Citation for published version

DOI

https://doi.org/10.1098/rstb.2015.0105

Link to record in KAR

http://kar.kent.ac.uk/56810/

Document Version

Pre-print

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Author Queries

Journal: Philosophical Transactions of the Royal Society B
Manuscript: RSTB20150105

As the publishing schedule is strict, please note that this might be the only stage at which you are able to thoroughly review your paper.

Please pay special attention to author names, affiliations and contact details, and figures, tables and their captions.

If you or your co-authors have an ORCID ID please supply this with your corrections. More information about ORCID can be found at http://orcid.org/.

No changes can be made after publication.

Q1 Please provide volume and page range for refs [11,20,47,88,114].
Evidence in hand: recent discoveries and the early evolution of human manual manipulation

Tracy L. Kivell

For several decades, it was largely assumed that stone tool use and production were abilities limited to the genus Homo. However, growing palaeontological and archaeological evidence, comparative extant primate studies, as well as results from methodological advancements in biomechanics and morphological analyses, have been gradually accumulating and now provide strong support for more advanced manual manipulative abilities and tool-related behaviours in pre-Homo hominins than has been traditionally recognized. Here, I review the fossil evidence related to early hominin dexterity, including the recent discoveries of relatively complete early hominin hand skeletons, and new methodologies that are providing a more holistic interpretation of hand function, and insight into how our early ancestors may have balanced the functional requirements of both arboreal locomotion and tool-related behaviours.

1. Introduction

‘Now it appears that man-apes—creatures able to run... and with brains no larger than those of apes now living—had already learned to make and to use tools’. Washburn ([1], pp. 63).

Washburn’s ([1], see also [2]) declaration referred to the contemporary discoveries by the Leakey family [3,4] of the robust australopith skull of ‘Zinjanthropus boisei’ in association with a living floor of Oldowan stone tools. Only a few months later the remains of Homo habilis Olduvai Hominid (OH) 7 were discovered [4–7] and quickly deemed the maker of these stone tools, while Zinjanthropus was considered likely to be the prey instead [7]. In the decades following, tool use and tool making were largely considered to be an ability limited to (and, indeed, used to define) the genus Homo (see [8] for a review). However, a growing wealth of palaeontological, archaeological and comparative primate evidence makes clear that Washburn’s [1] assertion that pre-Homo ‘ape-men’ were making and using tools still holds true today. In particular, recent, relatively complete fossil hominin hand skeletons [9–11] and archaeological discoveries [12,13] have added greatly to the growing group of palaeoanthropologists and archaeologists open to the idea that enhanced manual dexterity and tool-related behaviours have been a part of our evolutionary history for much longer than traditionally believed ([14–22], see also [23,24]).

Inferences about manipulative ability and potential tool-related behaviours in the earliest hominins must rely largely on morphological fossil evidence. Comparative extant primate studies, showing a dominance of using organic plants as tools in New and Old World monkeys and hominoids, suggests that the modification of plants and tool use were behaviours probably present in the last common ancestor of humans and Pan (chimpanzees and bonobos) [24], and potentially evolved multiple times in extinct fossil primates and hominins [22]. However, evidence of the modification and use of organic materials as tools either does not preserve in the fossil record or is not recognizable as tools [17,22]. Thus, researchers are generally forced to focus their interpretation and understanding of the evolution of human manipulative behaviours on...
2. What makes humans distinct? Manipulative abilities and morphological correlates

For the last few decades, research into the evolution of human manipulative abilities has focused—with good reason—on identifying the manipulative behaviours that are unique to humans compared with other primates, and the morphological features of the human hand that might facilitate these abilities. This research is thoughtfully and thoroughly reviewed most recently by Markle et al. [35] show that the FPL is not strongly active in either the dominant or non-dominant hand, particularly during precision pinch grips, in experienced knappers (but see [36]).

fossilized hand anatomy, especially in the earliest stages of human evolution (e.g. between approx. 7 and approx. 3.5 Ma; see below) and modified stone tools. Furthermore, the morphological evidence for the majority of our evolutionary history has been limited to isolated hand bones that are not directly associated with taxonomically identifying remains (i.e. craniodental material) or stone tool evidence. Thus, palaeoanthropologists have debated the taxonomic attribution and manipulative capabilities of many early fossil hominins for several decades [14,15,18,25–28]. However, recent palaeoanthropological and archaeological discoveries, as well as advances in methods for analysing morphological remains, have shed new light on the manipulative abilities of early hominins.

There are several reviews of the morphological evidence for manipulative behaviours in human evolution [29–33]. Therefore, this paper focuses on the more recent fossil and archaeological evidence and the results of new methodologies that are helping to broaden our understanding of the evolution of the human hand and, in particular, the potential manipulative abilities of early hominins and how these might also have been balanced with requirements of arboreal locomotion.

Figure 1. Bony and soft tissue morphology of the human hand considered advantageous for the manipulative precision and power squeeze grips used during stone tool use and production. (a) The suite of bony features typically considered distinct in the human hand (although some specific features are found in other primates, such as broad apical tufts in baboons) that reflect the ability to forcefully oppose the pads of the thumb and fingers, the well-developed musculature to the thumb and fifth digit, the high external loading of the thumb and distribution of that load across the wrist and palm, and the broad finger tips for control and manipulation of objects, especially within one hand. (b) Human precision grip (shown, a five-jaw chuck precision grip) in which the pads of the thumb and fingers grasp and manipulate the object and (c) a power squeeze grip, in which the fingers grasp the object diagonally and thumb is in line with the forearm. In stone tool behaviour, the thumb and fifth fingers are important for the manipulating and stabilizing objects in both the dominant and non-dominant hands. Muscles of the thumb and fifth digit that are strongly activated during use of these grips in tool making are noted [34]. FPL, flexor pollicis longus; FCU, flexor carpi ulnaris; FDM, flexor digiti minimi; ADM, abductor digitii minimi; OP, opponens pollicis; DI, dorsal intersseous; AP, oblique adductor pollicis; FPB, flexor pollicis brevis; EPB, extensor pollicis brevis; Mc, metacarpal. The styloid process found at dorsal radial corner of the third metacarpal and thus cannot been in palmar view. **Markle et al. [35] show that the FPL is not strongly active in either the dominant or non-dominant hand, particularly during precision pinch grips, in experienced knappers (but see [36]).
grip the object diagonally across the palm and the thumb is
either wrapped around the object or is in line with the fore-
arm, such as when using a hammer [48] (figure 1c). Other
primates are capable of power grips (using the palm) or diag-
onal hook grips (fingers usually stabilized against the palm),
but neither provide the same control that the power squeeze
grip does in humans [48].

To potentially infer when these unique manipulative abil-
ities may have evolved in the human lineage, many have
tried to identify the distinctive features, or suites of features,
in human bony and soft tissue anatomy that facilitate these
gripping behaviours [29,30,32,49–51]. These anatomical fea-
tures are summarized in figure 1. The most obvious and
critical difference about the human hand compared with
other primates is our robust and long thumb relative to the
length of the fingers. Experimental studies have demon-
strated that the thumb of the dominant hand [52,53] and,
although much less so, the non-dominant hand [34], incur
substantial external force during stone tool making and, par-
ticularly during tool use, such as when using a flake [53,54],
but see [52] and below). The bony morphology and mus-
culature of the thumb reflect its importance in human
manipulative behaviours. All but one of the muscles of the
human thumb have a significantly larger moment arm (i.e.
better mechanical advantage or leverage) than that of chim-
panzees [35,55]. Two muscles in particular, the opponens
policis and adductor pollicis muscles, also have larger
cross-sectional area and potential torque that together pro-
vide better leverage and limit fatigue when opposing the
thumb to the pads of the other fingers [55]. Larger muscle
attachments on the first metacarpal (Mc1) for the opponens
policis and first dorsal interosseous muscles also help to
increase leverage and stabilize the joint at the base of the
thumb during opposition [32,56]. Much attention has been
paid to the independent and well-developed flexor pollicis
longus (FPL) muscle of humans that helps to flex and stabil-
ize the tip of the thumb [19,29,30,51,57]. Although this
muscle is important for precision control and manipulation,
it is particularly active during power squeeze grips [55],
but see [36]), rather than precision pinch grips, and other pri-
mates also have an independent FPL (e.g. hylobatids [51]) or
a similar gabled-attachment on the pollical distal phalanx
(e.g. orangutans [57]; figure 1a). Distinctive changes in
carpal bone morphology, such a broader and flatter trape-
zium-Mc1 joint, the reorientation of the radial carpal
(e.g. scaphoid-trapezoid) and carpometacarpal (e.g. capi-
tate-Mc2) articulations, and the development of a styloid
process on the base of the Mc3, together help to better distri-
butute across the wrist and palm the large loads incurred by the
thumb during tool-related behaviours [31,58–61].

The fifth digit is also particularly important during stone
tool-related behaviours, but its morphology has been largely
ignored in comparative and experimental studies [33,35,55].
The fifth digit stabilizes the dominant hand during power
squeeze grips and precision grips (e.g. of the core during the
strike of the hammerstone), as well as during precision grips
of the non-dominant hand when manoeuvring an object
within the hand to find the desired position [35]. In humans,
the fifth metacarpal is the most robust of the digits 2–5 and
has a unique saddle-shaped joint with the hamate that helps
 to rotate the fifth digit towards the thumb [31,35,50].

Several other distinctive features of the human bony and
soft tissue hand anatomy have also been correlated with

3. Manipulative abilities of the earliest fossil
hominins

Functional interpretations of hand remains in the earliest
fossil hominins have focused not only on their potential
manipulative abilities, but also on how the morphological
requirements for manipulation may have been balanced with
those of arboreal locomotion. Perhaps the most critical aspect
to the unique manipulative abilities of humans is our intrinsic
hand proportions (relative length of the thumb and fingers).
However, we are extremely limited in what we can say about
hand proportions in the early hominins, because it requires
the preservation of multiple bones from the same individual.
The earliest relatively complete hand is that of Ardipithecus ramidus [62]. With hand proportions that are described as
more Old World monkey-like than chimp-like (i.e. short meta-
carpals, long fingers, robust thumb), the authors describe the
functional morphology only in relation to locomotion [62].
They do not discuss potential manipulative abilities, presum-
ably because, at 4.4 Ma, Ardipithecus appears about a million
years before the earliest evidence of stone tool use and tool
making ([12,13,63], see below).

However, others have not been deterred from inferring
human-like manipulative abilities in the absence of stone tool
evidence, and from much less fossil evidence [19,21,64].
Among the two hand bones preserved from one of the earliest
bipedal hominins, Orrorin tugenensis (ca 6 Ma), one is a distal
pollical phalanx [65,66]. Its surprisingly human-like shape
and FPL muscle attachment has led some to conclude that
Orrorin possessed human-like precision grip abilities that
evolved for the manipulation of organic objects, not stone
tool making, with the relaxation of locomotor requirements
on the forelimbs ([19], but see [66]).

Similar claims have been made for Australopithecus afarensis
[18,28,50]. Though there is a wealth of hand fossils attributed to
A. afarensis [67–69], only a few metacarpals can be reliably
associated with the same individual [50] (figure 2a). Hand
proportions have been estimated in A. afarensis by several
researchers and range from potentially gorilla-like [27] to
very similar [50], if not equal, to modern humans [18,28].
Functional interpretations based on these differences in reconst-
structed hand proportions, as well as other wrist and hand
morphology, also vary: Rolian & Gordon [18] conclude that
A. afarensis could not have produced precision grips with
the same efficiency as modern humans; Marzke [29,50]
suggests A. afarensis was capable of pad-to-side as well as
three-jaw chuck precision grips, but likely had less effective
precision handling and power squeeze grips; while Alba
and co-workers [18,28] allow for the distinctly human-like
pad-to-pad precision grips. Importantly, especially given the
absence of evidence for stone tool behaviours prior to 2.6 Ma
[63] until recently ([12,13]; see below), some researchers have
supported the idea that the evolution of precision grip ability in *Au. afarensis* (and earlier hominins) should not be restricted to the context of stone tool behaviours, but may have initially evolved for non-lithic tool use or tool making, or any other complex manipulative behaviours that are required of extant non-human primates [14,17–20,24,28,29].

The inference of human-like manipulative ability in early hominins is generally inherently linked to the relaxation of selective pressures on the hands for locomotion. There has been decades of debate regarding the significance of arboreal locomotion in the early hominin locomotor repertoire and the functional importance of ‘arboreal’ features such as long and curved fingers (see review by Ward [70]). The most common evolutionary scenario is one in which, with the advent of bipedalism, long, curved fingers are needed less, or not at all, for grasping in trees, freeing the fingers to shorten in length (either via neutral or positive selection) and the thumb, somewhat by default, to become relatively long [18,71]. Alternatively, it has been suggested that human hand proportions may have been a pleiotropic by-product of reducing the length of our toes for bipedalism [18,72] or that they are actually symplesiomorphic, more similar to the Miocene apes, and that early hominins never had the long fingers typical of our living chimpanzee and bonobo cousins [28,73].

In all of these scenarios, human hand proportions can be viewed, at least partly, as an exaptation, rather than adaptation, for enhanced dexterity [18,28]. The key to choosing between these scenarios relies on being able to accurately reconstruct intrinsic hand (and potentially foot) proportions in early hominins, which is particularly challenging due to the poor preservation and lack of associated hand skeletons (see below). For example, the estimated human-like hand proportions reconstructed for *Au. africanus* can only be estimated from unassociated metacarpals [74] (figure 2b). Hand proportions in *Paranthropus/early Homo* (e.g. Swartkrans specimens; figure 2c), the ‘handy-man’ *H. habilis* OH7 hand (contra [2]; figure 2d) and *Homo erectus* are completely unknown because there is simply not enough fossil evidence. The fossil hominin sites at Sierra de Atapuerca, Spain preserve numerous hand bones, ranging from a single early *Homo* phalanx from Sima del Elefante [75], to dozens of hand bones from Gran Dolina (*Homo antecessor*) [76] and Sima de los Huesos (*Homo heidelbergensis*), the latter of which remain unpublished [77]. All show morphology that can broadly be described as modern human-like, but they cannot be associated with any particular individual to directly quantify intrinsic hand proportions or provide an overall functional interpretation of the hand in these *Homo* species.

4. What can we learn from relatively complete hominin hand skeletons?

(a) Little foot

In addition to *Ar. ramidus*, there are only three relatively complete early hominin hands prior to Neandertals (figure 3). The first is the left hand of *Australopithecus prometheus* [78] StW 573 or ‘Little foot’, discovered in 1999 in the Silberberg Grotto of Sterkfontein, South Africa [9,78,79] and dated to as early as 3.7 Ma [80] or as late as 2.2 Ma [81] (figure 3a). It is associated with a relatively complete skeleton, allowing the rare opportunity to interpret the hand morphology within the context of the remainder of upper limb and postcranial skeleton, as well as...
The MH1 skeleton is more robust, suggesting a strong degree of sexual dimorphism in the hand morphology [10,11]. However, the distal pollical phalanx is broad with a well-developed FPL attachment, the first metacarpal has a distally developed FPL attachment, the first metacarpal has a distally extended, human-like positioning of the dorsal interosseous tendon, and the robust base of the fifth metacarpal suggests that the extrinsic and intrinsic musculature to the fifth finger were well developed [10] (figures 1 and 3b). However, it is important to note that recent evidence has not found a strong correlation between entheses shape and the size of the muscle [85,86]. Perhaps most importantly, the completeness of the \(\text{Au}. \text{sediba} \) MH2 hand offers the first accurate quantification of hand proportions in an early hominin, showing that the thumb is not only long relative to the fingers, but is actually relatively longer than that of modern humans (i.e. falling outside the range of human variation) [10]. Such a long thumb would have greatly facilitated pad-to-pad opposition of the thumb and fingers, and ultimately lead to greater control and manipulation of small objects in particular [29].

With the traditional view that the hand of the last common ancestor of \(\text{Pan} \) and humans was generally \(\text{Pan} \)-like (but see \cite{62,87}) with long fingers, one can consider the long thumb of humans to be the result of reducing the length of the fingers, rather than increasing the length of the thumb \textit{per se} \cite{18}. Such a scenario is expected in a hand that is no longer significantly used for locomotion. However, if the hand were still under forelimb-dominated locomotor selective pressures, then lengthening the thumb would allow a hominin to retain long fingers needed for grasping branches but also a long thumb that is advantageous for pad-to-pad precision gripping \cite{18}. Digit proportions in \(\text{Au}. \text{sediba} \) reveal that the length of the thumb, and particularly the Mc1, is unexpectedly long (relative to the length of the third ray and to hand size) \cite{10,11,28}, suggesting perhaps a selection for increased thumb length. However, the length of the proximal and intermediate phalanges (relative to metacarpal length) is similar to that of...
modern humans, suggesting long fingers were not a functional requirement of its locomotor strategy. Within the context of the remainder of the MH2 skeleton, it may be that the functional requirements of locomotion were fulfilled by the long, ape-like upper limb [84] and mildly curved phalanges [10], while the hand proportions of *A. sediba* reflect the requirements of enhanced dexterity.

(c) *Homo naledi*

The recent discovery of a complete right hand (missing only the pisiform) of *Homo naledi* offers unprecedented insight into how the hominin hand might balance the functional requirements of both locomotor grasping and manipulation [11,88] (figure 3c). The *H. naledi* right hand was found partially articulated in association with over 120 other isolated hand bones in the Dinaledi Chamber of the Rising Star cave system, South Africa [11,88]. The remains have yet to be dated but present yet another distinct mosaic of morphological features not yet known in any other hominin [11]. The wrist is remarkably derived, demonstrating most of the key features considered advantageous for coping with high external loading of the thumb during tool-related behaviours [27,32,33,59–61] (figure 1). The radial carpal and carpectometacarpal joints show signs of reorientation to a more human-like proximodistal alignment, including a trapezoid that is palmarly expanded to have a human-like ‘boot-shape’. However, the trapezium-Mc1 articulation is remarkably small and there is no styloid process on the Mc3 [11]. The thumb is long relative to the fingers; although not as long as *A. sediba* MH2, *H. naledi* falls only within the variation of modern human males (and outside that of females) [11]. The thumb is robust with a human-like attachment for the FPL muscle and well-developed, flaring muscle attachments for the opponens pollicis and first dorsal interosseous muscles, while the hamate-Mc5 articulation is saddle-shaped like in humans. Together, this morphology suggests enhanced opposition of the thumb to the fingers, particularly while holding and manipulating large objects, as well as efficient precision and precision pinch grips [35]. The suite of features found in the *H. naledi* wrist and palm have only been found in committed stone tool makers like Neandertals and *H. sapiens*, strongly suggesting that *H. naledi* had enhanced manipulative abilities for tool-related behaviours. Like with *A. sediba*, there are no stone tools yet found in association with the *H. naledi* remains and without knowing the geological age, *H. naledi* may have used stone and/or organic materials as tools.

In contrast to the derived morphology of the wrist and palm, however, the fingers of *H. naledi* are strongly curved; more curved than australopiths, including *A. afarensis* [11]. Phalangeal curvature is one of the best indicators of function in the hand [89–92]. The degree of longitudinal curvature is strongly correlated with the degree arboreal locomotion across primates, with climbing and, especially, suspensory taxa showing much stronger curvature than terrestrial quadrupedal or bipedal taxa [89–91]. Phalangeal curvature is also known to be sensitive to changes in locomotion throughout ontogeny, such that more arboreal juveniles have more strongly curved phalanges than their more terrestrial adult counterparts [93]. The strong phalangeal curvature in both the proximal and intermediate phalanges of *H. naledi* is a clear functional indicator that this hominin still used its hands for locomotor grasping. The combination of such curved phalanges with a largely late-*Homo*-like wrist and palm demonstrates that (i) locomotor grasping was a functionally significant behaviour [94], not just a primitive, non-adaptive retention that has yet to be lost (*contra* [95]) and (ii) this hominin was capable of using their hands for both enhanced manipulation and arboreal locomotion, such that one functional role did not necessarily need to be sacrificed for the other.

5. New insights from new discoveries and methodologies

Decades of research aiming to identify and test the potential morphological features of the human and hominin hand that are adaptive for stone tool behaviours were somewhat undermined by the discovery of the Late Pleistocene *Homo floresiensis* [96]. Hand bones dated to 17–19 000 BP [97,98] and belonging to at least two, small-bodied individuals (LB1 and LB6) are surprisingly primitive; more similar to extant apes and australopiths than to other *Homo* species, despite their remarkably young age [98–100]. For example, although *H. floresiensis* has a broad pollical distal phalanx with a human-like FPL attachment [98,100], the proximal phalanges are curved to a similar degree as in *A. afarensis* [100] and the wrist lacks a Mc3 styloid process, a boot-shaped trapezoid, and a reorientation of the radial carpal and metacarpal joints that are found in later *Homo* (and *H. naledi*) [98,99]. However, there is a well-documented archaeological sequence at Flores clearly demonstrating that stone tool making and use were part of the behavioural repertoire of *H. floresiensis* from as early as 840 Ka [97,101]. Thus, the direct association between the largely primitive hand of *H. floresiensis* and stone tools (produced via a simple reduction sequence [97]) calls into question our traditional assumptions about the necessary morphological features and biomechanical consequences of stone tool production [98].

Furthermore, recent archaeological discoveries have changed the traditional perception that stone tool production is an ability limited to the genus *Homo* (see review in [8]). The first is that of stone cut marks on bone at Dikika, Ethiopia dated to 3.39 Ma and in deposits currently associated only with *A. afarensis* [12,102]. The archaeological evidence demonstrates the use of sharp-edged stones to remove flesh and blunt stones to access marrow ([12], but see [103]). McPherron *et al.* [12,104] put forth the important message of changing the traditional archaeological paradigm that stone tool use could not have occurred prior to stone tool making, and the need to look for evidence of stone tool use in deposits that predate recognizable stone tools (and pre-date *Homo*).

McPherron *et al.* [12,104] somewhat controversial [103] claim of tool-use ability in pre-2.6 Ma-hominins is further substantiated by the recent discovery of pre-Oldowan stone tools, currently named Lomekwian, dated to 3.3 Ma from Lomekwi 3 in Kenya [13]. These tools are 700 000 years older than earliest Oldowan technology (2.6 Ma [63]) and over 500 000 years older than the earliest possible fossil evidence of *Homo* (2.8 Ma [105]). Their techno-morphology suggests they were made using arm and hand motions that are most similar to the hammer-on-anvil technique used by chimpanzees during nut-cracking (but likely requiring greater cognitive ability [106], see also [107]), rather than the free-hand knapping of the Oldowan [13]. The inferred knapping technique suggests a substantial
degree of hand motor control and forceful loading of the hands, but likely less dexterity than Oldowan-making hominins [13]. These tools are found in the same geographical and chronological context of *Kenyanthropus platyops*, but are also contemporaneous with *Au. afrensis* [13]. Importantly, both the Lomekwiian and Dikika cut marks [12] are too old to be associated with currently known *Homo* fossils, and thus demonstrate a manipulative (and cognitive) ability of pre-*Homo* hominins that has not been traditionally recognized.

Biomechanical studies of tool use and tool making have helped to clarify how fossil hominin hands may have been loaded during stone tool-use and tool-making activities [34,52–54]. Rolian et al. [52] created artificial ‘stone tools’ instrumented with force plates to examine how the external forces and joint stress were distributed across the thumb and index finger. They found that the thumb experienced higher external loads and joint stress during tool making than during flake use (but see [53,54] and below). They also found that individuals with longer digits required relatively less muscle force to stabilize the digit joints and experienced relatively less joint stress during stone tool behaviours, because their digits and joints were relatively more robust. The implications of their results, they suggest, are that the gracile pollical metacarpals of chimpanzees and early australopiths could not produce or withstand the high forces that occur during stone tool making [52].

Others [34,53,54] have also investigated external loading of the radial digits during Oldowan stone tool making, but by using pressure strips along the digits, such that force was measured directly on the hand rather than by the tool (as in [52]). In contrast to Rolian et al. [52], Williams et al. [53] found that the loading experienced by the thumb during tool making was actually lower (not higher) than that of the index and middle finger. In other words, the human thumb is ‘over-built’ for Oldowan stone tool making, but appears well adapted for the much higher external forces experienced during flake use [54]. Key & Dunmore [34] further suggest that the robust thumb of humans and other hominins was selected for, at least in part, the loads experienced in the non-dominant hand during stone tool making (although these loads are much lower than those experienced by the thumb of the dominant hand). This variation in experimental results at least partly reflects differences in methodology (portable force plates [52] versus pressure strips [34,53,54], and novice [52] versus expert [34,53,54] knappers), but also demonstrates the challenges of trying to simulate and quantify the biomechanics of tool-related manipulative behaviours in fossil hominins using modern humans (and modern human hand anatomy).

Kinematic modelling of the primate hand also has the potential to make more informed inferences of the manipulative abilities in early hominins. Feix et al. [108] created a kinematic model of thumb and index finger precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. They found that joint mobility and (scaled) digit proportions are critical for determining precision grip and manipulation potential (figure 1), but having a relatively long thumb or high joint mobility alone do not necessarily result in greater dexterity [108]. Despite (potential) differences in digit proportions and joint mobility in australopiths, *Au. afrensis* and *Au. sediba* show a manipulation workspace that is similar to that of modern humans [108], supporting previous interpretations of increased dexterity in these taxa [10,18,29] and archaeological evidence of tool-related behaviours in pre-*Homo* hominins [12,13].

Finally, greater access to three-dimensional scanning techniques, including surface scanning [34–36,53–61,98,99] and microtomography [109,110], has allowed for more comprehensive functional analyses of both the external and internal morphology of hand bones. In particular, analyses of the internal trabecular morphology of hand bones has provided new insights into how early hominins may have actually, rather than potentially, used their hands [110]. Trabecular bone remodels throughout an individual’s life in response to mechanical loading; a concept known as bone functional adaptation [111]. Several experimental studies have shown that changes in loading direction or magnitude can be associated with corresponding changes in the orientation of trabeculae struts or relative volume of trabecular bone (e.g. [112,113]). Previous comparative studies show that variation in trabecular structure in extant hominoid (including humans) hand bones correlates well with differences in inferred joint posture and loading during locomotion and manipulation [110]. Within this context, Skinner et al. [21] recently analysed the trabecular structure in several fossil hominin hand bones, and found that Neandertals, early *Homo sapiens* and modern humans share a distinct asymmetrical pattern in the distribution of trabecular bone in the metacarpals consistent with forceful opposition of the thumb and fingers that is not found in other extant apes (including nut-cracking Tai chimpanzees). Interestingly, *Au. africanus* also shows the Neandertal- and human-like pattern of trabecular bone, suggesting that this early hominin was also habitually using forceful human-like opposition of the thumb and fingers, such as in the precision and power squeeze grips that are used during tool use and tool making [21]. Although many have proposed that *Au. africans* [64] and earlier hominins [18–20,28,29] were potentially capable of human-like precision grips, the trabecular structure provides more direct evidence that *Au. africans* was actually loading its hand in a human-like way, despite not having a fully human-like external hand morphology [21,114]. These results provide morphological evidence of enhanced manipulative ability in an australopith and additional support for archaeological evidence of tool use [12] and tool making [13] in pre-*Homo* hominins.

6. Conclusion

Darwin [115] first proposed that the advent of bipedalism was directly linked tool use as it freed the hands from the constraints of locomotion. This view was maintained with the earliest discoveries of stone tools and fossil hominin remains in the 1950s and 1960s [1,116]. However, there was a paradigm shift in the 1970s with the discovery of the small-brained, bipedal *Au. afrensis* 1.5 Myr earlier than the appearance of stone tools [8]. Further discoveries of earlier bipedal hominins dating back to at least approximately 6 Ma [65] only increased the gap between bipedalism and stone tools [8]. Thus, tool-related behaviours have generally no longer been thought to have a cause–effect relationship with the origin of hominin bipedalism [30,117,118]. However, it may be worthwhile to revisit Darwin’s original hypothesis. On the one hand, recent discoveries are closing chronological gap between the origin of bipedalism and evidence for
tool-related behaviours. Morphological evidence (albeit limited) suggests the potential for human-like precision grip ability in some of the earliest hominins (Orrorin; [19]). Furthermore, comparative extant primate evidence [22–24] and the recognition of the enhanced manipulative and cognitive abilities required for the production of Oldowan [106,107,119] and, less so, Lomekwi stone tools [13], together suggest that there was likely a long history of experimental tool use and improvements to manual dexterity prior to the first recognizable stone tool behaviours in the archaeological record [17,22]. On the other hand, morphological evidence from relatively complete hand skeletons [9–11] indicates that fossil hominins did not necessarily need to ‘free’ their hands from the functional requirements of locomotion to increase their dexterity. Together recent evidence suggests that pre-Homo hominins were more dextrous than has traditionally been assumed, that tool-related behaviours have played a chronologically deeper and more prominent role in our evolutionary history than previously considered, and that the hands of these early hominins were capable of combining the functional requirements of both arboreal locomotion and enhanced manipulation.

Competing interests. I have no competing interests.

Funding. This research was supported by the European Research Council Starting Grant no. 336301 and the Max Planck Society.

Acknowledgements. I am grateful to Ignacio de la Torre and Satoshi Hirata for the opportunity to participate in the interesting volume. I thank Ron Clarke for sharing his image of the SW 573 hand and Peter Schmid for his images of the Au. sediba and H. naledi hands. I thank the following people for access to original fossils: S. Potze, L. Kagasi (Ditsong Museum), L. Berger, B. Zifel and F. Thackeray (University of the Witwatersrand), B. Kimbel, T. White, B. Asfaw, G. Seminshaw, Y. Assefa, C. Shimerius (National Museum of Ethiopia), A. Gidna and A. Kweka (Museum and House of Culture, National Museum of Tanzania). I am grateful to the following collaborators, whose expertise and discussions over the years have contributed greatly to this review: S. Churchill, L. Berger, C. Orr, M. Tocheri, A. Deane, D. Schmitt, N. Stephens, Z. Tsogai, J.-J. Hublin, S. McPherron, M. Skinner. I thank N. Stephens for his helpful comments on an earlier version of this manuscript.

References

59. Tocheri MW. 2007 Three-dimensional riddles of the radial wrist: derived carpal and carpalmetacarpal joint morphology in the genus Homo and the implications for understanding the evolution of stone tool-related behaviors in hominins. Dissertation, Arizona State University, Tempe, AZ, USA.

70. Clarke RJ. 2008 Latest information on Sterkfontein's Q1 Member 2 burial ages for Sterkfontein Member 2 (doi:10.1126/science.1233477).

