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Abstract
Dimensional analysis is a well known technique for checking the consistency of equations involv-
ing physical quantities, constituting a kind of type system. Various type systems for dimensional
analysis, and its refinement to units-of-measure, have been proposed. In this paper, we detail
the design and implementation of a units-of-measure system for Fortran, provided as a pre-
processor. Our system is designed to aid adding units to existing code base: units may be
polymorphic and can be inferred. Furthermore, we introduce a technique for reporting to the
user a set of critical variables which should be explicitly annotated with units to get the maxi-
mum amount of unit information with the minimal number of explicit declarations. This aids
adoption of our type system to existing code bases, of which there are many in computational
science projects.

Keywords: units-of-measure, dimension typing, type systems, verification, code base evolution, Fortran,

language design

1 Introduction

Type systems are one of the most popular static techniques for recognising and rejecting large
classes of programming error. A common analogy for types is of physical quantities (e.g.,
in [Bar93]), where type checking excludes, for example, the non-sensical addition of non-
comparable quantities such as adding 3 metres to 2 joules; they have different dimensions
(length vs. energy) and different units (metres vs. joules). This analogy between types and
dimensions/units goes deeper. The approach of dimensional analysis checks the consistency
of formulae involving physical quantities, acting as a kind of type system (performed by hand,
long before computers). Various automatic type-system-like approaches have been proposed
for including dimensional analysis in programming languages (e.g. [Ken94] is a famous paper
detailing one such approach, which also cites much of the relevant history of other systems).

Failing to ensure that the dimensions (or units) of values are correctly matched can be disas-
trous. An extreme example of this is the uncaught unit mismatch which led to the destruction
of the Mars Climate Orbiter [SMB+99]. Many programs in computational science are also
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sensitive to this kind of error since they focus on modelling the physical world. The software
for the Mars Orbiter had orders of magnitude more resources devoted to the robustness and
correctness of code than is possible in normal scientific research circumstances. It therefore
seems inevitable that these errors are likely in computational science too.

The importance of units is often directly acknowledged in source code. We have seen source
files carefully commented with the units and dimensions of each variable and parameter. We
have also watched programmers trying to use this information: a process of scrolling up and
down, repeatedly referring to the unit specification of each parameter. Incorporating units into
the type system would move the onus of responsibility from the programmer to the compiler.

A recent ISO standards proposal (N1969) for Fortran introduces a units-of-measure system
which follows Fortran’s tradition of explicitness [ISO13a]. Every variable declaration must have
an explicit unit declaration and every composite unit (e.g., metres times seconds) must itself
be explicitly declared. This imposes the extra burden of annotating variables directly on the
programmer. As an example, we studied two medium-sized models (roughly 10,000 lines of code
each) and found roughly a 1:10 ratio between variable declarations and lines of code. Thus,
adding explicit units of measure to a project with 10,000 lines of code means manually adding
1,000 unit declarations. This is prohibitively large.

In this paper, we show how the bulk of this work can be done automatically based on a few
manual annotations. This approach might be used to automatically add N1969 annotations to a
codebase or in an Integrated Development Environment (IDE) to inform the programmer of the
units as they code. Our approach is to add a validation step prior to compilation: our tool takes
annotated Fortran code and validates the units. The annotations can then be automatically
removed and the program compiled as normal using the preferred compiler.

We describe a lightweight extension to Fortran’s type system for polymorphic units-of-
measure (Section 2) and explain the inference process which reduces the amount of explicit
declaration required (Section 3). By default, it is always possible to infer all variables as
“unitless” if no explicit unit declarations are given. However, this is not useful. In order to
minimise the task of adding explicit unit declarations, our system can automatically identify
a minimal set of variables for which an explicit annotation is needed (Section 4). We evaluate
our approach on a number of small but useful examples (Section 5) and show we can reduce the
burden of explicit annotation by roughly 80%. We compare our approach with existing proposals
and argue that our system is more lightweight and requires less programmer effort (Section 6).

The general idea and approach of inferring units-of-measure is already well established.
Instead the contribution of this paper is in the application of this technique to Fortran and
existing code base, helping to evolve the language and co-evolve existing code via inference and
our method for identifying which variables require manual annotation.

The type checker, inference, and analysis described here are implemented as part of the
CamFort project, a research infrastructure for the analysis, transformation, refactoring, and
extension of Fortran [OR13]. CamFort is open-source and available online.1 Our long term
interest is in how software engineering interacts with the scientific method and how techniques
from programming language theory and design can be beneficially applied [OR14]. The present
paper is a contribution in this space.

Example Figure 1 shows a simple Fortran program which computes (one-dimensional) ve-
locity (v) and speed (s) from a given distance (x) and time (t). As a use case of our tool, the
programmer initially runs the analysis phase of CamFort (Figure 1(a)) and is told that only
x and t need be annotated. Figure 1(b) shows the syntax used by the programmer to add m

1http://www.cl.cam.ac.uk/research/dtg/naps
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real :: x, t, v, s

v = x / t

s = abs(v)

analysis−−−−−→
Critical variables:

line 1: x, t

(a) Step 1: CamFort reports on critical variables for annotation

real, unit(m) :: x

real, unit(s) :: t

real :: v, s

v = x / t

s = abs(v)

inference and output−−−−−−−−−−−−−→

real, unit(m) :: x

real, unit(s) :: t

real, unit(m/s) :: v, s

v = x / t

s = abs(v)

(b) Step 2: CamFort infers unit declarations for remaining variables

Figure 1: Example

(metres) and s (seconds) units respectively to the distance and time variables. CamFort then
infers the units of v and s automatically from the program itself and inserts those into the code
(without disturbing any formatting/comments).

2 Units-of-measure for Fortran

Unit attributes In our extensions, units-of-measure can be explicitly declared for variables
similarly to types and other attributes of variables. Our extension adds the attribute unit,
which is shown in the above example (Figure 1). The unit attribute takes a single unit ex-
pression as an argument, the syntax of which is defined by the following grammar (where the
right-hand side shows an example of the syntax):

(grammar) (description) (example)

name ::= [a− zA− Z]+ unit names; regular expression m, metres . . .

R ::= Z integer constants 1, 2, -2 . . .
| Z/Z fraction of two integers 2/3, 4/2 . . .

u, v ::= ε empty—equivalent to unitless x

| 1 unitless unit(1) :: x

| name unit identifier unit(m) :: x

| u**(R) rational power unit(s**(1/2)) :: x

| u v product unit(m s**2) :: x

| u/v division unit(m/s**3) :: x

Identifiers for unit names are not themselves explicitly declared. For example, a unit attribute
unit(m) implicitly introduces the unit named m to the program, where any other uses of m as
a unit in the program denote the same unit.

A unit attribute can be given to any type, not just numerical types (this differs from others,
e.g., [Ken94]). In practice, numerical types tend to benefit the most from unit attributes, but
there are some situations where it is useful to ascribe units to non-numerical types, e.g., to
string representations of numerical values or to booleans for grouping related control variables.

An empty unit expression is equivalent to a unitless specification, i.e., unit() = unit(1).
Any variable which does not have an explicit unit declaration will have its unit inferred.
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(var)
(x : u) ∈ Γ

Γ ` x : u
(app)

Γ ` f : u1, . . . un → v Γ ` Fi : ui
Γ ` f(F1, . . . , Fn) : v

(spec)
Γ ` F : ∀α.u

Γ ` F : u[α 7→ v]

(int-pow)
Γ ` F : u Γ ` n : 1[integer] static(n)

Γ ` F**n : u**n
(real-pow)

Γ ` F : u n : 1[real]

Γ ` F**n : 1

(rational-pow)
Γ ` F : u Γ ` p : u2 Γ ` q : u2 static(p, q)

Γ ` RATIONAL POWER(F, p, q) : u**(p/q)

conf-op : ∀α. α→ α→ α
rel-op : ∀α. α→ α→ 1
* : ∀α1, α2. α1 → α2 → (α1α2)
/ : ∀α1, α2. α1 → α2 → (α1/α2)
not, abs : ∀α. α→ α

op = {conf-op, rel-op, *, /,not,abs}
conf-op = {+, -, //, .AND., .OR.}
rel-op = {==, /=, <, >, <=, >=}

Figure 2: Typing rules for units-of-measure

Unit declarations Named aliases for unit expressions can be declared in the declarations
part of a Fortran file with the following syntax:

decls ::= . . . | unit :: name = u (named alias) unit::speed = m/s

During unit checking, any occurrences of a derived unit name are replaced by their declared
unit expression. Hence in the unit checker, an alias is indistinguishable from its defining unit
expression. A global check ensures that no named aliases conflict (e.g., redefine) each other.

Type system Figure 2 describes the type system of CamFort in a standard declarative and
inductive way, defining the relation Γ ` F : u, where Γ is a map from program variables to their
unit and F is a Fortran expression of unit u. The type system definition (and its implemen-
tation) extends the visible syntax of units with some additional constructs: (1) function types
(u1, . . . , un → v) i.e., the unit specification of a Fortran function with n formal parameters (or
dummy variables in Fortran parlance) of units u1 . . . un and result unit v, (2) variable placehold-
ers for units, written α (3) universal quantification ∀α.u for unit polymorphism. Figure 2 shows
the polymorphic unit types of some core Fortran intrinsic operators. When a unit is associated
with a value type (e.g., integer) we write u[t] for a value type t as in rule (real-pow). The
(int-pow) and (rational-pow) rules raise their unit to the power provided by a static constant.

Polymorphism in our unit system follows a similar approach to that of types in the poly-
morphic λ-calculus [Pie02], though we restrict universal quantification to the top-level of a unit
expression (i.e., not nested). The introduction of universal quantification (unit generalisation)
occurs only when a function is defined. The complementary (spec) rule, specialises a universally
quantified unit by substituting a unit v for the variable α. By the form of the (app) rule, a
polymorphic function must be specialised first before it is applied. For example:

(app)

(spec) [α 7→ m]
Γ ` abs : ∀α.α→ α

Γ ` abs : m→ m
(var)

(x : m) ∈ Γ

Γ ` x : m
Γ ` abs(x) : m
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real function square(y)

real y

square = y * y

end function

(a) Polymorphic square function

real, unit(m) :: x

real, unit(s) :: t

a = square(x)

b = square(t)

(b) Use of square function

real function scale_square(y)

real y

real, unit(m) :: k

scale_square = y * y * k

end function

(c) Monomorphic scaling factor

Figure 3: Functions with unit polymorphism

Unit polymorphism example A key part of our unit type system is that it provides poly-
morphic unit support on top of Fortran’s monomorphic type system. As an example, Figure 3(a)
defines a square function without any unit annotations. Under the typing scheme described
in this section, then square : ∀u.[u]real → [u**2]real. Figure 3(b) shows a program frag-
ment using square with two different units. These are inferred as m**2 and s**2 respectively by
specialising the type of square. As an example of a function which combines both unit polymor-
phism with monomorphic units, Figure 3(c) defines a function which squares its input then scales
by a real number of unit m. By our typing scheme, scale square : ∀u.[u]real→ [mu**2]real,
which exposes constant scaling by a real of unit m inside the function.

3 Inference

Inference of units is done through Gaussian elimination, similar to the work of Kennedy [Ken94].
The idea is that the type system described in the previous section can be used to generate a
series of constraints on unit terms which can be treated as linear equations and solved using
the standard Gaussian elimination method. Here we briefly outline our technique through two
examples, one for a monomorphic program, and the other for a polymorphic program.

Monomorphic example Figure 4(a) shows a simple program and Figure 4(b) the corre-
sponding constraints generated from the rules of the units-of-measure system. Each constraint
is turned into a linear equation (sum of scalar-variable products) by taking logarithms, e.g.:

uvolume = upi · u2radius · uheight
log−−−−−→ log uvolume = log upi + 2 log uradius + log uheight

This system of linear equations is then represented as a matrix in the type checker, where each
equation is a row and each column is a log variable log uv (for log uv we write just v for the
column headings here). Gaussian elimination is then applied by scaling a row by a non-zero
scalar, adding one row to another, or swapping rows. These operations are applied until the

real, unit(m) :: radius, height

real, unit(kg) :: mass

real :: density, volume, pi = acos(-1.0)

volume = pi * radius**2 * height

mass = volume * density

(a) Unit monomorphic source program

uradius = m, uheight = m, umass = kg

upi = uacos(-1.0), uacos(-1.0) = 1

uvolume = upi · u2radius · uheight
umass = uvolume · udensity

(b) Constraints generated from (a)

Figure 4: Constraints generated from a monomorphic program
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Figure 5: Gaussian elimination applied to the linearised constraints of Figure 4(b)

matrix is in row echelon form, where all entries to the left of the diagonal are zero. Figure 5
shows this transformation for our example monomorphic program.

A matrix in reduced row echelon form has zero in every entry apart from its diagonal (like
the above). This represents a unique solution to the system of equations. In this case, we have
a unique solution for the typing of the program, where every inferred type is then added into
the program. For example log uvolume = 3 log m and so uvolume = m3.

Polymorphic example To accommodate polymorphism in the Gaussian elimination proce-
dure, we extend the usual technique slightly. As an example, consider the polymorphic square

function in Figure 3(a), and its use in Figure 3(b) with two variables of different units.
Functions and subroutines in a program are analysed and a set of constraints is built and re-

duced using Gaussian elimination. This results in a relationship between the units of the param-
eters and the unit of the result. This relationship, which we call a procedure constraint, results
in a constraint on units. The procedure constraint for square is 2 log usquare#0 = log u=square,
meaning the log-unit of the result is two times the log-unit of the first (and only) parameter.

For every procedure call a new constraint (matrix row) is added based on the corresponding
procedure constraint by copying the parameter coefficients to the columns for the corresponding
arguments and copying the result coefficient to the column of the calling expression. This step
corresponds to the (spec) rule in Figure 2; this new constraint introduces a unit specialisation.

If there are local variables in the procedure which require annotation then CamFort identifies
these when deriving the procedure constraint. These can then be annotated by the program-
mer as required. This approach is sufficient for all cases except if the units of the local variable
depend on the units of the parameters. The CamFort syntax currently does not allow a pro-
grammer to express this polymorphism. We plan to address this in future work.

4 Guided annotation

Consider an expression a + b + c. In the units system described above, this expression elicits
the constraints that a, b, and c have equal units. Without any concrete unit given to any of
these variables, the inference procedure can only infer they are unitless. But to give a concrete,
unitful type requires only a single explicit unit annotation for one variable, not all.

In order to reduce the burden on programmers adopting our units-of-measure system and
evolving their existing code, our tool includes a feature for reporting on “critical” subsets of
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the variables in a program which, if given an explicit annotation, provide a solution without
any unnecessary defaulting to unitless. This was shown in Figure 1(a). Here we outline the
procedure, which builds on the Gaussian elimination procedure described in Section 3.

Consider the program fragment e = a + b*c*d in which only d has an explicit unit decla-
ration as unit m. For this program, the system generates the following constraints and corre-
sponding linear constraints (by applying the logarithm and rearranging variables to the left):

ua = ue ua = ubucud ud = m

log ua − log ue = 0 log ua − log ub − log uc − log ud = 0 log ud = log m
(1)

The linear constraints are represented via the following matrix (on the left) which is then
reduced into row echelon form (on the right):

a b c d e

1 0 0 0 -1 0
1 -1 -1 -1 0 0
0 0 0 1 0 log m

row echelon−−−−−−−→

a b c d e

1 0 0 0 -1 0
0 -1 -1 0 1 log m

0 0 0 1 0 log m

(2)

If there are non-zero values on the leading diagonal of the matrix then we can solve for all
variables (this is the back-substitution phase of Gaussian Elimination). Therefore, a zero value
on the diagonal corresponds to an unknown variable. In the right matrix above, we can follow
the leading diagonal for variables a and b, but the third row has no value to determine c.
Instead the column for d has the leading non-zero coefficient, so we record c as missing and
continue. We then find that e is missing (it has no row with a leading non-zero coefficient) and
so record this too and stop. Variables c and e are therefore reported as being critical variables.

Definition [Critical variables, formally] Let mi be the number of the first column in the row
i with a non-zero coefficient, assigning the value of ∞ if all columns are zero (or undefined).
The critical variable set C has the property that ∀k such that mi < k < mi+1 then vk ∈ C for
each row i where mi+1 > mi + 1.

There are often many possible solutions for C, but each will provide equivalent information.

Example In the matrix above m1,m2,m3,m4,m5 are the values 1,2,4,∞,∞ respectively. When
i = 2 we have m3 = 4 and m2 = 2 so m3 > m2 + 1. C therefore contains vk for 2 < k < 4
(i.e., k = 3). Also, when i = 3 we have m4 =∞ and m3 = 4 and so we add vk for 4 < k <∞
(i.e., k = 5) to C. Therefore the critical variable set for is {v3, v5} which are the variables {c, e}.

An interesting nuance to the critical variable analysis is deciding what units to infer for
literals; a literal constant in a program might be unitless (e.g., a scalar translation) or not.
There is no single correct choice which covers all situations and so we provide an option to
control the default assumption made by CamFort. We illustrate the three available choices via
the example of Celsius-Fahrenheit conversion: s = 1.8; a = 32.0; f = s * c + a.

• Polymorphic literals are assumed polymorphic. In this case the possible critical variable
sets are {f, s}, {f, c}, {s, c}, {s, a}, {c, a}. This is the safest option as it minimises the
number of values assumed to be unitless, but in turn will require the most annotation.

• Unitless literals are assumed all to be unitless. In this case no further annotation is required
for our example since this forces all quantities to be unitless.

• Mixed literals are assumed to require units if used in a conf-op or a rel-op (see Figure 2)
and to be unitless otherwise. This captures the intuition that we add a value with units (+
is a conf-op) but we multiply by a unitless scalar. This option leaves the possible critical
value sets as {f},{c},{32.0}, each requiring less annotation than the polymorphic case.
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Figure 7: Distribution of % unit coverage

5 Evaluation

Our evaluation of CamFort considers 43 numerical Fortran programs taken from a well-known
computational physics textbook [Pan06]. This provides an excellent corpus of small numerical
methods and models, between 50 and 200 lines of code, which can benefit from units-of-measure.

We excluded a few programs that use MPI since CamFort cannot usefully process these at
this point. This is due to a lack of syntactic support for polymorphic annotation of procedures—
without this we would have to process and annotate the entire MPI library in order to progress.
As mentioned, we will be addressing this limitation in future work. All other programs in the
book were processed, barring four with difficult to parse data formatting.

The first question we investigated was whether the inference process actually results in a
saving in programmer effort, compared to annotating every variable with a unit. For this we
analysed each program and recorded the total number of declared variables (t) and the size
of the critical variable set (|C|). From this we computed the percentage annotation saving
s = (1 − |C|/t) ∗ 100. Figure 6 shows the distribution of annotation savings (s) across the
corpus. The median saving was 82.4% (3 sf.). We see that the use of CamFort can significantly
reduce the amount of annotation effort required for many programs.

Our second question was to what extent is dimension typing useful for scientific computing.
To understand this we annotated every variable that was reported critical and counted the
number of variables which subsequently had a unit inferred which is not unitless. Our intuition
is that since unitless variables can be combined together arbitrarily they do not benefit from
the extra guarantees provided by the units-of-measure system. Therefore, if the vast majority
of the variables in a program are unitless then the value of unit typing to that program is small.
We therefore recorded the total number of variables which were given units after inference (u,
which includes C). We computed the unit coverage a = u/t ∗ 100.

Figure 7 shows the distribution of unit coverage (a). The median coverage percentage was
42.8% (3sf.), but ranging from 0% to 100% in some cases. We found that the programs which
benefited most from dimension typing involved lots of polymorphic intrinsics (multiplication,
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unit :: metre ! explicit declaration of new units
unit :: centimetre = metre * 100 ! conversion unit
unit :: volume = metre ** 3 ! composite unit
real, unit(centimetre) :: radius, height ! new type attribute unit(...)
real, unit(volume) :: volume
read *,radius, height
volume = cylinder_volume(radius,height)

function cylinder_volume(radius,height)
unit, abstract :: length, volume = length**3 ! unit-polymorphism in arguments
real, unit(length) :: radius, height
real, unit(volume) :: cylinder_volume
real, parameter :: PI = ACOS(-1.0)
cylinder_volume = PI * radius**2 * height

end function

Figure 8: A simple program conforming to the N1969 proposal

divisions, abs). Conversely, programs which used more trigonometric functions seem to benefit
less from this approach, since they constrained units to be unitless. Whilst the distribution of
unit coverage results is wide, its median of roughly 40% shows the general usefulness of unit
typing and its potential to aid program correctness.

6 Comparison with N1969

The Fortran programming language is internationally standardised by ISO/IEC JTC1/SC22. In
April 2013, the working group received a proposal for adding native units of measure to Fortran,
identified by N1969 [ISO13a] (with associated presentation N1970 [ISO13b]). CamFort syntax
is based on that of N1969. We make a comparison here.

Figure 8 shows an example program conforming to N1969 syntax. Our alterations to this
syntax focus on simplicity and reducing the burden on the programmer. Extending CamFort
to generate code which is compliant with N1969 is straightforward.

Explicit unit declaration N1969 requires that all units are explicitly declared and named.
This has the benefit of protecting the programmer from typos when declaring variables but
imposes an extra burden when converting existing code. Although it is sometimes the case that
a new name for a complicated composite unit can aid clarity we don’t believe this is always the
case: a programmer might well prefer to write m/s instead of speed.

Therefore CamFort does not require the explicit declaration of units. Instead, a new unit
name is introduced implicitly on first use. For cases where a new name would improve clarity,
we provide optional unit declaration which introduces a unit alias (see Section 2).

Kinds of unit N1969 units can be either atomic, composite (combining existing units through
multiplication/division) or conversions (linear scaling and translation existing units). The first
two (also supported by CamFort) are essential to dimensional analysis. Conversion units allow
automatic, compiler-generated conversion code when the programmer moves between units.
Instead, we prefer distinct fundamental units with explicit conversions. This better matches
existing practices and avoids obscuring potential numerical issues created by the conversion.

Unit polymorphism in arguments The keyword abstract can be used by an N1969
programmer to declare that the unit of a function parameter is independent, i.e., polymorphic.

9
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Any dependent units can then be expressed in terms of these abstract units. In CamFort, no
special syntax is required for this. The details of polymorphic units are simply inferred. A
disadvantage with this approach in CamFort is that unit polymorphic functions therefore lack
any unit specification/signature that describes their polymorphism. It is currently possible to
use our tool in a query mode to ask for the unit type of a function, but a better scheme would
introduce syntax for describing polymorphic unit types explicitly. This is future work.

Rational power Occasionally it is necessary to raise a value to a non-integer power. One
example might be calculating the length of an edge from the area of a square. CamFort and
N1969 both permit this through the use of a new intrinsic function RATIONAL POWER which
raises its first argument to a rational power specified as a numerator and a denominator. Both
systems require that the power required be specified statically (i.e., available at compile time).

Unitless N1969 provides a built-in unit UNITLESS for use with scalar constants. In CamFort
we call this 1. In addition to the built-in unit N1969 also provides an intrinsic coercion function
(also called UNITLESS) which strips the units from its argument. We have so far not seen the
need for this in our experiments. However, if needed, such a feature is a trivial extension of
our typing rules—in the context of the typing rules (but not execution) this is just the same as
raising a value to the power 1.0 (a real constant), via rule (real-pow) in Figure 2.

7 Related work

Despite the clear benefits of automatic units-of-measure inference/checking, this feature is rel-
atively uncommon in programming languages. One of the most well-known and well-developed
is the system provided by the functional programming language F#, which provides both poly-
morphism and inference [Ken10] and is based on the earlier work of Kennedy for the ML
language [Ken96, Ken94]. The functional language Haskell also has various forms of polymor-
phic, inferred units-of-measure typing provided internally by building on Haskell’s rich type
system (such as the work of Muranushi and Eisenberg [ME14]) or with some additional simple
compiler extensions to improve the type checking facilities, as in the work of Gundry [Gun13,
Chapter 3][Gun15, Gun11]. The Fortress language was designed to include units of measure
from the very start (although unfortunately development of this language has been halted as
of 2012) [ACH+05]. C++ has some support for static unit checking via the use of a library.2

A previous system for Fortran by Petty, provides a dynamic approach to unit checking (via
overloading) [Pet01]. The static approach used here, and in the other tools mentioned above,
has the advantage of not incurring any runtime overhead and providing safety guarantees about
all execution paths (not just those that have been encountered during testing).

For other languages there are a variety of external tools (in the style of pre-processors,
similar to CamFort’s approach) for adding units-of-measure to languages. For example, Osprey
for C [JS06] and SimCheck [RS10] for Simulink.

An alternate tool for C, by Guo and McCaman, provides an interactive process for users to
specify units following an automatic constraint solving process [GM05]. This has similar aims to
our own work: to ease adding units to a program via inference, reducing the annotation burden
on the programmer. They evaluate their tool on various programs and note the number of
“basic units” interactively requested from the user and the number of variables in the program.
For a test program whose size is comparable to our own tests, they report a ratio of 4:33

2http://tuoml.sourceforge.net/
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between explicitly given units and variables in the program: equivalent to roughly 88% unit
coverage by our measure in Section 5, similar to our median coverage result. Their other test
programs are larger (500-60k lines) which makes it hard to compare coverage. They report
results equivalent to between 99% and 89%, though larger programs likely contain significant
portions of “unitless” code. Further work for us it experiment with larger code base. We believe
having units as part of the syntax (as in CamFort) is important for adoption (rather than this
information being external, e.g., via an interactive tool) as this interacts more naturally with
standard development practices (cf. Java annotations, which replaced external XML files with
inline comment-based syntax, e.g. for the Spring framework).

8 Conclusion and further work

We have described an extension to the Fortran language which allows automatic verification of
units, and by extension dimensions, in a program. Given the prevalence of physical quantities in
computational science software we argue that this provides a useful means to increase our confi-
dence in the correctness of our models. We believe that automatic verification tools will become
more and more pertinent as the complexity of scientific models continues to increase [OR14].

Our system, CamFort, is complementary to the current standards proposal for adding units
of measure to Fortran. Our contribution is to add the significant benefit of automatically
inferring units where possible rather than requiring explicit annotation. We envisage that
CamFort could be used in two different ways: 1) as a pre-processor which validates units before
stripping the annotations in preparation for compilation with a standard compiler; or 2) as a
migration tool to N1969—CamFort can automatically infer units for approximately 80% of the
variables in our tests, requiring only 20% manual annotations.

The concept of inferring units of measure has been established in the research literature for
a long time. However, it has not yet been adopted despite its obvious applicability to scientific
computing. Our intention with CamFort is to lower the barrier to adoption by showing in detail
how this approach can be used with Fortran without affecting existing workflows.

Further work Currently we use a simple, hand-rolled implementation of Gaussian elimina-
tion. Other tools use off-the-shelf solvers. For example, Osprey (units-of-measure system for
C) uses LAPACK and has shorter type checking times [JS06]. One avenue of future work is to
improve the performance of CamFort, possibly using LAPACK for the solver engine.

Although CamFort will infer polymorphic unit signatures, there is no syntax for representing
this polymorphism in the source code. There are times when it would be very useful to do so.
For example, to specify the behaviour of external functions. We would also like to consider a
‘transparent’ syntax for units which embeds the annotations within Fortran comments. The
benefit of this would be that code which is verified with CamFort can still be compiled with
traditional tool chains without pre-processing.

We also intend to investigate how CamFort performs in practical use through user studies.
One possibility is that a more interactive approach is required with the programmer. This
might take the form of a REPL for querying unit information and inference.
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