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Variable structure observer for a class of nonlinear large-scale

interconnected systems with uncertainties★

Mokhtar Mohamed1, Xing-Gang Yan1, Sarah. K. Spurgeon1 and Zehui Mao2

Abstract— In this paper, a variable structure observer design
approach is proposed for a class of nonlinear, large-scale inter-
connected systems in the presence of unstructured uncertainty.
The modern geometric approach is exploited to explore the
system structure and a transformation is developed to facilitate
observer design. Using the Lyapunov direct method, a robust
asymptotic observer is presented which exploits the internal
dynamic structure of the system as well as the structure of the
uncertainties. The bounds on the uncertainties are nonlinear
and are employed in the observer design to reject the effect of
the uncertainties. A numerical example is presented to illustrate
the approach and the simulation results show that the proposed
approach is effective.

I. INTRODUCTION

The development of advanced technologies has produced

corresponding growth in physical systems. Such systems are

frequently called system of systems or large-scale systems

and can frequently be expressed by sets of lower-order

ordinary differential equations which are linked through

interconnections. Such models are typically called large

scale interconnected systems (see, e.g. [2], [8], [17], [18],).

Large-scale interconnected systems have been studied since

the 1970s [11]. Early work focussed on linear systems.

Subsequent results used decentralised control frameworks

for nonlinear large scale interconnected systems. In much of

these work, it is assumed that all the system state variables

are available for use by the controller [2], [8]. However, this

may be limiting in practice as only a subset of state variables

may be available/measureable. It becomes of interest to

establish observers to estimate the system states and then

use the estimated states to replace the true system states in

order to implement state feedback decentralised controllers.

It is also the case that observer design has been heavily

applied for fault detection and isolation [10], [15]. This

further motivates the study of observer design for nonlinear

large scale interconnected systems.

Sliding mode techniques have been used to design ob-

servers for nonlinear interconnected power systems in [1].

An adaptive observer is designed for a class of intercon-

nected systems in [14] in which it is required that the
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isolated nominal subsystems are linear. Observer schemes

for interconnected systems are proposed in [7], [10], [12],

[15] where the obtained results are unavoidably conservative

as it is required that the designed observer can be used

for certain fault detection and isolation problems. Robust

observer design is considered in [9] for a class of linear

large scale dynamical systems where it is required that the

interconnections satisfy quadratic constraints. In [13] a new

decentralized control scheme which uses estimated states

from a decentralised observer within a feedback controller

is proposed. This uses a design framework based on linear

matrix inequalities and is thus applicable for linear systems.

A robust observer for nonlinear interconnected systems based

on a constrained Lyapunov equation has been developed

[16]. A PI observer is utilized for nonlinear interconnected

systems for disturbance attenuation in [5] and interconnected

nonlinear dynamical systems are considered in [3] where the

authors combine the advantages of input-to-state dynamical

stability and use reduced order observers to obtain quantita-

tive information about the state estimation error. This work

does not, however, consider uncertainties. It should be noted

that in all the existing work relating to observer design for

large scale interconnected systems, it is required that either

the isolated subsystems are linear or the interconnections are

linear. Moreover, most of the designed observers are used for

special purposes such as fault detection and thus they impose

specific requirements on the class of interconnected systems

considered.

In this paper, a class of nonlinear interconnected systems

with disturbances are considered. Fundamentally the work

in [4] is extended for large scale systems. A robust variable

structure observer is established based on a simplified system

structure by using Lyapunov analysis. The structure of the

internal dynamics and the uncertainty bounds are fully used

in the observer design. These bounds are allowed to have a

general nonlinear form. The difference between the output

of the actual plant and the output of the observer is zero,

and the observer states converge to the system states even if

the system is not stable. A simulation example shows that

the proposed approach is effective.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider the nonlinear interconnected systems

�̇�(�) = ��(��) + ��(��)�� + Δ��(��) +
�∑

�=1

� ∕=�

���(��) (1)

��(�) = ℎ�(��), � = 1, 2, ⋅ ⋅ ⋅ , � (2)



where �� ∈ Ω� ⊂ ��� (Ω� is a neighbourhood of the origin),

�� ∈ � and �� ∈ �� ⊂ � (�� is an admissible control

set) are the state, output and input of the i-th subsystem

respectively, ��(��) ∈ ��� and ��(��) ∈ ��� are smooth

vector fields defined in the domain Ω�, and ℎ�(��) ∈ �

are smooth in the domain Ω� for � = 1, 2, ⋅ ⋅ ⋅ , � . The

term Δ��(��) includes all the uncertainties experienced by

the i-th subsystem. The term
∑�

�=1

� ∕=�
���(��) is the nonlinear

interconnection of the �-th subsystem.

Definition 1 The systems

�̇�(�) = ��(��) + ��(��)�� + Δ��(��) (3)

��(�) = ℎ�(��) (4)

for � = 1, 2, ⋅ ⋅ ⋅ , � are called the isolated subsystems of the

systems (1) − (2).

�̇�(�) = ��(��) + ��(��)�� (5)

��(�) = ℎ�(��), � = 1, 2, ⋅ ⋅ ⋅ , � (6)

are called the nominal isolated subsytems of the systems

(1)− (2).
In this paper, under the assumption that the isolated

subsystems (5)− (6) have uniform relative degree �� in the

considered domain Ω�, the interconnected systems (1)− (2)
are to be analysed. The objective is to explore the system

structure based on a geometric transformation to design a

robust asymptotic observer for the interconnected system

(1)− (2).

III. SYSTEM ANALYSIS AND ASSUMPTIONS

In this section, some assumptions are introduced to facil-

itate the observer design.

Assumption 1. The nominal isolated subsystem (5) − (6)
has uniform relative degree �� in domain �� ∈ Ω� for � =
1, 2, ⋅ ⋅ ⋅ , � .

Under Assumption 1, it follows from [6] that there exists

a coordinate transformation

�� : �� → col(��, ��) (7)

where

�� =

⎡

⎢
⎢
⎢
⎣

��1
��2
...

����

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

ℎ�(��)
��ℎ�(��)

...

���−1
� ℎ�(��)

⎤

⎥
⎥
⎥
⎦
∈ ��� (8)

for � = 1, 2, ⋅ ⋅ ⋅ , � , and �� ∈ ���−�� is defined by

�� =

⎡

⎢
⎢
⎢
⎣

��1
��2
...

���−��

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

��(��+1)(��)
��(��+2)(��)

...

����
(��)

⎤

⎥
⎥
⎥
⎦
, (9)

for � = 1, 2, ⋅ ⋅ ⋅ , � . The functions ��(��+1)(��), ��(��+2)(��),
⋅ ⋅ ⋅ , ����

(��) can be obtained by solving the following partial

differential equations:

�����(��) = 0, �� ∈ Ω�, � = 1, 2, ⋅ ⋅ ⋅ , �. (10)

From [6], it follows that in the new coordinate system

(��, ��), the nominal isolated subsystem (5)− (6) is equiva-

lent to following form

�̇� = ���� + ��(��, ��, ��) (11)

�̇� = ��(��, ��) (12)

�� = ���� (13)

where

�� =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

0 0 0 ⋅ ⋅ ⋅ 1
0 0 0 ⋅ ⋅ ⋅ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ ���×��(14)

�� =
[

1 0 ⋅ ⋅ ⋅ 0
]
∈ �1×�� (15)

��(��, ��, ��) =

⎡

⎢
⎢
⎢
⎣

0
...

0
�̄�(��, ��, ��)

⎤

⎥
⎥
⎥
⎦

(16)

where

�̄�(��, ��, ��) =

���
��
ℎ�(�

−1
� (��, ��)) + ����

��−1
��

ℎ�(�
−1
� (��, ��))��

It is clear to see that the pair (��, ��) is observable. Thus,

there exists a matrix �� such that �� − ���� is Hurwitz

stable. This implies that, for any positive-definite matrix

�� ∈ ���×�� , the Lyapunov equation

(�� − ����)
��� + ��(�� − ����) = −�� (17)

has a unique positive-definite solution �� ∈ ���×�� for

� = 1, 2, ⋅ ⋅ ⋅ , � .

Assumption 2. The uncertainty Δ��(��) in (1) satisfies

∂��

∂��
Δ��(��) =

[
��ΔΨ(��)

0

]

(18)

where ��(⋅) is given in (7), �� ∈ ���×�� is a constant matrix

satisfying

��
� �� = ���� (19)

with �� satisfying (17), and ∥ΔΨ�(��)∥ ≤ ��(��), where

��(��) is continuous and Lipschitz about �� in the domain

Ω� for � = 1, 2, ⋅ ⋅ ⋅ , � .

Remark 1. Denote the nonlinear uncertain term ΔΨ�(��) in

(18) in the new coordinate frame (��, ��) by ΔΦ�(��, ��) i.e.

ΔΦ�(��, ��) = [ΔΨ�(��, ��)]��=�−1

�
(��,��)

(20)

From Assumption 2, there exists a function ��(��, ��) such

that

∥ΔΦ�(��, ��)∥ ≤ ��(��, ��) (21)

and ��(��, ��) satisfies the Lipschitz condition in ��(Ω�).
Thus for any (��, ��) and (�̂�, �̂�) ∈ ��(Ω�),

∥��(��, ��) − ��(�̂�, �̂�)∥ ≤ ��� ∥�� − �̂�∥+ ���∥�� − �̂�∥ (22)



where both ��� and ��� are positive constants. Consider the

interconnections ���(��) in system (1). Then partition the

term ∂��

∂��
���(��) as follows

∂��

∂��
���(��)

∣
∣
��=�−1

�
(�� ,��)

=

[
Γ�
��(�� , ��)

Γ�
��(�� , ��)

]

(23)

where Γ�
��(�� , ��) ∈ ��� , Γ�

��(�� , ��) ∈ ���−�� for � =
1, 2, ⋅ ⋅ ⋅ , � and � ∕= �.

Assumption 3. The nonlinear terms Γ�
��(�� , ��) ∈ ��� ,

Γ�
��(�� , ��) ∈ ���−�� satisfy the Lipschitz condition in

��(Ω�).
Assumption 3 implies that there exist positive constants

��
�� , ��

�� , ��
�� and ��

�� such that

∥Γ�
��(��, ��)− Γ�

��(�̂�, �̂�)∥ ≤ ��
��∥�� − �̂�∥

+ ��
�� ∥ �� − �̂�∥ (24)

∥Γ�
��(��, ��)− Γ�

��(�̂�, �̂�)∥ ≤ ��
��∥�� − �̂�∥

+ ��
�� ∥ �� − �̂�∥ (25)

for � = 1, 2, ⋅ ⋅ ⋅ , � and � ∕= �. From (11) − (13) and the

analysis above, it follows that under Assumption 2, in the

new coordinate system (��, ��) the system (1)− (2) can be

described by

�̇� = ���� + ��(��, ��, ��) + ��ΔΨ�(��, ��)

+

�∑

�=1

� ∕=�

Γ�
��(�� , ��) (26)

�̇� = ��(��, ��) +

�∑

�=1

� ∕=�

Γ�
��(�� , ��) (27)

�� = ���� (28)

where �� and �� are given in (14) and (15) respectively,

��(⋅) is defined in (16) and Γ�
��(⋅) and Γ�

��(⋅) are defined in

(23).
Remark 2. Since ��(⋅) is continuous in the domain ��(Ω�),
it is straightforward to see that there exists a subset in a

domain ��(Ω�) such that the function ��(⋅) is Lipschitz in

the subset

∥ ��(��, ��, ��) − ��(�̂�, �̂�, ��) ∥ ≤

��� (��) ∥ �� − �̂� ∥ + ��� (��) ∥ �� − �̂� ∥ (29)

where ��� (��) and ��� (��) are function of �� for � =
1, 2, ⋅ ⋅ ⋅ , � .

Assumption 4. The function ��(��, ��) in equation (27) has

the following decomposition

��(��, ��) = ���� + ��(��, ��) (30)

where �� ∈ �(��−��)×(��−��) is a Hurwitz matrix and

��(��, ��) are Lipschitz in domain ��(Ω�).
Under Assumption 4, there exist constants ��� and � �� such

that.

∥ ��(��, ��)− ��(�̂�, �̂�) ∥≤ ��� ∥ �� − �̂� ∥

+ � �� ∥ �� − �̂� ∥ (31)

where � = 1, 2, ⋅ ⋅ ⋅ , �. Further, from the fact that �� is

Hurwitz stable for Λ� > 0, the following Lyapunov equation

has a unique solution Π� > 0

��
� Π� + Π��� = −Λ� (32)

IV. NONLINEAR OBSERVER SYNTHESIS

In this section an observer is designed for the transformed

systems (26) − (28) and then an observer for the inter-

connected systems (26) − (28) is synthesised. For system

(26) − (28), construct dynamical systems

˙̂
�� = ���̂� + ��(�� − ���̂�) + ��(�̂�, �̂�, ��)

+��(�, �̂�, �̂�) +
�∑

�=1

� ∕=�

Γ�
��(�̂� , �̂�) (33)

˙̂�� = ���̂� + ��(�̂�, �̂�) +
�∑

�=1

� ∕=�

Γ�
��(�̂� , �̂�) (34)

where the term ��(��, �̂�, �̂�) is defined by

��(��, �̂�, �̂�) =

{ �−1

�
��

� (��−���̂�)

∥��−���̂�∥
∥ �� ∥ ��(�̂�, �̂�), �� − ���̂� ∕= 0

0, �� − ���̂� = 0
(35)

where �� and �� satisfy (17) and (19) respectively. It should

be pointed out that the structure of the proposed observer

in (33) − (34) is variable due to the term defined in (35).

Therefore, it is called variable structure observer throughout

this paper. The following results are ready to be presented.

Theorem 1. Suppose Assumptions 1 − 4 hold. Then, the

dynamical system (33)−(34) is a robust asymptotic observer

of system (26)−(28), if the function matrix �� (⋅)+� (⋅) is

positive definite in the domain Ω, where the matrix � (⋅) =
[���(⋅)]2�×2� , and its entries ���(⋅) are defined by

���=

⎧

⎨

⎩

�min(��) − 2�max(��)�
�
� − 2��� ∥��∥∥��∥,
� = �, 1 ≤ � ≤ �,

−2�max(��)�
�
�� ,

� ∕= �, 1 ≤ � ≤ �, 1 ≤ � ≤ �

�min(Λ�−� )− 2�max(Π�−� )� ��−� ,

� = �,� + 1 ≤ � ≤ 2�,

−2�max(Π(�−�))�
�
(�−�)(�−�),

� ∕= �,� + 1 ≤ � ≤ 2�,� + 1 ≤ � ≤ 2�

−2[�max(��)�
�
� + ���∥��∥∥��∥+ �max(Π�)�

�
� ],

� − � = �, 1 ≤ � ≤ �,� + 1 ≤ � ≤ 2�

−2�max(��)�
�
�(�−�),

� − � ∕= �, 1 ≤ � ≤ �,� + 1 ≤ � ≤ 2�

0, �− � = �,� + 1 ≤ � ≤ 2�, 1 ≤ � ≤ �

−2�max(Π�−� )��
(�−�)� ,

�− � ∕= �,� + 1 ≤ � ≤ 2�, 1 ≤ � ≤ �



Proof. Let ��� = ��−�̂� and ���
= ��−�̂� for � = 1, 2, ⋅ ⋅ ⋅ , � .

Compare systems (26)−(28) and (33)−(34). It follows that

the error dynamical systems are described by

�̇�� = (�� − ����)��� + ��(��, ��, ��)− ��(�̂�, �̂�, ��)

+��ΔΨ�(��, ��) −��(��, �̂�, �̂�)

+

�∑

�=1

� ∕=�

Γ�
��(�� , ��)−

�∑

�=1

� ∕=�

Γ�
��(�̂� , �̂�) (36)

�̇��
= �����

+ ��(��, ��)− ��(�̂�, �̂�)

+
�∑

�=1

� ∕=�

Γ�
��(�� , ��)−

�∑

�=1

� ∕=�

Γ�
��(�̂� , �̂�) (37)

Now, for the system (36) and (37) consider the following

candidate Lyapunov function

� =
�∑

�=1

��������� +
�∑

�=1

����
Π����

(38)

Then, the time derivative of the candidate Lyapunov function

can be described by

�̇ =

�∑

�=1

{

(�̇�������� + ������ ˙���)

+(�̇���
Π����

+ ����
Π��̇��

)
}

(39)

Substituting both �̇�� in (36) and �̇��
in (37) into equation

(39), it follows by direct computation that the time derivative

of the function � in (38) can be described by

�̇ =

�∑

�=1

{

���� [(�� − ����)
��� + ��(�� − ����)]���

+2������[��(��, ��, ��)− ��(�̂�, �̂�, ��)]

+2[��������ΔΨ�(��, ��)− ��������(��, �̂�, �̂�)]

+2������

�∑

�=1

� ∕=�

[Γ�
��(�� , ��)− Γ�

��(�̂� , �̂�)]

+����
(��

� Π� + Π���)���
+ 2����

Π�

×[��(��, ��) − ��(�̂�, �̂�)]

+2����
Π�

�∑

�=1

� ∕=�

[Γ�
��(�� , ��)− Γ�

��(�̂� , �̂�)]
}

(40)

From (19),(21),(22) and (35)
(i) If �� − ���̂� = 0, then

��������ΔΦ�(��, ��) − ��������(��, �̂�, �̂�)

= �����
�
� �

�
� ΔΦ�(��, ��)

= [��(�� − ���̂)ΔΦ�(��, ��)] = 0

(ii) If �� − ���̂� ∕= 0, then

��������ΔΦ�(��, ��)− ��������(��, �̂�, �̂�)

= �����
�
� �

�
� ΔΦ�(��, ��)− ������

�−1
� ��

� (�� − ���̂�)

∥�� − ���̂�∥

⋅ ∥ � ∥ ��(�̂�, �̂�)

= ∥�����
�
� ∥∥��∥��(��, ��) −

�����
�
� �����

∥�����∥
∥��∥��(�̂�, �̂�)

= ∥�����
�
� ∥∥��∥

{
��(��, ��)− ��(�̂�, �̂�)

}

≤ ∥�����
�
� ∥∥��∥

{
��� ∥�� − �̂�∥+ ���∥�� − �̂�∥

}

Then, from (i) and (ii), it follows that

��������ΔΦ�(��, ��) − ��������(��, �̂�, �̂�)

≤ ∥�����∥∥��∥
{
��� ∥���∥+ ���∥���

∥
}

(41)

Substituting (24), (25), (29), (31), and (41) into (40) yields

�̇ ≤ −

�∑

�=1

{[
�min(��)− 2�max(��)�

�
� − 2��� ∥��∥∥��∥

]

⋅∥���∥
2 −

[
�∑

�=1

� ∕=�

2�max(��)�
�
�� ]∥���∥∥���∥

−
[
2�max(��)�

�
� + 2���∥��∥∥��∥

+2�max(Π�)�
�
� ]∥���∥∥���

∥
]
− 2

�∑

�=1

� ∕=�

�max(��)�
�
��

⋅∥���∥∥���
∥] −

�∑

�=1

� ∕=�

2�max(Π�)�
�
��∥���∥∥���

∥

+
[
�min(Λ�) − 2�max(Π�)�

�
� ]∥���

∥2

−
[

�∑

�=1

� ∕=�

2�max(Π�)�
�
��

]
∥���

∥∥���
∥
}

Then, from the definition of the matrix � (⋅) and the in-

equality above, it follows that

�̇ ≤ −
1

2
�� [�� (⋅) +� (⋅)]�

where � = [∥��1∥, ∥��2∥, ⋅ ⋅ ⋅ , ∥��� ∥, ∥��1
∥, ∥��2

∥, ⋅ ⋅ ⋅ ,
∥���

∥]� . Since �� (⋅) + � (⋅) is positive definite in the

domain � (Ω1)×�1 × � (Ω2)×�2 × ⋅ ⋅ ⋅ × � (Ω� )×�� , it

is clear that �̇ ∣(33)−(34) is negative definite. Therefore

lim
�→∞

∥��(�)−�̂�(�)∥ = 0 and lim
�→∞

∥��(�)−�̂�(�)∥ = 0 (42)

Hence, the conclusion follows. △
Assume that

∂��(��,��)
∂(��,��)

is bounded in ��(Ω�) for � =
1, 2, ⋅ ⋅ ⋅ , � . There exists a positive constant �� such that
∥
∥
∥
∥

∂��(��, ��)

∂(��, ��)

∥
∥
∥
∥
≤ ��, (��, ��) ∈ ��(Ω�), � = 1, 2, ⋅ ⋅ ⋅ , �

Define �̂� = �−1
� (�̂�, �̂�), � = 1, 2, ⋅ ⋅ ⋅ , � Then,

∥�� − �̂�∥ = ∥�−1
� (��, ��)− �−1

� (�̂�, �̂�)∥

≤ ��(∥�� − �̂�∥+ ∥�� − �̂�∥) (43)



Then, from (42) and (43), it follows that

lim
�→∞

∥��(�) − �̂�(�)∥ = 0

This implies that �̂� is an estimate of �� for � = 1, 2, ⋅ ⋅ ⋅ , � .

Remark 3 From the analysis above, it is clear to see that,

in this paper, it is not required that either the nominal

isolated subsystems or the interconnections are linearisable.

The uncertainties are bounded by nonlinear functions and

are fully used in the observer design in order to reject the

effects of the uncertainties, and thus robustness is enhanced.

The designed observer is an asymptotic observer and the

developed results can be extended to the global case if the

associated conditions hold globally.

V. NUMERICAL EXAMPLE

Consider the nonlinear interconnected systems:

�̇1 =

⎡

⎣

�12
−0.1 sin�12

−3�211 − 3.25�13 − 2�12

⎤

⎦

︸ ︷︷ ︸

�1(�1)

+

⎡

⎣

0
1
0

⎤

⎦

︸ ︷︷ ︸

�1(�1)

�1

+

⎡

⎣

Δ�1
0.5Δ�1
−2Δ�1

⎤

⎦

︸ ︷︷ ︸

Δ�1(�1)

+

⎡

⎣

0.2(�221 + �22)
0

0.1 sin�21

⎤

⎦

︸ ︷︷ ︸

�12

(44)

�1 = �11
︸︷︷︸

ℎ1(�1)

(45)

�̇2 =

⎡

⎣

−�21
−�221 − 3�22 + cos(�221 + �22)− 1

−2�23 + 0.2�221

⎤

⎦

︸ ︷︷ ︸

�2(�2)

+

⎡

⎣

1
−2�21

0

⎤

⎦

︸ ︷︷ ︸

�2(�2)

�2 +

⎡

⎣

−Δ�2
2�21Δ�2

0

⎤

⎦

︸ ︷︷ ︸

Δ�2(�2)

+

⎡

⎣

0
0.1 sin(�13 + 2�11)

0

⎤

⎦

︸ ︷︷ ︸

�21

(46)

�2 = �21
︸︷︷︸

ℎ2(�2)

(47)

where �1 = col(�11, �12, �13) and �2 = col(�21, �22, �23),
ℎ(�) = (ℎ1(�1), ℎ2(�2))

� and �(�) = (�1(�), �2(�))
� are

the system state, output and input respectively, �12 and �21

are interconnected systems, and Δ�1(�1),Δ�2(�2) are the

uncertainties experienced by the system which satisfy

∣∣Δ�1(�1)∣∣ = 0.1∣�13 + 2�11∣ sin
2 � (48)

∣∣Δ�2(�2)∣∣ = 0.1�221∣ cos �∣ (49)

The domain considered is

Ω =
{
(�11, �12, �13, �21, �22, �23),

∣
∣
∣ ∣�11∣ < 3,

∣�21∣ ≤ 1.3, �11, �12, �13, �21, �22, �23 ∈ �
}

(50)

By direct computation, it follows that the first subsystem has

a uniform relative degree 2, and the second subsystem has a

uniform relative degree 1. The corresponding transformations

are obtained as follows:

�1 :

⎧

⎨

⎩

�11 = �11
�12 = �12
�1 = �13 + 2�11

�2 :

⎧

⎨

⎩

�2 = �21
�21 = �221 + �22
�22 = �23

In the new coordinates, the system (44) − (47) can be

described by:

�̇1 =

[
0 1
0 0

]

︸ ︷︷ ︸

�1

[
�11
�12

]

+

[
0

−0.1 sin �11 + �1

]

︸ ︷︷ ︸

�1

+

[
Δ�1(�1, �1)

0.5Δ�1(�1, �1)

]

︸ ︷︷ ︸

�1ΔΨ(�1,�1)

+

[
0.2�21

0

]

︸ ︷︷ ︸

Γ�
12

(51)

�̇1 = −3.25�1 + 0.25�211
︸ ︷︷ ︸

�1(�1,�1)

+0.4�21 + 0.1 sin �2
︸ ︷︷ ︸

Γ�
12

(52)

�1 =
[

1 0
]
[
�11
�12

]

(53)

�̇2 = −
︸︷︷︸

�2

�2 + �2
︸︷︷︸

�2

−Δ�2(�2, �2)
︸ ︷︷ ︸

�2ΔΨ(�2,�2)

(54)

�̇2 =

[
−3 0
0 −2

] [
�21
�22

]

+

[
cos �21 − 1

0.2�22

]

︸ ︷︷ ︸

�2(�2,�2)

+

[
0.1 sin �1

0

]

︸ ︷︷ ︸

Γ�
21

(55)

�2 = �2

where �1 = (�11, �12)
� , �1 ∈ �, �2 ∈ �, and �2 =

(�21, �22)
� .

From (48) − (49)

∥ΔΨ1(�1, �1)∥ ≤ ∣∣Δ�1(�1, �1)∣∣

∥ΔΨ2(�2, �2)∥ ≤ ∣∣Δ�2(�2, �2)∣∣

∥Δ�1(�1, �1)∣∣ ≤ 0.1∣�1∣ sin
2 �

︸ ︷︷ ︸

�1(⋅)

∥Δ�2(�2, �2)∣∣ ≤ 0.1�22 ∣ cos �∣
︸ ︷︷ ︸

�2(⋅)

Then, for the first subsystem, choose

�1 =
[

3 2
]�

, � = �

It follows that the Lyapunov equation (17) has a unique

solution:

�1 =

[
0.5 −0.5
−0.5 1

]

and the solution to equation (19) is �1 = 0.25. As �1 =
−3.25, let Λ1 = 3.25. Thus the solution of equation (32) is

Π1 = 0.5. Now, for the second subsystem, choose

�2 = 0, �2 = 2



It follows that the Lyapunov equation (17) has a unique

solution �2 = 1 and the solution to equation(19) is �2 =
−1. As

�2 =

[
−3 0
0 −2

]

let

Λ2 =

[
1 0
0 1

]

. (56)

Then,

Π2 =

[
0.1667 0

0 0.25

]

By direct computation, it follows that the matrix �� +�

is positive definite in the domain Ω defined in (50).
Thus, all the conditions of Theorem 1 are satisfied which

implies that (33) − (34) is an observer. Based on the

parameters provided above, the observer (33)−(34) has been

well defined.

For simulation purposes, the controllers are chosen as:

�1 = −�11 − 2�12 and �2 = cos �2 + 5

The simulation results in Figure 1 shows that the designed

observer estimates the states of the interconnected system

�1 = col(�11, �12, �13) and �2 = col (�21, �22, �23) in

(44) − (57) even though the system is not asymptotically

stable.
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Fig. 1. The time response of the system states �1 = col (�11, �12, �13)
and its estimation �̂1 = col (�̂11, �̂12, �̂13), the states �2 = col(�21,

�22, �23) and its estimation �̂2 = col ( �̂21, �̂22, �̂23)

VI. CONCLUSIONS

In this paper, a class of nonlinear large scale intercon-

nected systems with uniform relative degree have been

considered. An asymptotic observer is developed for an

uncertain system representation using a Lyapunov approach

together with a geometric transformation which has been

employed to exploit the system structure. It is not required

that either the isolated nominal subsystems or the inter-

connections are linearizable. Robustness to uncertainties is

enhanced by using the system structure and the structure of

the uncertainties within the design framework.
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