Fibrinolytic Regulation of Pulmonary Epithelial Sodium Channels: a Critical Review

PhD candidate: Hong-Long (James) Ji

Mentors:
Dr. Tobias von der Haar
Professor Martin Michaelis

This work is submitted in partial fulfillment of the requirements of University of Kent for the degree of Doctor of Philosophy by Published Work

December 2015
Abstract

Luminal fluid homeostasis in the respiratory system is crucial to maintain the gas-blood exchange in normal lungs and mucociliary clearance in the airways. Epithelial sodium channels (ENaC) govern ~70% of alveolar fluid clearance. Four ENaC subunits have been cloned, namely, α, β, γ, and δ ENaC subunits in mammalian cells. This critical review focuses on the expression and function of ENaC in human and murine lungs, and the post-translational regulation by fibrinolysins. Nebulized urokinase was intratracheally delivered for clinical models of lung injury with unknown mechanisms. The central hypothesis is that proteolytically cleaved ENaC channels composed of four subunits are essential pathways to maintain fluid homeostasis in the airspaces, and that fibrinolysins are potential pharmaceutical ENaC activators to resolve edema fluid. This hypothesis is strongly supported by our following observations: 1) δ ENaC is expressed in the apical membrane of human lung epithelial cells; 2) δ ENaC physically interacts with the other three ENaC counterparts; 3) the features of αβγ ENaC channels are conferred by δ ENaC; 4) urokinase activates ENaC activity; 5) urokinase deficiency is associated with a markedly distressed pulmonary ENaC function in vivo; 6) γ ENaC is proteolytically cleaved by urokinase; 7) urokinase augments the density of opening channels at the cell surface; and 8) urokinase extends opening time of ENaC channels to the most extent. Our integrated publications laid the groundwork for an innovative concept of pulmonary transepithelial fluid clearance in both normal and diseased lungs.
Abstract 2

1. Introduction 6
 The ENaC/DEG super gene family 7
 Pulmonary fluid homeostasis 12
 The urokinase system 15

2. Central Hypothesis 18

3. Significant Findings and Conclusions 19
 3.1 Four epithelial sodium channels are expressed in human lung epithelium
 3.1.1. Expression of δ ENaC protein in lung epithelial cells 19
 3.1.2. Co-immunoprecipitation of α and γ ENaC with δ ENaC in H441 cells 20
 3.1.3. Identification of a novel slicing variant for δ ENaC 20
 3.2 δ ENaC confers the properties of αβγ ENaC channels
 3.2.1. Cation permeability 21
 3.2.2. Amiloride sensitivity 22
 3.2.3. Unitary conductance 23
 3.2.4. Gating kinetics 23
 3.2.5. Proton activation 24
 3.2.6. Self-inhibition 24
 3.2.7. Dependence of P_{Na}/P_{Li} ratio and unitary Na^+ conductance on injected
cRNA concentrations 25
 3.3 Urokinase contributes to fluid homeostasis in pulmonary system
 3.3.1. Characterization of ENaC activity in uPA knockout cells 26
 3.3.2. Reduction of ENaC activity in uPA-deficient MTE cells 27
 3.3.3. uPA deficiency down-regulates ENaC activity in permeabilized cells 28
 3.3.4. Phosphorylation of ERK1/2 and Akt by uPA 28
 3.3.5. Apoptosis is not involved in the reduction of ENaC activity 29
 3.3.6. Proteolysis of ENaC by uPA 30
 3.3.7. Contribution of uPA to airway luminal fluid homeostasis 31
 3.4 Urokinase plasminogen activator proteolytically cleaves γ ENaC subunits
 3.4.1. γ ENaC is cleaved by uPA 32
3.4.2. Identification of cleavage regions in ENaC 32
3.4.3. An uPA substrate in γ ENaC 34

3.5 Localization of “cutting edge” of urokinase to catalyze ENaC 35
3.5.1. uPA but not tPA activates ENaC 35
3.5.2. Catalytic triad of uPA to cleave ENaC 37
3.5.3. Structural interactions between catalytic sites of uPA and cleavage sites of γ ENaC 38

3.6 Urokinase augments opening channel density and opening time of channels 40
3.6.1. uPA strengthens the open conformation of ENaC 40
3.6.2. uPA activates “silent” channels 41
3.6.3. uPA optimally increases opening time 41

3.7 Proteolysis is the mechanism to elevate ENaC activity to the utmost level vs self-inhibition releasing agents 43
3.7.1. cpt-cAMP cannot activate cleaved ENaC by fibrinolysin 43
3.7.2. Cleavage abolishes cpt-cAMP-mediated ENaC activation in human lung epithelial cells 44
3.7.3. CPT-cGMP ligand docking to different ENaC domains 44
3.7.4. CPT-cGMP and self-inhibition 45
3.7.5. Specific self-inhibition domains differ from uPA cleavage sites 46
3.7.6. Self-Inhibition as an alternative approach to fibrinolysins 47

4. Theoretical Framework 48
4.1. How and in what respect the work has made a significant and coherent contribution to knowledge 48
4.2. Impact 49
4.3. Methodologies 50

5. Summary/Conclusions 51

6. Contributions made by the candidate 53

7. Bibliography 59

Figure 1 6
Figure 2 8
Figure 3 10
Figure 4 11
Figure 5 14
Figure 6 29
Figure 7 39
Figure 8 51
1. Introduction

This review explores a central thread in the ideas and publications generated in the last two decade by myself and by prolific collaborations with my colleagues. I initiated my studies in amiloride-sensitive epithelial sodium transport in 1995 while I was trained as a postdoctoral fellow in the University of Georgia at Athens. I extended my research to understand the structure-function relationship of α, β, and γ ENaC combining mutagenesis and heterologous expression in a well-established 3-D cell model, Xenopus oocytes. Subsequently, I cloned three DNA constructs encoding δ ENaC.
ENaC subunits in human lungs (Ji et al., 2006; Zhao et al., 2012), and characterized their biophysical and pharmacological features and expression profiles in human lungs (Ji et al., 2006; Zhao et al., 2012). I recently found that fibrinolysins in bronchioalveolar lavage are critical regulators of ENaC function. I, for the first time, identified both the cleavage sites in human ENaC proteins and the catalytic triad of urokinase (Ji et al., 2015). This review will summarize the critical findings of these publications.

The ENaC/DEG super gene family. Human ENaC subunits (α, β, δ, and γ) are encoded, respectively, by four genes, namely, *scnn1a* (sodium channels nonvoltage-dependent), *scnn1b*, *scnn1d*, and *scnn1d*. These genes are comprised of a branch of the super ENaC/DEG gene family with more than a hundred members (Figure 1). The name degenerin (DEG) comes from the cellular phenotype induced by mutations of *deg-1* and other related genes that result in selective degeneration of sensory neurons involved in touch sensitivity of *C. elegans* (Kellenberger & Schild, 2002). ENaC and degenerins have substantial sequence homology. The *scnn1* genes encoding ENaC proteins were first cloned from mouse colon in 1993 (Canessa et al., 1993). Before that, there are several names for this type of channels, e.g., amiloride-sensitive sodium channels, voltage-independent sodium channels, non-voltage-gated sodium channels, amiloride-inhibitable sodium channels, apical sodium channels, etc. to form leaking sodium permeation pathway across the apical membrane of polarized epithelium in the kidney, the lung, the airways, the colon, the sweat gland, and other tissues. The essential function of ENaC is to serve as cation channels with a permeability order: Li⁺ >Na⁺ >K⁺ >Cs⁺. Beside, ENaC as well as other members of the ENaC/DEG family are also expressed in non-epithelial cells, including neurons, smooth muscle cells,
leukocytes, endothelial cells, cardiovascular myocytes, mesothelial cells, and skin

Figure 2. Gene expression profile of $scnn1a$, $scnn1b$, $scnn1g$, and $scnn1d$. Expression levels are computed from the "GeneAtlas U133A, gcamas" dataset, an atlas of tissue expression (GeneAtlas) on an Affymetrix U133A array, using the gcRMA algorithm to process the data. The y-axes on these graphs represent normalized, background-subtracted, and summarized (probes to probeset) intensity of each probe set: 1 kidney, 2 tonsil, 3 lymph node, 4 thymus, 5 bone marrow, 6 adrenal gland, 7 adrenal cortex, 8 olfactory bulb, 9 trachea, 10 salivary gland, 11 pituitary, 12 fetal liver, 13 fetal lung, 14 fetal thyroid, 15 uterus, 16 adipocyte, 17 pancreatic islet, 18 pancreas, 19 testis seminiferous tubule, 20 testis Leydig cell, 21 testis interstitial, 22 testis germ cell, 23 testis, 24 colorectal adenocarcinoma, 25 bronchial epithelial cells, 26 smooth muscle, 27 cardiac myocytes, 28 leukemia lymphoblastic (MOLT-4), 29 leukemia chronic myelogenous K-562, 30 lymphoma Burkitts (Daudi), 31 leukemia promyelocytic HL-60, 32 leukemia Burkitts (Raji), 33 thyroid, 34 prostate, 35 lung, 36 placenta, 37 CD71+ early erythroid, 38 small intestine, 39 colon, 40 liver, 41 heart, 42 uterus corpus, 43 appendix, 44 ovary, 45 dorsal root ganglion, 46 ciliary ganglion, 47 atrioventricular node, 48 skin, 49 trigeminal ganglion, 50 superior cervical ganglion, 51 tongue, 52 skeletal muscle, 53 retina, 54 pineal night, 55 pineal day, 56 whole brain, 57 amygdala, 58 prefrontal cortex, 59 spinal cord, 60 hypothalamus, 61 fetal brain, 62 thalamus, 63 caudate nucleus, 64 parietal lobe, 65 medulla oblongata, 66 cingulate cortex, 67 occipital lobe, 68 temporal lobe, 69 subthalamic nucleus, 70 pons, 71 globus pallidus, 72 cerebellum, 73 cerebellum peduncles, 74 CD34+, 75 CD105+ endothelial, 76 721 B lymphoblasts, 77 CD19+ B cells (neg._sel.), 78 BDCA4+ dendritic cells, 79 CD8+ T cells, 80 CD4+ T cells, 81 CD56+ NK cells, 82 CD33+ myeloid, 83 CD14+ monocytes, 84 whole blood. The bottom x-axes show the median (M) and the fold median level, as indicated by purple lines, and the top x-axes show the relative expression level with light gray lines; 176 samples for 84 types of tissues were statistically analyzed. These results represent relative expression levels and distribution of four $scnn1$ genes in human tissues. $Scnn1a$ and $scnn1b$ are predominately expressed in the lungs, while the other genes are distributed in 84 examined tissues/cells without marked difference. Data are adapted from BioGPS with permission (www.BioGPS.org). Adapted from Ji, et al 2012.
Their function in non-epithelial tissues is proposed to be involved in acid sensing, transduction of mechanical stimuli, and nociceptive pain (Ji et al., 2012).

ENaC is a multimeric protein with a proposed heterotrimeric structure (Figure 3) (Jasti et al., 2007). However, our understanding of the architecture of the native ENaC proteins is incomplete. Based on heterologous expression studies, α and δ ENaC subunits are capable of forming electrically detectable channels, which will be amplified up to 2 order in the amplitude of current levels by co-expressing with β and γ counterparts. In contrast, in the absence of α or δ ENaC subunit, β and γ ENaC cannot form functional channels and are considered as regulatory subunits. So far, scnn1 genes have been cloned from various species, such as rat, human, cow, mouse, and Xenopus laevis. For experimental clarity, murine and human ENaC channels are well investigated and widely used as research models. The homology between human and rat orthologs of ENaC subunit is about 85% to nearly 100%. The exon–intron architecture of the four genes encoding the four subunits of ENaC has remained highly conserved despite the divergence of their sequences (Kellenberger & Schild, 2002). The proteins that belong to the ENaC/DEG family consist of about 510 to 920 amino acid residues (Kellenberger & Schild, 2002; Ji et al., 2012). They are made of an intracellular N-terminus region followed by a transmembrane domain, a large extracellular loop contributing to approximate 60% of protein mass, a second transmembrane segment and a cytosolic C-terminal tail (Figure 3) (Ji et al., 2012). Few sequences are completely conserved among the ENaC/DEG family. They include a His-
Glycine motif located in amino-terminal cytoplasmic domain and the extracellular loop contains cysteine rich domains II and III (Kellenberger & Schild, 2002).

Figure 3. Heterotrimeric structure of ENaC proteins. α, β, and γ ENaC subunits are in red, yellow, and blue color, respectively. The lipid bilayer of the plasma membrane are shown as dark lines in parallel. There are two transmembrane domains (M1 and M2), two intracellular terminal tails (N- and C-), and a huge extracellular loop. Adapted from Ji et al 2016.

ENaC channels are located in the apical membrane of polarized epithelial cells particularly in the kidney, the lungs, and the colon where they mediate Na⁺ transport across tight epithelium. ENaC pathway plays a major role in Na⁺ and K⁺ ion homeostasis of blood, epithelia and luminal fluids by re-absorption of Na⁺ ions (Stockand et al., 2008). The basic functions of ENaC in polarized epithelial cell are to allow vectorial transcellular transport of Na⁺ ions (Figure 4) (Rossier & Stutts, 2009). This transepithelial Na⁺ ion transport through a cell basically involves two steps: first, the large electrochemical gradient for Na⁺ ions across the apical membrane provides the driving force for the entry of Na⁺ into the cell and second, active Na⁺ transport
across the basolateral membrane is accomplished by the energy-consuming \(\text{Na}^+/\text{K}^+ \)-ATPase (Rossier & Stutts, 2009). The apical entry of \(\text{Na}^+ \) is blocked by submicromolar concentration of amiloride and analogs, which are used as potassium-sparing diuretics clinically. Amiloride directly “plugs in” the pore of ENaC channels to eliminate inward sodium flow (Kleyman & Cragoe, 1988; Kleyman et al., 1999). Inhibition of renal ENaC activity leads to a loss of sodium retention and subsequently dehydration of the body, and even causes hypotension. Amiloride is a competitive antagonist that competes with aldosterone for intracellular cytoplasmic receptor sites, or by directly blocking ENaC channels. This active transepithelial transport of \(\text{Na}^+ \) ions is important for maintaining

Figure 4. Transepithelial \(\text{Na}^+ \) transport vectorially across apically located ENaC and \(\text{Na}^+/\text{K}^+ \)-ATPase at the basolateral membrane. Adapted from Hanukoglu 2016 (Hanukoglu & Hanukoglu, 2016).
the composition and the volume of the fluid on either side of the epithelium. In the
kidney and the colon, which are the target tissues for aldosterone action, the
transepithelial sodium transport is crucial for the maintenance of blood Na\(^+\) and K\(^+\)
levels and their homeostasis. In the airways and the lungs, active transepithelial
transport of Na\(^+\) ions is a major mechanism to keep the mucociliary beating of the
ciliated epithelial cells and to prevent flooding of the air spaces.

Pulmonary fluid homeostasis. The airway epithelia absorb Na\(^+\) via an
amiloride-sensitive electrogenic transport. This active Na\(^+\) absorption is important for the
maintenance of the composition of the airway surface liquid (Figure 4). The expression
of the ENaC subunits along the respiratory epithelium is complex and varies between
species. In adult rats and humans, the \(\alpha\), \(\beta\), and \(\gamma\) ENaC subunits are highly expressed
in small and medium-sized airways. The \(\alpha\) and \(\gamma\) subunits but not the \(\beta\) subunits are
expressed more distally in the lung, which may well correspond to localization in the
type II alveolar cells. This heterogeneity of the expression of ENaC subunits along the
airways suggests differential regulation of liquid absorption by channels of various
subunit compositions (Matalon & O'Brodovich, 1999).

At birth, amiloride-sensitive, electrogenic Na\(^+\) transport is important to clear the
liquid that fills the alveoli and the airways of the fetal mouse lung. mRNAs for \(\alpha\), \(\beta\), and \(\gamma\)
ENaC were detected in the fetal lung around days 15–17 of gestation. Expression of
ENaC subunits, mainly \(\alpha\) and \(\gamma\) ENaC subunits, sharply increased in the late fetal and
early postnatal life when the lung turned from a secretory to an absorptive organ
(Thome *et al.*, 2003). The physiological role of ENaC in lung liquid balance was clearly
demonstrated in mice in which the \(\alpha \) ENaC gene was inactivated by homologous recombination. These \(\alpha \) ENaC knockout mice died 48 hours after birth from respiratory failure due to a severe defect in the clearance of the fetal liquid filling the lungs. These studies suggest that at birth \(\alpha \) ENaC in the mouse fetal lung is essential for Na\(^+\) absorption (Hummler et al., 1996). The disruption of the \(\beta \) and \(\gamma \) ENaC gene loci resulted in a slower clearance of the fetal lung liquid at birth but did not severely affect the blood gas parameters. The \(\beta \) or \(\gamma \) ENaC knockout mice died slightly later than the \(\alpha \) knockout from severe electrolyte imbalance, namely, hyperkalemia due to deficient renal K\(^+\) secretion. In humans, the contribution of \(\alpha \) ENaC to the clearance of fetal lung liquid at birth is still unclear. Very premature infants with respiratory distress syndrome had reduced sodium absorption across the respiratory epithelia, as demonstrated by a reduced nasal transepithelial potential difference, likely contributing to the pathogenesis of this syndrome. However, pseudohypoaldosteronism type I (PHA-I) patients with severe disruption of the \(\alpha \) ENaC gene leading to near-complete loss of channel function had no report of respiratory distress syndrome at birth but showed a more than twofold higher liquid volume in airway epithelia than normal individuals. Thus, ENaC function in humans does not seem to be limiting at birth for the liquid clearance in the mature fetal lung. Differences between species in maturation of the lung, in mucociliary clearance, or in ENaC subunit expression in the respiratory epithelium may account for the phenotypic differences between humans and mice.

Of note, mice do not express \(\delta \) ENaC because the \(scnn1d \) is a pseudogene in murine. In sharp contrast to the early death of newborn litters of \(scnn1a \) knockout mice,
infants carrying a loss-of-function mutant of human α ENaC did not display a deadly distress syndrome caused by lung oedema (Trautmann & Pfeiffer, 1994; Bonny et al., 1999), indicating that δ ENaC subunit may be a backup of α ENaC counterpart (Ji et al., 2012). However, surviving children with the genetic deletion of scnn1d, encoding δ ENaC proteins, were predisposed to respiratory oedematous disorders and infection (Unique, 2008). In addition, numerous pathogens and pollutants decreased ENaC expression and function in vitro and in vivo (Ji et al., 2012). On the other hand, cystic fibrosis is a phenotype with hyperactive ENaC activity in the airways and the lungs. Genetically engineered mice over-expressing either α, β, γ, or all of three (α+β+γ) ENaC

Figure 5. The uPA system. uPA, urokinase; tPA, tissue-type plasminogen activator; α2-AP, α2-antiplasmin; α2-M, α2-macroglobulin; PAI, plasminogen activator inhibitor.
subunits had a COPD as well as cystic fibrosis phenotypes (Mall et al., 2004; Zhou et al., 2007; Mall et al., 2008; Zhou et al., 2011).

The urokinase system. Urokinase-type plasminogen activator (uPA) initiates fibrinolysis by converting plasminogen to plasmin (Figure 5). In the respiratory system, uPA is expressed in the airway epithelium, alveolar epithelial cells, macrophages, and pulmonary capillary endothelial layer (Gross et al., 1990; Marshall et al., 1990; Takahashi et al., 1992; Nishiuma et al., 2004; Sisson & Simon, 2007; Shetty et al., 2008). uPA released from these cells is a single-chain molecule (scuPA), which can be further proteolytically cleaved to form active two-chain enzyme (tcuPA). uPA is readily detectable in bronchioalveolar lavage and pleural fluid in mammals, and is a primary contributor of fibrinolytic activity in lungs (Chapman et al., 1986; Kotani et al., 1995; Nishiuma et al., 2004). Tissue-type plasminogen activator (tPA), however, is not expressed in lung epithelial tissues and cannot be detected in luminal fluid lining the airways and air sacs. Both uPA and tPA are endogenous plasminogen activators. To maintain fibrinolytic homeostasis, inhibitors of plasminogen activators 1 and 2 (PAI-1 and PAI-2) and plasmin (α2-antiplasmin and α2-macroglobulin) coordinately fine tune the plasminogen activation system.

The balance between plasminogen activators and their corresponding inhibitors is disrupted in oedematous lungs and pleural injuries, including ALI, ARDS, high altitude pulmonary oedema, and pleural effusions (Idell, 2008; Shetty et al., 2008; Glas et al., 2013). Accumulating evidence from clinical studies of premature infants with ARDS and animal models of pleural effusions and ALI confirmed a depression in plasminogen activation in bronchioalveolar lavage or pleural fluid (Idell et al., 1992a; Idell et al.,
1992b; Viscardi et al., 1992). This is primarily attributable to a tremendous elevation in PAI-1 level (a prognostic biomarker) and a significant reduction in uPA and plasmin (Bertozzi et al., 1990; Idell et al., 1991; Sisson et al., 2002; Prabhakaran et al., 2003; Sapru et al., 2010). Concurrently, the balance between fluid turnover and resolution in the airways, alveolar spaces, and pleural cavity is lost. Accumulation of oedematous fluid mainly results from fluid re-absorption that cannot be compensated by fluid leakage (Matthay et al., 2002; Davis & Matalon, 2007; Eaton et al., 2009). This pathogenic scenario can be illustrated with alveolar fluid clearance. Alveolar fluid removal is driven by the osmotic sodium gradient as well as electrical potential difference across the alveolar epithelium. Vectorial transalveolar salt transport generates both chemical and electrical differences between luminal and interstitial compartments. Epithelial sodium channels (ENaC) at the apical membrane and ATP-consuming Na⁺/K⁺-ATPase at the basolateral membrane coordinately control sodium inward movement and depolarize the epithelial layer (Fuller et al., 1996; Ji et al., 2012).

Reduced ENaC expression and activity were described in both oedematous pulmonary diseases and animal models (Matthay et al., 2002; Matthay, 2014). Defective lung fluid clearance has been confirmed in mice with deficient scnn1 genes (Hummler & Planes, 2010). uPA and tPA decreased the severity of lung injury and pleural effusions (Strange et al., 1995; Stringer et al., 1998; Munster et al., 2000; Stringer et al., 2004; Renckens et al., 2008; Huang et al., 2012; Komissarov et al., 2013). Whether delivered plasminogen activators evoke ENaC-mediated oedema resolution, however, is unknown to date.

The concurrent oedema formation and suppressed fibrinolysis in injured lungs
and pleural cavity, suggest a potential contribution of fibrinolysis to ENaC function. Indeed, ENaC activation by plasmin has been recently demonstrated (Passero et al., 2008; Haerteis et al., 2012). Intratracheal and intrapleural delivery of uPA (abbokinase) and tPA (alteplase) is extensively used for fibrinolytic therapy for embolisms (Wang et al., 2010; Marhuenda et al., 2014; Meyer et al., 2014; Piazza et al., 2015), pleural effusions, and empyemas (Diacon et al., 2004; Cases Viedma et al., 2006; Thommi et al., 2007; Froudarakis et al., 2008; Zuckerman et al., 2009; Rahman et al., 2011; Thommi et al., 2012; Aleman et al., 2015; Cao et al., 2015; Saydam et al., 2015). However, to the best of our knowledge, the effects and underlying mechanisms of tPA and uPA on ENaC function remain obscure. Our studies therefore aim to understand the molecular and pharmacological mechanisms by which these serine proteases resolve oedema fluid.
2. Central Hypothesis that links published works

The central hypothesis that links my previous publications is that δ subunit-containing channels are essential to maintain pulmonary fluid homeostasis and fibrinolysins post-translationally cleave ENaC to regulate transepithelial salt re-absorption. Our published data strongly support this hypothesis as described in Section 3. These studies were performed *in vitro, in vivo* and *ex vivo* with multiple cutting-edge techniques. The main goal of our projects is to characterize the major pathway of fluid clearance via ENaC and the regulation by fibrinolysis. We thus aim to confirm that 1) a novel δ ENaC contributes to pulmonary epithelial sodium transport; 2) fibrinolysis regulates ENaC-mediated fluid homeostasis under physiological conditions; 3) the uPA pathway regulates normal ENaC function; and 4) molecular mechanisms for fibrinolysins to activate ENaC. Our published works strongly support this central hypothesis. Our data provide paradigm-shifting information to develop innovative therapeutic strategies for combating both “wet” and “dry” lungs.
3. Significant Findings and Conclusions

3.1 Four epithelial sodium channels are expressed in human lung epithelium

Three ENaC subunits were first identified in mice in 1994 (Canessa et al., 1994). Thereafter, it has long been accepted that the native ENaC channels are composed of α, β, and γ subunits. The expression and function of δ ENaC subunits in the respiratory system has not yet been paid enough attention given the fact that α ENaC deficiency resulted in death of newborn mice. On the other hand, mice do not express δ ENaC (Ji et al., 2012). Furthermore, over expression of β ENaC caused a postnatal death due to developmental deficiency of the respiratory system (Mall et al., 2004). We thus hypothesize that δ ENaC may be a critical components of human pulmonary ENaC channels.

3.1.1. Expression of δ ENaC protein in lung epithelial cells. H441 is an airway epithelial cell line derived originally from human stem cells, Club or Clara epithelial cells. It has been used to functionally study amiloride-sensitive sodium channels associated with ENaC in several groups, including us (Tucker et al., 1998; Kulaksiz et al., 2002; Lazrak & Matalon, 2003; Ji et al., 2006; Nie et al., 2009a; Han et al., 2010; Han et al., 2011). To detect δ ENaC expression at the protein level, H441 monolayers grown on filters were immunostained with a specific anti-δ ENaC antibody, followed by a FITC conjugated secondary antibody. We found the expression of δ ENaC in H441 cultures (Ji et al., 2006). α, β, and γ ENaC proteins were also detected in H441 monolayers, in agreement with other studies (Wodopia et al., 2000; Itani et al., 2002).
Cells incubated with non-immune IgG and the secondary antibody did not exhibit immunofluorescence. Similar results were seen in A549 cells. Our results suggest that δ ENaC is co-expressed with α, β, and γ ENaC proteins in human lung epithelial cells.

3.1.2. Co-immunoprecipitation of α and γ ENaC with δ ENaC in H441 cells. Co-expression of δ ENaC with α, β, and γ ENaC indicates that these four ENaC subunits may associate with each other to form channel complexes. To test this hypothesis, we first detected native δ ENaC protein expression in H441 cells. δ, α, and γ ENaC proteins were detected as 85~90 Kb for δ and α ENaC, respectively, and 150 Kb for γ ENaC. γ ENaC was found to co-immunoprecipitate with δ and α ENaC (Ji et al., 2006). Specificity was demonstrated by Western blots with anti-γ ENaC following pretreatment of the anti-γ ENaC antibody with excess neutralizing peptide (Ji et al., 2006). In addition, δ ENaC also precipitated with α ENaC subunit in H441 cells and in COS-7 cells following transiently transfection of hemagglutinin (HA)-tagged δ ENaC and α ENaC (Ji et al., 2006).

3.1.3. Identification of a novel splicing variant for δ ENaC. We recently cloned a novel variant, namely, δ2 ENaC. δ2 ENaC encodes a full-length proteins comprised of 802 amino acid residues. In comparison, the aforementioned δ ENaC, termed δ1 ENaC here, encodes 638 amino acid residues (Ji et al., 2012). Two genetic variants of δ ENaC were analyzed in human alveolar epithelial cells. We found in both alveolar type I and II cells, δ2 ENaC is expressed at a lower level than δ1 ENaC (Zhao et al., 2012). In some cases, δ1 and δ2 were present in the same alveolar cells. In addition, δ1 ENaC was also present in pulmonary leukocytes, in which other ENaC subunits and amiloride-sensitive
channels have been detected (Bubien et al., 2001).

3.2 δ ENaC confers the properties of αβγ ENaC channels

Native amiloride-sensitive Na⁺ channels exhibit a variety of biophysical properties, including variable sensitivity to amiloride, different ion selectivity, and diverse unitary conductances. The molecular basis of these differences has not been elucidated. We tested the hypothesis that co-expression of δ ENaC underlies the multiplicity of amiloride-sensitive Na⁺ conductances in epithelial cells.

3.2.1. Cation permeability. In this sets of experiments, we tested the hypothesis that co-expression of δ ENaC will alter the ion selectivity of αβγ channel. We found that the inward amiloride-sensitive Na⁺ current was greater than that carried by Li⁺ ions. Much less inward and relative greater outward currents were detected when K⁺, Cs⁺, Ca²⁺, and Mg²⁺ were used as charge carriers. Meanwhile, the reversal potential shifted leftward from depolarization voltages (10 to 20 mV) by approximately 50 to 150 mV. Additionally, the resting membrane potentials, which were generally above zero mV under current clamp configuration in oocytes perfused with Na⁺ (or Li⁺), showed hyperpolarization to a variable extent (Ji et al., 2004).

To calculate the permeability ratios between Na⁺ and the other cations, amiloride-sensitive current-voltage curves were fitted with the Goldman-Hodgkin-Katz current equation as described previously (Ji et al., 2001). The Pₓ/PNa ratios of Na⁺ /Li⁺ /K⁺ /Cs⁺ /Ca²⁺ /Mg²⁺ were 1/0.6/0.07/0.2/0.26/0.4 for δβγ ENaC. However, they were 1/1.2/0.02/0.29/0.31/0.21 for αβγ-ENaC and 1/0.88/0.02/0.14/0.23/0.14 for δαβγ hENaC,
respectively. Our results of wild type $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC are consistent with previously published observations (Canessa et al., 1994; Waldmann et al., 1995; Ji & Benos, 2004). In particular, the normalized permeability to Li$^+$ (P_{Na} is 1.0) for $\delta\alpha\beta\gamma$ ENaC was 0.88, which was distinguishable from those of $\alpha\beta\gamma$ (1.2) and $\delta\beta\gamma$ ENaC (0.6). Significant differences in normalized permeabilities to the other monovalent and divalent cations was not observed between heterologously expressed $\alpha\beta\gamma$, $\delta\beta\gamma$, and $\delta\alpha\beta\gamma$ ENaC channels.

3.2.2. Amiloride sensitivity. The K_i of amiloride for $\delta\beta\gamma$ ENaC is in the micromolar range (vs <100 nM for $\alpha\beta\gamma$ ENaC). Amiloride blocking of $\delta\beta\gamma$ ENaC is much more voltage-dependent compared to $\alpha\beta\gamma$ channel (Ji & Benos, 2004). To determine amiloride sensitivity of $\delta\alpha\beta\gamma$ ENaC, we perfused oocytes with solutions containing 1nM, 10nM, 100nM, 1µM, 10µM, 100µM, and 1mM amiloride at holding potentials ranging from -120 mV to +80 mV. We observed that the dose-response curves shifted rightward at depolarized potentials. The K_i of amiloride at -120 mV was 920 ± 185 nM, and 13,746 ± 2805 nM at +80mV, respectively, which significantly differ from those of $\alpha\beta\gamma$ ENaC ($P < 0.05$) (Ji et al., 2004).

To further investigate the voltage dependence of amiloride inhibition for $\delta\alpha\beta\gamma$ human ENaC channel, the retrieved values for K_i^{amil} were plotted against the membrane potentials (Ji et al., 2004; Ji et al., 2006). The more depolarizing the membrane potential, the greater the value of K_i^{amil}. As we have previously described for $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC, positively charged amiloride interacts with ENaC in a voltage-dependent manner (Ji & Benos, 2004). The K_i of amiloride at 0 mV estimated by fitting the voltage-
dependent plot with the Woodhill equation was $3.79 \pm 0.2\mu M$ for $\delta\alpha\beta\gamma$ ENaC, whereas it was $13.1 \mu M$ and $0.33 \mu M$ for $\delta\beta\gamma$ and $\alpha\beta\gamma$ ENaC, respectively (Ji et al., 2004). The voltage sensitive fractional distance for amiloride was 0.41 (Ji et al., 2004). In comparison, it was 0.34 for $\alpha\beta\gamma$ ENaC and 0.48 for $\delta\beta\gamma$ ENaC, respectively (Ji et al., 2004; Ji et al., 2006).

3.2.3. Unitary conductance. Because the ion permeability ratio (P_{Na}/P_{Li}) and apparent equivalent dissociation constant of amiloride for the $\delta\alpha\beta\gamma$ ENaC channel are the arithmetic mean of those of $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC, the question arose whether oocytes injected with $\delta\alpha\beta\gamma$ ENaC subunits express two separate populations of ENaC, that is, $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC channels, or one population of $\delta\alpha\beta\gamma$ channels with novel biophysical characteristics. To address this question, on-cell patches were used to measure single channel conductances (Ji et al., 2004; Ji et al., 2006). Only one unitary Na$^+$ or Li$^+$ current level was observed and the corresponding slope conductances, respectively, were 8 ± 0.2 pS for Na$^+$ and 7.5 ± 0.1 pS for Li$^+$ ions. No amiloride-sensitive sub-conductance was observed (Ji et al., 2004).

3.2.4. Gating kinetics. We measured the mean open time (MOT) and mean closed time (MCT) for $\delta\alpha\beta\gamma$-ENaC (Ji et al., 2006). We described that the MOT and MCT for $\delta\alpha\beta\gamma$ ENaC channels were significantly less than the corresponding values for $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC channels. The MOT values for $\alpha\beta\gamma$ and $\delta\beta\gamma$ ENaC were greater than that of $\delta\alpha\beta\gamma$ ENaC ($P < 0.05$). In addition, the MCT values of $\alpha\beta\gamma$ ENaC was almost 10-fold of that for $\delta\alpha\beta\gamma$ ENaC ($P < 0.05$).
3.2.5. Proton activation. We found that δβγ, but not αβγ ENaC was activated by extracellular protons (Ji & Benos, 2004). To test the pH sensitivity of δαβγ ENaC, oocytes were perfused with bath solutions with neutral or acidic pH. Similar to the δβγ ENaC channel expressed in oocytes, the inward current of δαβγ ENaC was activated by extraoocyte acidic pH in a concentration-dependent pattern (Ji et al., 2006). The pH value required for half activation of the maximal pH-activated current level (EC₅₀) was 6.5 ± 0.1 (Ji et al., 2004). This differs from pH 6.0 for δβγ ENaC (Ji & Benos, 2004).

3.2.6. Self-inhibition. Self-inhibition by extracellular Na⁺ ions is a biophysical hallmark of the ENaC channels (Garty & Palmer, 1997). To characterize this inherent biophysical property, the self-inhibition time of Na⁺ for δαβγ ENaC was examined (Ji et al., 2006). To calculate self-inhibition time, the currents at -60 mV were digitized while switching bath solutions from low Na⁺ ND96 medium (1 mM Na⁺ ions) to ND-96 (96 mM Na⁺ ions) medium. The current fraction from the time point for the first time to switch bath solution (from 1 mM to 100 mM) to the peak of current (τₐ) and from the peak of current to the time point for the second time to switch bath solution (from 100 mM to 1 mM, τₛᵢ) was fitted with the first-order exponential function for estimating τₐ (activation time) and τₛᵢ (inactivation time), respectively (Ji et al., 2006).

Our data shows that the inward current reaches its peak in less than 1 s followed by a run-down in the presence of constant external Na⁺ level. The self-inhibition time (τₛᵢ) for δαβγ ENaC was 3,427 ± 217 ms, which was significantly greater than that of αβγ ENaC (2,584 ± 72 ms, P < 0.05) and but less than that of δβγ-ENaC (8,626 ± 1,541 ms, P < 0.01). In contrast, the activation (τₐ) was not changed significantly. The αβγ ENaC
current displayed a steep run-down (45 % of the peak current in 12.5s) while the δβγ ENaC current level decreased to a less extent (12% of peak current in 12.5s) (Ji et al., 2004). These results are consistent with measurements of rat and mouse αβγ ENaC expressed in oocytes (Chraibi & Horisberger, 2002; Sheng et al., 2004). Therefore, the corresponding ratio of the peak and sustained currents was much less for αβγ ENaC compared with those of δβγ and δαβγ ENaC (P < 0.01).

3.2.7. Dependence of P_{Na}/P_{Li} ratio and unitary Na$^+$ conductance on injected cRNA concentrations. To determine the expression level of δ ENaC needed to confer the biophysical features of αβγ ENaC, we measured the P_{Li}/P_{Na} ratios and unitary Na$^+$ conductance in oocytes co-injected various ratios of δ and αβγ ENaC cRNAs (Ji et al., 2006). The P_{Li}/P_{Na} ratio in oocytes co-injected with an equivalent concentration (1δ:1α) of δ and α ENaC cRNAs was significantly lower when compared to that of αβγ ENaC (0.7 vs 2.0, P < 0.05). Even with the cRNA ratio of 1δ:10α the relative Li$^+$ permeability reduced markedly. Meanwhile, the unitary Na$^+$ conductance increased in 1/3 of patches in oocytes expressing 1δ:10α ENaC. A further increase (10δ:1α) in the δ subunit cRNA co-injected elevated the conductance closing to the level of δβγ ENaC (Ji et al., 2006).

In toto, reverse transcription PCR revealed that δ ENaC is co-expressed with αβγ subunits in several cultured human epithelial cells, including lung epithelial cells (H441 and A549), pancreatic cells (CFPAC), and colonic epithelial cells (Caco-2). Indirect immunofluorescence microscopy revealed δ ENaC is co-expressed with α, β, and γ ENaC in H441 cells at the protein level. The biophysical and pharmacological features between classical αβγ and δαβγ channels are different. We, therefore, conclude that δ
ENaC forms multimeric channels with $\alpha\beta\gamma$ subunits with novel biophysical features, thereby accounting at least in part, for the observed heterogeneity of biophysical properties of native epithelial Na$^+$ channels (Ji et al., 2006).

3.3 Urokinase contributes to fluid homeostasis in pulmonary system

Concurrent existence of lung oedema and significant depressed fibrinolytic activity in oedematous lung injury indicates a link between the uPA/plasmin system and transepithelial fluid movement (Idell et al., 1992a; Barazzone et al., 1996; Sebag et al., 2011; Tucker & Idell, 2013). We reported that plasminogen activator inhibitor (PAI-1) altered ENaC activity previously (Lazrak et al., 2009). We also demonstrated that trypsin cleaved ENaC in vitro (Jovov et al., 2002). uPA is a major contributor to the pulmonary fibrinolytic activity. An overwhelmingly elevated PAI-1 level in the BAL lavage was supposed to eliminate uPA activity (Idell, 2003; Shetty et al., 2008; Sapru et al., 2010). However, in normal lungs, uPA is readily detectable (Shetty et al., 2008; Ji et al., 2015). We thus hypothesize that uPA regulates transalveolar fluid clearance in vivo. To test this hypothesis, we utilized a mouse colony with deficient uPA gene, and the controls were wild type mice with the same genetic background. Furthermore, the underlying mechanisms were explored in primary cell cultures.

3.3.1. Characterization of ENaC activity in uPA knockout cells

Benzamil is a specific and potent inhibitor of ENaC activity (Kleyman et al., 1999). We examined dose-effect relationship of benzamil in mouse tracheal epithelial (MTE) monolayer cells. Our results suggest that the level of basal short-circuit current (I_{sc}) in WT cells is approximately four fold that in uPA knockout preparations. The I_{sc} values were inhibited
by increasing the administered benzamil from 10 nM to 100 µM (Chen et al., 2014). However, the K_i values for WT and $uPA^{-/-}$ cells do not differ significantly.

3.3.2. Reduction of ENaC activity in uPA-deficient MTE cells. Inflammation and suppressed uPA activity are known to co-exist in injured lungs (Idell et al., 1992a; Barazzone et al., 1996; Sebag et al., 2011; Tucker & Idell, 2013). Based on the marked difference in ENaC activity between WT and $uPA^{-/-}$ cells, we postulated that uPA regulates ENaC activity in the airway epithelium. To test this hypothesis, we measured ENaC function in MTE monolayer cells collected from both WT and $uPA^{-/-}$ mice. MTE cells from age- and gender-matched mice were cultured at the air-liquid interface as described (Chen et al., 2009). We found that basal activity in $uPA^{-/-}$ cells was reduced compared to that in WT controls. Amiloride, a widely used inhibitor of ENaC activity, reduced the predominant fraction in both WT and $uPA^{-/-}$ cells. In sharp contrast, the transepithelial resistance did not show any difference between these two groups, though amiloride increased the value slightly (Chen et al., 2014). uPA deficiency caused a reduction of ~40 % in ENaC function (Chen et al., 2014).

ENaC activity depends upon its phosphorylation by the cAMP/PKA signaling pathway. We therefore examined the effects of uPA on cAMP-activated ENaC activity. Cystic fibrosis transmembrane conductance regulator (CFTR) is also a target of the cAMP/PKA signaling pathway and functionally inter-regulates ENaC. CFTRinh-172 was used to eliminate CFTR function. Similar to the basal ENaC activity, a significant reduction in the cAMP-elevated ENaC activity was observed in $uPA^{-/-}$ cells (Chen et al., 2014).
3.3.3. uPA deficiency down-regulates ENaC activity in permeabilized cells.

Na⁺ ion flow through ENaC channel pore is driven by both Na⁺ ion gradient across the apical plasma membrane and Na⁺/K⁺-ATPase at the basolateral membrane. To measure ENaC activity, Na⁺/K⁺-ATPase was eliminated functionally in the basolateral membrane-permeabilized cells. In addition, electrogenic Cl⁻ flow via CFTR was completely blocked by symmetrical Cl⁻ concentration across the apical membrane. Under these conditions, we reevaluated ENaC activity with a physiological Na⁺ ion gradient (Chen et al., 2014). The rate of Na⁺ influx through ENaC shows a significant decrease in uPA⁻/⁻ cells. These data, combined with those from intact monolayer cells, support the concept that ENaC activity in MTE cells is down-regulated in the absence of uPA.

We next asked whether uPA knockout would affect Na⁺/K⁺-ATPase and indirectly down-regulate ENaC by eliminating the transepithelial Na⁺ ion gradient. To answer this question, we compared Na⁺/K⁺-ATPase activity between WT and uPA⁻/⁻ cells following apical membrane permeabilization (Chen et al., 2014). Ouabain-inhibitable Isc fraction was approximately 50% that of WT cells. Clearly, depression of the driving force for ENaC results in reduced ENaC activity in uPA-deficient cells.

3.3.4. Phosphorylation of ERK1/2 and Akt by uPA. ERK1/2 and Akt are downstream components of the uPA/uPAR signaling pathway (Smith & Marshall, 2010). Furthermore, ENaC has been confirmed to be regulated by both phosphorylated ERK1/2 and Akt (Arteaga & Canessa, 2005; Lee et al., 2007; Lazrak et al., 2012). We reasoned that uPA deficiency regulated ENaC activity via modification of ERK1/2 and Akt phosphorylation (Figure 6). The first set of immunoblot assays was carried out with
lung tissues. A significant elevation in the ratio of phosphorylated versus total proteins for ERK1/2 was seen in uPA−/− lysates (Chen et al., 2014). However, alteration in the phosphorylation status of Akt was not observed neither in uPA−/− deficient MTE cells or lung homogenates. We then repeated these intriguing observations in cultured primary MTE cells. An incremental change in phosphorylated ERK1/2 proteins was found in uPA-deficient MTE cells. In striking contrast, a slight decline in phosphorylated Akt proteins was found. Is phosphorylation of ERK1/2 a mediator for the regulation of ENaC activity by uPA? To address this question, we knocked down ERK1/2 using specific siRNAs (Chen et al., 2014). ENaC activity was restored up to approximately 90% of that in WT cells, indicating that uPA regulates ENaC via ERK1/2 phosphorylation.

3.3.5. Apoptosis is not involved in the reduction of ENaC activity. It has been documented that manipulation of uPA gene influences cellular apoptosis (Hildenbrand et al., 2008; Prager et al., 2009). Reduced ENaC activity could simply be due to abnormal cell survival. We addressed this issue by determining the expression
of caspase 8, an apoptotic marker in the WT and \(uPA^+\) MTEs (Du et al., 2006). Neither full-length nor cleaved caspase protein expression was augmented (Chen et al., 2014). These results were supported by the transepithelial resistance measurement and demonstrate that the decreased ENaC activity in \(uPA^-\) cells is not attributable to apoptotic transformation of the cells.

3.3.6. Proteolysis of ENaC by uPA. Urokinase belongs to the S1 family of serine proteases. The active triad is composed of histidine, aspartic acid, and serine residues. Heterologously expressed human and murine ENaC proteins have been confirmed to be proteolytically modified by plasmin (Passero et al., 2008; Haerteis et al., 2012). We postulate that uPA cleaves ENaC under physiological conditions, and that \(uPA\) deficiency depresses proteolysis of ENaC. To characterize a new polyclonal antibody against the C-terminal peptide of rat \(\gamma\) ENaC, proteins in Western blots loaded with both total and plasma membrane proteins from cells expressing mouse \(\gamma\) ENaC served as positive controls. The construct was tagged at the N-terminal with FLAG® (trademark) epitope that can be specifically recognized by a monoclonal antibody against FLAG epitope. There are two specific bands (95 and 86 kDa) with anti-FLAG antibody, which was loaded with total proteins of cells expressing mouse \(\gamma\) ENaC with FLAG epitope. Similarly, the polyclonal ENaC antibody raised with the C-terminal peptide of rat \(\gamma\) ENaC recognized the same signals, which were loaded with total and plasma membrane protein, respectively. Importantly, this polyclonal antibody detected a cleaved C-terminal fragment with a size of approximately 74 kDa in wild type mouse lung tissues. Furthermore, we quantitated the cleavage of \(\gamma\) ENaC in \(uPA\) deficient
lungs using β-actin as a loading control (Chen et al., 2014). Indeed, catalysis of γ ENaC was significantly reduced in the lungs of uPA disrupted mice.

3.3.7. Contribution of uPA to airway luminal fluid homeostasis

Homeostasis of respiratory luminal fluid is mainly regulated by ENaC (Mall et al., 2008; Mall et al., 2010; Lazrak et al., 2011). We postulated that uPA-mediated ENaC activity in the airway epithelial cells may affect fluid re-absorption. To test this hypothesis, we measured fluid height at the apical surface of MTE (mouse tracheal epithelial) cultures using a well-characterized visualization approach (Tarran et al., 2005; Hobbs et al., 2013). We demonstrated that the depth of apical fluid above the uPA-deficient cells was much greater than that of WT controls (P < 0.05) (Chen et al., 2014).

In summary, this set of studies provides novel evidence that uPA regulates ENaC activity via multifaceted mechanisms that relate to clearance of airway fluids in injured lungs. uPA exerts its effects on proteolysis of ENaC, regulation of Na⁺/K⁺-ATPase, and modification of ERK1/2 signaling. This work links alterations in the expression of uPA activity to altered ENaC functionality in injured lungs.

3.4 Urokinase plasminogen activator proteolytically cleaves γ ENaC subunits

There are at least four ENaC subunits (α, β, δ, γ) expressed in human respiratory epithelial cells. The question raised from above in vivo studies is what ENaC subunit is catalyzed by urokinase? To date, all of three subunits have been reported to be proteolytically cleaved, in particular α and γ ENaC proteins (Andreasen et al., 2006; Planes & Caughey, 2007; Kleyman et al., 2009). δ ENaC is not believed to be cleaved (Haerteis et al., 2009; Giraldez et al., 2012; Ji et al., 2012). Our immunoblotting assay
suggests that at least fragments of native γ ENaC proteins in uPA deficient cells are altered (Chen et al., 2014). To further identify the target subunit for uPA, we incubated Xenopus oocytes heterologously expressing various combinations of human $\alpha\beta\gamma$ ENaC subunits with two-chain uPA (tcuPA). Single chain uPA proteins were generally cleaved to form tcuPA with catalytic activity under physiological conditions. The cleavage of ENaC proteins was detected by combining functional analysis of ion channel activity with immunoblotting assays of catalyzed peptides.

3.4.1. γ ENaC is cleaved by uPA. To identify what subunits are cleaved by tcuPA, a well-established measurement of amiloride-sensitive sodium ion flow was applied (Ji et al., 1998a; Ji et al., 1998b, 1999; Ji et al., 2000; Ji et al., 2001; Ji et al., 2002a; Ji et al., 2002b). We expressed α alone, $\alpha + \beta$, and $\alpha + \gamma$ in oocytes. tcuPA slightly stimulated current level in cells expressing α ENaC alone (P > 0.05). The change in cells co-expressing $\alpha + \beta$ ENaC subunits was not significant. In sharp contrast, the activity of channels composed of $\alpha + \gamma$ ENaC subunits was increased approximately three-fold (P < 0.05). These results indicate that the γ subunit could be a target for tcuPA.

3.4.2. Identification of cleavage regions in ENaC. As proposed and confirmed by several groups, there are three putative cleavage domains (Rossier, 2004; Planes & Caughey, 2007; Kleyman et al., 2009; Rossier & Stutts, 2009). To narrow down the search range for uPA cleavage sites, we constructed three deletion mutants for both α ($\alpha_{\Delta}131-138$, $\alpha_{\Delta}178-193$, and $\alpha_{\Delta}410-422$) and γ ENaC subunits ($\gamma_{\Delta}131-138$, $\gamma_{\Delta}178-193$, and $\gamma_{\Delta}410-422$), and expressed them in oocytes. We reasoned that removal of tcuPA
cleavage sites from these ENaC subunits, channel activity associated with these cleavage site-missing mutants should not be altered by tcuPA. Intriguingly, four mutants, one of α ENaC and all three deletion mutants of γ ENaC subunit did not respond to tcuPA (Ji et al., 2015). Because the current levels between each construct vary before application of uPA, we thus computed fold increased in the ENaC activity, suggesting that uPA-specific cleavage motif may be located within these four deleted ectodomains.

We then constructed V5 (C-terminal) and HA (N-terminal) tagged α ($^{\text{HA}} \alpha^{\text{V5}}$) and γ ENaC ($^{\text{HA}} \gamma^{\text{V5}}$) to examine tcuPA-mediated proteolysis combining biotinylation and Western blots. What we observed is that three bands of α ENaC were recognized by anti-V5 monoclonal antibody. One small fragment at 25 kDa in addition to a full-length signal was identified by anti-HA antibody (Ji et al., 2015). Furthermore, three small bands could be visualized on 16.5% Tris-Tricine gels by anti-HA antibody. The same signal patterns of α ENaC were found in the absence and presence of tcuPA, either with anti-carboxyl terminus (-COOH) or anti-amino terminus (-NH2) antibody. These results exclude the cleavage of α ENaC proteins by tcuPA, further substantiating the functional analysis.

In strict contrast to α ENaC, two peptides of γ ENaC were visualized by anti-V5 antibody for full-length proteins (86 kDa) and endogenous furin-cleaved C-terminal fragments (70 kDa) in the absence of tcuPA (Ji et al., 2015). By comparison, in the presence of tcuPA, C-terminal fragments with a smaller size (65 kDa) than that of furin-cut fragments along with the full-length proteins were seen. Strikingly different from anti-V5 antibody-recognized signals, proteins detected by anti-HA monoclonal antibody
displayed a similar pattern, either on 7.5 % SDS-PAGE gels or 16.5% Tris-Tricine gels. The same pattern for ENaC expression was found between controls and tcuPA-treated groups, indicating that the furin sites may precede the cleavage domains for tcuPA. Thus, the subsequent Western blots were done with anti-V5 antibody to examine uPA-cleaved C-terminal peptides as well as full-length translations (Ji et al., 2015).

3.4.3. An uPA substrate in γ ENaC. Several serine proteases, including prostasin (RKRK178), human neutrophil elastase (V182, V193), and plasmin (K189) trimmed the second consensus proteolysis motif (Rossier, 2004; Planes & Caughey, 2007; Kleyman et al., 2009; Rossier & Stutts, 2009). It is conceivable that all these residues are targeted by tcuPA. This is at least the scenario for substrate-less specific plasmin to cleave human γ ENaC (Haerteis et al., 2012). Indeed, the plasmin cleavage site composed of five amino acid residues for prostasin and one for murine plasmin (178RKRK181 + K189), when substituted with alanine (termed γ5A, 178AAAA181 + A189) was not stimulated by tcuPA even after 24 h (Ji et al., 2015). Moreover, the tcuPA-cleaved band disappeared compared with that of wild type channels (Ji et al., 2015).

A series of classic studies on the specificity of uPA substrates revealed a consensus cleavage motif, GR↓(S>N/K/R)(A>>S) from P2 to P2’ (Ke et al., 1997a; Ke et al., 1997b). We further combined in silico prediction and immunoblotting assays to narrow down the cleavage site. Using the SitePrediction server (Verspurten et al., 2009), only one hit was predicted: 177GR↓KR within the ectodomain of human γ ENaC with a specificity above 99%. In strict contrast, no specific cleavage sites in human γ ENaC were found for tPA with its cleavage motif, (F/Y/R)GR↓R(A/G) from P3 to P2’ amino acid residues. In addition, there are no predicted cleavage sites in human α, β,
and δ ENaC proteins for uPA to meet the prediction criteria. Does uPA cut γ ENaC proteins into two fragments between Arg178 and Lys179? We validated this prediction combining mutagenesis, functional measurements, biotinylation, and immunoblotting assays. Neither γR178A nor γK179A could be activated by tcuPA in 24 h significantly (Ji et al., 2015). We anticipated that the uPA-cleaved band of R178A and K179A should migrate slower than that wild type if any. Intriguingly, it is the case for K179M, and probably K179A but not R178A. This phenomenon is consistent with the functional data measured as amiloride-sensitive sodium currents (Ji et al., 2015). Combined with the blot for the deletion mutant, we believe that amino acid residues from P2-P2’ (177GRKR180) coordinately interact with uPA to serve as a catalytic triad. Of them, both R178 and K179 amino acid residues are critical for uPA-mediated proteolysis.

Combined with in silico prediction, mutagenesis, electrophysiological measurements, and immunoblotting assays, for the first time, we demonstrate human γ ENaC is a new substrate for uPA. Furthermore, we identified a specific motif with identical sequence to the proven substrate for uPA. These novel results provide molecular basis for the underlying mechanisms for uPA to activate ENaC. Genetic variance of the cleavage sites in γ ENaC may lead to uPA-deficient like dysfunctional fluid clearance in the airways and lungs.

3.5 Localization of “cutting edge” of urokinase to catalyze ENaC

3.5.1. uPA but not tPA activates ENaC. Fibrinolytic activity is depressed in injured organs (e.g. in acute lung injury and pleural effusion) (Bertozzi et al., 1990; Idell et al., 1991; Sisson et al., 2002; Prabhakaran et al., 2003; Sapru et al., 2010). These organ injuries are characterized by fluid accumulation in the luminal cavities, where
ENaC is critical for fluid resolution (Matthay et al., 2002; Matthay et al., 2005; Eaton et al., 2009; Ji et al., 2012). Both uPA and tPA initiate fibrinolysis by converting plasminogen to plasmin. To examine the specificity of uPA on ENaC activity, we compared the effects of uPA and tPA (Ji et al., 2015). tcuPA stimulated ENaC activity in a dose-dependent manner. A linear relationship was seen between tcuPA concentration above 5 µg/ml (100 nM) and ENaC currents (Ji et al., 2015). Furthermore, we characterized the time course for the activation of ENaC function by tcuPA. ENaC activity was quickly elevated at 2 h, followed by a slow increment, finally reaching maximal activity at 8 h post-treatment. The ENaC currents subsequently declined slightly but were still significantly greater than the control (P < 0.05) at 24 h. The uPA enzyme activity was 80 and 20% of the initial level, at 8 and 24 h, respectively. Insufficient enzyme, altered endocytosis of channel proteins, and time-dependent expression of exogenous ENaC channels may contribute to the slight decline of current level after the 8 h time point.

Surprisingly, neither single-chain tPA (sctPA) nor two-chain tPA (tctPA) at a dose of 10 µg/ml altered ENaC activity (Ji et al., 2015). Tenecteplase was tested next to determine whether exosite interactions contribute to a sharp difference in the effects of tPA and uPA on ENaC activity. Tenecteplase is a mutant variant (T103N/N117Q/K296A/ H297A/R298A/R299A) of tPA, which has higher than WT tPA fibrin specificity, and almost 2 orders of magnitude lower affinity for PAI-1 due to the elimination of positive charges in the 37-loop (57–59). However, neither sctPA nor tctPA nor tenecteplase in doses as high as 25 µg/ml affected ENaC activity (Ji et al., 2015), whereas enzymatic amidolytic activity toward LMW substrates and plasminogen-
activating activity remained intact. Our study hereby adds a novel endogenous target to the uPA substrate pool.

3.5.2. Catalytic triad of uPA to cleave ENaC. The two polypeptide chains of an uPA molecule (amino-terminal fragment (ATF) and protease domain) are connected by a single disulfide bond between two cysteine residues. To evaluate the contribution of uPA catalytic and ATF domains to activation of ENaC, a catalytically inactive S195A (chymotrypsin numbering) tcuPA and three uPA domain-deletion mutants, Δkringle (deletion of Kringle domain), ΔCPD (deletion of Connecting Peptide Domain), and ΔGFD (deletion of Growth Factor Domain) uPA, were compared with WT tcuPA. Oocytes expressing ENaC cRNA cultured in medium without uPA or its mutants were used as a negative control (Ji et al., 2015). Whereas inactive S195A tcuPA did not elevate ENaC current, all three mutant variants, which include the catalytic domain and possess enzymatic activity, activated ENaC. Therefore, there is only minimal (if any) contribution of ATF to ENaC activation by uPA (Ji et al., 2015).

To further confirm these intriguing observations and to exclude the bias associated with enzymatic activity of each preparation of wild type and mutated uPA, we repeated these experiments by incubating oocytes with both wild type and mutant tcuPA preparations that, except for the S195A mutant, have equivalent enzymatic activity (Ji et al., 2015). Consistent with the above experiment, the S195A tcuPA (negative control for this set experiments) did not affect ENaC activity. These three domain-deletion mutants of uPA, namely, Δkringle, ΔCPD, and ΔGFD, stimulated ENaC currents to an extent similar to WT tcuPA. These data demonstrate that the amino-terminal fragment is not
involved in the activation of ENaC by tcuPA. Moreover, the same level of enzymatic activity associated with both wild type and mutant tcuPA, instead of identical mass, determined the amplitude of ENaC currents. We pooled experimental paired data for WT and mutated uPA as well as tPA constructs to compute the Pearson correlation. A correlation co-efficient of 0.93 was derived with a P value of 3.5E-6 between tcuPA and ENaC activity (Ji et al., 2015). In sharp contrast, tPA enzyme activity showed no correlation with ENaC function. These results suggest a possible correlation between activated ENaC current levels and uPA enzyme activity, demonstrating that S195 is required for uPA to cleave ENaC.

3.5.3. Structural interactions between catalytic sites of uPA and cleavage sites of γ ENaC. The cleavage sites in the γ ENaC (R178 and K179) are located between α1 and α2 domains of the finger, a hypervariate region. The confident docking of the uPA specific cleavage site into the enzyme active center of uPA substantiates their protein-protein interactions (Ji et al., 2015). A network of hydrogen bonds within the catalytic triad of uPA was visualized (Figure 7). Importantly, hydrogen bonding pairs are detected between His57 (uPA) and Lys179/Arg180 (ENaC), and Ser195 (uPA) and Arg178/Lys179 (ENaC). Beside, Thr176 (ENaC) interacts with His99 (uPA). Arg178 (ENaC) protrudes down into a deep cavity and interacts with other residues in the bottom of the cavity. Proteolysis of ENaC by uPA could be divided into two steps: acylation and deacylation (Neitzel, 2010). The Ser195 of uPA, together with His and Asp, serves as a nucleophilic “edge” to separate the Arg178 from Lys179 of γ ENaC, generating two fragments: the C-terminal peptide and the N-terminal peptide.
Figure 7. Structural interactions between uPA and human γ ENaC. A, surface view of the catalytic triad of uPA (Protein Data Bank code 1W12). The triad residues (Asp-102, His-57, and Ser-195) along with His-99 line the back of the enzyme active center. Inset, measures of hydrogen (green and white dashed lines) bonds among amino acid residues composed of the catalytic triad. B, docking of the cleavage site (P3–P2’) of γ ENaC to the enzyme active pore of uPA. C, uPA-induced cleavage of the γ ENaC. Arg-178 and Lys-179 are located between the α1 and α2 domains. Domain coloration is as follows: transmembrane domains 1 and 2 (TM1 and TM2) (red), wrist (red), palm (blue), knuckle (cyan), finger (purple), thumb (green), and β (orange). The three-dimensional uPA-cleaved sites from P3 to P2’ in human γ ENaC (TGR ↓ KR) was generated by using “Tools>Build and Edit Protein” in Discovery Studio Visualizer version 4.0. Following removal of the ligand from uPA, docking of the cleavage site in ENaC to uPA was performed with Autodock Vina version 1.1.1 in a Pyrx (version 0.85) environment. The top-ranking pose with minimal energy in the docking results was selected and saved as a Protein Data Bank file. Final presentation was accomplished with Discovery Studio Visualizer version 4.0 by inserting the selected docking pose of the cleavage sites into the catalytic triad of uPA protein. The docking structure of uPA and cleavage site was further energy-minimized by “clean geometry.” The uPA-ENaC interactions between the enzymatic domain and cleavage sites were visualized by a “non-bond interaction monitor” for a ligand-receptor mode. Adapted

3.6 Urokinase augments opening channel density and opening time of channels
3.6.1. uPA strengthens the open conformation of ENaC. A two-state model (closed-open) has been proposed to analyze the gating kinetics of ENaC channels (Chraibi & Horisberger, 2002). We postulated that tcuPA opens closed channels and facilitates maintenance of activated ENaC in the open state. To analyze this, the gating kinetics is computed by measuring self-inhibition of external Na\(^+\) ions (Ji et al., 2015). In addition to stable channel activity (reflected by sustained current level), the maximal channel activity (measured as peak current) was significantly greater than in control cells. The ratio of sustained over maximal current levels is approximately 0.5 for ENaC channels in control cells, which is consistent with previous observations (Sheng et al., 2004; Sheng et al., 2007; Molina et al., 2011). By comparison, our results showed that the value was close to 1.0 following exposure to tcuPA. These studies suggest that self-inhibition is diminished by tcuPA. There are two components of self-inhibition: a fast phase followed by a slow phase (Garty & Benos, 1988; Ji et al., 2015). The rate of activation process after incubation with tcuPA was almost an order of magnitude faster than that for untreated cells (1.17 and 11.9 s\(^{-1}\) for control and tcuPA treatment, respectively). Moreover, treatment with tcuPA completely eliminated inactivation (inactivation rate was reduced by tcuPA from 0.56 s\(^{-1}\) to 0.0 s\(^{-1}\)). In addition, even with switched gating rates between control and tcuPA-treated cells, the simulated maximal current level at the full open state for controls was still much lower than the sustained current magnitude of tcuPA-challenged cells. These observations could not simply be explained by full opening of activated channels in untreated cells. On the other hand, irreversibility of the effect of tcuPA on ENaC gates most likely reflects cleavage of ENaC by tcuPA resulting in transition to the “open” conformation of the channel.
3.6.2. uPA activates “silent” channels. Channel activity recorded in whole-cell mode is the product of single channel activity and unitary conductance. The latter was not altered during self-inhibition, as has been demonstrated by self-inhibition mutations (Sheng et al., 2004; Molina et al., 2011). Single channel activity is the product of open probability and electrically detectable channel density. The simulation leads us to ask whether there is a potential increment in functional channel density. The functional channel density was computed as we described recently (Ji et al., 2015). Our calculation found that the channel number that could be detected per unit area was 410 channels/μm² post uPA exposure. It is five-fold greater than that in control cells (82 channels/μm²). It appears that uPA increases functional channel density at the plasma membrane. This is supported by studies of other serine proteases (Caldwell et al., 2004, 2005; Diakov et al., 2008).

3.6.3. uPA optimally increases opening time. MTSET is a thiol-modifying reagent that activates αβS520Cγ channels almost completely as evidenced by an open probability of nearly 1.0 (Goldfarb et al., 2006). If uPA activates ENaC activity via an increment in opening time, with a mechanism similar to that mediated by MTSET, then uPA should not alter ENaC whole-cell currents in MTSET-pretreated cells expressing αβS520Cγ channels. Our results indicate that while MTSET does increase channel activity in untreated cells to a level similar to that in uPA-incubated cells (Ji et al., 2015), it does not affect uPA-activated ENaC activity. These observations provide direct evidence for uPA maintenance of ENaC channels in the fully open state, with a resultant effect equivalent to that of MTSET.
3.7 Proteolysis is the mechanism to elevate ENaC activity to the utmost level vs self-inhibition releasing agents

Cpt-cAMP, as a cell permeable specific PKA activator has long been used for studying epithelial Na\(^{+}\) channels. Chraibi and colleagues found that the compound specifically activated guinea pig but not rat ENaC in oocytes (Chraibi \textit{et al.}, 2001). Furthermore, a key responsive domain in guinea pig \(\alpha\) subunit (Ile481) was identified (Renauld \textit{et al.}, 2008). Human ENaC responded to cpt-cAMP in a dose-dependent, time-independent, and reversible manner. In addition to these heterologous channels, amiloride-sensitive, cpt-cAMP activated cation channels were also reported in human Clara cells (H441) and human lymphocytes in a similar manner (Bubien \textit{et al.}, 1996; Bubien \textit{et al.}, 1998; Bubien \textit{et al.}, 2001; Chen \textit{et al.}, 2009). To date, the interpretation for the acute activation of both native and heterologous human ENaC activity by cpt-cAMP is still limited to the mediation of the cAMP/PKA pathway. A number of critical amino acid residues are involved in governing self-inhibition. External sodium self-inhibition is an intrinsic feature of ENaC. A rapidly increase in extracellular sodium ions to a physiological concentration (150 mM for mammals and 100 mM for amphibians) generates a maximal peak current in seconds, and then the permeability of ENaC to Na\(^{+}\) ions is gradually reduced to a relatively stable level with a current level of approximately half of the maximal value. This phenomenon is called extracellular sodium self-inhibition of ENaC activity. It differs from the down-regulation of ENaC activity by slowly accumulating intracellular Na\(^{+}\) content in a feedback manner. External Na\(^{+}\) self-inhibition is a crucial mechanism to limit overwhelming salt absorption to prevent a quick raise in epithelial cell volume and blood pressure. Sheng and co-
workers identified the cysteine and histidine residues in α and γ subunits were critical (Sheng et al., 2002; Sheng et al., 2007). Very recently, this group provided strong evidence that αGly481 and γMet438 resided in the thumb domain were functional determinants of self-inhibition (Maarouf et al., 2009). In addition to the relief of self-inhibition, the external ligand-like compounds activated ENaC channels analog to serine proteases (Planes & Caughey, 2007; Kleyman et al., 2009; Rossier & Stutts, 2009).

3.7.1. cpt-cAMP cannot activate cleaved ENaC by fibrinolysin. We hypothesize that uPA and cpt-cAMP activate ENaC with variant mechanisms and to a different extent. We tested the effects of cpt-cAMP on fully opened channels in cells exposed to protease-plasmin (Passero et al., 2008; Svenningsen et al., 2009a; Svenningsen et al., 2009b). Our previous studies showed that external cpt-cAMP stimulated human, but not rat and murine, αβγ ENaC in a dose-dependent and external sodium concentration-dependent fashion (Molina et al., 2011). ENaC mutations that abolished self-inhibition (∆V348 and H233R) almost completely eliminated cpt-cAMP mediated activation. In contrast, mutations that both enhanced self-inhibition and elevated cpt-cAMP sensitivity increased the stimulating effects of the compound. Our above data confirmed that cpt-cAMP acts as a ligand to regulate heterologous ENaC by relieving self-inhibition. Edelheit et al studied alanine mutations in 17 conserved charged residues of ENaC and found that these residues are involved in conformational changes that lead to channel constriction and to the sodium self-inhibition response upon sodium ion flooding (Edelheit et al., 2014). Similarly, our recent data showed that elimination of self-inhibition of αβγ ENaC may be a novel mechanism for CPT-cGMP to stimulate salt reabsorption in the human epithelium (Han et al., 2011).
3.7.2. Cleavage abolishes cpt-cAMP-mediated ENaC activation in human lung epithelial cells. To corroborate the findings in oocytes, we evaluated the effects of cpt-cAMP on native ENaC in human lung epithelial cells (H441 monolayers), in which biochemically and physiologically detectable ENaCs were evoked by cpt-cAMP (Chen et al., 2009). cpt-cAMP activated amiloride-inhibitable Isc levels by approximately 8% (Molina et al., 2011), which was much less than that for cloned ENaC in oocytes (2 fold). It is possible that ENaC proteins in carcinomatous H441 cells probably have been cleaved by overexpressed proteases (McMahon & Kwaan, 2008; Shetty et al., 2008). We thus incubated cells with protease inhibitors for 12 h. As anticipated, cpt-cAMP increased Isc level up to 2-fold in cells pretreated with protease inhibitors (Molina et al., 2011).

3.7.3. CPT-cGMP ligand docking to different ENaC domains. In our previous experiment, we constructed mutants abolishing (βV348 and γH233R), or augmenting (αY458A and γM432G), ENaC self-inhibition (Han et al., 2011; Molina et al., 2011). The mutations eliminating self-inhibition resulted in a loss of response to CPT-cGMP, whereas those enhancing self-inhibition facilitated the stimulatory effects of this compound. Our analysis shows the potential binding sites for the CPT-cGMP ligand in ENaC domains that are crucial for self-inhibition. βV348 is located in the center of the palm region of the subunit, and γH233 is located in the vicinity of the putative binding site for protons. These domains potentially directly or allosterically interact with CPT-cGMP.
3.7.4. CPT-cGMP and self-inhibition. Human serum cGMP level is 6 nM and 3-time greater in human bronchoalveolar lavage (Arias-Diaz et al., 1994). It appears that cGMP may serve as an autocrine and paracrine to regulate ENaC function. However, the effective dose for CPT-cGMP and CPT-cAMP to blunt self-inhibition is micromolar, suggesting an uncertain physiological role for cGMP and analogs. A large dose of cGMP compound (1 mg/kg, i.v.) was administered to pigs as reported by a pre-clinical trial (Sandera et al., 2000), and numerous preclinical studies (from 100 mM to 2 mM) (Jain et al., 1998; Kemp et al., 2001; Chen et al., 2008). It is therefore feasible to apply aerosolized nucleotides to mitigate oedematous lung injury. We have demonstrated that CPT-cGMP up-regulates ENaC via two mechanisms: release self-inhibition externally and activates ENaC through the cGMP/cGKII pathway intracellularly (Han et al., 2011). Thus, these compounds could regulate sodium absorption via either or both mechanisms in a cell permeability-dependent manner. Administration of CAMP could be a potent pharmaceutical treatment for oedematous lung injury (Chen et al., 2009), and cGMP may have similar potential. cGMP increased in murine and rat lungs both in vivo and in vitro following nitric oxide (NO) application (Hardiman et al., 2004), and increased cGMP may augment the cGMP-sensitive pathway for lung fluid removal from alveolar sacs (Sakuma et al., 2004). Our previous study demonstrated for the first time that PKGII is an ENaC activator in non-ciliated bronchial secretory cells (Nie et al., 2009b). Accordingly, upregulation of the rate-limiting ENaCs in respiratory epithelial cells by specific PKGII activators may be a potent clinicopharmaceutical strategy for alleviating airspace flooding in fatal oedematous lung diseases. The observation of our previous study that specific moieties of 8-pCPT-cGMP are required for activating ENaC may
provide pivotal information for developing potential ENaC channel openers structurally related to 8-pCPT-cGMP, which would be extremely useful for treating diseases associated with lower ENaC function. We postulate that when the tight epithelial layer is damaged, for example, in injured lungs, even though the mixture of extracellular matrix proteins, including collagens, albumin, and fibrins, will seal the epithelial cell-free alveolar surface, the potency of ENaC stimulator will be limited significantly. Therefore, the integrity of the tight alveolar epithelium should be a key factor to be considered for the usage of ENaC agonists. The anticipated restore of alveolar fluid clearance may be seen at the earlier stage of ALI and lung oedema mainly caused by injured pulmonary vasculature or post regeneration of alveolar epithelium by stem cells/progenitors.

3.7.5. Specific self-inhibition domains differ from uPA cleavage sites.

His(88) and Asp(516) of the γ subunit play a role in the Zn$^{2+}$ regulating sodium self-inhibition mentioned above. Recent studies showed that palmitoylation of the γ subunit activates ENaC by increasing the open probability of the channels (Mukherjee et al., 2014). ENaC mutants with the mutations γC33A, γC41A, or γC33A/C41A have significantly enhanced sodium self-inhibition and reduced open probability compared with wild type ENaCs, suggesting that ENaC palmitoylation is an important post-translational mechanism of channel regulation. Exon 11 within the human α, β, and γ ENaC genes encodes structurally homologous yet functionally diverse domains, and exon 11 in the α-subunit encodes a module that regulates channel gating (Chen et al., 2014). In contrast to the other mutations, γL511Q largely eliminated the sodium self-inhibition response, reflecting a down-regulation of ENaC open probability by extracellular sodium (Chen et al., 2013). γL511Q is a gain-of-function human ENaC
variant and it enhances ENaC activity by increasing channel open probability and dampens channel regulation by extracellular sodium and proteases (Chen et al., 2013).

3.7.6. Self-Inhibition as an alternative approach to fibrinolysins. Divergent targeting subunits and critical domains indicate that self-inhibition releasing reagents and fibrinolysins can be used as potential therapeutic strategies complementarily. Distressed transapical sodium transport occurs in injured lungs, for example, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) (please see classical reviews (Matalon et al., 2002; Mathay et al., 2002; Berthiaume & Matthay, 2007; Eaton et al., 2009; Matalon et al., 2015)). Apical ENaC contributes to up to 70% of transepithelial sodium transport in mammalian lungs under physiological conditions. This critical process is sensitive to aspirated pollutants, allergens, pathogens, and bacterial endotoxins. In addition to increased leaking through alveolar microvascular endothelium (indirect ALI), lung oedema usually results from reduced oedema fluid resolution via ENaC (direct ALI). ENaC is a promising target for developing new therapeutical strategies to alleviate lung oedema, at least for the phenotype of direct ALI (Giraldez et al., 2013; Czikora et al., 2014).
4. Theoretical Framework

4.1. How and in what respect the work has made a significant and coherent contribution to knowledge. It is widely accepted that apical ENaC is composed of $\alpha\beta\gamma$ three subunits, given the fact that mice with deficient α ENaC ($scnn1a$ gene) died after birth (Hummler et al., 1996; Hummler & Vallon, 2005). The current concept is that pulmonary α ENaC function is amplified by $\beta\gamma$ counterparts. Based on these earlier observations, it has been assumed that the fourth ENaC, that is, δ ENaC may not have a role in human lungs. Of note, the $scnn1d$ gene is a pseudogene in murine but expressed in humans. On the other hand, infants carrying “loss-of-function” genetic mutants of $scnn1a$ did not have respiratory distress syndrome. One explanation is $scnn1a$ may have unknown functions that cause death. An alternative possibility is that δ ENaC may compensate the salt transport function in $scnn1a$ deficient infants. The contributions of δ ENaC has long puzzled ENaC researchers due to lack of animal models. Our publications systematically characterized the expression and function of δ ENaC in pulmonary epithelium with complimentary techniques and models. Our studies clearly demonstrate that δ ENaC is approximately expressed in alveolar epithelial cells and function in a way similar to α ENaC. Our results for the first time outline the role of δ ENaC in pulmonary epithelial cells and shift the current concept about the components of apical ENaC channels.

Albeit fibrinolysins have been applied to pulmonary diseases, their mechanisms remain obscure, in particular for urokinase and plasmin. Our innovative studies for the first time demonstrate: 1) urokinase deficiency reduced ENaC function via a reduction in
Na⁺/K⁺-ATPase, ERK1/2 phosphorylation, and cleavage of γ ENaC subunit in vivo; 2) urokinase but not tissue-type plasminogen activator (tPA) up regulates human ENaC function in a dose-, time- and catalytic activity-dependent manner; 3) urokinase proteolytically cleaves γ ENaC subunit (R178ΔK179) into two fragments; 4) urokinase augments activation rate and eliminates “silent” channels; 5) plasmin stimulates ENaC in a way similar to urokinase; and 5) a nucleotide (cPT-cAMP and CPT-cGMP) activates ENaC by releasing external sodium inhibition, differing from aforementioned mechanisms for fibrinolysins.

4.2. Impact. Abnormal fluid regulation in the respiratory system is the major pathological characteristics of both “dry” and “wet” lungs. Dehydration of the airways and the airspaces is associated with cystic fibrosis, chronic obstructive pulmonary disease (COPD), and genetic diseases with gain-of-function mutants of ENaC (Boucher, 2007; Mall et al., 2010; Zhao et al., 2014; Mall, 2016). Pulmonary oedema is a life-threatening clinical disorder. Cardiogenic pulmonary oedema (hydrostatic oedema) is caused by cardiovascular diseases, in particular heart failure. Noncardiogenic oedema results from systemic or pulmonary infection, brain trauma (neurogenic), side-effects of medicines, and high altitude (HAPE). ENaC contributes to ~70 % of alveolar fluid clearance and re-absorption of airway surface fluid. Our studies shift the current concept of the pulmonary epithelial sodium transport pathway. Our data improve our understanding in the pathogenesis of pulmonary oedema, and our knowledge in the physiological functions and pathogenic role of fibrinolysin-regulated ENaC in pulmonary
oedema. Our novel results provide cellular and molecular basis for the use of fibrinolysins to oedematous lung diseases.

4.3. Methodologies

We combined state-of-the-art electrophysiological (the voltage clamping, Ussing chamber, and patch clamping assays), contemporary biochemical (biotinylation, immunoblotting, ELISA, and immunofluorescent scoping), molecular biological approaches (mutagenesis, RT-PCR, *in silico* prediction, and *in vitro* cRNA), preclinical tests (alveolar fluid clearance, ventilation, *in vivo* intratracheal instillation, and histology), and leading edge techniques of gene modification (knockout, shRNA knock down, transgenic) to study the pharmaceutical mechanisms of nucleotides and fibrinolysins-mediated regulation of ENaC activity. The genetically engineered animals were used for *in vivo* studies, human lungs for *ex vivo* and *in situ*, primary cultures for *in vitro*, and expression system (*Xenopus* oocyte) for advanced mechanistic studies.
5. Summary/Conclusions

In summary, our results for the first time demonstrate that 1) δ ENaC is crucial to maintain fluid homeostasis in the airways and the airspaces; 2) pulmonary fibrinolytic activity regulates fluid homeostasis by proteolytically cleaves apical located ENaC proteins. Our data explain the species differences in the *scnn1a* deficiency-associated respiratory distress syndrome between human and mice, and in the pharmaceutical efficiency and tissue dependence between tPA and uPA. In ENaC-expressing epithelial and mesothelial tissues, e.g., the airways, lungs, pleural cavity, kidney, and distal colon,
it should be kept in mind that either endogenous or administered uPA may dehydrate the lumen through excessive activation of ENaC-mediated salt/fluid retention (Figure 8). For the first time, we demonstrate that cpt-cAMP and CPT-cGMP activate pulmonary ENaC by eliminating self-inhibition. Conclusively, our publications suggest that uPA, cpt-cAMP, and CPT-cGMP may be a novel generation of ENaC activators to mitigate lung oedema and other oedematous pulmonary diseases.
6. Contributions made by the candidate

By collaborating with a group of investigators on campus and worldwide, the first set of experiments was designed to characterize the expression and function of δ ENaC as well as a splicing variant in human lung epithelial cells (Ji et al., 2006; Ji et al., 2012; Zhao et al., 2012). Furthermore, I found that δ ENaC conferred the biophysical and pharmacological properties of “classical” αβγ ENaC channels when four ENaC subunits are co-expressed in *Xenopus* oocytes heterologously (Ji et al., 2006). These experiments were completed by collaborating with Drs. Zhao, Nie, Su, Han, Chang, Matalon, Kedar, Barbry, Smith, and Benos.

The second set of experiments was set out to examine the regulation of ENaC by uPA in primary mouse tracheal epithelial cells (MTE). The central hypothesis is that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells. We found that both basal and cAMP-activated Na⁺ flows through ENaC were significantly reduced in uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane permeabilized cells. A decrease in the Na⁺/K⁺-ATPase activity could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid re-absorption by MTE cells. ERK1/2, but not Akt phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice. Expression of caspase 8, an apoptosis molecule, however,
did not differ between wild type and \textit{uPA}-/- mice. In addition, uPA deficiency did not alter transepithelial resistance. This is the first report demonstrating that urokinase up-regulates ENaC activity \textit{in vivo} and \textit{in vitro} (Chen \textit{et al.}, 2014). These experiments were completed by collaborating with Drs. Chen, Zhao, Bhattarai, Dhiman, Shetty, and Idell.

The third set of experiments was to explore the underlying pharmacological mechanisms for uPA to up regulate ENaC. The hypothesis is that uPA may activate ENaC through proteolysis. My results show that two-chain urokinase (tcuPA) strongly stimulates heterologous human $\alpha\beta\gamma$ ENaC activity in a dose- and time-dependent manner. This activity of tcuPA was completely ablated by PAI-1. Furthermore, a mutation (S195A) of the active site of the enzyme also prevented ENaC activation. By comparison, three truncation mutants of the amino terminal fragment of tcuPA still activated ENaC. uPA enzymatic activity was positively correlated with ENaC current amplitude prior to reaching the maximal level. In sharp contrast to uPA, neither single-chain tPA nor derivatives, including tctPA and tenecteplase, affected ENaC activity. Furthermore, γ but not α ENaC subunit was proteolytically cleaved (177GR↓180KR) by tcuPA. In summary, the underlying mechanisms of urokinase-mediated activation of ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in opening rate, and activation of closed (electrically “silent”) channels. In addition, plasmin activated ENaC in a similar way. These studies for the first time demonstrate multifaceted mechanisms for fibrinolysin-mediated up-regulation of ENaC (Ji \textit{et al.}, 2015), which form the cellular and molecular rationale for the beneficial effects of urokinase and plasmin in mitigating pulmonary oedema and pleural effusions. These
experiments were completed by collaborating with Drs. Zhao, Komissarov, Chang, Liu, and Matthay.

Finally, I characterized the potential mechanisms for the interactions between proteolysis and other external ligands, including inhibitory peptides, CPT-cGMP and cpt-cAMP (Nie et al., 2010; Han et al., 2011; Molina et al., 2011). I hypothesized that serine proteases fully open the gate of ENaC channels, while other ENaC activators or external ligands partially stimulate channel activity. Our results show that CPT-cGMP and cpt-cAMP activate ENaC function through release of external sodium self-inhibition. In contrast, serine proteases cleave the extracellular loop of ENaC proteins and remove “inhibitory peptides”, which is located closely to the first transmembrane domain. ENaC channels treated with serine proteins were on longer activated by these external ligands. In strict contrast, in the presence of CPT-cGMP or cpt-cAMP, serine proteases were able to activate ENaC activity to a maximal extent. Clearly, our studies demonstrate that proteases are the most potent ENaC activators. These experiments were completed by collaborating with Drs. Zhao, Komissarov, Chang, Liu, and Matthay.
Contributions to 4 of 105 publications

 Word count: 11,526.

 My contribution: 80%.

 The nature (role) of contributions: I initiated the concept, organized and coordinated team work, designed each experiment. All of functional evaluations using the two-electrode voltage clamp techniques and in silico analysis (Figures 1-4, 8A & B) were performed by myself. Immunoblotting assays and fibrinolysin activity were completed by the collaborators under my supervision (Figures 5-7, 8C & D). I also analysed each experiment, plotted all figures (Figures 1-9), drafted each version of the manuscript, submitted the paper and prepared responses to the reviewers' critiques. All of experiments were done within my laboratory.

Word count: 7,569.

My contribution: 60%.

The nature (role) of contributions: I initiated the concept, organized and coordinated team work, and designed each experiment. Ussing chamber experiments (Figures 1-3), and fluid height imaging (Figure 8), and Western blots (Figures 4-7) were performed by the collaborators under my supervision. All of the experiments were done in my laboratory. I analyzed all experiments, plotted figures, drafted each version of the manuscript, submitted the paper and prepared responses to the reviewers' critiques.

Word count: 13,045.

My contribution: 80%.

The nature (role) of contributions: I initiated the concept, organized and coordinated team work, designed each section, searched and reviewed literature, plotted Figures 1-3, made Tables 1 and 2, drafted each version of the manuscript, submitted the paper and prepared responses to the reviewers' critiques. The collaborators revised the manuscript and discussed the structure of the paper.

Word count: 9,147.

My contribution: 50%.

The nature (role) of contributions: I initiated the project, organized and coordinated team work, and designed each experiment. I carried out functional studies in *Xenopus* oocytes (Figures 2-6). In *situ* hybridization, cloning, *in vitro* transcription, and blasting were done by the collaborators under my supervision (Figure 1). I also analysed each experiment, plotted all figures, drafted each version of the manuscript, submitted the paper and prepared responses to the reviewers' critiques with help of the collaborators.
Bibliography

Stockand JD, Staruschenko A, Pochynyuk O, Booth RE & Silverthorn DU. (2008). Insight toward epithelial Na⁺ channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60, 620-628.

