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Abstract In this paper, we develop the theory of the discrete moving frame in two
different ways. In the brst half of the paper, we consider a discrete moving frame
debned on a lattice variety and the equivalence classes of global syzygies that result
from the prst fundamental group of the variety. In the second half, we consider the
continuum limit of discrete moving frames as a local lattice coalesces to a point. To
achieve a well-debned limit of discrete frames, we construct multispace, a general-
isation of the jet bundle that also generalises OlverOs one-dimensional construction.
Using interpolation to provide coordinates, we prove that it is a manifold containing
the usual jet bundle as a submanifold. We show that continuity of a multispace mov-
ing frame ensures that the discrete moving frame converges to a continuous one as
lattices coalesce. The smooth frame is, at the same time, the restriction of the multi-
space frame to the embedded jet bundle. We prove further that the discrete invariants
and syzygies approximate their smooth counterparts. In effect, a frame on multispace
allows smooth frames and their discretisations to be studied simultaneously. In our last
chapter we discuss two important applications, one to the discrete variational calculus,
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and the second to discrete integrable systems. Finally, in an appendix, we discuss a
more general result concerning equicontinuous families of discretisations of moving
frames, which are consistent with a smooth frame.

Keywords Discrete moving frame Discrete invariants Local and global syzygies
of invariants- Multispace- Discrete and smooth MaurerbCartan invariarfite
difference calculus of variation®Discrete integrable systems

Mathematics Subject Classi cation 14H70- 17B80- 49M25 - 53A55 - 53C99-
58A40

1 Introduction

The theory and the applications of Lie group-based moving frames are now well
established, and provide an Oinvariant calculusO to study differential systems which
are either invariant or equivariant under the action of a Lie group. Associated with
the name of Cartan7], who usedrepéres mobildo solve equivalence problems in
differential geometry, the ideas go back to earlier works, for example by Cd@jon [
and Darboux14].

Moving frames were further developed and applied in a substantial body of work,
in particular to differential geometry and exterior differential systems; see for example
papers by Greerlp] and Grifpths 0]. From the point of view of symbolic computa-
tion, a breakthrough in the understanding of CartanOs methods for differential systems
came in a series of papers by Fels and Ol€r17], Olver [51,52], Hubert R7E29],
and Hubert and Kogar8p,31], which provide a coherent, rigorous, and constructive
moving frame method. The resulting differential invariant calculus is the subject of the
textbook, B8]. There are now an extensive number of applications, including to the
integration of Lie group invariant differential equatior3§], to the Calculus of Varia-
tions and NoetherOs Theorem, (see for exar@f2,37]), and to integrable systems
(for example #0,43P45]). Moving frame methods have been extended to Lie pseudo-
groups p4]. We note that the calculation of invariants of Lie group actions, using
older OinbnitesimalO methods, are well documented in many texts (see for example,
[2,53]). The use of moving frames to calculate invariants compares favourably to the
older methods in those cases where the frame can be explicitly calculated, since then
the invariants are obtained by the substitution of the frame into the group action, while
inbnitesimal methods rely on the solution of brst-order quasi-linear partial differential
equations. Even where the frame cannot be calculated, the full symbolic Oinvariant
calculusO using moving frames, is still available, as is explained in detail in the text,
[38]. For calculating Lie symmetry groups, however, the inbnitesimal methods will
always be needed, as the equations for the inbnitesimals are linear, while those for the
group parameters themselves are highly nonlinear.

The brst results for the computation of discrete invariants using group-based mov-
ing frames were given by Olver who called them joint invariants58];{ modern
applications to date include computer visi&d[and numerical schemes for systems
with a Lie symmetry B4E86,41,56]. While moving frames for discrete applications
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as formulated by Olver do give generating sets of discrete invariants, the recursion
formulae for differential invariants which were so successful for the application of
moving frames to calculus-based results, do not generalise well to joint invariants. In
particular, joint invariants do not seem to have recursion formulae under the shift oper-
ator that are computationally useful. To overcome this problem, the authors, together
with Jing Ping Wang, introduced the notion ofdéscrete moving framevhich is
essentially a sequence of framdg][ In that paper we prove discrete recursion for-
mulae for small computable generating sets of invariants, which we callisheste
Maurer—Cartan invariantsand investigated thesyzygiesthat is, their recursion rela-
tions. The main application to date has been to discrete integrable systems, with the
authors of §7] proving that discrete Hamiltonian structures f&h-algebras can be
obtained via a reduction process. We note that a sequence of moving frames was
also used in35 to minimise the accumulation of errors in an invariant numerical
method.

In this paper, we extend the theory of discrete moving frames in two ways. The
Prst is to consider a discrete moving frame debned on a lattice variety, which can be
thought of as the vertices, or 0-cells, together with their adjacency information, in a
discrete approximation of a manifold. We describe their associated cross sections and
debne MaurerbCartan invariants and local syzygies. In $&aue further classify
global syzygies and prove that they are associated with topological aspects of the
variety, like representatives of the discrete fundamental group of the lattice variety,
with properties like twisting.

The second extension, beginning in Séeind for the rest of the paper, is to consider
families of discrete frames and how their continuum limits may dePne smooth frames.
Our interest in this second case is how discrete invariants and their recursion relations
limit to differential invariants and their differential syzygies. We show not only that
the limits exist, but also that a well-debned continuum limit of discrete frames may
be achieved by embedding it in a smooth family of discrete ones.

In order to provide a general framework, we construct a manifold which we call
the lattice-based multispacand which generalises, in some sense, the curve-based
multispace of Olver%1]. The multispace is a generalisation of the jet bundle which
contains the jet bundle as a submanifold. It also contains the space of lattices as an
open subset. The main problem with the debnition of the lattice multispace is the fact
that multivariate interpolation is not well-debned in general. To avoid this problem we
restrict the lattices to sets of points covered by the general construction of de Boor and
Ron [11B13], to what we callcorner lattices A corner lattice is one with just enough
data to guarantee the approximation of a smooth jet. We restrict as well the types of
coalescencing that can take place to be those along hyperplanes. We show that de Boor
and RonOs interpolating family is well dePned on corner lattices and is smooth under
coalescing, smooth in the sense that the associated Lagrange polynomials converge
to the Hermite ones as the vertices of the lattice coalesce{Fi@nce the choice of
lattice and conditions on coalescing are settled, we can use the interpolating coefbcients
to debne the coordinate system in the multispace manifold. We notice that one can
possibly consider other forms of lattices and coalescing, and that our theory will hold
true as far as the smoothness of de BoorDRonOs family is preserved.
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Fig. 1 Under coalescence of the points at which the interpolation is calculated, Lagrange interpolation
becomes Hermite interpolation, ending with the Taylor approximation to a surface when all the interpo-
lation points coalesce. By taking coordinates for the lattice-based multispace to pedthpints and

the Lagrange interpolation coefpcients, the jet bundle is naturally embealiadrange interpolatiorh
Hermite interpolation¢ Taylor approximation

Once the multispace is proved to be a smooth manifold, we can naturally debPne a
group action on it, and hence we can talk about smooth moving frames on multispaces.
A moving frame on the lattice-based multispace is, simultaneously, a smooth moving
frame debned on the jet bundle, and a frame debPned on local difference approximations
to the derivatives, depending on what point of the multispace the moving frame is
evaluated. By debPning a moving frame on multispaces, one has simultaneously the full
power of both the smooth and the discrete frames, and the smoothness of the multispace
frame will ensure that we can move freely between discrete, discrete/differential and
smooth frames, ensuring that the discrete frame converges to the continuous one as
the points in the corner lattices coalesce to create the jet. We also show that the
continuity carries over to invariants and syzygies as well. Therefore, any smooth
geometric construction carried out with a multispace lattice, invariants and syzygies,
ensures that the bnal discrete, or discrete/differential result, is an approximation of the
corresponding continuous construction.

In Sect.5 we use the multispace construction in two different applications. The
brst application is to a class of bnite difference variational shallow water systems,
which have both the correct continuum limit as well as the necessary symmetries
for NoetherOs theorem to yield conservation laws for energy, and linear and angular
momenta, in both the pnite difference case and the smooth limit. This is motivated
by the desire to achieve an analogue of the conservation of potential vorticity in a
numerical approximation to these equations.

The second application concerns discretisations of completely integrable systems.
Most well-known completely integrable PDEs are linked to some geometric back-
ground and the PDE can be interpreted as, for example, the equation induced on
invariants by a geometric evolution of curves, or like the CodazzibMainardi equations,
are associated with the geometry of some type of surface. Discrete lattice systems also
have similar interpretations3]. The question to ponder is whether or not the same
geometric construction performed in the continuous case to generate the PDEs can
be carried out in the discrete case, while guaranteeing that the result will be a dis-
cretisation of the PDE; this might be useful as a base to study the more interesting
questions of when the discretisation will be also completely integrable. Here we show
two such processes. The Boussinesq equation is induced on centro-afbne invariants
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by an evolution of star-shaped curves. We construct the multispace version of the
construction to obtain a geometric discretisation. We show that a modibcation of the
construction generates an integrable discretisation which appear€d.ifitie study
of how these different discretisations might be related is underway. In the second
example we describe the multispace version of the well-known construction of the
SinebGordon equation as the CodazzibMainardi equations for Euclidean surfaces of
negative constant curvature. This interpretation has been widely used to study pseudo-
spherical surfaces as generated by solutions of SineBGordo8] sed [57]. Every
step of the construction is guaranteed to discretise the continuous version, while pre-
serving the geometric meaning of the elements involved. The SineBGordon is in fact
one of several equations describing the surface, but which decouples from the oth-
ers. In this discretisation the equations remains coupled and its integrability is not
clear, but the construction itself is a non-trivial example of the use of mixed discrete-
smooth moving frames. The connection between multispace and integrability is under
study.

Finally, in an appendix, we discuss a more general result concerning the discreti-
sation of smooth moving frames, and the continuum limit of equicontinuous families
of discrete moving frames, with an example.

2 Background

2.1 Moving Frames

Given a Lie groups acting on a manifoldV with a left action, so that
GxM M, h-(g-2) = (hg)-z

one candebne aright (resp. left) group-based moving frame as a map which is equivari-
ant with respect to the action dvl and the inverse right (resp. left) action Gfon
itself, specibcally,

M G, (g:2= (2g° (resp.(g-2)=g(2).

We call such an equivariant map a right (resp. a left) moving frame. The inverse of a
right moving frame is a left one, and vice versa.

Given a groupG acting on a manifoldM, the existence of a moving frame on the
opensubsdt) M is guaranteed if:

(i) the orbits of the group action all have the same dimension and fdJiate
(i) there is a transverse cross sectkoro the orbits such that for each orl, the
intersectiorD K contains a single point, and
(i) the group elementtaking O(2) (whereO(2) is the orbit througtz) to O(z)
K, is unique.
Inthis case, aright moving frame: U Gisgivenby ( 2)-z K, thatis, ( 2) isthe
unigue element of takingzto the unique element &f O(z). SinceK is transverse
tothe orbits, the frame debneslocal coordinates givenby( ( 2), ( 2)-2) GxK.

EOE';W
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In the continuous case of moving frames, the manifdiccould be the jet space
JO (RP, M). In this case it is known1[7] that provided the action is locally effective
on subsets, as grows the prolonged action @& on JO) (RP, M) becomes locally
free. The work of Boutin§] discusses what happens for produbt§ asq grows,
with G acting with the diagonal action. In any event, we make the assumption that
for large enough dimension, there is a neighbourhood of the identity in the group in
which a moving frame can be obtained locally.

A common way to obtain the moving frame is through a normalisation process.
One can describe normalisation equations as those debning the transverse section,
K, to the orbits of the group. If the normalisation equations are givegh as 0},
then the conditions above for the existence of a moving frame are the conditions
under which the implicit function theorem can be applied to solvg - z) = 0 for
g= (2.Sincebotg= (h-z)andg= (2)hS'solve ( g-(h-2) = 0, and
the implicit function guarantees a unique solution, then-z) = ( z)hS1, thatiis,
is equivariant. Typically, the normalisation equations, for whicls the zero set, are
algebraic. Indeed, in many applications, the cross section is a coordinate plane, so that
the normalisation equations involve certain coordinates being set to a constant. Since
there will be many transverse cross sections to the orbits, the chaicearf greatly
decrease (orincrease) the calculations involved. Part of the OartO of the moving frame in
applications is the choice of cross section, or equivalently, the choice of normalisation
equations.

Given a moving frame (left or right) one can generate all possible invariants of the
action. Indeed, if is a right moving frame, the expressions

(u)-v

foranyu,v M are clearly invariant; their coordinates are called tloemalised
invariants One can easily see that any invariant of the action is a function of these,
using thereplacement rulelf | : M R is invariant under the action, so that
I(g-v)=I(v)forallg G, then settingy = ( u), one obtains

F((u)-v)=1(v).

Different choices of the manifold/l gives rise to different familiar cases. For
example, ifM is the jet spacel( )(RP, P) for some manifoldP whereG acts,
and G acts onM via the naturaprolonged actiongiven by the chain rule, then
would generate moving frames @submanifolds and the invariants will be standard
differential invariants (curvatures, torsions, etc)Mf= PK is the Cartesian product
of a manifoldP whereG acts, ands acts onM through the diagonal action, then the
invariants are the so-callgdint invariants(see p2)).

Remark 2.1In this portion of the paper, we are interested in the induced action on
N-gons, that is, on sets ®f points inM, or alternatively, an element &AN.

The authors 0f42] debned discrete moving frames, essentially a choice of group
element associated with each vertex in an equivariant way. The discrete moving frame
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can be debned to act naturally under the shift operator, greatly simplifying calculations
with discrete (difference) equations. We next review this depnition.
Let GN denote the Cartesian productNfcopies of the grous. Allow G to act
on the left onGN using the diagonal actiog - (g;) = (99). We also consider what
we have called the Oright inverse actign@g;) = (grg°1).

De nition 2.2 (Discrete moving frameNe say a map
MmN GN

is a right (resp. leftdiscrete moving framé& is equivariant with respect to the
diagonal action oG on MN and the inverse right (resp. left) diagonal actiorGodn
GN. Since (( xr)) GN, we will denote by s its sth component, thatis = ( ),
where s((x)) G for all s. Equivariance means,

oG- 06) = s(@-%) = s(x)g®t (resp.g s((x)))

for everys. Clearly, if = () is a right moving frame, then = ( sgl) is a left
moving frame.

Remark 2.3In any given application, it is advisable to ensure the parity of an action
and of the equivariance of a frame; s88][for a discussion of the subtleties involved.
In what follows, we will use to denote a right frame, andto denote a left frame.

As in the original group-based moving frame debnitior(uif) MN, one can
debne invariants,

r —
Is_ s Ur

for arightframe, ol = $*-u; for aleft frame. The coordinates of these invariants
for anyr generate all other invarianéven when s is xefsee §2]). We note that the
action induces an action on the coordinate functions, the same as it induces an action
on any function, specibcallg - f(u;) = f(g - ur). The components of] will be
invariant asl! is, and they are called thrormalised invariants

We next describe a smaller set of invariants, the so-called MaurerbCartan invariants.

De nition 2.4 Let( s) be aright (resp. left) discrete moving frame evaluated along
an N-gon. Then the element of the group

- 31 31
Ks= s+1 g resp. g~ s+1

is called the right (resp. lef§-MaurerbCartan element for(resp. ). We call the
equation s+1 = Ks s( s+1 = sKs) the discrete right (resp. lefg-FrenetbSerret
equation.
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(@ (b)

(c) d)

Fig.2 Inbandc, isconnected. The subsetsird are not connected; the subseainas four components
and that ind has three

The coordinates of the MaurerbCartan elements, together with the normalised
invariants1$, generate all other invariants. Se#?] for more details. Note that for
G GL(n,R) a matrix group, the MaurerbCartan invariants will be the components
of the MaurerbCartan matrices.

2.2 Lattices

Lattices are subsets @ with a variety of properties. We brst debne adjacency.
De nition 2.5 Two pointsm,n  ZP are said to badjacentif
|m; S nj|= 1.
j

De nition 2.6 We say that a subset  ZP is aconnected latticéf it consists of
a single point, or, if between any two points;, my there is a pathm =
ni, N2, ... NN = Mz such than; is adjacent tanj+1 fori = 1,..., NS 1.

This debnition is illustrated in Fi@. Natural operators oAP are the well-known
shift operators, namely;,i = 1,..., pwhere

Ti(ng,...,Ni,...,Np) = (Ng,...,ni + 1,...,np).

We will also consider lattices in a manifold.

De nition 2.7 The image of alattice ~ ZP in a manifoldM by amap : M
is denoted byL, and is also called a lattice. We assume this map to be injective, a
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condition which will be relaxed under controlled conditions in the second part of this
paper. The adjacency inis determined from that of .

Since we will be working in coordinate charts, we can assume from the beginning
that the latticecl M is contained within one coordinate chart for the manifold, so
that for all practical purposes we can assume the manifdRl'jsor a parametrised
surface with the parameters serving as local coordinates. We will also assume that
lattices are connected as one can study each connected component separately.

The lattice itself does not need to be covered with one lattice neighbour-
hood,however. We debne next a lattice variety, which will allow us to work on lattice
models of spheres and tori.

Remark 2.8Another name for our lattice variety could be OlattifoldO, since we debne
it to be a manifold like object but modelled @¥P rather tharRP. The construction
given here is related to that given i8d].

De nition 2.9 A lattice varietyL M is a set that can be covered by a countable
number of latticed. M, each of which is the image under an injectionof a
connected lattice ZP for some bxedh. Every adjacency ih is contained in at
least one of th& . Furthermore, in the overldp L , the gluing map

preserves adjacency. We c@ll , ) alocal lattice coordinate system.

Lattice coordinates essentially introduce a local order in the lattice (inherited from
ZP through ) so one can clearly debne shifts. We say that a shift map is debned
at a point inL, if it is dePned in at least one chart. Since the chart interchange maps
preserve adjacency, the existence of a shift map is well debned.

3 Moving Frames on Lattices and Lattice Varieties

LetL be a lattice variety and létl be the number of vertices In, which we assume
to be either Pnite or at most countable. Lg{ be the set ofp-lattice varieties invi
with N vertices.

3.1 Moving Frames, Invariants and Maurer—Cartan Invariants

Let G be a group acting oh \ (for example, if the lattice lives inside a manifold with
a group action, the action would be the one induced on the lattice), and for simplicity
assume that it is a left action (that ¢s; (h - u) = (gh) - u. A parallel description can
be made for right actions.

A discrete moving frame will associate an element of the group to each vertex in
the lattice in an equivariant fashion.

De nition 3.1 (Moving frames on latticgd et U be a subset df . We say

‘UGN
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is a right (resp. leftdiscrete moving frameon U whenever is equivariant with
respect to the action @ onL y and the inverse right (resp. left ) diagonal action of
GonGN. Thatis, if = ( i)\, denotes the components oin GN, then

i(g-L)= i(L)g® (resp i(g-L)= g (L)),

with| |= N.

If is aright frame, then = S1is a left frame, and it sufbces to develop the
theory for only one of the parities. Henceforth, we restrict ourselves to right frames.
In general, moving frames exist only locally, which is the reason why we need to
restrict its domain i y. Given a lattice variety , and a coordinate system indexed
by ZP, the moving frame assigns group elements at each vertex (tRusf
them). We will call r the moving frame at the vertex R . Note when the index is
applied we are assuming the use of local variety coordinates.

Itis a simple matter to go from a moving frame to a discrete moving frame by taking
a family of cross sections, one per lattice vertex, as stated in the following result.

Proposition 3.2 Let{Sg ~ MN|R }, be a family of sections, indexed locally by

, with Sg transverse to the orbit of G at viewed as a point of M (recall that G
acts on MY by the diagonal action; transversality is with respect to the orbit if¥ M
Letg= (gr) GN be uniquely determined by the condition

Ogr-L Sr 1)

forL LyandR in some coordinate system for Then(gr) = ( Rr) is alocal
right discrete moving frame.

The proof of this statement is straightforward from the discussion of the moving
frame. We note that a moving frame is debPned as an element of the group on the entire
lattice, but normalisation equations give frames debned only locally. The interchange
maps from one domain to another will play a role in what follows.

Remark on NotatiorFrom now on a multi-index will denote the use of local lattice
coordinates, while the lack of it will indicate global debnitions. Also, we will denote
by ranindividual component of, or the moving frame at the verteng. Notice also
that even though we will denote by L) the moving frame along, each g will, in

the examples, depend on only Pnitely many vertices.

Example 3.3Consider 1-latticesNor polygonsNin the Euclidean plane. The group
E(2) can be identibed with the subgroup of G|.R) given by

g= @

with 0O(2) andb RZ2. It acts onR? as

123 2-d]
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withu R2. We choose as our transverse cross section, the one given in coordinates
by n-un=0and -up+1= €] up],where un= upn+1S up. If isdisplayed
in the matrix representation as i#){ solving the system

nUn= nUn+bn=0 n-Un+1= nUnrzt b= n un=] unles

results in thdeft moving frame

_ S1_ 1 0 _ 1 o o0
"TT s R § T 1wl iy SOty
01 . . . .
whereJ = 10 ' the canonical symplectic matrix.

De nition 3.4 (Invariants and normalised invariant§Ve say the function oh y
l:Ln R
is a lattice invariant under the action@fif 1 (g-L) = I(L) foranyg G,L L.

A local invariant will have the same property in some coordinate chart.
Given a right moving frame on p-lattices, we call the invariants

Ir= r(L)-L

thenormalised invariantswhere (L) = ( r(L)) with r(L) G. Once we choose
coordinates irL., given by(uy), the local invariants are debned to be

I8 = R((u2)) -un
for R, M . These are clearly invariants of the action.

The normalised invariants generate all other local invariants. In fact, they do gen-
erate them even wheR is xed.

Proposition 3.5 If | is any lattice invariant, then | can be written as a function of the
normalised invariants Y for any xed R

Proof This is an immediate consequence of the so-caépthcement ruleLet (uy)
represent the vertices of the lattice variety. E | ((uy)) is an invariant of the action,
thenl (g - (un)) = 1 ((un)) forallg G, and in particular for gr((uy)). Thus

L R((U) - (un)) = 1((I1R)) = T1((un))

which shows us how to writé in terms of the normalised invariants wihpxed.
FolM
u o

123 304



Found Comput Math

From this wealth of invariants we will be selecting a few, the so-called Maurerb
Cartan invariants. They are the discrete analogue of the invariants debning the classical
FrenetbSerret equations and, like their continuous counterpart, together with the set
{l FFf |R } they will form a generating system.

From now on we will extend the shift operators in the standard way to algebraic
functions ofu; using the propertie§; (ujur) = TiujTur. We can also apply a shift
to 5 bysending jto j+g Or we could apply itto j by shifting the variablesig
that j depends on. But notice that unless the sectiong)iate shifts of each other
(i.e.Sp+g = TiSgforalli = 1,... pand allR ), these two operations do not
need to produce the same result. Given that in many of our situations and in all of our
examplesve do assume the sections to be invariant under the shvtsvill abuse the
notation and denote all these mapsTpyso that, for examplel; 3 = j+q.

De nition 3.6 (Maurer—Cartan invariantsLet be a right moving frame along-
lattices. We debne the righiR, i)-MaurerbCartan group element to Kgr ), the
element of the group given by

Kwri)= (Ti R) §1= Rteg 21.

Its local coordinates (or the entries of the matribxGif GL(n, R)) will be called the
(R, i)-Maurer—Cartan invariants

De nition 3.7 (Diagonal invarianty We denote further the sét r((uj)) - Ur =
I,§| R } to be the set ofliagonal invariants

Theorem 3.8 Let be any right moving frame. TH&, i) Maurer—Cartan invariants,
i=1...,p,R , together with the diagonal invariantsr((uj)) -Ur = IFE‘, R
, generate all other invariants for the action of G biy.

Proof The proof is based on what are commonly known agélearsion formulae
Directly from the debnitions we get that

Kriy I8 =(Ti R) R ( R-UM) = Reg -Um= Ifig

and from
Kri) 1R = IRve 3)
we have
_ S1
IR = KRy ' 1Rve-

Now, since is connected, giveM  ZP,anyR ZPis related toM  ZP
through either recurrently increasing or decreasing its individual components, using
the shift operator. At each step the invariant obtained when increasing or decreasing
the components iM is generated by those in previous steps and by MaurerbCartan
invariants. Thus, we can start usih,w and reacH F"{', for any R, using both versions

of the recursion formulas. This proves the statement of the theorem.

Elol:;ﬂ
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Example 3.9The simplest example is the translation group viewed as a subgroup of
GL(n+ 1, R) and acting orR" as

= 10 1 _ 1 .y
g-u= al u a+u '

where is the projection in the lagt components. I{uR) is a p-lattice inR", a
transverse section to the orbit of the grouppais given byur = 0. Thus, the moving
frame is determined by-ug = 0, whichimpliesa = S ur. The normalised invariants
areIF“{' = R-UM = UmSug,whilethe MaurerbCartan matriceg, are o Slwhose
only non-constant entries are the MaurerbCartan invariagtS ur+e, R ,
i = 1,..., n. Itis straightforward to show that they can be written in terms of the

MaurerbCartan invariantgra . Note that in this examplé g = 0 for all R and
they do not contribute to the generating set of invariants.

Example3.3cont. In the case of the Euclidean plane, we found a right moving frame
given by

n= S (4)
where

S1 _ u & u
n - I Snl SJI Snl

The normalised invariants in this case are given by

| B . -1 un . (Um S Un)
n-Un= n(um S Un) - I Un" det(un, Um é Un)

for anyn, m. Notice that ,, -up+1 = | un|er. The MaurerbCartan matrix is given
by

S1 1 O

n

= & : 5
ntl S n+1 bn"’bn+1 n+1 ﬁl ()

where

S n+1 nbn+bn+1:S n+1(Un+1S un): n+1 n

| un+1] def(un+1,un)
and

S1_ 1 1 . Un+1 - Un det(un, Un+1)

: | unsall unl Sdefun+i,Un)  Un+1-Un
CoS n Sin p
Ssin  COS p

n+1

where , isthe angle betweam,+ 1 anduy,. Therefore, a generating set for the Maurerb
Cartan invariants are un| and p, for all n. Since the normalised invariants are also

EOE';W
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generated by up| and the angle between, andup, the MaurerDCartan invariants
generate all the basic ones. Note that, as in the previous exarﬁprleo forallR
and they do not contribute to the generating set of invariants.

3.2 Maurer—Cartan Syzygies

In this section, we analyse in detail the relationships that can exist among the Maurerb
Cartan invariants.

Remark 3.10(Syzygies involving the diagonal invariahte some cases, the addi-
tional generating invariants, the Odiagonal invariahgs(:see DePnitior8.7) may
be non-constant. These invariants obey the trivial recurrence relafl'ong =

Ti(rRUR = (T R o R+a 5:2‘ = g R+e‘ . It can happen that the MaurerBCartan
and the diagonal invariants are not mdependent of each other, and these dependen-
cies can then be regarded as syzygies between them. Indeed, consider the group
G = (R, +) as a scaling action on the positive real line,u, = exp() uy with

the normalisation equation, - Un+1 = 1. Then n = S logun+1, I} = un/un+1

and p+1- ,?1 = log I}. We conjecture that there are no syzygies involving the diag-
onal invariants that do not arise from either the trivial recurrence relations between
them given above, or those involving the MaurerbCartan invariants described in this
section, together with the dependencies between the diagonal and the MaurerbCartan
invariants.

3.2.1 Basic Local Syzygies

From the debnition of MaurerbCartan elemeidty iy = (Ti N) f,l, we have
TiKiy = (T o)T; 5= (T 9) SRS,
and also
TiKap = (T 9T $1= (T 9) JSlK(Jl)
Given that shifts commute, we obtain
TiKa@ih Kap = TiKaj Kai- (6)

This expression gives us a number of algebraic relationships between the different
MaurerbCartan invariants. We will refer to thesebasic local syzygiesa discrete
generalisation of the differential syzygies that are satisbed by differential invariants,
such as the CodazzibMainardi equations for Euclidean invariants debned on surfaces.
The above syzygies generate most of the possible algebraic relations among Maurerb
Cartan invariants. Further independent syzygies may be created by the topology of the
latticeL .

FoE'ﬂ

123 &3



Found Comput Math

De nition 3.11 We say two syzygies are equivalent up to basic syzygies if one of
them is an consequence of the other together with syzygies of the &rm (

To describe global syzygies, we need brst to debne the discrete fundamental group
of the lattice and related material standard in the study of the topology of gréfjhs [

3.2.2 Discrete Fundamental Group

LetL be ap-lattice inM, thatis, the image of a map from a connecpedimensional
subset of ZPto M. As before, we will denotetheimagedf as(J)=u; M.

For simplicity, let us assume that= ZP, although one can apply much of what we
will say next to other cases. Notice that, in principle, we are allowing cases when the
map is not 1-to-1 sd_ does not need to have a trivial topology.

De nition 3.12 (Pathg We say asubset L isa path of length fjoining two points

a,b M, ifitcanbe orgered as = {x}i_y withxo = a,x = bandx; adjacentto
Xi+1, foralli = 0,...r S 1. We say the path idosedif a = b; we say it issimpleif

xi =x;j foranyi = (except perhapgy = X if closed). Notice that by giving the
vertices of the path in a certain order we are implicitly assigning an orientation to it.
This will be relevant once we associate syzygies to closed paths.

De nition 3.13 (Edgg Given a path in alattice, = {x}{_,, we say the ordered
pair[x;, Xi+1] is anedgeof the path. The ordering gives an orientation of the edge.

De nition 3.14 (Sum of pathsConsider the set of all closed paths with base point
a. One can debne tlsamof two such paths by concatenation; that igxif}{_ ; and

{yj}5=, are two paths, their sum is given by} + { yj} = { 2hZg L with
z =X, i=0...,r Z+j+1=Yj, j=0,...,s

If the paths are not closed, byt = yp, one can equally debne the sum of the paths
by concatenation.

De nition 3.15 (Basic homotopyA transformation of a patfx;}, ( {xi}) ={yj}is

a basic homotopy ify;} is equal tofx;} except for

(1) adding or removing a subpath of the fofr, Xj+1] + [ Xi+1, Xi1;

(2) changing a subpath of the forfw;, Xi+1] + [ Xj+1, Xi+2] by one of the form
[Xi, Z] + [ z, Xi+ 2], wherex;, Xi+1, Xi+ 2, zform a basic square of the lattice.

Transformations (1)D(2) are called the tasic homotopies
Figure3 shows examples of basic homotopies.

De_nition 3.1_6 We say the two pathis }{_ , and{y; }?: 0_joining a andb, arehomo-
topically equivalenif xo = a = yp, Xr = b = ys and either the paths are equal, or
one can be transformed to the other by a bnite sequence of basic homotopies.

By construction, homotopy of paths joinirgandb is an equivalence relation.
Figure4 shows pairs of homotopic and nonhomotopic paths.
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Fig. 3 Examples of the two
basic homotopies applied to the T~ ; ;
blue paths \\ -
g O O s e -
T N )
R : “ """"" -
N
N~
N o - S o ot R SR s
\\‘"‘\ s 4 /
~— < i Pl 5
\\ : :
I
a b

= a

a

Fig. 4 Thered andblue pathson theleft are homotopically equivalent, with thellowandgreen paths
showing the sequence of basic homotopies required, while the onesrighttere not (Color Pgure online)

De nition 3.17 (Discrete fundamental groyConsider the space of all closed paths
based af, and let 1(L, a) be the set of homotopy classes of these paths. The oper-
ation above endows(L, a) with a group structure. We cally(L, a) the discrete
fundamental group of .

The fundamental group does not depend on the f@oattosen, as far as the lattice
is connected. (It sufbces to jomto a different point using a path , and use to
relate closed paths based aro those based ob by conjugation, as done in the
continuous case.)

3.2.3 Syzygies Associated with Closed Paths on a Lattice and Global Syzygies
Assume we have a moving frame along a path. To each edge of the path we can
associate a MaurerbCartan matrix of invariants as follows:

Assume either that; = uj andxj+1 = TkUj = UJj+q,, OF thatxj+1 = TkéllJJ =
Ujse.- TO[Xi, Xi+1] we associate the matrix

Kok =Te( 3) 3t= sea 3t (7)

123 2]



Found Comput Math

in the prst case, and

KOSag = Tkl 8e) 586 = u8e 3° ®)

in the second case.

We note that the choice of MaurerbCartan matrix depends on the orientation of
the path, with an edge being associated with the inverse matrix if the orientation is
reversed.

Next we will associate a group elemédff ) to each path on the lattice, namely,
the product of the MaurerbCartan matrices along the path. From the debpnition of
the MaurerbCartan matrices in terms of the discrete frame, it will be evident this
product telescopes to involve only the discrete frame at the endpoints of the path,
provided the discrete frame is dePned along the whole petfertheless, in terms of
the components of the Maurer—Cartan matrices, the Maurer—Cartan invariants, the
product will not telescope—this is the syzyByaluatingK( ) for closed paths ,
leads to relations on the invariants. It becomes important to bPnd those relations which
are non-trivial, in the sense that they are not an algebraic consequence of basic local
syzygies, given in Eq §).

In what follows, we will show thaK () is a homotopy invariant. Evaluatirig( )
on closed paths which are not homotopic to the constant trivial path leads to relations
on the MauerbCartan invariants which cannot be obtained in terms of the basic local
syzygies.

We start with paths which lie in the domain of a discrete frame. This, of course,
need not be the case since the existence of moving frames is guaranteed only locally. If
we need to cover the lattice with several coordinate patches on which discrete moving
frames exist, we will obtain invariant transition matrices associated with the cover of
the lattice dePned by the domains of the discrete moving frames. We discuss this more
involved case later in this section.

De nition 3.18 Assume a discrete frame exists along a patiThe product of the
MaurerbCartan matrices alongs denotedK ( ) . Specibcally, for the patfx;}{_,
we have

K {(x}Zh = K(%s1, %) - K([x0, xa]),

whereK ([x;, Xi+1]) is the MaurerbCartan element associated with the [egige + 1]
asin (7) and @) so thatK ([xi, Xi+1]) = KSX([xi+1, xi]). If is the constant (trivial)
path, we debn& () = e

Itisevidentthatif = 1+ 2,thenK() = K( 2)-K( 1).(See Debnitios.14).
In Fig. 5, we illustrate the basic local syzygy, in the folt({x1, X2, X3, X1}) = e
along a closed path of length four.

Proposition 3.19 Let 1and 2 betwo pathsjoininga and b inthe lattice L forwhicha
discrete moving frame exists. Assume thas homotopic to 2, then K( 1) = K( 2).

EOE';W

123 304



Found Comput Math

Fig. 5 In this Figure, we see _ Ko=Ppsepre,Ppre,

that along the closed path Xg=Uyey : X3=Ujye ey
(X1, X2, X3, X4 = X1) we have ’
K4K3KoK1 = e, the identity in
G. This is equivalent to the basic
local syzygy, Eq.€)

= -1
1 K3_pj-¢-eJ p]+ej+ek
K1=pj+ekpj

X1=U, X4=UJ+eJ-

Ka=p PJ+eJ71

Proof Since a homotopy is a Pnite composition of basic homotopies, it sufpces to
show that if 1 and » differ by a basic homotopy, thelk( 1) = K( 2).

In the case (1), this is trivial since the only difference betwkén1) and K( 2)
is a product of the fornK; K>* = e. In the case (2) it is equally simple since they
differ only by a produckK; K. 1 appearing irkK ( 1) andK; Kj+1 appearing irk( 2),
with KjKj+1 = KjKj+1 being a local syzygy since their vertices form a square in
the lattice.

The discussion thus far lifts naturally to lattice varieties, since adjacency and local
shift maps are well debPned. The following corollary is an immediate consequence of
the previous proposition.

Corollary 3.20 If our lattice variety is covered by one coordinate system and there
exists a moving frame de ned everywhere, each dla$sf the fundamental group of
the lattice de nes what we will call a global syzygy of the Maurer—Cartan invariants,
inthe form K() = e.

For example, if a discrete frame is debPned on an annular ldttiteen there will
be a path not homotopic to the constant path withjrbut K( ) = e for all closed
paths.

Before turning to consider paths which move through different domains, we note
the following.

Important Assumption&Ve already have the assumption on the coordinate charts
which cover our lattice variety, that every edge appears in at least are:nd so every
MaurerbCartan matrix can be written in (at least one) coordinate system. We assume
further that every edge is in a domain of a discrete frame. In this way, every Maurerb
Cartan matrix, every transition matrix, and their local products can be expressed with
respect to a single set of coordinates. By taking a rebnement of our coordinate cover
as necessary, we therefore assume that our cover consists of sets which are domains of
both frames and coordinate charts and that every edge appears in at least one element
of the cover.

We can associate a group elem&nto a path moving through different domains,
by patching local products of MaurerbCartan matrices, assuming the local neighbour-
hoods where the different discrete frames are debned overlap. Overlapping conditions

Elol:;ﬂ
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are often used to coordinate the geometry in different coordinate domains; in our
case, the existence of overlap in the domains of the frames is needed to coordinate
the frame on adjacent parts of the path where the domains change. On paths in our
lattice varieties, overlapping of domains is guaranteed by the condition that every
edge, that is, every pair of adjacent points, lies in at least one of the domains. Indeed,
suppose we have two subpafls, . .., X} and{x;+1, ..., x;} of a path, and assume
we can bnd a moving frame atxs, s = 0, ... i and a different moving frames for
s=1i+1,...,].Since the edgfx, xi+1] must lie in a domain, then at least one of
Xi Or Xj+1 must lie in both domains, or there is a third domain so that we can split our
path into three subpath§o, ..., Xi}, {Xi, Xi+1}, {Xi+1,..., Xj}, each of which lie in
the domain of a frame.

So, consider two subpatigo, ..., X} and{x;, xj+1,..., Xj} of a path, where
X; is the guaranteed point of overlap, and where we have a moving fraratxs,
s = 0,...i and a different moving frames for s = i,i + 1,..., j. Then we
dePneM(x) = ;| >lsothat i = M(x) . Clearly, since both; and ; are right
equivariant, the matris (x;) is invariant. Then, to the path = { xo, ..., Xj} we can
associate the product of invariant matrices

(] J'Séll)( js1 jgélz)"'( i+1 iél)l\/l(xi)( i %11)...( 10)

Kis1...KiM(x)Kjs1...Kp

K()

with the invariant matrixM (x;) linking the MaurerbCartan matrix in one coordinate
system to the next.

De nition 3.21 If a vertexx lies in the domains of both the discrete framand the
discrete frame , we say the group element
MG, ) = (%) (0% 9)
is the transition MaurerbCartan matrix at the vereassociated with the change of
frame from to
If a vertex lies in the intersection of several frame domains, there witidbeycle
conditions For example, ik dom( ) dom( ) dom( ),then clearly
M(x; , IMXx , IM(KXx , )=e (10)

Two equal closed paths can have different group elemi€ts if the choices of
either the initial or the Pnal moving frames are different. Thus, our element of the
group depends not only onbut also on the initial and Pnal choice of moving frame.
In this case we will denote the group element above

K(: )
for the element of the group that starts in dom) and ends in doih ), and where

these are the choices of frame for the calculation of the initial and bnal MaurerBCartan
matrices. By analogy, we will also denote M(x; , ) the matrixM(x; , ).
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Fig. 6 Several ways a path can N
move through an interchange

\ 4 Yo

Domain for fj\

~

Lemma 3.22 K( ; , ) does not depend on the choice of coordinates or moving
frames one chooses along only on the initial and nal ones.

Proof Assume at some pointwe make different choices of moving frame at a paint
in the overlap of (at least two) different frame domains, so we move figto  for
one path and from to  for the other. In that case we introduce the transition factor
M(x; ,) in one of the lifts, andM(x; , ) in the other one, and we continue the
different paths using the corresponding choices. At some point we need to come back
to a common choice, even if that happens only at the end of the path. But when we
expand the different factors &f( ; , ) intermsof moving frames, the intermediate
factors all vanish as we saw before, and the difference is only at the beginning and at
the end of the product. Thus, without losing generality we can assume that we come
back to a common moving frame right after we introduce the split.

That is, a path includes the factor

M(x; , ) M(x; W),
while the other includes
M(X; , ) M(X; ).

But using (L0) we have that both these factors are equaM{x; , 1) , and hence they
are equal.

We now argue thak( ; , ) is still a homotopy invariant for paths that start
and end with the and choice of moving frame, even if the path moves through
changing domains of discrete frames (and changing coordinate systems). Consider
Fig. 6, in which we assume thgt, y], [y, Z] are edges in the domain of while[x, t]
and[t, z] are edges in the domain of

Elol:;ﬂ
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We consider paths running fromxg, in the domain of , to yg in the domain of .
If 1 goes viax andt, then we must switch from to atx. We achieve this by using
the matrixM(x) = ( x) ( x)S! (which is invariant as the frames are right frames),
and then debPning ( 1) to be

K (It Yo) K (1%, HMOOK [y, xDK (%0, Y1) v
(y0) (D31 () (05T () (0% (%) Sy (y) (x0)3!
(yo) ( x0)3L.

K( 1)

Considering the pathy from Xg to yp via z results in

K( 2) = K([t, yo)K([z thM (2 K([y, Z)K([xo, Y])

which is also equal ta yo) ( xo)gl by a similar argument, and thus we have
K( 1) = K( 2). (11)

Since we have homotopy invariance of tkeelement within domains, in this way
we can see that even passing through a change of domain, we maintain homotopy
invariance. _

In order to prove homotopy invariance in general, we construct a DJiét. , with
respect to a cover, satisfying our assumptions, 0le can use this lift to keep track
of which discrete frame we are using at each point on our paths irhe lift L that
we construct is not a lattice variety in general, and does not IM,ibut nevertheless
serves our purpose here. To constructwe take the disjoint union of the charts,
together with their edges (adjacencies), and for exeryL L , we take a new
adjacency, or edggx| , x| ], and let this be a new edge in with the associated
MaurerDCartan elementbeing S?, the transition MaurerBCartan matrix. See Fig.
which shows the lifting for the case of Fi§. Debne the projection from to L as
the natural projection that collapses the different copies of the vertices which lie in
intersections of charts. That is

X if xj belongs only to one domain

‘L L, (%)= . . .
x ifx = x wherex isaliftofx L

A path " in L is alift of a path inL when the projection of is . Lifts may not
be unique, as they depend, for example, on the element bfa) at which the path
begins, wherea is the initial vertex of . .

Changing from one frame to another along a path i&,,isimply proceeding from
one vertex to another, with the transition MaurerbCartan elements, DeFi2ihn
being the group element associated with the new edge. We note that a change of
coordinates simply changes the local labelling of the points, and so is less important
when considering the group element associated with a path.
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Fig. 7 The situation of Fig6
translated td. , the OliftO of

Yo

We now show that il we have new basic local syzygies obtained from the transi-
tion MaurerbCartan matrices. These new local syzygies allow us to obtain a result
similar to that of Propositior8.19 but for the more general situation where we
need to change domains of our moving frames. Consider &igiet the domain
of bel and the domain of beL . Consider the simple closed path =
X xl oyl oyl xR K@Y o x D)= () (085 K([x ,x D)= (%) ()3
KMy .,y D= (y) (YL Ky . .x D= (y) (x)°% theK element for this path
is,

K() = (0% (y) (W% (0% (0 (X =e

showing this path debPnes a basic syzygy in

Finally, we debne the monodromy of a closed path.iftVhen such a path is lifted
toL it need not be closed, as it may begin in one frame domain and return in another.
Consider the lift” of a path beginning atxg in the domain of the frame , and
ending aixg in the domain of the frame . We can close the path in, by adding to
the edgdxo| , Xo| ], butin principle this need not happen. Therefore, the element of
the group associated with the lift would not be equad,tbut rather tavi(x; , ) (or
its inverse, depending on the orientation). We call this group elethemhonodromy
of the lift

We can now state the more general theorem concerning homotopy invariance.

Theorem 3.23 To each path in the lattice varietyl, and to each choice of initial
and nal moving frame, we can associate a group elemeift, K) , suchthatif 1
and , are homotopicirL,thenK( 1, ,) = K( 2,,)



Found Comput Math

path {t,x,y,z} in l Lift of path in l

Fig. 8 New edges i give rise to new local syzygies, her&,([y ,x DK([x ,x D=K(y .,y 1)
Ky .x 1)

Proof We brst note that has essentially a global moving frame, in the sense that
every vertex has an equivariant group element associated, naméy x and
for x . Hence we can debrie( ) for any path, the same way we did previously.

We Prst note that fa} is any closed path lifting the trivial paffa} to L, then the
co-cycle conditionsX0) are given byK (a) = e. When we lift a path toL, we need
to keep track of which discrete frame we are working in, but as we saw before, the
elementK( ; , ) is affected only by the beginning and end choices.

Assume two paths are homotopically equivalent, and let us lift the homotopy. By
construction oL, we can assume the endpoints of the lift of the homotopic paths also
remain Pxed and determined by thend choices. As in the proof of Proposition
3.19 it will sufbce if we show that two paths that differ by one of the basic homotopies
have the sam&( ; , ) , even if we need to change the moving frame domain. But
this was already proved in the argument concerning Ef. (

The syzygy of any closed path, where the domain of the discrete frames are
considered to be the same at the end and at the beginniig,is, ) = K() = ¢
while those where = will have a non-trivial monodromK( ; ,) = M =e.
Furthermore, different choices ofgive rise to the same syzygy: the group elements
are related by conjugation

K(iv) = S35, 5%

and the transition matrices > are essentially a change of coordinates. Indeed, a
frame debnes a local coordinate system of the fdmK whereU is a neighbourhood

of the identity inG andK is the cross section which has invariants for coordinates
[38, Chapter 4]. We thus have the following corollary.

Corollary 3.24 Let[ ] be the homotopy class of a closed patm L. Each element
[ ]of 1(L) gives rise to a syzygy on the Maurer—Cartan invariants, in the form
K() = e.

FoC Tl
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Fig. 9 Discrete toroidal lattice
variety, with periodicities

T, = 8 andT, = 6 (Color bgure
online)

Notice that associating a syzygy to a closed path with a monodromy is essentially
the same as associating a syzygy to the closed path for which the beginning and end
moving frames are the same. IndeKdq, ; ,) = K(,,) M(x;,) ,andhence
K(;,) =eisthesamesyzygyds( ;,) = M(x;,) .

Example 3.25Consider a bi-periodic lattice = { zn, m}n,m z With Zn+kT;,m = Zn.m
andzn m+kT, = Zn,m for some period3y, T»  Z. For simplicity, assume we can bnd
a global moving frame = ( nm). The topology of this lattice is comparable to that
of a torus, and one can easily show that

1(L) = Z2.

The two generators of1(L) (marked in Fig9 with different colours) are represented
by the two global syzygies

KomKim...Krgim=€ KpoKni...Kpns1= €

If a global moving frame does not exist, then the product might be equal to a mon-
odromy matrix that will depend on the choice of moving frame at the beginning and

the end of the closed path. If we choose the same moving frame, then the syzygy will
be independent of the point chosen as beginning and end, and it will be as above.

4 Continuous Limits of the Discrete Picture: Lattice-Based Multispace

In this section we show how one can construct a continuous moving frame embedded
in a smooth family of discrete frames by coordinating the transverse sections that
determine them in a way that guarantees the convergence of the discrete family to the
continuous one. This is achieved using tattice-based multispa¢én which deriv-
atives and their Pnite difference approximations exist in a single manifold containing
both the jet bundle and Cartesian products of the base space. Both smooth and discrete
frames are then part of a single frame on this multispace, and their relationship is given
by the continuity of the multispace frame under coalescence. We show in this case
that not only moving frames but also discrete invariants and local discrete syzygies
Elol:;ﬂ
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converge to differential invariants and differential syzygies respectively. We will use
our multispace constructions to describe discretisations of integrable systems, and to
Pnite difference models of variational systems, in S&cin the Appendix, we will

show that more generally, an equicontinuous family of discrete frames will converge
to a smooth frame.

First of all, we recall the dePnition of Omultispace for curvesO, as developed by
Olverin[51]. Olver provides coordinates for his space of pointed curves in terms of the
Lagrange approximation of the curve via interpolation at specibc (given) points. The
coordination of the discrete and the smooth pictures is a consequence of the fact that
Lagrange interpolation becomes Hermite interpolation under coalescence. In order to
provide coordinates for our higher-dimensional generalisation of OlverOs construction,
we need to restrict our Opointed surfacesO to those where the Lagrange and Hermite
interpolations are similarly related and to where the interpolations vary in a smooth
manner with respect to the data. The details of the interpolation are critical, since the
coefbcients of the interpolation polynomial will dePne the desired coordinates. We use
the theory of multivariate polynomial approximation due to de Boor and RAB1f3],
described in Sectl.2 We then describe our lattice-based multispace and prove that it
is a manifold. In fact, we detail two related versions of multispace, one containing the
jet bundleJ(M, R) and one containing the jet bundl<U, M) whereU  RP for
anyp dim M. Both arise in the applications. Thereafter we show that the limit of
the discrete MaurerbCartan matrices are the smooth MaurerbCartan matrices and that
the local syzygies (Ed) limit to the so-called zero curvature condition of the smooth
MaurerbCartan matrices, in Seétd We also describe mixed discrete/continuous
cases.

4.1 Olver’s Multispace for Curves

The idea behind the dePnition of multispace is to create a manifold where both dis-
crete and continuous cases coexist in one overarching smooth construction, where
the continuous frame is a limit of the discrete, and the limit of the discrete data is
the continuous data. Multispace resembles the jet spaces, but includes also discrete
versions of the jet spaces.

Given a manifoldM, debne thath jet space of M at p M, and denote it by]{,‘,
to be the equivalence class of submanifold&fbivith order of contach at p. Thejet
bundleis debned as

Jn(M): P MJS!

with the standard bundle structure. We@® = C(" (M) denote the set of alh+ 1)-
pointed curvegontained inM; that is, the set ofzy, .. ., z,; C), whereC is a curve
andz aren+ 1 points inC, not necessarily distinct. We denote by

ni = #jlz = z}

the number of points that coincide with
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De nition 4.1 (Multispace for curvesLet C andC be two(n + 1)-pointed curves
C=(2,...,2,;C); C= (2,...,2zn; C).

The distinguished points can coincide. We say @ahdC haventh order multicontact
if, and only if there exists a permutation: {0, 1,...,n} { 0,1,..., n} such that

z =z, and j551C|z = jn§1Clz(;y, foreachi=0,...,n,

where jxC denotes thé&th jet of the curveC.

Thenth-order multispace, denotdd(", is the set of equivalence classegmf 1)-
pointed curves iV under the equivalence relation nth-order multicontact. The
equivalence class of gm + 1)-pointed curveC is called itsnth-order multijet and is
denoted by,C M™.

When all the points are distinct, then two curves belong to the same equivalence
class whenever they have the distinguished pairitscommon. Thus, we can identify
this special subset with the off-diagonal Cartesian product, denoted 6y ¥ in [51].
On the other hand, if all the points coincide, then the class is equal to the jet class.
Thus, both extremes can be found in one space, together with all the intermediate
cases. In the brst part &]] the main result is the following theorem.

Theorem 4.2 If M is a smooth m-dimensional manifold, then its nth order multispace
M is a smooth manifold of dimensign + 1)m, which contains the off-diagonal
part M (™1 of the Cartesian product space as an open, dense submanifold, and the
nth order jet bundle (M) as a smooth submanifold.

The topology is inherited from that of the manifoM, and the proof is based
on bnding coordinate systems in a neighbourhood of an equivalencg flasehe
coordinate system is given by the classical divided differences and their limits. That s,
given a curveC with n + 1 distinguished pointéz, . . ., z,} and with a certain order
of contacin; S 1 at each point, there exists a unique polynorpiaf degreen such that
p(z) = C(z) and suchthap®(z) = C®(z) foranyk n;andany = 0,..., n.

The polynomial is a natural representative of the clasmd its coefpcients provide
smooth coordinates in a neighbourhood@fOf particular importance is that the
coordinates are smooth under the coalescence of mirfisr more details, se&]].

In the second part of the papées]], the author assumes there is a Lie grdep
acting on the manifold/, and he debnes the action of this group on the multispace as
that naturally induced by it: the action on the differential part is the prolonged one, and
explicit formulae for the action of the group on classical divided differences are given.
He also explains how, assuming that one chooses a cross section to the orbit of the
group at a poin€, andrequiring the local cross section to be transverse also to the jet
spaceg(thus dePning a cross section for the prolonged actiod™nthen one can bnd
a moving frame for the action of the group on the multispace with the desired property,
thatis, the resulting moving frame will be the standard continuous moving frame when
restricted to jets, and the discrete one when restricted t6"* 1. The overarching

Elol:;ﬂ
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* O-jet
1-jet
Z2=% =173
2z 2
Z1=24
Z4 2
Zs Before coalescing After coalescing

Fig. 10 Coalescence of distinguished points in a pointedredoes not require the points to be adjacent,
in some sense, on tleairve Here the coalescence takes place alongttaght line Note there needs to
be a well-dePned tangent Gfat the point of coalescence

continuity of the multispace manifold guarantees that one is the continuous limit of
the other as the points coalesce.
We note several features of OlverOs multispace for pointed curves:

(i) the curveCis not parametrised and the poiat®n the curve need not be labelled
in order with respect to some parametrisation,
(i) coalescence can take place between any two ofitlom the curve, see Fid.0,
(i) none of thez are distinguished in the sense that one of them is a natural base
point for a projection of the multispace M,
(iv) the pointed curvg,C is essentially a set of points with a contact condition at
each point.

In our construction of a higher-dimensional lattice-based multispace, and hence its
restriction to a single variable, only a version of property (iv) remains.

Our next section describes an interpolation scheme which can be applied to our
geometric construction.

4.2 Multivariate Interpolation

One of the main problems with multivariate interpolation is that the solution to the
interpolation problem is not unique in general and it might not even exist; a well-
known theorem describing this phenomena is the MairhuberbCurtis The68m [
For example, if we Px the values of a functib(x, y) at the two point$1, 2), (S1, 1)
and we want to bPnd a polynomial inandy of minimum order, such that it coincides
with the function at those points, we can uSg, y) = a+ bxor f(x,y) = a+ by,
and there is no reason why we would chose one over the other. On the other hand,
if we Px the value of the function 4fl, 2) and(1, S1), then the brst choice is not
appropriate unless the function has the same value at both points, while the second
one works. Thus, the choice of interpolating polynomial might depend on the data, it
might not be unique, or even exist, and sometimes there is no reason to favour one
choice over a different one. In the = 1 interpolation case none of these problems
exist.

FoC Tl

u o
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Thus, a main question in multivariate interpolation is: is there a family of polyno-
mials which can interpolate the values of a given function and which has properties
like generality, minimal degree, uniqueness and having a well-debPned Hermite poly-
nomial (one for which not only the values of the polynomial, but also its derivatives
at the points coincide with those of the function) as points coalesce? These are the
properties we will need if we want to use them to debPne smooth coordinates in our
multispace. This question was answered by de Boor and Rdriii 8]; we describe
below their solution to the interpolation problem as it applies to our particular case.

Interpolation NotationLet be the set op-variate polynomials, and its algebraic
dual. Let be a subspace of . We will denote by  the subset of polynomials of
degree less than or equalko

De nition 4.3 We say thatP is correct for  if for any continuous linear
functionalF on , there exist a uniqug P such that

F(O) = (a)
for any . We also sayP interpolates .

The dual space can be identibed with functions analytic at the origjrusing
the bilinear form
D’ f(0)D’q(0)

T , (12)

f,q =
J zP

whereq is a p-variate polynomial and is a function analytic at the origin. One can
also use formal power expansions at the origin instead of analytic functions in the
obvious way, without too much trouble. Seel[12] for more detalils.

Example 4.4(Lagrange Interpolationlf  is spanned by point-evaluations, =
with  (p) = p(), RP, PndingP correct for solves aLagrange
interpolation problemindeed, if represents a Pnite number of pointsinthe parameter
spaceD RP,and is evaluation at an element of, then one can check that
the power series representing is the Taylor expansion of * (see [L1,12]). An
analytic functionF debnes a continuous linear functional owia (12) andF( ) =
F,e * = F(). Thus,P is correct if for anyF there existp P such that

FC )=F(O) = (p)=p()
for all , which is the debnition of Lagrange interpolation, see Examde

Example 4.5(Hermite Interpolatioi If we choose instead the set

={q} .qv

where

a. (P=(aC )(P)=a( )P))
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and where is the gradient vector ang V is a properly chosen polyno-
mial with coefbcients rel3ecting the differential data we need to match (for example,
q(x, y) = x?ifwe wish to match the second derivatived)) then the associated power
series representing,, isq(x)e * (see [L1,12]). Therefore, bndind® correct for

is equivalent to Pnding a family of polynomiassuch that for any linear functional

on represented by an analytic functién there exists a unique polynomipl P

with the property

F( g )= Faxe™ =a( )F)() = q (p)=al )P))

for all and allg V. The different choices o¥ allow us to Pnd unique
polynomials that coincide witk and different choices of derivatives, or combinations
of derivatives, on . This is the solution tahe Hermite interpolation problem, see
Example4.10

De nition 4.6 Given a formal power series at= 0, call it f, we denote byf the
homogeneous term in the power expansiorf aff lowest order.

For example, if, x RP,e *= 1.

De nition 4.7 Given a bnite subset , we can identify each of its elements
with formal power series at the origin using2j, and we can consider to be the
vector space spanned byas represented by these series. Debne the vector space

= spaf f , f }.

For example, if we consider the planar case, and= { (1, 31),(0, 2)}, then
elSDx =1+ xS y+... andel®IX = 1+ 2y+... . SinceelSDx* S 02X =
xS 3y+ .-, we have that is the linear space spanned by the polynomials
pix,y) = 1= eV % andpy(x, y) = xS 3y = eLSDx § g0.2)x

From now on, if is a data set, we say that is continuous on if whenever the
data s closeto inthe standard product topology, then is closeto inthe
standard topology of polynomial spaces.

The following theorem is a compilation of results found13] Since our construc-
tions are lattice based, we assume thas dePned as in the Lagrangian interpolation
associated with a lattice of points  RP, in which case we also write as . We
omit the superscript where the dependence ofon s clear.

Theorem 4.8 [13] The space has the following properties:

(1) Well de ned. For any nite , the assignment exists, is unique and
is correct for
(2) Continuity . Recall that  is the set of p-variate polynomials of degree less or

equal to k. If ¢ k+1, then the assignment is continuous
with respectto .
(3) Coalescence Osculation. That is, the Lagrange interpolation becomes

the Hermite interpolation under coalescence, provided the coalescence is well
controlled, so that data points coalesce along embedded curves.
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(4) is closed under differentiation and it is spanned by a homogeneous basis.

(5) Minimal degree. has minimal degree.

(6) Monotonicity. If , then .

(7) Cartesian product tensor product. If and are two data sets, then
o= . (23)

(8) Constructible. The space can be constructed in nitely many arithmetic
steps.

Notice that once an interpolating family is chosen, the actual interpolation problem
reduces to solving a linear system of equations. Indeed, one would choose a linear
combination of a basis generating and write a linear system for the coefbcients
using the values of the function we wish to interpolate on the interpolating data. The
solution of the linear system will debne the proper combination of the basis and hence
the interpolating polynomial for the function.

It is essential that our construction of multispace ensures that the interpolation
problem satisbes Properties (2) and (3) of the above theorem. To quote de Boor and
Ron [13], concerning Property (2) in the above theorem, (note thats denoted as

in the original L3])

OEIf RS consists of three points, then one would choose 1 (asour
scheme does) but if one of the three points approaches some point between the
two other points, this choice has to change in the limit and hence cannot change
continuously. As it turns out, our scheme is continuous at eveffgr which

K k+ 1, for somek.O

Next, we quote de Boor and Rohd], concerning Property (3) in the above theorem.

OEIf, eg, a point spirals in on another, then we cannot hope for osculation. But
if, eg, one point approaches another along a straight line, then we are entitled to
obtain, in the limit, a match at that point also of the directional derivative in the
direction of that line.O

These limitations on continuity and coalescence mean thatin our construction of our
multispace, we cannot be as free in our choice of generalisation of the one-dimensional
pointed curves used to construct OlverOs one-dimensional multispace, as might seem
possible. We return to this discussion in SécR

Example 4.9In the Lagrange interpolation case, assume RP is given, as before,
by (1,2) and(S1, 1), and assumé } are the associated point-evaluation func-
tionals. Thus, we have two series generatinghamely

¥ = 14 x+ 2y + o(|xl), €Y = 1S x+ y+ oIx]).

A basis for the vector space generated by these two series are the s&i&$/of
1+ x+ 2y + o(]x]) ande**?Y S e>**Y = 2x + y + o(]x]), and so

= spafl, 2x + y}.
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If we choose as the pointg1, 2) and(1, S1), then the generators of are the same
as before, but

= spar{l, y}

as expected.
If we choose four points of the forifl, 2), (1+ , 2),(S1,1),(S1,1+ ), then
the four series generating are

fi=1+ (1+ )x+ 2y+ %((1+ ) X + 2y)2+ o(|x|2),

i 1
fo= 18 x+ (L+ )y+ S(Sx+ (1+ ) y)%+ o(Ix]?)
and

1
fg= 1+ x+2y+ S(x+ 2y)2 + o(Ix|?),

. 1.
fa= 18 x+ y+ S(Sx+ )2+ o(Ix]?).

Since(f1 S f3) = xand(f,S f4)) = vy, if =0,then1xandy will be three
of the four generators for . A fourth will be given by

1 ~ o - . 1"
Z(2f1S fa)+ 128 f)S fa+ f4 = (2+ )X2S %y{

and hence

= span 1,x,y,(2+ )x?*$ %yz

will generate the interpolating polynomials.

Example 4.10In the Hermite interpolation case, assume we would like to instead Pnd
interpolating polynomials that coincide with a functior(t2) and(S1, 1), and, say,

with its partial with respect tx at (1, 2) and with respect ty at (S1, 1). In this
case, the polynomialg generating the Hermite data are(4t2), qi(x, y) = x, and
at(S1,1) g(x,y) = y. One can see (se&1,12)) that qi,(L,2) is represented by
the analytic functionf (x) = xe* 2, while ¢, (51,1) is dePned byg(x) = ye>**V.
Since = spaf (12, (31,1, qu(1,2), (31,1} hasfour generators, namely

fr= xe" = x+ x2+ 2yx+ o(Ix|?), f2= ye**Y = ySxy+ y2+ of|x|?)
EOE';W
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and
1
fg = X*2Y = 14 x + 2y + E(X+ 2y)2+ O(IX“Z)a
- . 1.
fa= eV =18 x+y+ E(SX+ y)? + o(|x]?).

Some simple and direct calculations show ttia) = 1,(f1) = x,(f2) = yand
(2f1+ S fa+ fa) = 2x2S Jy2 Thus,

y2

NI

= span 1,x,y,2x> S

The interpolating polynomials in the previous example converge to these a$.

We are now ready to dePne a lattice-based multispace in several variables.

4.3 Multispaces in Several Variables

We debne two related versions of multispace, the brst containing the jet bundle
J (M, R) and the second containing the jet bundlgU, M) whereU RP is
open.

We brst recall that a point in the jet bundlé(M, R) is represented by a triple
[x, f,U]; wherex U M, the setJ is open, andf : U R, is aC function.
We say that the tripl¢x, f,U]; [ x, f,U ]y if x = x and if, in some coordinate
chart containing, f and f have the same derivatives up to ordef26, p. 60]. The
equivalence clasi, f, U] is known as the-jet of f atx. If T, (f)(x) is the order
r Taylor polynomial of the (sufbciently smooth) functidnat x, then[x, f, U],
[x, T (f)(x), U];, so we speak off; (f)(x) as being the-jet of f at x. Further,
the coefbcients of theth-order Taylor polynomials form local coordinates of the jet
bundled" (M, R). Itis this construction that we generalise brst.

To construct our multispace which both contains and generalises the jet space
J (M, R), we proceed as follows:

1. We brst debne the kinds of latticeghat we will take as the models of domains for
a mixed discrete-continuous jet at a point\h They will be sets of points id P
with Odirectional multiplicitiesO or more precisely, Orequired contact conditionsO
attached. Our model lattices will come equipped with a base point. We show
further that these models have the properties required for the de Boor and Ron
interpolation of functions on them to be smooth, both as theirimadisvaried
and under coalescence.

2. Next, for a model lattice ZP RP,we letU RP be an open set, diffeo-
morphic to the unit disc ilRP, containing . Let be a diffeomorphic map of
Uinto M,andf : (U) R a function. Our multijet will then be an equiv-

alence class of quadruplgs , f,U], where[, , f,U] [ , ,fU],if

the base pointsof() and ( ) agree;if () = ( ) as sets; if whenever

uj = (x3) = (x3) the required contact conditions o3 andx ; are the
Elol:;ﬂ
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coalesce 1 w=(1,0)

‘ Xy => X
[

Fig. 11 After coalescence, the zeroth-order contact condition atis replaced byD(f )|u;(v) =
D(f)luy(v) wherev = D() [x;(w)

same; and if the contact conditions induced 6 by those on are all zero
when evaluated offi S f , see Figl1l

. Finally, the multispace bbre ovewill be dePned as the union of all equivalence
classes of multispace jets with base pain®ur coordinates on the bbre are those
which assign to each, , f, U], both the coefbcients of the image ofand the
coefbcients of the de Boor and Ron interpolant polynomial. In this way, we have
the usual bundle topology on our multispace which relates naturally to both local
coordinates oM and to the coordinates on the Pbre oxe®©ur multispace con-
tains the jetbundld (M, R) for each , as an embedded submanifold, specibcally
as multijets where the lattice is a single point with multiplici (the number
of derivative terms up to orderon p-space), and the interpolation is given by the

th order Taylor polynomial.

w

The second multispace we will debne, containing, M) where isanopen set
of RP, is related to the prst, by considering the functigrin the above construction,
to be each of the coordinate functions lgn evaluated on the image bf.

4.3.1 Basic De nitions

As before, from now on we will assume that our lattices are connected.

De nition 4.11 We say the lattice has an -corner distribution or a corner distri-
bution of length , if it has the following inductive description:
If p= 1, thelattice is a connected lattice witt 1 vertices. Notice that the number
refers to the degree of the derivative one gets when all points coalesce into one point,
not to the number of points in the sublattice.

EOE';W
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Fig. 12 Corner lattices will
allow the debpnition of bnite
differences needed to
approximate a Taylor
polynomial

Xo Xo

Fig. 13 Aforwardp = 3
corner lattice of length = 3

For anyp the lattice is a connected lattice containing 1, (p S 1)-dimensional
disjoint corner lattices of lengths, @, ..., . Figure 12 shows four corner lattices
for p = 2 of lengths 4, 3, 2 and 2 (clockwise from the prst quadrant). Fig@re
shows a forwardp = 3 corner distribution. We will consider corner lattices with a
distinguished poinko.

Corner distributions contain exactly enough points to debne interpolating poly-
nomials that will converge to Taylor polynomials upon coalescing. For example, if
p= 2,and = 2, andug is the base point, a possible interpolating polynomial will
have coefbcients which are a linear combination of the terms

1, xf(uoo) yf(uoo) %f(uoo) §f(uoo) y xf(Uoo)

where  x|u,, IS the operator x|u,,(f) = f(ugo) S f(uo,0), and similarly with
ylugo- TO be able to uniquely determine an interpolating polynomial with those
coefpbcients we will need to use all the vertices in a corner distribution like the one in
the Prst quadrant of Fid.2, with length = 2 instead of 3. Different corner lattices
will produce different types of interpolating polynomials, using forward, backwards
or other types of differences.
Elol:;ﬂ
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From now on we will assume that all latticeshave a corner distribution of length
with base poinkg. When several lattices are involved we will denote the base point
of byx andthe base pointof) byu = (x).

Lemma 4.12 Assume our data is given by evaluating a function on the points of a
corner lattice of length . Then

Proof Consider the monomials corresponding to polynomials of ord@&hat is all
monomials of the formx! where|l| is a multi-index! = (ig,...,ip) and

x'=xt... x'pp. We want to show that these monomials are generators foil hus,

we want to show that they generate, where f is any possible linear combination

of e %, . Therefore, it sufpces to show that the coefpcients of the monomials

x' 1] , in the Taylor expansions &f * form an invertible matrix. Notice that we

have the same number of monomials as points and hence the matrix is square.
Next, notice that the coefbcients of these Taylor expansions are multiples of the

monomials themselves evaluated at the poifgince we are simply substituting

by ix; in the expansion). Therefore, the matrix of coefpcients is given by a multiple

of the matrix with rowg '), , where ! has the different monomials in some
prescribed order. This means that if the matrix were not to be invertible, we would
have a combination | a '= 0foray R which will be valid for all . That

is, the points in lie in an algebraic variety of order.

But this is not possible: Our points lie on+ 1 distinct hyperplanes, andof them
contain enough points to make the hyperplane unique (only one of them contains a
single pointand does not determine it). That means the polynomial must factor through
the linear equations that debne the hyperplanes and must have at least. @der
the extra single point left does not belong to any of the hyperplanes, and hence to
ensure the point also lies in the variety we will need to use a polynomial of order at
least + 1. Therefore, the matrix of coefpcients is invertible and

This lemma ensures that property (2) in TheoreB8is satisbPed when we use corner
lattices. Next, we consider coalescence of the pointsin the lattice, leading to achangein
the lattice, an increase in the contact order and to our Lagrange interpolation becoming
a Hermite interpolation. We restrict the coalesce to be along coordinate hyperplanes
in the model lattices; we call these kinds of coalescdnygerplane coalescencBee
Fig. 14. Forbidden coalescences are also illustrated inTH5giWe note that hyperplane
coalescence maintains the basepoint of the lattice, although not in general the contact
condition there. Coalescence means, in effect, that we consider some lattice points to
not be distinct.

Since we want the multispace to be closed under hyperplane coalescence, we
consider coalesced model lattices to come equipped with certain required contact

FoC Tl
u o
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\
R
Jq/T 0

Fig. 14 Corner lattices under repeated coalescence of hyperplanes, indicdtiedhgrrows A red arrow
indicates a zeroth- and a prst-order contact condition is required at that point in the interpolatian, an
indicates a zeroth-, brst- and second-order contact conditilanaindicates all zeroth-, brst- and second-
order contact conditions in the plane are required. 3tpgared pointare the base points (Color bgure

online)
3‘ N -
|
RN
173}

Fig.15 Examples of forbidden coalescence. We restrict coalescence to being along coordinate hyperplanes,
which maintains a coordinate structure

conditions specibed at particular points of the lattice. Suppose two paipntnd

u; = up + hv coalesce ab 0. Then the interpolation goes from matching the
values of the functiorf atup anduy, to matching the value$(ug) andD( )|y, (V).
See Figll
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Repeated coalescence leads to higher-order Hermite interpolation problems. If you
begin with a corner lattice and coalesce along hyperplanes repeatedly, you will arrive
at a single point at which the interpolation for a functiénis simply the Taylor
polynomial for f, with the order of the Taylor polynomial being the length of the
corner lattice. In this way, the jet bundle (M, R) is a subset of our multispace. See

Fig. 14.
From now on we will abuse the notation and denote the (coalesced) model lattice
also as and the contact conditions on it I8} ) . Under the map : U M,

() inherits contact conditions which we will denote 6§ ( ))
The result of Lemmd.12remains unchanged under coalescence, as shown in the
next lemma.

Lemma 4.13 Assume is a hyperplane coalesced corner lattice of lengthThen

Proof We can show this by induction. Assume that=  ;+ hg approaches; along

theg direction, that is, ab 0, forJ , J (that is for those data points in a
hyperplane coalescing into another onegand are indexing the two hyperplanes).
Except for the coalescing of a corner, we would have more than one point coalescing
into one since we are using limits of hyperplanes. That is, for a givere will have

more than one limiting it. Once more we want to prove that the coefbcients of the

monomialsx' in the expansion of exp - x), forany = 5 andx; exp( 5 -x) fora
givenJ , and anyJ related under the limit, debne an invertible matrix. Let us
bxJ and let us number those limiting as j, j = 1,..., p. Asin the proof of

Lemma4.12 the coefbcient at' in exp( ; - ) is given by i'/ I'1, and one can directly
check that the coefbcient &f in x; exp( j - x) is given by

1 3¢,
TR

if 1= (ki,...,kp)andl Se = (ky,..., kiS1,...,kp),forj J.Assumethatthe
matrix formed by these coefbcients is notinvertible. It means that there is a polynomial
of degree of the form
arx! (14)
I

that vanishes on all except for j. As we saw in the proof of Lemmé.12,

we would need an-order polynomial to describe a polynomial vanishing on those
points, given by the product oflinear equations representing thayperplanes (one

of them will not be unique if it corresponds to a corner, since it is determined only
by one point, but we can just make any choice). Now, if the lemma were not true, we
would additionally need to satisfy the relation
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coordinate
chartin M

R f'
f
. X (V)
Fig. 16 The data for a multispace element. The bgure shows funcfiamsl f which agree on the contact
conditions at the lattice pointy,) .Wehavd, , f,U] [ ,, f, 6 U]
ay ;saki =0,

wherel = (kg, ..., kp). This is simply the derivative of the polynomial4) with
respect tog;. Thus, the polynomiall{d) needs to have order of contact 2 at the points
onthe hyperplane that coalesced, Typically one would need a second-order polynomial
along the hyperplane to achieve that, which would increase the degre$ tf ( + 1.

Higher orders of contact would result from a higher number of coalescing hyperplanes
and the order of the polynomial would generically increase accordingly, proving the
lemma.

The dePnition of elements of our multispace as equivalence classes of functions
which agree on images of lattices, is illustrated in Hi§.

De nition 4.14 We debne the multispa¢h!, R)(p) asthe setof equivalence classes of
quadruples, , f,U],where(, C()) isa (possibly hyperplane coalesced) corner
lattice of length ; U is an open set dRP forsomep  dim(M), diffeomorphic to the
unit disc and containing ; the map : U M is an embedding df into a single
coordinate chart oM, and the magf : (U) R is smooth of order. We say two
quadruples are equivaleft, , f,U] [ ,f, ,U], ifthe base pointsof() |,

( )agree thatis(x )= (x ),if () = (), C() =4 () and

Elol:;ﬂ

123 L3043



Found Comput Math

the contact conditions evaluate to zero bi$ f , that is, bothf and f satisfy the
same contact conditions on each vertex(9df . (We note the contact conditions are
linear.)

4.3.2 The Main Theorem: Multispaces are Manifolds Which Contain the Jet Bundle

Denote byl ,(M, R) the subset ofM, R)(p) given by non-coalesced lattices, that is a

lattice with zeroth-order contact conditions at every vertex. Denote aldg@, R)
the space of regular jets of maps frggedimensional submanifolds &l to R. The
main purpose of this section is to prove the following theorem.

Theorem 4.15 Let M be a manifold of dimension m. Then, there exists a topology
and a differential structure that makés, R)E)) into a smooth manifold of dimension
(m+1) p; , withthe jetspace M, R) as a smooth submanifold and with (M, R)

as an open submanifold.

Before we start proving the theorem we recall that the main difbculty in dePning
interpolating polynomials is determining the family of polynomials with which we
choose to interpolate. Once this is determined, the actual interpolating coefbcients
are simply given by the solution of a linear system of equations debPned by the equal-
ity conditions we need to satisfy at the chosen points. Therefore, they will change
smoothly insofar as the linear system (and hence the family of interpolating polyno-
mials) changes continuously. Lemn¥ag2and4.13together with Theorem.8show
that we are indeed in the smooth regime of the de Boor and Ron interpolation method.

Proof First of all, let us show thatM, R)(p) is a bundle over the manifold. Let us
call x the base point of . The Pbre oveu M is the set of equivalence classes,
[,, f,U] whereu satisbes( x ) = u. Debne : (M, R)(p) M to be the
projection map

([,, fLUh= (x)=u (15)

Letus brstrestrictth ,(M, R). In order to have a well-dePned coordinate labelling
onthe lattice, we need to describe an ordering on the vertices. The brst point will always
be the base point. Although any ordering will do, we can order them by induction: if
the lattice is one-dimensional we move from smallest coordinate to largest coordinate
in R. If the lattice is two-dimensional, then we order the hyperplanes from smallest
length to largest length, and then order in each hyperplane as in the one-dimensional
case. In addition to its place in the ordering of the lattice points, each point in the
lattice will have a coordinate M. Since the image of the lattice lies in a single
coordinate chart, these coordinates are consistent across the lattice, once the chart is
designated. Thus the dimension of the set of embedded IattitmspEs . This set

can be considered as a submanifold\dl, whereN = P* | with the subspace
topology, and evidently has coordinates in terms of the coordinatés.on
If the lattices are coalesced, the coalesced vertices will have repeated coordinates,
as many as the multiplicity requires. The set of coalesced lattices will have measure
zero since it is the level set of some functions depending on coordinates.
FolCT
u o
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If we now consider the relevant polynomial interpolatipn of a (sufpciently
smooth) functionf on the embedded image of the corner lattice, we bnd that it can be
described by P! coefbcients. Since, by constructign,, f,U] [ ,, ps, U],
we may add these coefbcients to the coordinates of the equivalence class. That these
coefbcients can be used as coordinates follows from knowing that we are in the regime
where the de Boor and Ron interpolation is unique and depends smoothly on the data,
and from the fact that the coordinates of interpolations on the coalesced lattices are
well behaved limit points of those on the non-coalesced lattices.

A simple counting tells us that we have, in tofah + 1) p; coordinates needed
to specify the equivalence class in each element of the Pbre.

The bundl€M, R)(p) is taken to be the disjoint union of the Pbres, anals in (L5)
is its projection. We may take the usual bundle topology given by the smoothness of
the local trivialisations debned by the coordinates

m(P* p+
v (MRY R x R(s)

which turns the space into a manifold. The mais clearly smooth since the basepoint
is simply the brst element in the list of lattice points.

We have already shown thag(M, R) (M, R)(p) , indeed, it is embedded as the
submanifold whose brst set of coordinates is the diagomaM N, whereN = p;')

We note the standard jet spacali{M, R) = J,(M, R).

Notice that if we perturb slightly an uncoalesced latticethe lattice will remain
uncoalesced, and so the subspace of classes of thg form f, U], with an unco-
alesced corner lattice, is open.

Remark 4.16Although we have required the image of a latticeMnto be within a
single coordinate chart d¥l, this restriction is perhaps not vital. The generalisation
requires, brstly, keeping track of which chart as well as the coordinate given by the
chart, in the lattice part of the coordinates for the multispace element. Secondly, it
requires the construction of interpolations which agree on intersections of coordinate
charts.

We now construct our second multispage, M)(p) , Where RP,p dimM,
which represents local approximations to embedded paramefrisatmanifolds in
M.

De nition 4.17 We debne the multispadg, M)(p) to be the set of equivalence
classes of triple$, , U] where U RP is a (possibly coalesced)
lattice of length ; U is an open setof  RP, diffeomorphic to the unit disc, where
U M is smooth of order and where ( U) is contained in a single coordi-
nate chart oM. We say two triples are equivalerft, , U] [ , ,U]ifthe
base points of , agree;if () = ( );ifC(()) =C ( ));andif (U)
and (U ) have the same order of contact (as submanifoldg))at as indicated by

aA()
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Theorem 4.18 Let M be a manifold of dimension m. There exists a topology and
a differential structure that make(s, M)(p) into a smooth manifold of dimension
2m P*

p
Proof The proof of this theorem is almost identical to that of Theorefrh In local
coordinatesirM, we canwrite = ( 1,..., m). Wewould then apply the processin
Theorem4.15to producem PT  coordinates that determine the lattice, phug’”
coordinates determining the interpolating polynomial ferwith data , for each
k= 1,..., m. The remainder of the proof is identical to that of Theoreih

The main purpose of our multispace construction is to show that a frame on a
multispace is simultaneously a frame on the jet bundle and a frame on the set of all
local lattice-based discretisations. We now proceed to discuss how the group action
on M induces a group action on multispace. We then show that a moving frame on
multispace is simultaneously a smooth and a discrete frame, with the smooth frame
being the limit of the discrete, and that the discrete MaurerbCartan invariants and their
syzygies coalesce to the smooth ones.

4.3.3 The Action of a Group aiM, R)(p)

Let G be a group acting oM x R,
Gx Mx R M x R.

Recall the equivalence classes(M, R)(p) have the form{, , f,U] where
U RP :U Mandf : (U) R.Thenforeacly G thereisaninduced
action on the mag, f) : U x (U) M x R given by(g-(, f))(x,2) =
g-((x), f(2).

Denotethe componentsgf(, f)tobeg-(, f)= ((g-(, ). (g-(, f))2)
M x R. Then the action o6 on (M, R)(p) is given by

g-[,, LUI=[.Cg-(, )un(g-(, )2 U]

We note thatg - (, f))1 may be an embedding only fgrin a neighbourhood of
the identity. In this case we would have a local group action as debnBdg)irSjnce
the action ofG on M x R preserves the order of contact, this action is independent of
the representative of the class and is thus well deDne{d/lorR)(p) .

If, in a particular applicatiorG acts only onM, one can extend to an action on
M x R by takingg - (z,t) = (g -z t), that is the identity action on tHe coordinate.

If isasingle pointso thdt, , f, U] is an element ofl,(M, R), the induced
action is the standard prolonged action, that is, as induced by the chain rule, while if
the lattice is uncoalesced and the group does not act on the paraR\gtes action

is the diagonal action oMN whereN = p;
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4.3.4 The Action of a Group dn, M)(p)
Let G be a group acting oM
Gx M M

andlef, , U] (, M), beanelementofourmultispace. SinceU M,
we may debng - :U M by (g- )( x) = g-((x)). Debne the action d& on
Mé) to be

g-[,, Ul=[, g, U]l

Again, since the action db onU x M preserves the order of contact, this action is
independent of the representative of the class and is thus well-debried M1)(p) .
Further, the action restricted t@,(, M) (¢, M)(p) is the standard prolonged
action induced by the chain rule.

Notice that one could consider more general action&ox U, but we will omit
it here to avoid further complications.

4.3.5 Moving Frames oM, R)(p) (s M)(p)

We are now in a familiar situation: we have a smooth maniftid R)(p) ,or(, M)(p)

and the action of a Lie group on it. Thus, we can investigate the use of the standard
moving frames method developed V] to establish the existence of a moving frame
for the multispace.

Assume the action of the group on (M, R)(p) , or(, M)(p) , IS such that the
existence of a local moving frame is guaranteed (see 34l et us choose a point
inL (M, R)(p) or (, M)(p) and letS be a section transverse to the orbit®f
throughL. Using the standard moving frame method, we would get a local moving
frame , debPnedforall (M, R)(p) ,or(, M)(p) in some neighbourhood &f, as
the group element such that LS. Thatis, is an equivariant continuous map

U (M,R)(p) G (resp. :U (, M)(p) G)
whereU is an open neighbourhood &f

Remark 4.19We note that there are results detailing conditions under which an action
on a jet bundle will become free and regular for a sufpciently large prolongation, that
is, by considering sufpciently high-order derivative terrhg.[A discussion of the
related results for a product action, under a sufpciently large number of products,
is given by Boutin §]. We conjecture that similar results will hold for actions on
multispace.

Before proving our results, we give a simple example. The brst example refers to
the multispace(R?, R)(l) .
FoCT
|_| o
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Example 4.20We consider the two-dimensional gro@= R* R acting onM x
R=R2x Ras(,) -(xy,u(x,y)=(x,y, u+ ).Wetake to be the identity
map for simplicity. At the corner lattice = {(Xo, Yo), (Xo + h, Vo), (X0, Yo + K)}

with (Xg, Yo) the base point, the multijet coordinates are the lattice coordinates, and
the coefbcients of the linear interpolant to some functiam these three points. The
interpolant is

PU(x, ¥) = A+ B-(xSx0) + C-(yS yo)
= u(Xo, Yo) + HGo* I yO; S u(xo, Yo)
+ U(XO' Yo + k) é U(XO, yo)
k

(xS xo)

(v S yo).

Thus the coordinates coming from the interpolant are

u(xo + h, yo) S u(xo, Yo) U(Xo, Yo+ K) S u(xo, Yo)

(A, B,C) = u(xo, Yo), h , "

We see that the coefbcients are functions af the lattice points and so the induced
group action on these coordinates is the natural action on functions. We thus have

(,) ‘(AB,C)=( A+, B, C).

Under coalescencé uyx andB uy, and the group action is indeed then that
obtained via prolongation (i.e. the chain rule) on the jet coordinates.

Remark 4.21(The restriction of a multispace frame to the embedded jet bundle de nes

a smooth framgln the above example, we have given the normalisation equations as
being for the uncoalesced lattice. The normalisation equations for the frame on the
coalesced lattices and the embedded jet bundle are given implicitly by the relevant
continuum limit (if this does not exist, or the result is not smooth on all multispace,
then we do not have a frame on multispace). We note that normalisation equations for a
frame on multispace in a domain which includes the embedded jet bundle, necessarily
debnes normalisation equations for a smooth frame on the embedded jet bundle, by
restriction, even where their debnition is given implicitly by a continuum limit. This

is illustrated in Exampld.23

Theorem 4.22 Assume is a local moving frame for the action of G ¢, R)(p)
(resp.(, M)p) determined by a section transverse to an orbit of G. Assume that

the section is also transverse to the orbit through a point LJ,()) (M, R) (resp.
J (, M)),thatis, the domain of the multispace frame includes L.

Denote by ( Q) the multispace frame at Q, and kiyL) the smooth moving frame
which is obtained by the restriction of the normalisation equations féo the jet
space, evaluated at L. If L and Q have the same base point, then as Q coalesces to
L,

(Q (L)
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Proof We prove the result fafM, R)(p) , the other case being similar. Notice th@t.)
is the standard moving frame on jet spaces obtained through a section transverse to
the prolonged orbits, which is the multispace section restricted to the jet bundle. We
note thatJ,(M, R) is a submanifold oM, R)(p) , invariant under the action of the
group, so that the orbit d through a point.  J,(M, R) is equal to the prolonged
orbit.

The proof is now immediate from the fact that the moving framé¢n R)(p) isa
smooth map.

In Appendix, we will show a different convergence theorem for families of discrete
frames.

Example 4.23Continuing with our previous Examplé.20, a moving frame is
debPned by, ) -(A,B,C) = (0,1, ) where will be the invariant(, ) -C| .

. . o h , .
This yields(, ) | e Ryas e S Toer a9 or in the standard
matrix representation of this group,

h < hu(xo, Yo)
= U(xo+h, Vogs u(xo, Yo)  Uu(xo+ h, 3110) S u(xo, Yo) - (16)

We sawthatah 0, we obtain the correct induced group actiorugnWe now see
further that the limiting frame

1 .u
(X, U ux) = uyx Uy (17)
0 1

is obtained both from the limit of the normalisation equatigns) -(ux, u) = (1, 0)

as well as being the limit of the frame itself. We therefore have a frame on multispace,
so that both the discrete and the smooth cases are handled by the one calculation of
the frame on multispace.

4.4 The Continuous Limit of Invariants and Syzygies

We return to our discussion of discrete moving frames in the previous section, in which
we have a lattice variety y embedded in some manifold, and a discrete frame is a
map Ly GN whereN is the number of points in the lattice. Suppose now that
adjacent vertices in the lattice variety begin to coalesce. Under what conditions will
the discrete frame converge to a smooth fran®eFurthermore, under what kinds of
conditions will we have

w1 21 T(z+ v) (251 exp (D7) St (18)

whereD is an invariant differential operator? And when will the discrete local syzygies
converge to the local differential syzygies?

Elol:;ﬂ
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Example 4.24Let us go back to our running Examp#e20 Setting | = (X,
Vi, u(xi, i), u(xi + hi, yi), u(x,yi + ki)) and calculating 1 gl, we have, using
Eqg. 16),

‘o hi(u(xo + ho, Yo) S u(xo, Yo)  h1(u(Xo, Yo) S u(xa, y1)
10 = ho(u(xy+ hy, %1) S u(xq, y1)) u(xgy+ hy, Y11) S u(x1, y1)

If we now set(x1, y1) = (Xo+ h, yo) andho = h; = h (say), so that the second lattice
is the shift of the brst, bgh, 0), then

d _ S1
dn h=0 1o
& Ux(xo+ h, yo) S ux(Xo, Yo) & hux(Xo, Yo)
= u(xo + h, y8) S u(xo, Yo)  u(xp+ h, y8) S u(Xo, Yo)
 Uyx "
h o Uy (%00 S1
0 0
= x Hazmy-

Alternatively, using the method we will apply in Exam@l£9 we have setting(x +

h,y) = u(x, y) + hug(x, y) + O(h?), that

s1
1o
) & ux(Xo + h, yo)§ ux(Xo, Yo) =~ 0 hUx(XOLYO) h+ o)
= u(xo + h, yo) Sou(xo' Yo) U(xo+ h,yo) S ung, Yo)
_ g U0t h ) S ux(X0, Y0) & hux (X0, Yo)
exp h u(Xp + h, y8) S u(xo, Yo)  U(Xo+ h, y8) S u(Xo, Yo)
exp h x St (19)

as above. We note that x is an invariant operator since the independent variables
are invariant under the action, so that >1 s invariant. Cases where the independent
variables participate in the action require more care, as we indicate below.

Our brsttheorem concerns the convergence of the discrete MaurerbCartan invariants
to the smooth MaurerbCartan invariants of the smooth frame.

We consider the case where the discrete framg on the lattice variety. n M
can be viewed as a multispace framewith

3= ([ a,, U], us= (xy),

wherex is the basepoint of ;.
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Assume the poinT;x; is also part of j so thatTiuy = ( Tixy). If we have a
path fromT; (uy) touj in the multispace indicating their coalescence, we can use the
multispace frame to differentiaig( ;) ?1 with respect to the path parameteuat
We state and prove the next theorem for a multispace of the¥brm (, M), and
then we discuss the other case in Renagé

Theorem 4.25 Let a multispacéM with the embedded jet bundle be given. Let a
pathinM begiven, [ (),, U]for0 1. Let W) be the base point of
(()) . Assume that both paths and the coalesce¢s) ( o) lieiin the
domain of a multispace frame Set () = ([ (), , U]),thatis, evaluated at
the point[ (), , U].lfv=d/d | =ou(), then

d -« -
lim  — sl = (D st 20
Jmo s O SO = (0M) (20)
where Ov) =  v; / ¥ is the directional derivative.

The theorem follows from standard results concerning smooth functions on mani-
folds.

Remark 4.26For a multispace of the forrt = (M, R)(p) , it is possible that the
independent variables participate in the group action, and(t@én) ) >! may not

be invariant. We recall that a smooth frame on a jet bundle yields a canonical, maximal
set of invariant differential operators. Indeed, on a manifold with coordinatés

g-u = u, then we debne

u
Dj= — = — — (21)
Ui g= u i 9= U

Rewriting the partial derivatives irR(Q) in terms of the invariantised derivatives, by
inverting Eq. @1), yields an expression from which the right hand side of B®) (
may be obtained, provided we are careful about the curveu() used in Theorem
4.25t0 obtainv.

Consider the example of a scaling action on a single independent variathe, so
is the positive real line, an@ is the group of positive real numbers under standard
multiplication. Supposef : M R is invariant under the group action. Let the
frame be given by([, , f,U]) = 1/u whereu is the image of the basepoint of

. Then the single invariant operatorud u. If we take our path of coalescence to
beu() = u+ ,thenD(v) in the statement of the Theorem will not be invariant.
However, if we takau() = (1+ )u, then it will be.

Suppose thaD(v) = ;vi / uj. Inverting Eq. R1) yields expressions of the
form / ui = | AkDy, so that
D(v)= vi AxDx= ViAk Dk= WDk = D(V)
[ k kKoo k
FoL Tl
e
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where the last equality debnes the veetdfo ensure thad (V) is an invariant direc-
tional derivative, we must have that the components arfe either constants or more
generally, invariants. 3

We note that for the operatoB debned in21), thatD; 5! can be calculated
using only the equations for the transverse section that determines the frame and the
inbnitesimal action, se@&§] for details.

Example 4.27(Special Euclidean group action on curves in the plafiee group is
SO2) R 2with the standard linear action of translation and rotation of curves on the
plane, specibcally,

x(t) x(t) _  cos sin x(t)S a
y(t) y(t) ~ Ssin cos u(t)Sb

If one takes the standard matrix representation of23OR 2, so that the action
involves the inverse of the group element, then the equivariance of the frame will be
(9-9=9(2).
The multispace frame calculation is as follows. We take an order 2 interpolation as
we wish to achieve a multispace approximation of the curvature. If we interpolate the
curve(x(t), u(t)) at ={to, to + hq, tg + ho} with base pointg, we get

A(X) + B(x).(t S tg) + %C(x).(t S tg)?

o) (h% S h2)x(to) + h3x(to + hy) § hix(to + hy)
5 _haha(h2 S hy)
L (n2S h)x(to) S hax(to + h1) + hax(to + ho)
hiha(h2 S hy)

p(x(t))

(t S to)

(t S t0)?,

and similarly forp(u(t)) = A(u) + B(u).(t S to) + 2C(u).(t S to)?. The induced
action on the coefbcients is that induced(&(t), u(t)) so for example

(hf S h3)g - u(tg) + h3g - u(to + ha) S hig - u(to + hy)
hiha(h2 S hy)

(h2 S h3)(cos (x(to) S a) + sin (u(to) S b))

9-B(u) =

-
~ hiha(hz S hy)
+ h3(cos (x(to + h1) S a) + sin (u(to+ hy) S b))

S h3(cos (x(to + h2) S a) + sin (u(to+ hz) S b)) .

The normalisation equatiorts- A(x) = 0,9 - A(u) = 0 andg - B(u) = 0 yield the
frame at to be

(h? S h2)u(te) + h3u(to + h1) S h2u(ty + hy)
a= x(tp), b= u(tg), tan = h;S hg hg T h; -
( 1 2)X(to) + 2X(t0+ 1) 1X(t0+ 2)

EOE';W
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In the limit asho h1, we have

ut(to+ h1) S 2u(to + h1) + 2u(to)

t _
A X+ hy) S 2x(to + hy) + 2x(to)

and then bnally aB; 0, we have tan Ut/ x; as expected, indeed, yielding the
smooth frame as determined by the limit of the normalisation equations.

If we take the standard matrix representation of(30 R 2 to represent the
frame, with the equivariance as above, then the invariant Maurer-Cartan matrix will be
([ ,u,, UDSL([, u,, U]),andthe components of this yield the discrete mul-

tispace MaurerbCartan invariants for this frame. Furthe3(x) xt2 + ut2 vz
so that we may treat - B(x) as the multispace approximation to the inpnitesimal
arc-length.

In the above example, we used an invariant parameterdescribe the curve
(x(t), u(t)). If instead we parametrise the curve (@ u(x)), so that the parame-
ter participates in the group action and the operatorx is not invariant, then
greater care is required. For example, the group action on the interpolation curve,
written asp(u)(x) = A(x,u) + B(x, u)(x S xg) + C(x, u)(x S xo)?, looks like
g- p(u)(x) = A(x, u) + B(x, u)(x S xg) + C(x, u)(x S x0)2. Solving for the multi-
space frame in this case seems nontrivial. Such examples will be examined elsewhere.

Now assume we have four lattice pointy, Tiuy, Touy andToTiug = TiTouy,
and that we have two paths connectingwith ToTiuy = T1Touj viaeach of thdquy
andT,u, respectively. If we can associate the discrete frame with a multispace frame
and differentiate the local syzygy associated with the discrete frame with respect
to the path parameters ay, we obtain the differential syzygy associated with the
multispace frame at;. Indeed, let a discrete franfe;) at the pointaiy, Tiuy, Touy
andT;Tou; be associated with the multispace frameo that ; = ( z3) for some
z3=[ 3, , Ulinthe relevant multispadd ,uj = ( xj). Then, the local syzygy
is

Ti(K2)K1 = To(K1)Ka,  Ki= (Tizg) (23)3Y, Ka= (Taz) (2)%%,
(22)
whereTiz; = [T; 3, , U] andT; j isthe shift of j by T, with base poinfT; x;
andTiug = (Tix3) = ( XJ+g). Here we are assuming that the shifts gfremain
within U. Now !etz'J( i) b_e paths in the mqltispace Iyir_lg WitHiﬂ_l, with Z;(0) = z3,
zy(1) = Tizyg,zy( i) =[ 5(i), , Ulanduj( i) = (xj(i)),x;( i)the base point
of (i). We denote

d

_ d 1 _ 2
V=g U ws o ()
and
Kvz & (B ()% Ku= & (Z(2) ()5
dq 1=0 J ' do 2=0 J
Elol:;ﬂ
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We assume that the parametrisation of these paths with respegfietd invariant
differential operators in the case where the independent variables participate in the
group action, see Rema#?26

Theorem 4.28 After differentiating twice, once each with respect to the path parame-
ters 1and > and coalescencing the lattice of the multispace pojrtbats associated

jet point, and under the conditions just stated, the local syzygy22).becomes the
continuous basic syzygy associated(ta;)

DW)Ky = D(V)Ky + ([D(W), D(v)] ) S*+[Ky, Ku]. (23)

Proof The core of the proof is standard. We assume a matrix representation of the
frame, and note that TaylorOs Theorem is valid.
To ease the notation, we set = h and 2 = k, and simplify to wherev =
d/ dh|p=0 ( X0+ her) andw = d/ dk|x=0 ( X0 + ke2) in local coordinates, so that we
evaluate our frame at the multispace elements with lattice basepoings=at ( Xo),
Tiug = uy1= (Xo+ hep), Taug = uj2 = ( X+ kep) andToTaug = Uj1,2 =
uj21= (Xo+ her+ kep). We denote the partial derivative operatdrs ; as j.
DenotingT; 5= 3, we have

_ 81 _ 81
Kii= 3135 Kiz= 352 37,

and for sufbciently smal andk, there will exist, dropping the inde for clarity,
matricesX1 and X» in the Lie algebra ot such that

Ki=exp hX;+ O(h?) , Ko=exp kXo+ O(K?) .

We have . 3
1 - Sl= X, o - tl= X (24)

and
ToX1= X1+ k 2Xg+ O(K?), TiXa= Xo+ h 1Xo+ O(h?).
Then
ToKy = exp hToX1+ O(h?)

exp hXy+ hk 2X1 + O(Kk?, h?)

T1iKo = exp kTiXo + O(K?)

exp kXa+ hk 1Xo+ O(K%, h?) .
Applying the BakerbCampbellDHausdorff formug] [

log(exp(X) exp(Y)) = X+ Y + %[X, Y]+ higher order brackets

123 254
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we have

|Og(T2K1 : Kz)) hX1+ hk oX1 + kX + %[hx1+ hk 2X1, sz] + O(kz, hz)
hX1+ kXo+ hk 2Xg+ 3[Xq, X2] + O(K?, h?),
kX2 + hk 1X2+ hX1 + 3 [kX2 + hk 1Xp, hX1] + O(k?, h?)

hX1+ kXo+ hk 1Xp+ 2[X2, X1] + O(K? h?).

log(T1K2 - K1))

Equating the two formulae by imposing the local syzygy, differentiating with respect
to bothh andk and then sending, k 0, yields, after a slight rearrangement,

2X1S 1X2= [X2, X4]. (25)

Finally, we need to rewrite Eq26) in terms of the invariant differential operators.
The formula given in Eq.41) shows that the partial derivatives can be written as

a linear sum of the invariant operators with invariant coefbcients. We must then back
substitute for thej, including rewriting theX; = | - Slintermsofthed; - S1.

The Pnal result yields the extra terms in the case that the invariant operators do not
commute.

Example 4.29We conclude the running Examp#e20 We set the point§x;, vi),
i = 1,23t be(x1,y1) = (Xo+ h yo), (X2, ¥2) = (X0, Yo + k). and(x3, y3) =
(X0 + h, yo + k). We then calculate the four matricé$;o = 1 gl = exp(X10),

Ka1 = 3 7%= exp(Xa1), Ko = 2 5% = exp(Xzo) andKzp = 3 5% =

exp(Xs2). Direct calculation gives, setting1F = F(Xo + h, yo) S F(xo, Yo) for a
functionF  { u, ux, Uy, uxy} in the formulae to ease the notation,

o 1Ux Ux(Xo, Yo)
X10=Sh U U + 0(h?)
0 0
o 1Uy Uy(Xo, Yo)
Xo0=8k ~u qu_ +O®K)
0 0

X31= X20S WXgl + O(I’_lz, IZZ)
. 1Ux Uy +  1Uxy 21U hUy 1Ux + Uxy 1U
= X20S hk ( 1u)2 ( 1u)2 + O(h%, k?)
0 0
X32= X105 hkXz2+ O(h?, k?)
L 1Ux Uy +  1Uxy 21U h Ux 1Uy+ Uxy 1U
= X108 hk ( 1u)? ( 1u)? + O(h%, k?)

where this debPneX31 andX3». The local syzygy iK31K10 = Ks2K20, and applying
the BakerbCampbellbHausdorff formula to this yields
Elol:;ﬂ
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1 1
X10+ X311+ E[X:Bly X10] = Xz2+ X0+ E[st’ X20] + O(h?, k).
The equation for the lower order terms simplibes to
X32S Xa1 = [ X10, X20]. (26)

This last equation is straightforward to verify. Finally, taking the limithas 0,
Eqg. (26) yields the differential syzygy for evaluated on the jet bundle,
o SHIES S1 _

X y —[y » X

y X
where recall on the jet bundle is given in EqLY).

Similar relationships exist when we take limits only in one of the variables, produc-
ing an evolution of discrete submanifolds. For examplp,# 2 andShas coordinates
(X, ), thenifKl ) = ji6,(2)) (z3)tandNy = $(K;)KS?, then when we take
limits in the calculation in the proof of the theoremas ¢, X3 we have

d S1 & S1
ax (KO2KG, = Nave, S Ko NaK ()

which is a mixed syzygy that often appears describing invariant evolutions of polygons
in terms of coordinates in their moduli spaces, agii)47]. Among these evolutions

one often bnds completely integrable discretisations of well-known completely inte-

grable PDEs. These results are really key to some of the applications in our next
section.

5 Applications

5.1 Application to the Design of a Lagrangian for a Variational Numerical
Scheme for a Shallow Water System

This example is motivated by the need for bnite difference versions of variational
shallow water problems which are invariant under the so-called particle relabelling
symmetry. We consider the base space to have coordifeatbst), where(a, b) is

the Ruid particle label at time= 0. The two-dimensional dependent variable space
is(x,y) = (x(a, b, t), y(a, b, 1)), which is the position of the Ruid particle at tirhe

so that(x(a, b, 0), y(a, b, 0)) = (a, b). The particle relabelling action is given by

g-a= A(a,b), g-b= B(a,b), AsByS AyBa=1

together withg - X = x, g-y = yandg -t = t. It can be seen that the particle

relabelling group is the group of area preserving diffeomorphisms diaths plane

(or at least the domain of interest in tf@ b) plane). Further, it is known that the
EOE';W
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invariants of this group action ase y, t, and = XaYb S XpYa and its derivatives
under the invariant differential operators,

b g g% %
X a b y a

t b

The aim is to design a multispace version of the Lagrangian for variational shallow
water problems, which have the form,

LIX, yY1=  L(X ¥, Xt, Yt, XaYb S XpYa) dadbdt. (27)

This family of Lagrangians is each invariant under translations in time, translations
in both a andb, rotations in the(a, b) plane, and more generally, the full particle
relabelling group. NoetherOs Theoréy9,53] then yields conservation of energy,
linear and angular momenta, and potential vorticifl [

If we take the simplest corner lattice with base pdaat, b, to) to be

= { (a0, bo, t0), (a1, b1, to), (a2, bz, to), (as, bs, t1)}
then the (linear) interpolation of is given by
x(a,b,t)  x(ao, bo, to) + M (xa)(a$ ao) + M (xp)(bS bo) + M (xt)(t S to)

where this debnes the coefbciektyxk ), and we have

1 x(ao, bo, to) bo 1 1ao x(ao, bo, to)
M (xa) = — 1x(a1,bi,to) bt , M (xp) = — 1ag x(ag, by, to)
1 x(ag, b, to) by 1 ap x(ay, by, to)
and
1 ap bg x(ag, bo, to)
1 1 a3 by x(ay, by, to)
M (%) =
(x) (t1 S to)A 1 a bz x(ag, bz, to)
1 ag b3 x(ag, bs, t1)
where
1ag by
A= l1a bl
la bz

is the areal(a; S ap, b1 S by) (a2 S ag, by S bp)|. The interpolant fory is similar,
with y(a;, by, tj) replacingx(a;, bi, t;) in the above formulae.

Elol:;ﬂ
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We consider the Lie group $2) R 2 acting on thea, b) plane as the standard
(right) equiafbne action,

a g-a _ S asS 1
b g-b = S bS 2
sothat( 1, ») R?is the translation vector, and S = 1,and thag - x = X,

g-yandg-t = t. This group is contained within the particle relabelling symmetry
group, and is just big enough to obtain the area invariant, which we do next.
The induced action on the coefbcients in the interpolants is given by, for example,

1 x(ao, bo, to) g - bo
g-M (xa) = —~ 1x(az, b, to) g-bs1 ,
1 x(ap, b2, t0) g-bo

noting thatg - A = A, indeedA is an invariant as is easily seen.
We take the normalisation equatiogs (ag, bp) = (0,0),g-M (xa) = 1,9 -
M (Xp) = Oandg-M (ya) = 0. Then the multispace frame(is;, 2) = (ao, bp) and

S M (xa) M (xp)

% = M@ M
S MO MO

whereM () = M (xa)M (Yb)SM (xo)M (ya). Evaluating the remaining coefbcient
on the frame, we obtain the invariant,

(M (b)) = g-M (yb)

M ()
1 x(ao, bo, to) y(ao, bo, to)
— 1x(a, b1, t1) y(ag, by, t1) .
1 x(ag, bz, t2) y(az, by, t2)

Calculating the continuum limit o1 () we obtainXaYp S XpYa, Which is , the
area invariant, as expected. Further, the continuum limit of the frame is

Xa Xb
Ya Yo

XaYb S XoYa XaVb S XbYa

This is the smooth frame obtained with the smooth limit of the normalisation equations,
thatis{Xa = 1, Xp = 0, ya = O}.
We observe that botll (x;) andM (y;) are invariant under the equiafbne action.
Thus, we propose the multispace analogue of the Lagrangiaund be

M (LI yD)=  LYy,MX).,M(M),M() )A(tSt) (28)

123 2.
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Fig. 17 Length one lattices
stacked as a mesh, for a bnite
difference variational problem.
Shown here is single time slice
for the shallow water problem

where the sum is over all corner lattices stacked into a mesh, as ih#ighe factor
A (t1 S tp) is the multispace approximation of the volume forragddt, and is needed
to obtain the correct continuum limits for the conservation laws for energy and the
linear momenta.

Finite difference Euler Lagrange equations and NoetherOs conservation laws can be
calculated in the standard wad, 32, 33]; the details and the results of this calculation
will be explored elsewhere. Itis interesting to observe that the multispace Lagrangian,
(28) isinvariant under a discrete analogue of the particle relabelling symmetry. Indeed,
looking at Fig.17, one can use a different element of(8). R 2 on each basepoint
of each individual corner lattice, inducing an action on the whole of the corner lattice,
provided that certain consistency conditions hold, specibcally, that if a vertex is in
the intersection of two corner lattices, that their image under the two different group
elements is the same. The Lagrangi2®) (s clearly invariant under this discretisation
of the particle relabelling group, the discretisation being a subgrouplg?) R ? R
where R is the number of corner lattices on a time slice of the mesh. Using this
symmetry group to study the Lagrangian requires relaxing the assumption that we
use the same action of the group at every lattice (i.e. we relax the assumption of the
product action). This would require an extension of the theory developed in this paper,
which we consider elsewhere.

5.2 Discretisations of Completely Integrable PDEs

The geometry of curves and surfaces have been linked to integrable systems repeat-
edly in the literature, seef,45,58], for example. A drawback of the application of

the results in this paper to bPnding completely integrable discretisations of completely
integrable systems is that one needs to choose a type of approximation (forward, back-
wards, linear or higher order, etc) a priori to Pnd the limit. On the other hand, any
two choices of discrete moving frames (be the one associated with a certain type of
limit or any different one) will always be associated by a gauge transformation. This
means that if one Pnds a discrete integrable system associated with any given choice
of moving frame, one might be able to relate it to a different choice and perhaps link

it to the continuous case. This was done 47][ where the authors found discrete
integrable systems that were the discretisation of AdlerbGelOfandbDikii integrable
evolutions, both of them linked to the projective geometry of curves and polygons.
The authors 0f47] also found a way to obtain two Hamiltonian structures associated
with the discrete system through a reduction process, a process that was later extended
to other semisimple homogeneous spacedth Different approaches were used, for

Elol:;ﬂ
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example in B] and in other works of these authors to construct completely integrable
discretisations of integrable systems with the use of lattice models in Euclidean, pro-
jective and conformal geometry. Their approach is quite different from the one used in
[47] and in this paper, in that they choose lattices with different geometric properties
to achieve discretisations. The following are just some examples of the connection
between continuous and discrete models, in the equi-centro-afbne and the Euclidean
space. Both of these examples use mixed multispace discrete/continuous models, and
although the brst example only uses discrete coordinates to construct the multispace
moving frame, the second example will make full use of both.

5.2.1 Integrable Discretisations of Boussinesq Equations

In this example we make use of mixed differential/difference coordinates in the

multispace. For reasons that will become clear later, we will also assume that the
lattice variety has a monodromy in the discrete variable (a global property). That
iS, Un+T(t) = m - up(t) foranyn  Z, with T the period and some monodromy

m  SL(3, R). This ensures that the invariants will Beperiodic inn.

Continuous Case-irst we describe the situation when we are in continuous jets with
two parametergx, t). It is well known (see for exampleg]) that the Boussinesq
equations

1 2 L
(do)t + éql + §Q1ql =0, (qtS29,=0

where the prime denote¥ dx, can be obtained as the evolution induced on equi-
centro-afbne curvatures by a certain evolution of curves. Let our manifdwl beR3

with G = SL(3, R) acting linearly on it. WithinM consider parametrised surfaces
on(x, t). Thus, in this exampla(x,t) RS, unlike in previous examples when we
consider graphs of the for(x, y, u(x, y)). Hopefully this will not confuse the reader.
We will debne the following cross section:

‘u=e€, U=e€, U =de (29)

whereg are the standard unit vectors®¥. Clearlyd = det(u, u, u ). This dePnes
uniquely aright moving frame whoséeft companion is given by
S1_

—u,u,u
d

Let us assume that
d= defu ,u,u) =1, (30)

that is we will parametrise the surface so that the curves associatedl i are
parametrised by the equi-centro-afpne arc-length (these curves are in one-to-one cor-
respondence with projective curves, sék [n that case the lefk-MaurerbCartan
matrix associated with it is given by

FoCT

u o
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. 010
Q= ( %= ko1
ko 00

whereu = kiu + kou. Next we will gauge this frame to a different left frame
= Slgpy the element

100
g= 0 10
Sk 01

The resultingk-MaurerbCartan matrix is given by

3 3 010
K=g"%g+g°'Qg= 001
baO

wherea = k; andb = k» S k,. Gauging the system can be seen as changing the
coordinates, the results can always be gauged back to the original setting.
We will next consider the syzygy

. 2
uSu + :—%au: 0 (32)

which describes a precisely chosen evolutionary equation for curves whose 3ow will
be tracing our parametrised surface. With this condition, thetidfaurerbCartan
matrix is easily seen to be given by

é(W1+ 1/3a)wp 1

- S1  _
N = t = V1 wy O

Vo w, 1a

for some entriessj, w;. The local basic syzygies (or the compatibility condition
betweerx andt) are given by

Kt = Ny +[ K, N]

and they can be used to solve fdrso that

N

1 1 2 o~ .
wp = 0, w1=§a, Wy = b+ éa, vi=b+ éa, vz=SbS§a.

We can further bnd two more syzygies given by

N . 2 L 2
aS2bSa =0 b+ éa +b Séaa.
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This system of equations is equivalent to the Boussinesq equation. Indees,df
andb = 1q; S qo, we have

1 2 -
(Qo)t + 5y *+ 30t = 0. (d)tS20= 0
which is the standard Boussinesq equation.

Multispace CaseAssume now that we move in the multispace away from a continuous
jet to a mixed discrete/continuous multispace submanifold, wkesenow discrete
andt is continuous. Let us choose lattices containirg t), (Xn+ 1, t), (Xn+ 2, t) and
suchthak+1S X = X = cis constant for any. Thatis, we will restrict to lattices
with sides of equal length. The cross secti@f)(evaluated on lattices of this form
will be given by

. 1 .
“Un = €3, “(Un+r1 S up)/ c = ey, 'g(un+282Un+l+Un) =g

where 1= (1/c3) detf(un+2, Un+ 1, Un) andu; = u(x;,t). The left moving frame
associated with this cross section is given by

5 1 . 1 .
Stz g(un+2 S 2Up+1+ Un), E(Un+1 S up), Un
c2 0 0
= Up+2UnszUn S22 ¢3! 0
CSZ SCSl 1

which can clearly be gauged to
= Un+2,Un+1,Un .

The multispace subspac8Qj, when restricted to our partially coalesced lattices,
becomes
det{Un+ 2, Un+ 1, Un) = 2 (32)

for all n. Let us introduce one last gauge by the matrix
00

1
g= Sas110 ,
0 01

wherea, is to be found. Ifun+3 = kjun+2 + kjun+1 + up, then, the discrete-
MaurerbCartan matrix associated witke g is given by
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whereby, = k3 anda, = k;‘gl. As before, thé-MaurerBCartan matrix is given by

S n n n,.n

51 S(Wl: ry) W% r(r)1

Nn = n ( n)t = Vl Wl I’l
n n,g n

Vo Wy I

and the local basic syzygy is
KS$3(Kn)t = Nnv1 S KSINnKp.

This syzygy solves foN, in terms oft;

n+1.

n_ n+l. n_ n+l n+1+bnrn+1l Wg:ro :

wg = owy =)ttt anry

n_ .nS1 n+2 n+1
V] =1 +bn51r1, v2—r1 Sanr ,

and it provides the condition for preserving the restriction to the multispace subman-
ifold (32), namely

n+2 n+1 n n+2 n+1 _
ro" S+, T+ ry+ aneary “F bn+1r0 + bary” 7= 0. (33)

lfthe mapr)  r3*2+ r0*1+ 1D = (T2+ T + )rl is invertible (which is true if

N = 3sfor anys as shown in47]), this condition solves for}) in terms ofr ' andr .
The syzygy also describéa,); and(b,): to satisfy

(an)t = (1+ anbne)rg™ 28 (anbn Ml St
+ (bn + @nans )T 2 S (bnsar] + a2r]™ Y + anry* 2 S anrf
(bn)t = 1138 (bpane1ri™ 2+ r“) s (@n+1+ bbne 1)r]*2

S b2 Ml anrd S (bary* 2+ 2bri*h).

If further we impose the syzygy

. 2
(un)e + (Un+2S anUn+1) + U =0 (34)
nS1 3
then we can see thef = g1-,rf = Oandrf) =S (T2+ T + 1)SYT + 1)bn =S 2
is the solution of 83) for these ch0|ces Then
1 . 1
an)t = S
(@n): bhe1  bng2
(o) =& Tty B
n+1 nS1
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and the changes

& 1 é an+ 1

=S — =
bnbn+ 1bn+ 2 A bn bn+ 1

n

transform this equation in the integrable discretisation of Boussinesq

( nt= n( n+2é n&1)
(nt= n§1S n+ n( ne1S n§1)-

This system appears i29|.

It is not clear to us how to systematically connect integrable discrete systems and
evolutions of polygons as given b84). In the continuous case there is a general link
between Hamiltonian evolutions at the level of the invariants and evolution of curves on
geometric manifolds which are homogeneous of the fG/ri or (G R ")/ G with G
semisimple (see3,44)]), but the situation in the discrete case is not so clear in general.
In particular, the syzygies3() and (34) are not the restriction of the same syzygy on
different points in the multispace, even when we account for all the different changes
introduced by gauges. Still, it is widely known that certain evolutions of polygons
result in completely integrable discrete systems (see, for exampie the Euclidean
case and3] in more cases with further restrictions on the lattices). The multispace
allows us to construct geometrically without the need to account for the limits. We
include one more example along these lines and further use of multispace in this area
will appear elsewhere.

5.2.2 Discretisation of the Sine—Gordon Equation

It is well known that the CodazziDMainardi equations for Euclidean surfadeg in
with constant negative Gauss curvature includes a SinebGordon equation, a well-
known completely integrable system, that decouples from the rest of the determining
equations for the surface. The CodazzibMainardi equations are simply syzygies for a
well-chosen moving frame, hence using the multispace framework we will be able to
Pnd a discretisation of the SinebGordon equation with strong geometric meaning as
determining mixed lattice/surfaces with negative Gauss curvature. It is not clear to us
whether the discretisation below is completely integrable as it becomes part of a system
of equations debning the lattice/surface, rather than decoupling to discretise Sineb
Gordon individually. A discrete SinebGordon equation on lattices was also debned in
[3], although the conditions that the authors imposed on their lattices are not impose
here. Further study on the connection between both approaches will appear elsewhere.
We review the continuous case brst.

Eol:;ﬂ
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5.2.3 Sine—-Gordon as Syzygy of Euclidean Surfaces with Constant Negative
Curvature

Let G be the Euclidean group represented as the subgroup ¢f, &)

9= (35)
wherev R3and  SQ(3). The group acts iR with the standard actiog - u =
u+ v which coincides with the one induced gy i . Letu(x, y) be a parametrised

surface and assume thatandy are normalised to measure the arc-length inxhe
andy direction. That is, assume thjats| = | uy| = 1. Let us dePne a moving frame
through the normalisations

-u=0, “Uyx = €y, “Uy = COS e + sin &

where is the angle formed byy anduy. Solving the equations we obtain that
v=S uand

T= ux g(uyScos u)n
wheren = sm s~ (ux x uy) is the standard normal unit vector determined by the
parametrisation. Using the traditional notatltm( Luc+ 2uy+ enuyy =

1 2 - 1
DUx+ Py + fn,uyy = Sux+ 22uy + gn, we can write the MaurerbCartan
matrices as

where
0 sn 2 e
N= x T= Ssin & 0 < (f Scos € (36)
Se 2L(fScos e 0
0 sn %, f
K = y T - ésin %2 ; 0 Sln (gS Ccos f) . (37)
St 2L(gScos f) 0
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Substituting these values in the local syzygy = Ny +[ K, N] and selecting th&3
component, we get the equation

S cos 0 0
0= Ssin S Ssin 2, +cos Ssin 2
0o Sf Se
sin 2,
+ sin 0

S1 &
s (f Scos g
The last entry is trivial, the Prst solves for the value

, S1
sin

11 — X

while the second one simplibes t@z = 0, whenever sin =0. The S@3) portion
of the syzygy is given by
Kx = Ny +[ K, N]. (38)

If we write down the equation that does not involve derivatives of the second funda-
mental form (the equations debPned by (he2) entry), we have

Sf . e .

; 2

= —(fS + —(gS f),
sin 1,7 sn ( Cos €) sin (gScos f)

which becomes

.1 3
xy =95 W(egs f2).

2
If K is the Gauss curvature, we know théat= EgSSfFZ, whereE = Jux| = G =

Juy] = 1andF = uy -uy = cos . Thus, the equation becomes

xy =S sin K

which is the SineBGordon equation whend<ds constant and negative.

Notice that this equation is not enough to determine the surface. Indeed, solving
for only determines the brst fundamental form (or metric), and the knowledge of the
Gauss curvature does not sufbce to determine the second fundamental form. Indeed,
one would need two more equations to do so, given by the two remaining entries
(1, 3) and(2, 3) of the S3) portion of the local syzygy, i.e38). Thus, the surface
is determined upon solving a system of 3 equations, one of which decouples and is
equal to SinebGordon.
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5.2.4 A Differential-Difference Sine—Gordon Evolution as a Syzygy of a Mixed
Smooth-Discrete Lattice

Assume we have a smooth family of polygons, ora mided)-lattice (one continuous
direction and one discrete one) of the foym y;+ 1 in they direction and continuous

1-jet in thex direction. As far as we use the same multispace cross section, we will
have guaranteed that discrete invariant data approximates the continuous one. Thus,
consider the transverse section

reUe = peu(X, %) =0, epux =] uxles

1 < I url
- -Tue S “Up) = ———Ww,
ylSyO( r r r I‘) yO r

where isasin@5); Tur = Ur+1 = U(X, Tyr) = u(X, yr+1); -p is the prolonged
actiongivenby r -pux =  Ux; andw; is a unit vector withw, = cos ey + sin e
where , = (x) is the angle betweem, and u,, ur = (T S 1)u,;. From here,
the multispace cross section debnes= S (ur, ruyx = Juxlerand  uy =

| ur]w;. With these choices the right moving frame becomes

10

r= v o Vi =S U
with
;r = tr Ny br
u 1 U
t = (r)x; P = — ' Scos t ; b =t xn.
1(ur)xl sin v | u]

From now on, and for convenience, we will drop the subindex to denote position unless
the situation is confusing, indicating a change in position by the application of the shift
operator TKu = ur+k). We will calculate thdeft MaurerDCartan matrices, the more
geometrically signibcant one (those in the continuous case are right ones). The left
MaurerbCartan matrices are given by

81 1.0 1 0 1 0

K= T

S u TuT T 7 | uwkK
whereK = T 51 and by

N= ( Sl)t: vl 0 0O O _ 0O O
S u Uy ( T)x Juxler N

whereN = ( Sl)X. The local syzygies are given by

(K)x= KTNS NK. (39)
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As we did in the continuous case, and to ensure convergence, we will restrict to the
submanifold of the multispace debned locally by

| ul
Jux] = 1 =1
" | vl
For simplicity we will restrict further to those lattices whdrey;| = for allr (and
hence] u|= ).
Equation 89) breaks into two equations, namely
w = Keg S Nw S eg (40)
Ki = KTNS NK. (41)
AssumeK factorises as 0
K=Y 01 (42)
with SO(2), for someY = exp é?/T g (this is always possible wheh is

closed enough to so thatK is closed enough to the identity). Assume further that

cosk S sink

) VvV
sink cosk

v andv denoting the two columns of. We will denote with a hat the transformation

(1)801 v = Jv, and sov = Jw. Finally, denoteN by
_ V4 _ 0 _ 1
N="g,70 T80 %7 oz (43)

With this notation 40) can be rewritten and simplibPed to equations

SSY‘V: Z-W (44)

W B = W-VECY VY W (45)
g 1 = S

x=8 + —(1ScoskScy-vy) (46)

wheres = I%I sin]y], c = ﬁz(cosllyl $ 1), and as usual’ = (yi, y»).

The remaining three equations that will determine the lattice/surface are given by
the three entries in theo(3) component 41). We will only reproduce the portion
corresponding to SinebGordon, that is (Bgl) entry of @1). After some long, but
straightforward algebraic manipulations, the equation becomes

ke + cdety, yx) = T Scos|y] + sdety, 2). (47)
EOE';W
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Looking at @7) and (36), and comparing it to42) and @3), we see that
sdetly, 2)

discretises the determinant of the brst two entries of the last column in®gthr(d
(36). That is,sdef(y, z) discretises

f e
(gS cos f) =2-(f Scos e

sin

det =S sin K

sin

wereK is the Gauss curvature of the surface. Therefore, we can debne

K=é.idet(y,z)-éL"yI

sin "7yl sin dety, 2)

to be the discrete Gauss curvature for the lattice/surface. Th@rhécomes
ke + cdet(y, yx) = T S cos]y] S sin K.

This will be a discretisation of SinebGordon, together with the other equations in the
system.
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Appendix: Equicontinuous Families of Discrete Frames

In this Appendix, we use the ArzelabAscoli Theorem to give a general convergence
result for an equicontinuous family of moving frames. This provides a rigorous foun-
dation to a variety of examples involving the discretisation of a smooth frame.

Let M be a manifold, and leG be a Lie group with local metrid. The setGM
consists of all continuous maps frdvhto G, and we give itthe compact-open topology,
debned as that generated by Pnite intersections of the so-called subbasic sets,

(AV)={f G"[f(A V}
whereA Misopenand/ G iscompact. A sequence of maps converging in this
topology is uniformly convergent on compact subsets.
De nition 6.1 A family F GM is said to beequicontinuousityy M if for all

> 0 there exists a neighbourhobidyg) M suchthatforall F,

(U(yo)) B((yo).,) ={g Gld(g, (yo)) < }
Elol:;ﬂ
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Theorem 6.2 Suppose that a family of left (resp. right) moving frarkes GM
satis es the following:

(1) F is equicontinuous on M, and
(2) the set

{(ynl F}

has compact closure for each y.

ThenF is a compact and equicontinuous family of moving frames.

Proof We give the proof foilF a family of left frames, the proof for right frames is
analogous. The conditions of the Theorem are precisely those of the ArzelabAscoli
Theorem, 15, XIl, Theorem 6.4], which yields that the family is compact and
equicontinuous. We need only show that its elements are also equivariant with respect
to the group action oM. Fixy M andf F, andlet > 0 be given. By the
dePnition of the closure of the sétand the continuity of the group action, there is

a F and a neighbourhodd of the identitye G such that foy U we have

bothd(f(g-y), (g-y) < 3 andd(g- f(y),g- (y))< 3 .Then

d(g- f(y), f(g-y) < d(f(g-y), (g-y)+d((g-y).9-f(y)

=d(f(g-y), (g-y)+d(g- (y).g-f(y)
<

so thatf is equivariant, as required.

Example 6.3Consider the scaling and translation actiorR3fgiven on a equivari-

ant family of Lipschitz continuous curvdg, y(x)) in the plane byg - (X, y(x)) =
(x,exp() y+ k). Asmooth frameisgivenbg-y = 0,g-yx = 1,or(exp(), k) =

(1/ yx, Syl yx); the domain of this frame hag > 0. Suppose now we wish to dis-
cretise this frame in a way that is compatible with the smooth frame and with forward
difference, thatign+1 = yn+ Yx. Then the discrete frame, would be obtained by

the normalisation equationg,- yn = 0,9 - ¥n+1 = , SO that

S ¥
Yn+1 S Yn, Yn+1S Yn

This family of frames is straightforwardly seen to be equicontinuous, to have the
smooth frame as its continuum limit, and to have the smooth MaurerbCartan invariants
as the limit of the discrete ones, provided the parametscales as the mesh size

Xn+ 1 S Xn.

References
1. N. Bila, E.L. Mansbeld and P.A. ClarksdBlymmetry group analysis of the shallow water and semi-
geostrophic system@uarterly journal of Mechanics and Applied Mathemat&$(2006), 95D123.
EOE';W

123 304



Found Comput Math

11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

23.

24.
25.

26.
. E. HubertDifferential Algebra for Derivations with Nontrivial Commutation Rylés of Pure and

28.
29.
30.
31.

32.

. G.Blumanand S. Kumegymmetries and Differential Equatignelume 154 oApplied Mathematical

SciencesSpringer Verlag, New York, 1989.

. A.l. Bobenko and Y.B. Suris. Discrete differential geometry. Consistency as integraBilitgiuate

Studies in Mathemati¢c§0l. 98. AMS, 2008.

. A. Bobenko and U. PinkalDiscrete surfaces with constant negative Gaussian curvature and the

Hirota equation J. Diff. Geometry3(1996), 527D611.

.M. Boutin,On orbit dimensions under a simultaneous Lie group action on n copies of a madifold

Lie Theory12 (2002), 1919203.

. A. Calini, T. Ivey and G. Mar’ BeffaAn integrable ow for starlike curves in centroaf ne space

Symmetry, Integrability and Geometry: Methods and Applicati®(®013), 022.

. f. Cartan, Oeuvres completes, Gauthier-Villiars, 1952D55.
. S.S. Chern and K. Tenenbl&seudo—spherical surfaces and evolution equati&bsd. Appl. Math.

74(1986), 55D83.

. f. Cotton,Généralization de la théorie de triedre mobil8ull. Soc. Math. Franc83(1905), 1D23.
. C. de Boor,Polynomial interpolation in several variablesn: Studies in Computer Science: In

Honour of Samuel D. Conte. J.R. Rice and R. DeMillo (eds.), Plenum Press, 1994 and Springer
Science+Business Media New York, 1994, 879110.

C. de Boor and A. Ro9n Multivariate Polynomial InterpolatiorConstr. Approx6 (1990), 287D302.

C. de Boor and A. Rormhe least solution for the polynomial interpolation problddathematische
Zeitschrift210(1992), 347D378.

C. de Boor and A. RorComputational aspects of polynomial interpolation in several varigbles
Mathematics of Computatiod (1992), 705D727.

G. Darbouxlegons sur la theorie générale des surfaces et des applications géometrique du calcul
in nitésimal, Gauthier-Villars, 1887.

J. Dugunji,Topology Allyn and Bacon Inc., Boston, 1966.

M. Fels and P.J. OlveMoving Coframes,lActa Appl. Math.51(1998), 161BD213.

M. Fels and P.J. OlveMoving coframes. Il. Regularization and theoretical foundatigwasa Appl.

Math. (1999), pp 127D208.

M. Gasca and J.l. MaeztOn Lagrange and Hermite interpolation iR, Numerische Mathematik
39(1982), 1b14.

M. L. GreenThe moving frame, differential invariants and rigidity theorems for curves in homogeneous
spacesDuke Math. J45(1978), 735D779.

P. GrifbthsOn Cartan’s methods of Lie groups and moving frames as applied to uniqueness and
existence questions in differential geomebyke Math. J41(1974) , 775D814.

T.M.N. Gonealves and E.L. Mansbeldn Moving frames and Noether’s Conservation LaSitsidies

in Applied Mathematic428(2011), 1D29.

T.M.N. Gonealves and E.L. MansbeMpving Frames and Conservation Laws for Euclidean Invariant
Lagrangians Studies in Applied Mathematics30(2013), 134D166.

M.S. Hickman, W.A. Herema@omputation of densities and uxes of nonlinear differential-difference
equations Proceedings of the Royal Society457(2003), 2705D2729.

R. HasimotoA soliton on a vortex lament). Fluid Mech51 (1972), 477D485.

K. Hikami and R. InoueClassical lattice W algebras and integrable systeth$hys. A: Math. Gen.
30(1997), 6911D6924.

M.W. Hirsch Differential Topology Springer Verlag, New York, 1976.

Applied Algebra200(1B2) (2005), 163D190.

E. HubertDifferential invariants of a Lie group action: syzygies on a generating $eSymbolic
Computatiord4(4) (2009), 382D416.

E. Hubert, Generation properties of Maurer—Cartan invariant§2009) Preprint [hal:inria-
00194528/en].

E. Hubert and I.A. KogarSmooth and Algebraic Invariants of a Group Action. Local and Global
ConstructionsFoundations of Computational Mathematicgt) (2007), 345D383.

E. Hubertand I. A. KogamRational Invariants of a Group Action. Construction and Rewritihgurnal
of Symbolic Computatiod2 (2007), 203D217.

P.E. Hydon and E.L. Mansbeldyariational complex for difference equatigf®undations of Com-
putational Mathematic4 (2004), 187D217.



Found Comput Math

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.
49.

50.

51.

52.
53.

54.

55.
56.

57.

58.

59.

60.

P.E. Hydon, E.L. MansPeld, L. Peng, and A. Rdjiscrete moving frames and nite difference
variational problemsin preparation.

P. Kim and P.J. OlveGeometric integration via multi-spac&®egular and Chaotic Dynami&%3)
(2004), 213D226.

P. Kim,Invariantization of Numerical Schemes Using Moving FranB#$ Numerical Mathematics
47(3) (2007), 525.

P. Kim,Invariantization of the Crank-Nicolson Method for Burgers’ EquatiBhysica D: Nonlinear
Phenomen237(2) (2008), 243.

I.A. Kogan and P.J. Olvdnvariant Euler-Lagrange equations and the invariant variational bicomplex
Acta Appl. Math.76 (2003), 137D193.

E.L. ManspPeldA practical guide to the invariant calculu€ambridge Monographs on Applied and
Computational Mathematics Volume 26, Cambridge University Press, 2010.

E.L. Mansbeld and P.E. Hydobjfference FormsFoundations of Computational Mathematigs
(2008), 427D467.

E.L. MansbPeld and P. van der Kantpjolution of curvature invariants and lifting integrabilityl.
Geometry and Physids5 (2006), 1294D1325.

E.L. Mansbeld and P.E. Hyddimwards approximations of difference equations that preserve integrals
Proc. 2001 International Symposium on Symbolic and Algebraic Manipulation (ISSAC 2001) ed., B.
Mourrain, ACM, New York, (2001), 217D222.

E.L. MansPeld, G. Mar’ Beffa, and J.P. WaBgscrete moving frames and integrable systeRwmin-
dations of Computational Mathematit3, Issue 4 (2013), 545D582.

G. Mar' Beffa,Geometric Hamiltonian structures on at semisimple homogeneous manifiiels
Asian Journal of Mathematic2(1) (2008), 1D33.

G. Mar’ BeffaPoisson geometry of differential invariants of curves in some nonsemisimple homogenous
spacesProc. Amer. Math. Sod.34(2006), 779D791.

G. Mar’ Beffa,On bi-Hamiltonian ows and their realizations as curves in real semisimple homoge-
neous manifoldsPacibc Journal of Mathemati2g7(2010), 163D188.

G. Mar’ Beffa,Hamiltonian evolutions of twisted polygons in parabolic manifolds: the Lagrangian
GrassmannianPacibc Journal of Mathemati2g0(2014), 287D317.

G. Mar’ Beffa, and J.P. Wangamiltonian evolutions of twisted gons in R INonlinearity26 (2013),
2515P2551.

J. MunkresTopology Prentice-Hall, New Jersey, Second edition, 2000.

E. Noethernvariant variation problemsTransport Theory Statist. Phys., 1(3):1860207, 1971. Trans-
lated from the German (Nachr. Akad. Wiss. GSttingen Math.-Phys. KI. |1 1918, 235D257).

P.J. OlveiMoving frames —in geometry, algebra, computer vision, and numerical andfgsindations

of Computational Mathematics, R. DeVore, A. Iserles and E. Suli, eds., London Math. Soc. Lecture
Note Series, vol. 284, Cambridge University Press, Cambridge, 2, 2001, 67D297.

P.J. OlverGeometric Foundations of Numerical Algorithms and Symméippl. Alg. Engin. Comp.
Commun.11(2001), 417D436.

P.J. OlverJoint invariant signatures-oundations of Computational Mathematic€001), 3D67.

P.J. OlverApplications of Lie groups to differential equatigrraduate Texts in Mathematics 107,
Springer Verlag, New York, Second edition, 1993.

P.J. Olver and J. Pohjanpeltdpving frames for Lie pseudo-groupSanadian J. Math60 (2008),
1336D1386.

U. Pinkall,Hamiltonian ows on the space of star-shaped curyesult. Math27 (1995), 328D332.

R. Rebelo and F. Valiquett8ymmetry preserving numerical schemes for partial differential equations
and their numerical tests). Dif. Eq. and App.19(2013), 738D757.

E.G. Reyef?seudo-spherical surfaces and integrability of evolution equatibrisiff. Eq.147(1998),
195D230.

C.L. Terng and K. Uhlenbeci§chrodinger ows on Grassmannians, Integrable systems, geometry
and topology AMS/IP Stud. Adv.Math, AMS, Providence (2006), 235D256.

L.W. Tu,Une courte démonstration de la formule de Campbell-Hausdaofirnal of Lie Theori4
(2004), 501D508.

H. WendlandScattered Data Approximatio@ambridge Monographs on Applied and Computational
Mathematics Volume 17, Cambridge University Press, 2005.



