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Section 1 derives singular values of the two factor sawtooth with 2m observations and

m levels of each factor, it also proves the result in Lemma 1 of the main paper on the

product of non-zero eigenvalues. Section 2 derives optimality results for the dumbbell and

the cross-linked dumbbell. Section 3 obtains correlation structures for the sawtooth and

dumbbell. Finally in Section 4 a method for efficient computation of average variance of

prediction and contrasts for the 3-factor sawtooth is given.

1 Two factor sawtooth singular values

We refer to the over-parameterized design specification, without an overall mean but with

every level included. Thus with two factors each at m levels the model matrix, X, will be

a 2m × 2m matrix, with at most 2m − 1 non zero eigenvalues. It is easy to see that the

XTX matrix is also a 2m× 2m matrix of the form:(
2I C

CT 2I

)
.

Here I is the m ×m identity matrix and C is a m ×m circulant matrix, (Aitken, 1956),

with CTC being a symmetric circulant. This derived circulant matrix CTC has three

non-zero entries in each row with entries {2,1,1}, an entry 2 on the diagonal and for the

sawtooth in the first row of CTC, denoted b = (b1, . . . bm), ones in positions 2 and m.

This derived matrix generates the eigenvalues of XTX since those eigenvalues are given

by the non-zero roots of det(λI −XTX) = 0 which by a standard re-arrangement of the

determinant of a partitioned matrix is identical to

det[(2− λ)2 − CTC] = 0. (1)

The eigenvalues of the symmetric circulant CTC are given from the roots of unity as

`i =

m∑
j=1

bjgij , i = 1, . . . ,m, (2)

with gij = cos[2πm (i − 1)(j − 1)], (see Press, 1982, eqns 2.8.4, 8.3.20). Constructing the

m×m matrix G = (gij) from this equation we can see that the columns of G apart from

the first (a unit vector), appear in pairs with the 2nd and mth identical in the sawtooth,

intuitively as a result of powers of the primitive root, equally spaced around the unit circle

with cos(x) = cos(2π−x). These pairings correspond to the unit elements of the b vectors

and give the roots in (2) as

`i = 2 + 2 cos[2π(i− 1)/m], i = 1, . . . ,m.
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Now from eqn (1) the 2m eigenvalues of XTX are obtained from solving m quadratic

equations giving

λi = 2±
√
`i (3)

of which exactly one is zero. The roots appear in pairs with the two elements having a

sum of 4, and product (4− `i), i = 1, . . . ,m. The product of the (m− 1) pairs of products

(with non-zero product) is m2, (see Gradshteyn and Ryzhik, 1980, section 1.396 p34) so

that the overall product of (2m − 1) non-zero singular values of XTX is 4m2. It is of

interest for the determinant criterion of optimality for both A and B main effects present,

all other permutation designs consisting of more than one cycle being suboptimal.

2 A- and P -optimal 2-factor designs with 2m − 1 and 2m

points

This section relies heavily on Tjur (1991) and Bailey (2007). These authors were concerned

with block-treatment designs, whereas we are considering designs for two treatment factors

with no blocking. However, in both cases, the assumed model is additive in the two factors.

The difference is that in block-treatment designs, one is interested in comparisons only

between levels of the treatment factor, and not directly in comparisons between the levels

of the block factor, whereas we are equally interested in both factors.

Tjur represents a design as a two-colour graph, as in our Figure 1, and considers it as

representing an electrical network, where the edges are connections of unit resistance, and

lets R(i, j) denote the resistance through the network between vertices i and j. These

resistances can be calculated using rules for analysing electrical circuits. Theorem 1 of

Tjur states that

var (α̂i − α̂i′) = σ2R(i, i′),

var(α̂i + β̂j) = σ2R(i, j),

and it enables the quantities VA and VP to be calculated directly for simple designs.

2.1 A- and P -optimal design with 2m− 1 points

Consider first a minimal design with 2m− 1 points. The graph then has 2m vertices and

2m− 1 edges and must be connected if all parameters are to be estimable. Therefore, the

graph must be a tree and there is a unique path between any two vertices. The resistance

along this path is just the length of the path. Thus a design is A-optimal if it minimizes

the average distance between pairs of points of the same colour, and is P -optimal if it

minimizes the average distance between points of opposite colour, and it is easy to see

that the dumbbell design (with a single replicate of the anchor point) is optimal by both

criteria.
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For A-optimality, note that all points of the same colour are joined by a path of length two,

and it is the minimum possible length, since points of the same colour are never joined

directly. Similarly for P -optimality, there are 2m − 1 edges joining vertices of opposite

colour and the remaining (m − 1)2 pairs of opposite-coloured vertices must be separated

by a path of length at least 3. Therefore, the average variance is at least

3(m− 1)2 + 2m− 1

m2
=

3m2 − 4m+ 2

m2
.

The dumbbell design achieves this lower bound, and is therefore P -optimal. It is not the

unique P -optimal design, since points can be moved from one side of the dumbbell to the

other without changing the value of VP , as for example in Figure 1; however, such a design

is clearly inferior to the dumbbell in terms of VA.

Figure 1: Example of a P -optimal design with 2m−1 points that is not a dumbbell design

2.2 A- and P -optimal design with 2m points

Bailey notes that any connected graph with t vertices and t edges consists of a circuit

of length s, where 2 ≤ s ≤ t, and each vertex of the circuit may have a tree attached.

Here, any 2m-point design that allows all parameters to be estimated will give rise to a

connected graph with 2m edges and 2m vertices, m of one colour and m of another colour,

that consists of a circuit of length 2s, where 2 ≤ s ≤ m, and each vertex of the circuit

may have a tree attached. In addition, every edge joins two vertices of opposite colour.

Examples are shown in Figure 2 for m = 8.

Bailey uses a different graphical representation of block-treatment designs in which the

vertices represent the treatments and there is an edge between two vertices if these two

treatments occur in the same block. The relevant analysis is in Section 4.1 of Bailey. She

shows that in a single colour graph, the A-efficiency of the design is improved by moving

any trees that are attached to different vertices of the circuit so that they are all attached

to the same vertex. A second argument of Bailey is that A-efficiency is also improved by

collapsing the tree which is now joined to a single vertex, so that all vertices in the tree

are joined directly to the vertex that is part of the circuit.
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Similar arguments apply to the two-coloured graph, except that we can only move trees

when only the vertices at which they are joined to the circuit have the same colour.

Moreover, to improve P -efficiency, if there are trees attached to vertices of both colours,

these vertices should be adjacent.

The result of applying these processes is a graph of the following canonical form

• There is a circuit consisting of 2s (1 ≤ s ≤ m) vertices of alternating colour.

• One vertex on the circuit representing a level of factor A has a further m − s B
vertices attached to it.

• An adjacent vertex on the circuit representing a level of factor B has a further m−s
A vertices attached to it.

Particular instances of this canonical design are the dumbbell design with double repli-

cation of the anchor point (s = 1), the cross-linked dumbbell design (s = 2) and the

sawtooth design (s = m).

Figure 2 gives an example for m = 8. The original design on the left is modified to the

design on the right, which is in the canonical form above with s = 3. The original design

has VP = 2.760. It is not symmetrical in the factors A and B and for comparisons of levels

of factor A, VA = 3.220, whereas for comparisons of levels of factor B, VA = 2.738. The

design on the right is symmetrical in A and B and has VP = 2.141 and, for comparison of

levels of either factor, VA = 1.958.
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Figure 2: Example of the reduction of a design to the canonical form given in the text.
Levels of factor A are indicated by grey points and levels of factor B by pink points.

Straightforward calculations, similar to Bailey, and based on the analogy with electrical
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networks, give the following results for the canonical design

VA =
σ2

3m(m− 1)

{
6m2 − 5m+ (4− 6m)s+ 2ms2 − s3

}
and

VP =
σ2

6m2s

{
4ms3 − 2s4 + 18m2s− 24ms2 + 6s3 − 3m2 + 2ms+ 2s2

}
We can therefore obtain A- and P−optimal designs by choosing s to minimize these

expressions.

For A-optimality, ignoring terms that do not involve s, we want to minimize the cubic

f(s) = (4− 6m)s+ 2ms2 − s3

over the range s = 1, 2, . . . ,m. We find f(1) = 3 − 4m, f(2) = −4m and f(3) = −15,

f(m) = m(m2 − 6m + 4). Thus s = 2 is always preferred to s = 1, and for m > 3,

f(2) < f(3). Also, f(2) < f(m) for m > 4. Since f(s) is a cubic, it can have at most

one local minimum, and therefore for m > 4 the A-optimal design has s = 2, which is

the cross-linked dumbbell design. For m = 2, 3 the A-optimal design is the sawtooth. For

m = 4, the sawtooth design and the cross-linked dumbbell design give the same optimal

value of VA.

For P -optimality, the analysis is more complicated, because of the appearance of s in the

denominator of the expression for VP . For m ≤ 5, the sawtooth design is optimal. For

m = 6, 7, the optimal design has s = 3. For m = 8, VP is minimized by choosing s = 1 or

s = 3. However, for m ≥ 9, VP is minimized by choosing s = 1, the dumbbell design.

3 Correlations between estimators in 2-factor sawtooth and

dumbbell designs

VA-optimality focuses on the average of variance of all estimated pairwise differences be-

tween levels of the same factor, of the form α̂i − α̂i′ . In general, these estimators will

be correlated. VP -optimality focuses on the average of variance of all estimated expected

responses of the form α̂i + β̂j . Typically these estimators will also be correlated. In this

Section, we compare these two sets of correlations for the 2-factor dumbbell and sawtooth

designs.

Because of the simple structure of the dumbbell design, only a limited set of distinct

correlations can occur. These are shown below, along with their frequencies.
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Correlation − 1√
3

−1

2
0

1

3

1

2

1√
3

Frequency

(
m− 1

2

) (
m− 1

3

)
3

(
m

4

) (
m− 1

2

)
2

(
m− 1

3

) (
m− 1

2

)

Correlations between estimators α̂i + β̂i′

Correlation −
√

1

5
0

1

5

3

5

√
2

5

Frequency (m− 1)2 (m− 1)(2m2 − 4m+ 3)
(m− 1)2(m− 2)2

2
(m− 1)2(m− 2) 2(m− 1)2

Correlations are more complicated to analyse in the sawtooth design. However, one explicit

result concerns the largest positive and negative correlations. For m ≥ 3, the largest

positive and negative correlations between estimators of pairwise differences are

±
√
m− 2

m+ 2
m even

±m− 1

m+ 1
m odd.

For the largest positive and negative correlations between estimators of estimated expected

responses, the parity is reversed, to give, again for m ≥ 3,

±
√
m− 2

m+ 2
m odd

±m− 1

m+ 1
m even.

Thus, unlike for the dumbbell design, for the sawtooth design the largest positive and

negative correlations approach ±1 as m → ∞ for both types of estimator. However, the

mean absolute correlation decreases as m increases for both types of estimator and for

both designs, as shown in Figure 3, which also shows results for the cross-linked dumbbell

design. For the cross-linked dumbbell design, the correlations range from −5/7 to
√

2/7

for estimates of pairwise differences and from −
√

3/11 to
√

1/2 for estimates of expected

responses.

4 Efficient computation for the 3-factor sawtooth design

Consider the saturated model

Yijk` = αi + βj + γk + ξ` + εijk`, (1 ≤ i, j, k ≤ m, 1 ≤ ` ≤ 3), (4)
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Figure 3: Correlations between estimators of pairwise differences and estimated expected
responses for the sawtooth and dumbbell designs in relation to the number of levels of the
two factors, m.

with the constraints β1 = 0, γ1 = 0 and ξ1 = 0. As in the main text, we assume

var(εijk`) = 1; if instead var(εijk`) = σ2, where σ2 6= 1, then VA and VP need to be scaled

by σ2.

Let θ = (α1, . . . , αm, β2, . . . , βm, γ2, . . . , γm, ξ2, ξ3)
T denote the full vector of parameters.

Since the model is saturated, the least squares estimator of θ is given by

θ̂ = X−1Y,

where X is the model matrix and Y is the vector of observations.

Let Z = X−1. The least squares estimator of the treatment difference αi − αj is

α̂i − α̂j = (Zi,. − Zj,.)Y,

with variance

‖Zi,. − Zj,.‖2 ,

where Zi,. denotes the ith row of Z. Thus VA can be efficiently calculated as the mean of

the m(m− 1)/2 squared Euclidean distances between the first m rows of Z.

For the average variance of predictions, we first note that due to the cyclic structure of

the design, it is sufficient to average the variances of the predictions with the level of one

factor held constant, since the pattern of prediction variances is repeated at each level of

this factor. We therefore fix factor C at level 1. Because of the constraint γ1 = 0, the
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predicted mean response for level i of factor A and level j of factor B is

µ̂ij = α̂i + β̂j +
(
ξ̂2 + ξ̂3

)/
3,

where the last term averages across sets. Let W denote the m× 3m matrix with entries

wi,j =

 −
1
3 [3zi+m,j + z3m−1,3m + z3m,3m] 1 ≤ i ≤ m− 1,

−1
3 [z3m−1,3m + z3m,3m] i = m.

Then

µ̂ij = (Zi,. −Wj,.)Y,

with variance

‖Zi,. −Wj,.‖2 .

Thus the average variance of prediction, VP , can be calculated as the mean of the m2

squared Euclidean distances between the first m rows of Z and the m rows of W .

Moreover, VP can be obtained without explicitly calculating all m2 distances. Note that

the mean of the squared distances between rows of W is again equal to VA. If cZ denotes

the centroid of the first m rows of Z and cW denotes the centroid of the m rows of W ,

then an analysis of variance decomposition gives

VP =
m− 1

m
VA + ‖cZ − cW ‖2.

The following R function generates the design with generators (1, 1, 1), (1, 2, k + 1) and

(1, k + 1, k), where 1 ≤ k ≤ m, and calculates VA and VP .

mk.design <- function(m, k)

{

# Set up design factors

aa = rep(1:m, each=3)

bb <- (aa + rep(c(0,1,k), m)) %% m

cc <- (aa + rep(c(0,k,k-1), m)) %% m

a <- factor(aa)

b <- factor(bb + m * (bb==0))

c <- factor(cc + m * (cc==0))

set <- factor(rep(c(1:3), m))

# Obtain the inverse matrix Z

Z <- solve(model.matrix( ~ -1 + a + b + c + set))

# Centroids

cz <- colMeans(Z[1:m,])

cw <- -colMeans(rbind(Z[c((m+1):(2*m-1)),], rep(0,3*m))) -
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2/3 * colMeans(Z[c((3*m-1):(3*m)),])

# Calculate VA and VP

VA <- mean(dist((Z[1:m,]))^2)

VP <- (m-1)/m * VA + sum((cz-cw)^2)

list(a=a, b=b, c=c, set=set, VA=VA, VP=VP)

}
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