(t)) = A(x) + B(x).(t Š t0) +
1
2

C(x).(t Š t0)2

= x(t0) +
(h2

1 Š h2
2)x(t0) + h2

2x(t0 + h1) Š h2
1x(t0 + h2)

h1h2(h2 Š h1)
(t Š t0)

+
(h2 Š h1)x(t0) Š h2x(t0 + h1) + h1x(t0 + h2)

h1h2(h2 Š h1)
(t Š t0)2,

and similarly for p(u(t)) = A(u) + B(u).(t Š t0) + 1
2C(u).(t Š t0)2. The induced

action on the coefÞcients is that induced on(x(t), u(t)) so for example

g · B(u) =
(h2

1 Š h2
2)g · u(t0) + h2

2g · u(t0 + h1) Š h2
1g · u(t0 + h2)

h1h2(h2 Š h1)

=
1

h1h2(h2 Š h1)

�
(h2

1 Š h2
2)(cos�( x(t0) Š a) + sin�( u(t0) Š b))

+ h2
2(cos�( x(t0 + h1) Š a) + sin�( u(t0 + h1) Š b)))

Š h2
1(cos�( x(t0 + h2) Š a) + sin�( u(t0 + h2) Š b))

�
.

The normalisation equationsg · A(x) = 0, g · A(u) = 0 andg · B(u) = 0 yield the
frame at� to be

a = x(t0), b = u(t0), tan� =
(h2

1 Š h2
2)u(t0) + h2

2u(t0 + h1) Š h2
1u(t0 + h2)

(h2
1 Š h2

2)x(t0) + h2
2x(t0 + h1) Š h2

1x(t0 + h2)
.
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In the limit ash2 � h1, we have

tan� �
ut (t0 + h1) Š 2u(t0 + h1) + 2u(t0)
xt (t0 + h1) Š 2x(t0 + h1) + 2x(t0)

and then Þnally ash1 � 0, we have tan� � ut / xt as expected, indeed, yielding the
smooth frame as determined by the limit of the normalisation equations.

If we take the standard matrix representation of SO(2) � R 2 to represent the
frame, with the equivariance as above, then the invariant Maurer-Cartan matrix will be
�( [� �, u, �, U])Š1�( [�, u, �, U]), and the components of this yield the discrete mul-
tispace MaurerÐCartan invariants for this frame. Further,� · B(x) �

�
x2

t + u2
t
� 1/ 2

so that we may treat� · B(x) as the multispace approximation to the inÞnitesimal
arc-length.

In the above example, we used an invariant parametert to describe the curve
(x(t), u(t)). If instead we parametrise the curve as(x, u(x)), so that the parame-
ter participates in the group action and the operator�/� x is not invariant, then
greater care is required. For example, the group action on the interpolation curve,
written as p(u)(x) = A(x, u) + B(x, u)(x Š x0) + C(x, u)(x Š x0)2, looks like
g · p(u)(x) = A(�x, �u) + B(�x, �u)(x Š �x0) + C(�x, �u)(x Š �x0)2. Solving for the multi-
space frame in this case seems nontrivial. Such examples will be examined elsewhere.

Now assume we have four lattice points,uJ , T1uJ , T2uJ andT2T1uJ = T1T2uJ ,
and that we have two paths connectinguJ with T2T1uJ = T1T2uJ via each of theT1uJ
andT2uJ respectively. If we can associate the discrete frame with a multispace frame
and differentiate the local syzygy associated with the discrete frame with respect
to the path parameters atuJ , we obtain the differential syzygy associated with the
multispace frame atuJ . Indeed, let a discrete frame(� J) at the pointsuJ , T1uJ , T2uJ
andT1T2uJ be associated with the multispace frame� so that� J = �( zJ) for some
zJ = [ � J , �, U] in the relevant multispaceM , uJ = �( xJ). Then, the local syzygy
is

T1(K2)K1 = T2(K1)K2, K1 = �( T1zJ)�( zJ)Š1, K2 = �( T2zJ)�( zJ)Š1,
(22)

whereTi zJ = [ Ti � J , �, U] andTi � J is the shift of� J by Ti , with base pointTi xJ
andTi uJ = �( Ti xJ) = �( xJ+ ei ). Here we are assuming that the shifts of� J remain
within U. Now letzi

J( i ) be paths in the multispace lying withinU, with zi
J(0) = zJ ,

zi
J(1) = Ti zJ , zi

J( i ) = [ � i
J( i ), �, U] andui

J( i ) = �( xi
J( i )), xi

J( i ) the base point
of � i

J( i ). We denote

v =
d

d 1

�
�
�
 1= 0

u1
J( 1), w =

d
d 2

�
�
�
 2= 0

u2
J( 2),

and

Kv =
d

d 1

�
�
�
 1= 0

�( z1
J( 1)))�( zJ)Š1, Kw =

d
d 2

�
�
�
 2= 0

�( z2
J( 2)))�( zJ)Š1.
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We assume that the parametrisation of these paths with respect to yield invariant
differential operators in the case where the independent variables participate in the
group action, see Remark4.26.

Theorem 4.28 After differentiating twice, once each with respect to the path parame-
ters 1 and 2 and coalescencing the lattice of the multispace point zJ to its associated
jet point, and under the conditions just stated, the local syzygy, Eq.(22), becomes the
continuous basic syzygy associated to�( zJ)

D(w)Kv = D(v)Kw + ([D(w), D(v)]� ) � Š1 + [ Kv, Kw]. (23)

Proof The core of the proof is standard. We assume a matrix representation of the
frame, and note that TaylorÕs Theorem is valid.

To ease the notation, we set 1 = h and  2 = k, and simplify to wherev =
d/ dh|h= 0� ( x0 + he1) andw = d/ dk|k= 0� ( x0 + ke2) in local coordinates, so that we
evaluate our frame at the multispace elements with lattice basepoints atuJ = �( x0),
T1uJ = uJ,1 = �( x0 + he1), T2uJ = uJ,2 = �( x0 + ke2) andT2T1uJ = uJ,1,2 =
uJ,2,1 = �( x0 + he1 + ke2). We denote the partial derivative operators�/�  i as� i .

DenotingTi � J = � J,i we have

K J,1 = � J,1� Š1
J , K J,2 = � J,2� Š1

J ,

and for sufÞciently smallh andk, there will exist, dropping the indexJ for clarity,
matricesX1 andX2 in the Lie algebra ofG such that

K1 = exp
�
hX1 + O(h2)

�
, K2 = exp

�
kX2 + O(k2)

�
.

We have
� 1� · � Š1 = X1, � 2� · � Š1 = X2 (24)

and

T2X1 = X1 + k� 2X1 + O(k2), T1X2 = X2 + h� 1X2 + O(h2).

Then

T2K1 = exp
�
hT2X1 + O(h2)

�

= exp
�
hX1 + hk� 2X1 + O(k2, h2)

�

T1K2 = exp
�
kT1X2 + O(k2)

�

= exp
�
kX2 + hk� 1X2 + O(k2, h2)

�
.

Applying the BakerÐCampbellÐHausdorff formula, [59],

log(exp(X) exp(Y)) = X + Y + 1
2[X, Y] + higher order brackets,
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we have

log(T2K1 · K2)) = hX1 + hk� 2X1 + kX2 + 1
2 [hX1 + hk� 2X1, kX2] + O(k2, h2)

= hX1 + kX2 + hk
�
� 2X1 + 1

2 [X1, X2]
�

+ O(k2, h2),

log(T1K2 · K1)) = kX2 + hk� 1X2 + hX1 + 1
2 [kX2 + hk� 1X2, hX1] + O(k2, h2)

= hX1 + kX2 + hk
�
� 1X2 + 1

2 [X2, X1]
�

+ O(k2, h2).

Equating the two formulae by imposing the local syzygy, differentiating with respect
to bothh andk and then sendingh, k � 0, yields, after a slight rearrangement,

� 2X1 Š � 1X2 = [X2, X1] . (25)

Finally, we need to rewrite Eq. (25) in terms of the invariant differential operators.
The formula given in Eq. (21) shows that the partial derivatives� i can be written as
a linear sum of the invariant operators with invariant coefÞcients. We must then back
substitute for the� i , including rewriting theXi = � i � · � Š1 in terms of theD j � · � Š1.
The Þnal result yields the extra terms in the case that the invariant operators do not
commute. 
�

Example 4.29We conclude the running Example4.20. We set the points(xi , yi ),
i = 1, 2, 3 to be(x1, y1) = (x0 + h̄, y0), (x2, y2) = (x0, y0 + k̄) and(x3, y3) =
(x0 + h̄, y0 + k̄). We then calculate the four matrices,K10 = � 1� Š1

0 = exp(X10),
K31 = � 3� Š1

1 = exp(X31), K20 = � 2� Š1
0 = exp(X20) and K32 = � 3� Š1

2 =
exp(X32). Direct calculation gives, setting� 1F = F(x0 + h, y0) Š F(x0, y0) for a
function F � { u, ux, uy, uxy} in the formulae to ease the notation,

X10 = Š h̄

�

�
� 1ux

� 1u
ux(x0, y0)

� 1u
0 0

�

� + O(h̄2)

X20 = Š k̄

�

�
� 1uy

� 1u
uy(x0, y0)

� 1u
0 0

�

� + O(k̄2)

X31 = X20 Š h̄k̄�X31 + O(h̄2, k̄2)

= X20 Š h̄k̄

�

�
� 1ux � 1uy + � 1uxy� 1u

(� 1u)2 h
uy� 1ux + uxy� 1u

(� 1u)2

0 0

�

� + O(h̄2, k̄2)

X32 = X10 Š h̄k̄�X32 + O(h̄2, k̄2)

= X10 Š h̄k̄

�

�
� 1ux � 1uy + � 1uxy� 1u

(� 1u)2 h
ux� 1uy + uxy� 1u

(� 1u)2

0 0

�

� + O(h̄2, k̄2)

where this deÞnes�X31 and�X32. The local syzygy isK31K10 = K32K20, and applying
the BakerÐCampbellÐHausdorff formula to this yields
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X10 + X31 +
1
2

[X31, X10] = X32 + X20 +
1
2

[X32, X20] + O(h̄2, k̄2).

The equation for the lower order terms simpliÞes to

�X32 Š �X31 = [ X10, X20]. (26)

This last equation is straightforward to verify. Finally, taking the limit ash � 0,
Eq. (26) yields the differential syzygy for� evaluated on the jet bundle,

�
� y

�
� x � Š1

�
Š

�
� x

�
� y� Š1

�
= [ � y� Š1, � x � Š1],

where recall� on the jet bundle is given in Eq. (17).

Similar relationships exist when we take limits only in one of the variables, produc-
ing an evolution of discrete submanifolds. For example, ifp = 2 andShas coordinates
(x, y), then if K i

J,2 = � J+ e2(zi
J)�( zJ)Š1 andNJ = d

dx (K J)K Š1
J , then when we take

limits in the calculation in the proof of the theorem asxJ+ e1 � xJ we have

d
dx

(K( J,2))K Š1
(J,2) = NJ+ e2 Š K( J,2) NJ K Š1

(J,2)

which is a mixed syzygy that often appears describing invariant evolutions of polygons
in terms of coordinates in their moduli spaces, as in [42,47]. Among these evolutions
one often Þnds completely integrable discretisations of well-known completely inte-
grable PDEs. These results are really key to some of the applications in our next
section.

5 Applications

5.1 Application to the Design of a Lagrangian for a Variational Numerical
Scheme for a Shallow Water System

This example is motivated by the need for Þnite difference versions of variational
shallow water problems which are invariant under the so-called particle relabelling
symmetry. We consider the base space to have coordinates(a, b, t), where(a, b) is
the ßuid particle label at timet = 0. The two-dimensional dependent variable space
is (x, y) = (x(a, b, t), y(a, b, t)), which is the position of the ßuid particle at timet,
so that(x(a, b, 0), y(a, b, 0)) = (a, b). The particle relabelling action is given by

g · a = A(a, b), g · b = B(a, b), AaBb Š AbBa = 1

together withg · x = x, g · y = y and g · t = t. It can be seen that the particle
relabelling group is the group of area preserving diffeomorphisms of the(a, b) plane
(or at least the domain of interest in the(a, b) plane). Further, it is known that the
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invariants of this group action arex, y, t , and� = xayb Š xbya and its derivatives
under the invariant differential operators,

�
� t

,
�

� x
=

yb

�
�
� a

Š
ya

�
�
� b

,
�
� y

= Š
xb

�
�
� a

+
xa

�
�
� b

.

The aim is to design a multispace version of the Lagrangian for variational shallow
water problems, which have the form,

L [x, y] =
�

L(x, y, xt , yt , xayb Š xbya) da dbdt. (27)

This family of Lagrangians is each invariant under translations in time, translations
in both a andb, rotations in the(a, b) plane, and more generally, the full particle
relabelling group. NoetherÕs Theorem [2,49,53] then yields conservation of energy,
linear and angular momenta, and potential vorticity [1].

If we take the simplest corner lattice with base point(a0, b0, t0) to be

� = { (a0, b0, t0), (a1, b1, t0), (a2, b2, t0), (a3, b3, t1)}

then the (linear) interpolation ofx is given by

x(a, b, t) � x(a0, b0, t0) + M (xa)(a Š a0) + M (xb)(b Š b0) + M (xt )(t Š t0)

where this deÞnes the coefÞcientsM (xK ), and we have

M (xa) =
1
A

�
�
�
�
�
�

1 x(a0, b0, t0) b0
1 x(a1, b1, t0) b1
1 x(a2, b2, t0) b2

�
�
�
�
�
�
, M (xb) =

1
A

�
�
�
�
�
�

1 a0 x(a0, b0, t0)
1 a1 x(a1, b1, t0)
1 a2 x(a2, b2, t0)

�
�
�
�
�
�

and

M (xt ) =
1

(t1 Š t0)A

�
�
�
�
�
�
�
�

1 a0 b0 x(a0, b0, t0)
1 a1 b1 x(a1, b1, t0)
1 a2 b2 x(a2, b2, t0)
1 a3 b3 x(a3, b3, t1)

�
�
�
�
�
�
�
�

where

A =

�
�
�
�
�
�

1 a0 b0
1 a1 b1
1 a2 b2

�
�
�
�
�
�

is the area,|(a1 Š a0, b1 Š b0) � (a2 Š a0, b2 Š b0)|. The interpolant fory is similar,
with y(ai , bi , ti ) replacingx(ai , bi , ti ) in the above formulae.
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We consider the Lie group SL(2) � R 2 acting on the(a, b) plane as the standard
(right) equiafÞne action,

�
a
b

�
��

�
g · a
g · b

�
=

�
� Š 	

Š� �

� �
a Š  1
b Š  2

�

so that( 1,  2) � R2 is the translation vector, and�� Š 	� = 1, and thatg · x = x,
g · y andg · t = t. This group is contained within the particle relabelling symmetry
group, and is just big enough to obtain the area invariant, which we do next.

The induced action on the coefÞcients in the interpolants is given by, for example,

g · M (xa) =
1
A

�
�
�
�
�
�

1 x(a0, b0, t0) g · b0
1 x(a1, b1, t0) g · b1
1 x(a2, b2, t0) g · b2

�
�
�
�
�
�
,

noting thatg · A = A, indeed,A is an invariant as is easily seen.
We take the normalisation equationsg · (a0, b0) = (0, 0), g · M (xa) = 1, g ·

M (xb) = 0 andg·M (ya) = 0. Then the multispace frame is( 1,  2) = (a0, b0) and

�
� Š 	

Š� �

�
=

�
M (xa) M (xb)
M (ya)
M (�)

M (yb)
M (�)

�

whereM (�) = M (xa)M (yb)Š M (xb)M (ya). Evaluating the remaining coefÞcient
on the frame, we obtain the invariant,

I (M (yb))) = g · M (yb)
�
�
��

= M (�)

=
1
A

�
�
�
�
�
�

1 x(a0, b0, t0) y(a0, b0, t0)
1 x(a1, b1, t1) y(a1, b1, t1)
1 x(a2, b2, t2) y(a2, b2, t2)

�
�
�
�
�
�
.

Calculating the continuum limit ofM (�) we obtainxayb Š xbya, which is � , the
area invariant, as expected. Further, the continuum limit of the frame is

� �

�
xa xb
ya

xayb Š xbya

yb

xayb Š xbya

�

.

This is the smooth frame obtained with the smooth limit of the normalisation equations,
that is,{ �xa = 1, �xb = 0, �ya = 0}.

We observe that bothM (xt ) andM (yt ) are invariant under the equiafÞne action.
Thus, we propose the multispace analogue of the Lagrangian (27) to be

M (L [x, y]) =
�

�

L (x, y, M (xt ), M (yt ), M (�) ) A (t1 Š t0) (28)
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Fig. 17 Length one lattices
stacked as a mesh, for a Þnite
difference variational problem.
Shown here is single time slice
for the shallow water problem

where the sum is over all corner lattices stacked into a mesh, as in Fig.17. The factor
A (t1Š t0) is the multispace approximation of the volume form, dadbdt, and is needed
to obtain the correct continuum limits for the conservation laws for energy and the
linear momenta.

Finite difference Euler Lagrange equations and NoetherÕs conservation laws can be
calculated in the standard way [23,32,33]; the details and the results of this calculation
will be explored elsewhere. It is interesting to observe that the multispace Lagrangian,
(28) is invariant under a discrete analogue of the particle relabelling symmetry. Indeed,
looking at Fig.17, one can use a different element of SL(2) � R 2 on each basepoint
of each individual corner lattice, inducing an action on the whole of the corner lattice,
provided that certain consistency conditions hold, speciÞcally, that if a vertex is in
the intersection of two corner lattices, that their image under the two different group
elements is the same. The Lagrangian (28) is clearly invariant under this discretisation
of the particle relabelling group, the discretisation being a subgroup of

�
SL(2) � R 2

� R

where R is the number of corner lattices on a time slice of the mesh. Using this
symmetry group to study the Lagrangian requires relaxing the assumption that we
use the same action of the group at every lattice (i.e. we relax the assumption of the
product action). This would require an extension of the theory developed in this paper,
which we consider elsewhere.

5.2 Discretisations of Completely Integrable PDEs

The geometry of curves and surfaces have been linked to integrable systems repeat-
edly in the literature, see [24,45,58], for example. A drawback of the application of
the results in this paper to Þnding completely integrable discretisations of completely
integrable systems is that one needs to choose a type of approximation (forward, back-
wards, linear or higher order, etc) a priori to Þnd the limit. On the other hand, any
two choices of discrete moving frames (be the one associated with a certain type of
limit or any different one) will always be associated by a gauge transformation. This
means that if one Þnds a discrete integrable system associated with any given choice
of moving frame, one might be able to relate it to a different choice and perhaps link
it to the continuous case. This was done in [47], where the authors found discrete
integrable systems that were the discretisation of AdlerÐGelÕfandÐDikii integrable
evolutions, both of them linked to the projective geometry of curves and polygons.
The authors of [47] also found a way to obtain two Hamiltonian structures associated
with the discrete system through a reduction process, a process that was later extended
to other semisimple homogeneous spaces in [46]. Different approaches were used, for
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example in [3] and in other works of these authors to construct completely integrable
discretisations of integrable systems with the use of lattice models in Euclidean, pro-
jective and conformal geometry. Their approach is quite different from the one used in
[47] and in this paper, in that they choose lattices with different geometric properties
to achieve discretisations. The following are just some examples of the connection
between continuous and discrete models, in the equi-centro-afÞne and the Euclidean
space. Both of these examples use mixed multispace discrete/continuous models, and
although the Þrst example only uses discrete coordinates to construct the multispace
moving frame, the second example will make full use of both.

5.2.1 Integrable Discretisations of Boussinesq Equations

In this example we make use of mixed differential/difference coordinates in the
multispace. For reasons that will become clear later, we will also assume that the
lattice variety has a monodromy in the discrete variable (a global property). That
is, un+ T (t) = m · un(t) for any n � Z, with T the period and some monodromy
m � SL(3, R). This ensures that the invariants will beT-periodic inn.

Continuous CaseFirst we describe the situation when we are in continuous jets with
two parameters(x, t). It is well known (see for example [6]) that the Boussinesq
equations

(q0)t +
1
6

q���
1 +

2
3

q1q�
1 = 0, (q1)t Š 2q�

0 = 0

where the prime denotesd/ dx, can be obtained as the evolution induced on equi-
centro-afÞne curvatures by a certain evolution of curves. Let our manifold beM = R3

with G = SL(3, R) acting linearly on it. WithinM consider parametrised surfaces
on (x, t). Thus, in this exampleu(x, t) � R3, unlike in previous examples when we
consider graphs of the form(x, y, u(x, y)). Hopefully this will not confuse the reader.
We will deÞne the following cross section:

� · u = e3, � · u� = e2, � · u�� = de1 (29)

whereei are the standard unit vectors inR3. Clearlyd = det(u, u�, u��). This deÞnes
uniquely aright moving frame whoseleft companion is given by

� Š1 =
�

1
d

u��, u�, u
�

.

Let us assume that
d = det(u��, u�, u) = 1, (30)

that is we will parametrise the surface so that the curves associated witht Þxed are
parametrised by the equi-centro-afÞne arc-length (these curves are in one-to-one cor-
respondence with projective curves, see [6]. In that case the leftx-MaurerÐCartan
matrix associated with it is given by
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Q = �(� Š1)� =

�

�
0 1 0
k1 0 1
k2 0 0

�

�

whereu��� = k1u� + k2u. Next we will gauge this frame to a different left frame
	� = � Š1g by the element

g =

�

�
1 0 0
0 1 0

Šk1 0 1

�

� .

The resultingx-MaurerÐCartan matrix is given by

K = gŠ1g� + gŠ1Qg =

�

�
0 1 0
0 0 1
b a 0

�

�

wherea = k1 andb = k2 Š k�
1. Gauging the system can be seen as changing the

coordinates, the results can always be gauged back to the original setting.
We will next consider the syzygy

ut Š u�� +
2
3

au = 0 (31)

which describes a precisely chosen evolutionary equation for curves whose ßow will
be tracing our parametrised surface. With this condition, the leftt-MaurerÐCartan
matrix is easily seen to be given by

N = 	� Š1	� t =

�

�
Š(w1 + 1/ 3a) w0 1

v1 w1 0
v2 w2

1
3a

�

�

for some entriesvi , wi . The local basic syzygies (or the compatibility condition
betweenx andt) are given by

Kt = Nx + [ K, N]

and they can be used to solve forN so that

w0 = 0, w1 =
1
3

a, w2 = b +
1
3

a�, v1 = b +
2
3

a�, v2 = Š b� Š
2
3

a��.

We can further Þnd two more syzygies given by

at Š 2b� Š a�� = 0, bt +
2
3

a��� + b�� Š
2
3

a�a.
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This system of equations is equivalent to the Boussinesq equation. Indeed, ifa = q1
andb = 1

2q�
1 Š q0, we have

(q0)t +
1
6

q���
1 +

2
3

q1q�
1 = 0, (q1)t Š 2q�

0 = 0

which is the standard Boussinesq equation.

Multispace CaseAssume now that we move in the multispace away from a continuous
jet to a mixed discrete/continuous multispace submanifold, wherex is now discrete
andt is continuous. Let us choose lattices containing(xn, t), ( xn+ 1, t), ( xn+ 2, t) and
such thatxr + 1Š xr = � xr = c is constant for anyr . That is, we will restrict to lattices
with sides of equal length. The cross section (29) evaluated on lattices of this form
will be given by

� · un = e3, � · (un+ 1 Š un)/ c = e2, � ·
�

1
c2 (un+ 2 Š 2un+ 1 + un)

�
= e1

where 1 = (1/ c3) det(un+ 2, un+ 1, un) and ui = u(xi , t). The left moving frame
associated with this cross section is given by

� Š1 =
�

1
c2 (un+ 2 Š 2un+ 1 + un),

1
c

(un+ 1 Š un), un

�

=
�
un+ 2 un+ 1 un

�
�

�
cŠ2 0 0

Š2cŠ2 cŠ1 0
cŠ2 ŠcŠ1 1

�

�

which can clearly be gauged to

� =
�
un+ 2, un+ 1, un

�
.

The multispace subspace (30), when restricted to our partially coalesced lattices,
becomes

det(un+ 2, un+ 1, un) = c3 (32)

for all n. Let us introduce one last gauge by the matrix

g =

�

�
1 0 0

ŠanŠ1 1 0
0 0 1

�

� ,

wherean is to be found. Ifun+ 3 = kn
1un+ 2 + kn

2un+ 1 + un, then, the discretex-
MaurerÐCartan matrix associated with� = � g is given by

Kn =

�

�
0 1 0
bn an 1
1 0 0

�

�
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wherebn = kn
2 andan = knŠ1

1 . As before, thet-MaurerÐCartan matrix is given by

Nn = 	� Š1
n (	� n)t =

�

�
Š(wn

1 + r n
2 ) wn

0 r n
0

vn
1 wn

1 r n
1

vn
2 wn

2 r n
2

�

�

and the local basic syzygy is

K Š1
n (Kn)t = Nn+ 1 Š K Š1

n NnKn.

This syzygy solves forNn in terms ofr i

wn
0 = r n+ 1

1 ; wn
1 = r n+ 1

2 + anr n+ 1
1 + bnr n+ 1

0 ; wn
2 = r n+ 1

0 ;

vn
1 = r nŠ1

0 + bnŠ1r n
1 ; vn

2 = r n+ 2
1 Š anr n+ 1

0 ,

and it provides the condition for preserving the restriction to the multispace subman-
ifold (32), namely

r n+ 2
2 + r n+ 1

2 + r n
2 + an+ 1r n+ 2

1 + bn+ 1r n+ 2
0 + bnr n+ 1

0 = 0. (33)

If the mapr n
2 � r n+ 2

2 + r n+ 1
2 + r n

2 = (T 2 + T + 1)r n
2 is invertible (which is true if

N �= 3s for anys as shown in [47]), this condition solves forr n
2 in terms ofr n

1 andr n
0 .

The syzygy also describes(an)t and(bn)t to satisfy

(an)t = (1 + anbn+ 1)r n+ 2
0 Š (anbnr n+ 1

0 + r nŠ1
0 )

+ (bn + anan+ 1)r n+ 2
1 Š (bnŠ1r n

1 + a2
nr n+ 1

1 ) + anr n+ 2
2 Š anr n

2

(bn)t = r n+ 3
1 Š (bnan+ 1r n+ 2

1 + r n
1 ) Š (an+ 1 + bnbn+ 1)r n+ 2

0

Š b2
nr n+ 1

0 + anr n
0 Š (bnr n+ 2

2 + 2bnr n+ 1
2 ).

If further we impose the syzygy

(un)t +
1

bnŠ1
(un+ 2 Š anun+ 1) +

2
3

un = 0 (34)

then we can see thatr n
0 = 1

bnŠ1
, r n

1 = 0 andr n
2 = Š (T 2 + T + 1)Š1(T + 1) bn

bn
= Š 2

3
is the solution of (33) for these choices. Then

(an)t =
1

bn+ 1
Š

1
bnŠ2

(bn)t = Š
an+ 1

bn+ 1
+

an

bnŠ1
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and the changes

� n = Š
1

bnbn+ 1bn+ 2
, 	 n = Š

an+ 1

bnbn+ 1

transform this equation in the integrable discretisation of Boussinesq

(� n)t = � n(	 n+ 2 Š 	 nŠ1)

(	 n)t = � nŠ1 Š � n + 	 n(	 n+ 1 Š 	 nŠ1).

This system appears in [25].
It is not clear to us how to systematically connect integrable discrete systems and

evolutions of polygons as given by (34). In the continuous case there is a general link
between Hamiltonian evolutions at the level of the invariants and evolution of curves on
geometric manifolds which are homogeneous of the formG/ H or(G�R n)/ G with G
semisimple (see [43,44]), but the situation in the discrete case is not so clear in general.
In particular, the syzygies (31) and (34) are not the restriction of the same syzygy on
different points in the multispace, even when we account for all the different changes
introduced by gauges. Still, it is widely known that certain evolutions of polygons
result in completely integrable discrete systems (see, for example, [4] in the Euclidean
case and [3] in more cases with further restrictions on the lattices). The multispace
allows us to construct geometrically without the need to account for the limits. We
include one more example along these lines and further use of multispace in this area
will appear elsewhere.

5.2.2 Discretisation of the Sine–Gordon Equation

It is well known that the CodazziÐMainardi equations for Euclidean surfaces inR3

with constant negative Gauss curvature includes a SineÐGordon equation, a well-
known completely integrable system, that decouples from the rest of the determining
equations for the surface. The CodazziÐMainardi equations are simply syzygies for a
well-chosen moving frame, hence using the multispace framework we will be able to
Þnd a discretisation of the SineÐGordon equation with strong geometric meaning as
determining mixed lattice/surfaces with negative Gauss curvature. It is not clear to us
whether the discretisation below is completely integrable as it becomes part of a system
of equations deÞning the lattice/surface, rather than decoupling to discretise SineÐ
Gordon individually. A discrete SineÐGordon equation on lattices was also deÞned in
[3], although the conditions that the authors imposed on their lattices are not impose
here. Further study on the connection between both approaches will appear elsewhere.

We review the continuous case Þrst.
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5.2.3 Sine–Gordon as Syzygy of Euclidean Surfaces with Constant Negative
Curvature

Let G be the Euclidean group represented as the subgroup of GL(4, R)

g =
�

1 0
v 


�
(35)

wherev � R3 and
 � SO(3). The group acts inR3 with the standard actiong · u =


 u+ v which coincides with the one induced byg
�

1
u

�
. Letu(x, y) be a parametrised

surface and assume thatx and y are normalised to measure the arc-length in thex
andy direction. That is, assume that||ux|| = || uy|| = 1. Let us deÞne a moving frame
through the normalisations

� · u = 0, � · ux = e1, � · uy = cos� e1 + sin� e2

where� is the angle formed byux and uy. Solving the equations we obtain that
v = Š 
 u and


 T =
�
ux

1
sin� (uy Š cos� ux) n

�

wheren = 1
sin� (ux × uy) is the standard normal unit vector determined by the

parametrisation. Using the traditional notationuxx = � 1
11ux + � 2

11uy + en, uxy =
� 1

12ux + � 2
12uy + f n, uyy = � 1

22ux + � 2
22uy + gn, we can write the MaurerÐCartan

matrices as

	N = � x � Š1 =
�

0 0
Š(
 u)x 
 x

� �
1 0
u 
 T

�
=

�
0 0

Še1 
 x
 T

�

	K = � y� Š1 =
�

0 0
Š cos� e1 Š sin� e2 
 y
 T

�

where

N = 
 x
 T =

�

�
0 sin �� 2

11 e
Š sin�� 2

11 0 1
sin� ( f Š cos� e)

Še Š1
sin� ( f Š cos� e) 0

�

� (36)

K = 
 y
 T =

�

�
0 sin �� 2

12 f
Š sin�� 2

12 0 1
sin� (g Š cos� f )

Š f Š1
sin� (g Š cos� f ) 0

�

� . (37)

123



Found Comput Math

Substituting these values in the local syzygy	Kx = 	Ny + [ 	K , 	N] and selecting theR3

component, we get the equation

0 =

�

�
Š cos�
Š sin�

0

�

�

x

Š

�

�
0

Š sin�� 2
12

Š f

�

� + cos�

�

�
0

Š sin�� 2
11

Še

�

�

+ sin�

�

�
sin�� 2

11
0

Š1
sin� ( f Š cos� e)

�

� .

The last entry is trivial, the Þrst solves for the value

� 2
11 =

Š1
sin�

� x,

while the second one simpliÞes to� 2
12 = 0, whenever sin� �= 0. The SO(3) portion

of the syzygy is given by
Kx = Ny + [ K, N]. (38)

If we write down the equation that does not involve derivatives of the second funda-
mental form (the equations deÞned by the(1, 2) entry), we have

�
sin�� 2

11

�

y
=

Š f
sin�

( f Š cos� e) +
e

sin�
(g Š cos� f ),

which becomes

� xy = Š
1

sin�
(egŠ f 2).

If K is the Gauss curvature, we know thatK = egŠ f 2

EGŠ F2 , whereE = || ux|| = G =
||uy|| = 1 andF = ux · uy = cos� . Thus, the equation becomes

� xy = Š sin� K

which is the SineÐGordon equation wheneverK is constant and negative.
Notice that this equation is not enough to determine the surface. Indeed, solving

for � only determines the Þrst fundamental form (or metric), and the knowledge of the
Gauss curvature does not sufÞce to determine the second fundamental form. Indeed,
one would need two more equations to do so, given by the two remaining entries
(1, 3) and(2, 3) of the SO(3) portion of the local syzygy, i.e. (38). Thus, the surface
is determined upon solving a system of 3 equations, one of which decouples and is
equal to SineÐGordon.
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5.2.4 A Differential–Difference Sine–Gordon Evolution as a Syzygy of a Mixed
Smooth-Discrete Lattice

Assume we have a smooth family of polygons, or a mixed(1, 1)-lattice (one continuous
direction and one discrete one) of the formyr , yr + 1 in they direction and continuous
1-jet in thex direction. As far as we use the same multispace cross section, we will
have guaranteed that discrete invariant data approximates the continuous one. Thus,
consider the transverse section

� r · ur = � r · u(x, yr ) = 0; � r ·p ux = || ux||e1;
1

y1 Š y0
(� r · T ur Š � r · ur ) =

||� ur ||
� y0

wr

where� r is as in (35); T ur = ur + 1 = u(x, T yr ) = u(x, yr + 1); ·p is the prolonged
action given by� r ·p ux = 
 ux; andwr is a unit vector withwr = cos� r e1 + sin� r e2
where� r = � r (x) is the angle betweenux and� ur , � ur = (T Š 1)ur . From here,
the multispace cross section deÞnesvr = Š 
 r ur , 
 r ux = || ux||e1 and
 r � ur =
||� ur ||wr . With these choices the right moving frame becomes

� r =
�

1 0
vr 
 r

�
, vr = Š 
 r ur

with


 T
r =

�
tr nr br

�

tr =
(ur )x

||(ur )x||
; nr =

1
sin� r

�
� ur

||� ur ||
Š cos� r tr

�
; br = tr × nr .

From now on, and for convenience, we will drop the subindex to denote position unless
the situation is confusing, indicating a change in position by the application of the shift
operator (T ku = ur + k). We will calculate theleft MaurerÐCartan matrices, the more
geometrically signiÞcant one (those in the continuous case are right ones). The left
MaurerÐCartan matrices are given by

	K = � T � Š1 =
�

1 0
Š
 u 


� �
1 0

T u T 
 T

�
=

�
1 0

||� u||w K

�

whereK = 
 T 
 Š1; and by

	N = �(� Š1)t =
�

1 0
Š
 u 


� �
0 0
ux (
 T )x

�
=

�
0 0

||ux||e1 N

�

whereN = 
(
 Š1)x. The local syzygies are given by

( 	K )x = 	KT 	N Š 	N 	K . (39)
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As we did in the continuous case, and to ensure convergence, we will restrict to the
submanifold of the multispace deÞned locally by

||ux|| = 1
||� ur ||
|� yr |

= 1.

For simplicity we will restrict further to those lattices where|� yr | =  for all r (and
hence||� ur || =  ).

Equation (39) breaks into two equations, namely

wt = Ke1 Š Nw Š e1 (40)

Kt = KT N Š N K. (41)

AssumeK factorises as

K = Y
�

� 0
0 1

�
(42)

with � � SO(2), for someY = exp
�

0 y
Š yT 0

�
(this is always possible whenT 
 is

closed enough to
 so thatK is closed enough to the identity). Assume further that

� =
�

cosk Š sink
sink cosk

�
=

�
v 	v

�

v and	v denoting the two columns of� . We will denote with a hat the transformation

	v =
�

0 Š1
1 0

�
v = Jv, and so	w = Jw. Finally, denoteN by

N =
�

� z
ŠzT 0

�
, � =

�
0 �

Š� 0

�
, z =

�
z1
z2

�
. (43)

With this notation (40) can be rewritten and simpliÞed to equations

Š sy· v = z · w (44)

w · e1 = w · v + cy · v y · w (45)

� x = Š � +
1

sin�
(1 Š cosk Š cy · v y2) (46)

wheres = 1
||y|| sin||y||, c = 1

||y||2 (cos||y|| Š 1), and as usualyT = (y1, y2).
The remaining three equations that will determine the lattice/surface are given by

the three entries in theso(3) component (41). We will only reproduce the portion
corresponding to SineÐGordon, that is the(2, 1) entry of (41). After some long, but
straightforward algebraic manipulations, the equation becomes

kx + cdet(y, yx) = T � Š cos||y||� + sdet(y, z). (47)
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Looking at (37) and (36), and comparing it to (42) and (43), we see that

sdet(y, z)

discretises the determinant of the Þrst two entries of the last column in both (37) and
(36). That is,sdet(y, z) discretises

det
�

f e
1

sin� (g Š cos� f ) 1
sin� ( f Š cos� e)

�
= Š sin� K

wereK is the Gauss curvature of the surface. Therefore, we can deÞne

K = Š
s

sin�
det(y, z) = Š

sin||y||
|| y|| sin�

det(y, z)

to be the discrete Gauss curvature for the lattice/surface. Then, (47) becomes

kx + cdet(y, yx) = T � Š cos||y|| Š sin� K .

This will be a discretisation of SineÐGordon, together with the other equations in the
system.
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Appendix: Equicontinuous Families of Discrete Frames

In this Appendix, we use the ArzelaÐAscoli Theorem to give a general convergence
result for an equicontinuous family of moving frames. This provides a rigorous foun-
dation to a variety of examples involving the discretisation of a smooth frame.

Let M be a manifold, and letG be a Lie group with local metricd. The setGM

consists of all continuous maps fromM toG, and we give it the compact-open topology,
deÞned as that generated by Þnite intersections of the so-called subbasic sets,

( A, V) = { f � GM | f ( A) � V}

whereA � M is open andV � G is compact. A sequence of maps converging in this
topology is uniformly convergent on compact subsets.

De�nition 6.1 A family F � GM is said to beequicontinuousat y0 � M if for all
 > 0 there exists a neighbourhoodU(y0) � M such that for all� � F ,

�( U(y0)) � B(�( y0), ) = { g � G | d(g, �( y0)) <  }.
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Theorem 6.2 Suppose that a family of left (resp. right) moving framesF � GM

satis�es the following:

(1) F is equicontinuous on M, and
(2) the set

{�( y) | � � F }

has compact closure for each y.

ThenF is a compact and equicontinuous family of moving frames.

Proof We give the proof forF a family of left frames, the proof for right frames is
analogous. The conditions of the Theorem are precisely those of the ArzelaÐAscoli
Theorem, [15, XII, Theorem 6.4], which yields that the familyF is compact and
equicontinuous. We need only show that its elements are also equivariant with respect
to the group action onM. Fix y � M and f � F , and let > 0 be given. By the
deÞnition of the closure of the setF and the continuity of the group action, there is
a � � F and a neighbourhoodU of the identitye � G such that forg � U we have
bothd( f (g · y), �( g · y)) < 1

2  andd(g · f (y), g · �( y)) < 1
2  . Then

d(g · f (y), f (g · y)) < d( f (g · y), �( g · y)) + d(�( g · y), g · f (y))

= d( f (g · y), �( g · y)) + d(g · �( y), g · f (y))

< ,

so that f is equivariant, as required. 
�

Example 6.3Consider the scaling and translation action ofR2 given on a equivari-
ant family of Lipschitz continuous curves(x, y(x)) in the plane byg · (x, y(x)) =
(x, exp(�) y + k). A smooth frame is given byg· y = 0,g· yx = 1, or(exp(�), k)

�
�
� =

(1/ yx, Š y/ yx); the domain of this frame hasyx > 0. Suppose now we wish to dis-
cretise this frame in a way that is compatible with the smooth frame and with forward
difference, that isyn+ 1 = yn + � yx. Then the discrete frame� n would be obtained by
the normalisation equations,g · yn = 0, g · yn+ 1 = � , so that

� n =
�

�
yn+ 1 Š yn

,
Š � yn

yn+ 1 Š yn

�
.

This family of frames is straightforwardly seen to be equicontinuous, to have the
smooth frame as its continuum limit, and to have the smooth MaurerÐCartan invariants
as the limit of the discrete ones, provided the parameter� scales as the mesh size
xn+ 1 Š xn.
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