
Kölling, Michael (2016) Lessons from the Design of Three Educational Programming
Environments: Blue, BlueJ and Greenfoot. International Journal of People-Oriented
Programming, 4 (1). pp. 5-32. ISSN 2156-1796.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/56662/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.4018/IJPOP.2015010102

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/56662/
https://doi.org/10.4018/IJPOP.2015010102
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

 The International Journal of People-Oriented Programming is indexed or listed in the following: Bacon’s Media Directory; Cabell’s
Directories; DBLP; Google Scholar; INSPEC; JournalTOCs; MediaFinder; ProQuest Advanced Technologies & Aerospace Journals;
ProQuest Computer Science Journals; ProQuest Illustrata: Technology; ProQuest SciTech Journals; ProQuest Technology Journals;
The Index of Information Systems Journals; The Standard Periodical Directory; Ulrich’s Periodicals Directory

 Copyright
 The International Journal of People-Oriented Programming (IJPOP) (ISSN 2156-1796; eISSN 2156-1788), Copyright © 2015 IGI
Global. All rights, including translation into other languages reserved by the publisher. No part of this journal may be reproduced or
used in any form or by any means without written permission from the publisher, except for noncommercial, educational use including
classroom teaching purposes. Product or company names used in this journal are for identifi cation purposes only. Inclusion of the names
of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. The views
expressed in this journal are those of the authors but not necessarily of IGI Global.

 SPECIAL ISSUE ON KIDS AND OTHER NOVICES LEARNING TO
CODE: INSIGHTS, TOOLS AND LESSONS FROM THE VISUAL
PROGRAMMING FRONTLINE

 EDITORIAL PREFACE
 iv Steve Goschnick, Swinburne University of Technology, Melbourne, Australia

 Leon Sterling, Swinburne University of Technology, Melbourne, Australia

 INVITED COMMENTARY
 1 A Different Approach to Coding;

 Mitchel Resnick, MIT Media Lab, Cambridge, MA, USA

 David Siegel, Two Sigma, New York, NY, USA

 RESEARCH ARTICLES
 5 Lessons from the Design of Three Educational Programming Environments: Blue, BlueJ and Greenfoot;

 Michael Kölling, University of Kent, Canterbury, UK

 33 UDOO App Inventor: Introducing Novices to the Internet of Things;

 Antonio Rizzo, University of Siena, Siena, Italy

 Francesco Montefoschi, University of Siena, Siena, Italy

 Sara Ermini, University of Siena, Siena, Italy

 Giovanni Burresi, University of Florence, Florence, Italy

 EDITOR’S NOTE
 50 App Review: ScratchJr (Scratch Junior);

 Steve Goschnick, Swinburne University of Technology, Melbourne, Australia

Table of Contents

 January-June 2015, Vol. 4, No. 1

 International Journal
of People-Oriented

Programming

jtravers
Highlight

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 5

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Blue,	BlueJ,	Design,	Educational	IDE,	Frame-based	Editing,	Greenfoot

ABSTRACT
Educational	programming	systems	are	booming.	More	systems	of	this	kind	have	been	published	in	the	last	few	
years	than	ever	before,	and	interest	in	this	area	is	growing.	With	the	rise	of	programming	as	a	school	subject	
in	ever-younger	age	groups,	the	importance	of	dedicated	educational	systems	for	programming	education	is	
increasing.	In	the	past,	professional	environments	were	often	used	in	programming	teaching;	with	the	shift	
to	younger	age	groups,	this	is	no	longer	tenable.	New	educational	systems	are	currently	being	designed	by	
a	diverse	group	of	developing	teams,	in	industry,	in	academia,	and	by	hobbyists.	In	this	paper,	the	author	
describes	his	experiences	with	the	design	of	three	systems—Blue,	BlueJ,	and	Greenfoot—and	extract	lessons	
that	he	hopes	may	be	useful	for	designers	of	future	systems.	He	also	discusses	current	developments,	and	
suggests	an	area	of	interest	where	future	work	might	be	profitable	for	many	users:	the	combination	of	aspects	
from	block-based	and	text-based	programming.	The	author	briefly	presents	his	work	in	this	area—frame-based	
editing—and	suggest	possible	future	development	options.

Lessons from the Design
of Three Educational

Programming Environments:
Blue, BlueJ and Greenfoot
Michael	Kölling,	University	of	Kent,	Canterbury,	UK

INTRODUCTION

In the last ten years or so, educational programming environments have become very popular
for the teaching and learning of introductory programming. This was not always the case: while
there have been educational systems for a long time, they were considerably fewer early in this
century than today, and older systems were considerably simpler, often consisting of compilers
or libraries, rather than complete programming environments. Long and heated debates used
to rage among educators about the respective benefits of teaching with dedicated educational
versus industry-strength tools. These debates usually remained unresolved.

In the last decade, the situation has shifted, due to a combination of reasons which we
discuss below, and educational programming environments have taken a much more prominent
role. They are more used, more accepted, and simply many more in number, than ever before.
As a result, the design of educational environments has become a topic of considerable interest.

DOI: 10.4018/IJPOP.2015010102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

In this paper we describe experiences with the design of a sequence of educational environ-
ments dating back more than 20 years. These systems are Blue (Kölling, 1999a), a programming
language and development environment for teaching and learning object-oriented programming
in a single, integrated system; its successor BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003),
a similar environment using the Java Programming Language; and a third pedagogical system
called Greenfoot (Kölling, 2010). Blue was relatively short-lived, but is of interest here because
it heavily influenced the design of its successor, BlueJ. BlueJ and Greenfoot are both systems
with significant user communities over a number of years (and still very much in use today), and
have undergone many changes and adaptations since their first publication.

In this paper we present a short history of these systems and discuss the goals and design
rationale for each, their respective target groups and how these influenced design decisions, and
their scope and application. Most importantly, we discuss lessons learnt from their use with actual
users, and how those lessons shaped the design of the later systems, or later versions. We also
discuss their relation to other educational programming systems, similarities, possible sequences
of use, and future developments. The emphasis is not on providing a complete description of
each system, but to identify the trends and goals at the time of their design, and how these have
changed over time. Overall, we present some lessons we learnt along the way that we hope may
be of use to designers of future systems.

A SHORT HISTORY OF EDUCATIONAL PROGRAMMING TOOLS

Educational software tools are nearly as old as programming as a discipline. Ever since computer
scientists started teaching others about programming, they started thinking about tools to support
this challenge. In the early days, there was no difference between the tools used by professionals
and the ones taught to newcomers. However, pretty soon systems started to be developed that
were designed partly or primarily with beginners as users in mind.

We will not give a complete history of educational software here; instead, we mention just
a few influential early systems to arrive quickly at our destination: educational development
environments for object-oriented programming. This is where we will slow down and start
discussion in more detail.

The first pedagogically oriented software tools were programming languages and their
associated compilers. Among the early ones, BASIC (1964), Logo (1967), Pascal (1970), and
Smalltalk (1972) stood out as the most used and most influential—all aiming at learners as
their primary target group. The goal of these languages was partly simplification: taking known
concepts and avoiding the complications that could arise in other existing languages at the time.
BASIC and Pascal were part of this movement, introducing more rigid structure and creating
higher abstraction levels in programming in the process. The other part was the introduction or
appropriation of concepts and abstractions that might be more accessible to learners: micro-worlds
in the case of Logo (Papert, 1980), and the adaptation of object orientation (a reasonably obscure
programming paradigm at the time, introduced a few years earlier in the Simula language (Dahl,
Myhrhaug, & Nygaard, 1967)) in the case of Smalltalk.

In parallel, a small number of libraries were being developed for similar purposes, aiming at
programming education that was (or later became) language independent. In the 70s and 80s, a
few of these dominated the educational space. One of the most successful was Turtle	Graphics,
a library first developed by Seymour Papert and others for the Logo language (Papert, 1980),
and later re-implemented for countless other educational languages (Caspersen & Christensen,
2000; Python Software Foundation, 2012; Slack, 1990). Turtle graphics introduced the concept

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 7

of a micro-world, together with a single actor, which could produce movement and leave graphi-
cal traces as output1.

In 1981, Pattis expanded on this idea with the widely used Karel	The	Robot system (Pattis,
1981), which again was ported to numerous languages (Bergin, Pattis, Stehlik, & Roberts, 1997;
Bergin, Stehlik, Roberts, & Pattis, 2005). With Karel, students programmed a software robot
that could move through a grid-based world, collect “beepers”, and avoid obstacles. In each of
these systems, students could gain experience with fundamental programming concepts and
constructs within a carefully controlled and contained problem domain.

In the early 1990s, one of the most relevant developments—even though not aimed primarily
at teaching—was the advent and rise of GUI builders. In 1991 Microsoft released Visual Basic,
a new system to replace their previous environment, QuickBasic. While QuickBasic was text-
based, Visual Basic’s main feature was the central role of its integrated GUI builder. Similarly,
Borland released Delphi in 1995, a GUI-focused development environment based on Pascal.
Professional IDEs with GUI builders were sometimes used in teaching. However, since their
professional focus and the dominance of GUI building (usually with automated code generation)
did not easily aid the learning of foundational principles, these attempts to start programming
teaching with GUI building ultimately led to a widely-held view against IDEs in programing
education in general. We will come back to this below.

With the popularization of object orientation in introductory teaching from the late 1990s,
the existing educational libraries were adapted to this new paradigm, and new teaching tools
started to appear. By the end of the 1990s, however, the choice of educational systems was still
fairly limited. Educational software in this time mostly consisted of libraries of this kind, while
educational programming languages were being displaced in most teaching institutions by new,
industry-strength languages. C++ (Stroustrup, 1986), Visual Basic, and Java (Gosling, 2000)
were the languages of choice in introductory courses at this time—all systems developed for
professional software engineers. By the turn of the century, full dedicated pedagogical develop-
ment environments were still very rare2.

However, this lack of educational environments was about to change.
Within the next 10 years, a substantial number of pedagogical systems were developed and

published. Many of these introduced concepts not previously available in educational contexts,
such as improved support for interaction and experimentation and the use of rich media.

An early example was Blue (Kölling & Rosenberg, 1996), published in 1995, followed by
BlueJ (Kölling, Quig, Patterson, & Rosenberg, 2003) and GameMaker (Overmars, 2004), both
published in 1999. This was quickly followed by the publication of Alice 2 in 2000 (Cooper,
Dann, & Pausch, 2003), DrJava in 2002 (Allen, Cartwright, & Stoler, 2002), and Jeroo (Sanders
& Dorn, 2003) in 2003. 2005 saw the publication of Scratch (Maloney, Resnick, Rusk, Silverman,
& Eastmond, 2010), followed by Greenfoot in 2006 (Henriksen & Kölling, 2004), StarLogo
TNG in 2007 (Begel & Klopfer, 2007) and Kodu in 2009 (MacLaurin, 2009). After this, devel-
opment accelerated even more, with numerous systems being published within a small number
of years. One aspect that supported this proliferation was the publication of libraries specifically
for the development of educational block languages, such as OpenBlocks (Roque, 2007) and
Blockly (Fraser, 2013). BYOB/Snap (Harvey & Mönig, 2010, Harvey & Mönig, 2015), Pencil
Code (Bau, Bau, Dawson, & Pickens, 2015), Grace (Black, Bruce, Homer, Noble, Ruskin, &
Yannow, 2013), and App Inventor (Wolber, Abelson, Spertus, & Looney, 2011) are some of the
more recent examples, and more are being developed.

For this paper, we will now concentrate on the development of Blue, BlueJ and Greenfoot,
and our experiences with their designs.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

BLUE AND BLUEJ: PROGRAM STRUCTURE
VISUALIZATION AND INTERACTION

We will start our discussion of the development of the Blue and BlueJ environments with a
description of various aspects of their creation, arranged roughly chronological, but selected
for their relevance to the ultimate goal: the extraction of a set of generic lessons drawn from our
experience, presented at the end of this section. The aspects discussed are those that motivate
and explain our design choices and illustrate what we have learned in the process of this work.

The First Goal: An Educational Programming Language

In 1993, we began investigating how object-oriented languages might be taught, and how this
teaching might be supported by a programming language. The initial idea was to create something
like a “Pascal for object orientation”. Pascal was one of the most successful teaching languages
ever created, and it had instigated immense progress in structured programming: not only was
it used to teach countless beginners, but it had a lasting influence on the design of programming
languages, helping to make structured programming the dominant paradigm at the time. With
object orientation on the rise, we were looking for a similar language for this paradigm.

Our intended target group was first year university teaching. Object orientation at the time
was—if it was taught at all—often seen as an advanced subject taught in higher level courses.
However, the idea to start teaching with an object-oriented language in first year was slowly
gaining traction among some educators, and we were interested in this approach.

We started by formulating our goals and requirements (Kölling, Koch, & Rosenberg, 1995;
Kölling, 1999b), and evaluating existing systems against them. The big contenders at the time
were C++, Smalltalk (Goldberg & Robson, 1983) and Eiffel (Meyer, 1988) (with Java follow-
ing soon after), and a long list of smaller, less popular languages. As Pascal before us, we had
goals motivated by pedagogy: we wanted a clear and consistent representation of programming
concepts, clear and readable syntax, good error messages, little redundancy, a small language
core, and good support for program structure. When evaluating existing candidates, they all fell
short. Some came closer than others (Eiffel was the language that came closest to our wish list),
while the most popular object-oriented language at the time, C++, scored worst. C++ was popular
in many teaching institutions because it was seen as authentic: it was heavily used in industry,
and many departments saw this as an advantage. Use in industry was not one of our goals: in
our view, using a dedicated teaching language for the first year was perfectly acceptable—Pas-
cal had demonstrated this principle—and might even be preferable. Our goal was that students
would be proficient in an industry-strength language when they graduated (after three years of
study), but not necessarily after the first year. The goal of the first year was to learn foundational
principles, not industry-relevant syntax. This meant necessarily that the education includes a
switch of programming language at some stage. While this creates a pedagogical overhead,
we considered this necessary anyway: any university level computer science education should
include proficiency in more than one language. But it also meant that ease of transfer to other
commonly used languages was explicitly included in the criteria for evaluating target languages.

This issue—transferability of learning to potential successor systems that students might
use—will surface again in later discussions in this paper. It is one of the core principles of the
design of educational systems, and we will come back to it below.

The other issue that is a constant in discussions of educational programming systems is
syntax; we will have a lot more to say about this in our discussions below. At this point, we were
calling for an “easy, readable syntax” similar to what Pascal or Eiffel were using. We were think-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 9

ing in terms of traditional, text-based syntax forms. Other systems later would make much more
radical advances in this area by introducing block-based programming, and with that changing
the syntax question fundamentally. We will come back to this below.

For us, probably the most important insight from this evaluation was that one aspect was
more important and more influential than any other single issue: the programming environmen

The Importance of the Environment

When we started formulating criteria for assessing suitability of languages for introductory
teaching, we were initially thinking about language characteristics. In evaluating a number of
systems, it became clear to us very quickly that the development environment in which a lan-
guage was used had a major impact on the outcome. So much so, that the quality and nature of
the environment had—in our view—a stronger influence than any single characteristic of the
language (Kölling, 1999c).

As a result, we made the design of the development environment one of the primary goals
of our project. This design had to address novel problems in teaching caused by the switch to
object orientation: more complex program structure and higher level abstractions

The Problem: Object-Oriented Structures

In the time before object orientation, most departments used structured (procedural) or functional
languages in their introductory courses. The source code for typical beginners’ programs was
usually contained in a single file, program execution could relatively easily be traced on paper,
and use of a stand-alone text editor and command shell for execution was the most common
mode of work.

With the advent of object orientation, this changed.
Even small programs now consisted of multiple classes—and with this, multiple files—and

both abstractions and practicalities became more complex. On the practical side, students had to
deal with multiple source files and dependencies (the Java CLASSPATH setting was an example
that caused regular problems), and maintaining an overview of a complete program source be-
came more difficult. But more importantly: no support existed to understand and manage the
increased complexity of abstractions inherent in these new systems. We now had classes and
objects, instantiation, object interaction, and control flow across multiple source files. Both the
static and the dynamic aspects of programming had become more complicated, yet the tools
had not adapted.

A common complaint of teachers at the time was that students found it very difficult to
understand the difference between a class and an object. This was not surprising: since com-
mon programming environments concentrated on displaying lines of source code, students were
thinking about lines of code. Little support was given in existing environments to understand or
interact with class or object structures.

This—the object model, not the syntax—turned out to be the most difficult aspect of the
new form of programming.

The Solution: Visualization and Interaction

Our attempt to address this challenge was the design of an integrated language and environment
that explicitly supported an object-oriented model, and provided visualization and interaction
functionality to investigate and experiment with the underlying abstractions. We started work
on such a system, named Blue (Kölling, 1999a) in 1994 (Figure 1).

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

First, we made the decision to concentrate on an integrated environment, rather than sepa-
rate editing, compiling and runtime tools. This reflected our view about the importance of the
development environment in teaching and learning: only if we controlled the environment could
we achieve the full pedagogical benefit we were aiming for.

One advantage was that an integrated development environment (IDE) made it possible to
overcome many of the practical problems: compilation and execution dependencies could be
managed automatically, and various practical issues could be avoided.

More important, however, was the ability to provide tools for visualization and interac-
tion: class structures were visualized in a diagram, objects could be selectively instantiated and
methods could be interactively invoked with no need to write test drivers3.

Putting the class diagram at the center of the system, in front of the eyes of users before they
could see lines of source code, reflected our belief that the truly important (and more difficult)
aspects of object-oriented programming were not syntax, but program and object structures. In
our system, users could not avoid seeing structure, and thus were encouraged to think about it.

By allowing and visualizing interactive instantiation, and by showing objects graphically
as separate from classes, we encouraged construction of mental models of program execution
that are otherwise difficult to convey.

Overall, the tools for visualization and interaction were the most important contribution
of the Blue system. At the base of this was a belief in active	learning: that the act of experi-
mentation with small parts of code—single methods in our case—and quick turnaround in the
edit-compile-run cycle made the most significant contribution to a thorough understanding of
programming concepts.

Figure	1.	The	original	Blue	environment.	The	main	part	of	the	window	shows	the	class	diagram;	
along	the	bottom,	objects	are	displayed	on	the	object	bench.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 11

Another Necessity: Simplicity

Integrated environments were not new at the time; many were in use, including environments
for object-oriented languages. What was new was a dedicated, object-oriented development
environment for	teaching. And one of the most obvious distinctions to existing environments
was the simplicity of its interface.

Existing IDEs were usually designed for professional developers. They offered large amounts
of sophisticated functionality, which was useful and important in professional contexts. Most of
them had well over 200 buttons and menu items visible in their main interface.

For teaching, this power of functionality becomes a problem.
We wanted to teach about programming concepts, not about the IDE. By far the largest part

of the IDEs would never be used by students in an introductory course, and the presence of these
functions becomes a hindrance. Students needed to use only a few of these functions, but they
often did not know which functionality they should know about.

Professional IDEs looked intimidating, and students often did not become comfortable in
the environment before the course ended.

One design goal for Blue was to create a simple looking interface. We worked very hard
to have very few buttons and menu items initially visible. Simple does not mean simplistic: the
environment had some sophisticated functionality, but the interface for the user had to be as
simple as we could make it.

This completes the three main principles that survive until today and formed the primary
guidelines for all extension and development that was to come later: visualization, interaction,
and simplicity.

Other projects attempted to achieve similar simplicity by cutting down existing professional
environments for beginners. This would have the advantage of having a simple environment for
beginners, which could then be extended into a full professional environment by uncovering
more advanced tools, without necessitating a change of environment. Gild for the Eclipse IDE
(Storey et	al, 2003) and Visual Studio Express (Microsoft, 2016) were examples of such proj-
ects. Ultimately, though, these efforts failed; the systems were discontinued or did not manage
to achieve significant traction in programming education. We believe that the primary reason
that they did not succeed is that they viewed a beginners’ environment as a subset of a profes-
sional environment. Blue, on the other hand, was not a subset of any existing environment. We
not only needed fewer tools, we needed different tools. Pedagogically motivated tools, such as
direct interaction and visualization, were just not available in commonly used IDEs at that time.

Integrated Environments and The Acceptability of Black Boxes

In the second half of the 1990s, when Blue was published, a heated debate raged for quite a few
years among teachers of introductory programming courses: should students use an IDE, or
should they use a stand-alone text editor and a command line environment?

Proponents of the editor/command line argued that only with this tool set would students
properly understand how programming works. Using these lower-level tools was somehow “good
for the soul”. In using an IDE, some teachers argued, too many important steps were hidden,
too much code automatically generated, and students would not properly learn all the necessary
steps and gain a thorough understanding of important detail. Teaching with IDEs, it was feared,
would turn out students who could somehow produce a small working program, but without
deep understanding of the principles.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

12 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

In this argument, “using an IDE” was often conflated with “using a GUI builder”, since
the most famous IDEs at the time often had a GUI builder as their most prominent tool. This is
where the argument about auto-generated code originated, and it is, of course, a fallacy: IDEs
do not need to include GUI builders (and Blue quite consciously didn’t).

The side arguing for IDEs (which, it should be obvious, included our group) argued that
there is no such thing anymore as seeing “how it really works”. Using a compiler for a high level
language in itself is an abstraction hiding multiple layers of lower level technology. Deciding
what the right abstraction level is for introductory object-oriented teaching should be a peda-
gogical decision, not an accident of history. Do all students need to know the command line for
their first programming encounter? Do they all need to know assembler? Machine language?
Processor and other hardware details?

Arguing that various layers below could be treated as black boxes, but that using a separate
editor and command line was essential, seemed arbitrary, and we argued strongly for the use
of integrated environments. With these, we were convinced, if the toolset was right, students
would learn more, not less.

Time has since intervened to answer this question: almost all introductory courses (and
professional developers) use IDEs today, and this discussion has disappeared. In the late 90s,
however, it was a much debated issue.

The Switch to Java: BlueJ

Blue was first published in 1995 and used for introductory teaching at our computer science
department at Sydney University (and—to our knowledge—never used with students anywhere
else). In the same year, the Java Programing Language was published.

Blue had started as an academic project (a PhD), and by the end of the decade, when the
PhD had ended, we had to decide whether and how to continue. While Blue was attracting sup-
portive comments in some academic circles, it was clear that it would be hard to develop and
support it to a level where it might be widely adopted. The “team” still consisted of one (former)
PhD student and a supervisor.

Java, in the meantime, gained popularity very quickly. It obviously met a need in the market
(the need for a simple, free, well supported modern object-oriented language) and was very well
supported by a large company, Sun Microsystems. We were still convinced that Blue had advantages
over Java in some specific aspects; we preferred its syntax and some language constructs, but
most importantly: Java did not have a visual, integrated environment for teaching and learning.

We faced a decision: we could continue what we were doing with Blue, and remain a small
research project noticed by a handful of academics, or we could throw away half of our project—
the Blue language—, use Java instead, and continue working on the programming environment
as our contribution to the state of the art. This way, we would give up some of our work, but
may have the chance to have the other part—the environment—potentially adopted by actual
users. We chose the latter path. It seemed the more interesting opportunity.

In March 1999, we released the first version of BlueJ, a re-implementation of the Blue
environment for the Java language (Figure 2). BlueJ not only supported Java as the user level
language, it was also implemented in Java itself (while Blue had been implemented in C++). The
promise of cross platform development that Java brought to the table, with its virtual machine
architecture and just-in-time compilation, turned out to be vital for us: over the following years,
we managed to support BlueJ on a number of different operating systems with a very small
team. This would not have been possible without a cross-platform implementation language.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 13

Changing to Java as the language was comparatively easy. Blue and Java had a lot in common.
The object models were quite similar, and all relevant major abstractions matched very well. This
meant that the environment could be recreated for Java without any significant design changes.

The change to Java was successful in creating more interest in actual adoption of our sys-
tem. Soon after publication, other departments started adopting it for their introductory courses.

The Importance of Material

The single most important aspect of the design of the Blue/BlueJ environments for us was that
they allowed a different pedagogical approach to teaching programming. It allowed to focus on
the important fundamental principles—objects and classes—first, before getting bogged down in
syntax and incidental detail. This aspect was so important to us that we made “Objects First” the
title of a series of seminars we offered (Kölling & Rosenberg, 2000)—a term novel at the time
that later came to be widely used to represent this general approach to teaching object-oriented
programming (as opposed to the objects-late approach favored by other educators—a related,
but separate, ongoing debate (Astrachan, Bruce, Koffman, Kölling, & Reges, 2005)).

When BlueJ started to be adopted by other teachers, however, we made a surprising (to
us) discovery: many educators still started by using and teaching Java’s public	static	void	main
method, using a single class and only static methods (or often: a single static method) for their
entire project. In other words: they started exactly with the concepts and constructs we had in-
tended to avoid: syntax, obscure magical incantations of advanced concepts present for incidental
reasons, and small scale statements ignoring objects. That BlueJ allowed teachers to circumvent
this standard Java trap and discuss (and experiment with) more important constructs first seemed
to have little impact. Many teachers ignored these features. The question was why.

Figure	2.	The	BlueJ	environment.	The	class	diagram	is	similar	to	that	in	the	Blue	environment.	
As	in	Blue,	objects	are	shown	on	the	object	bench	and	methods	can	be	invoked	by	right-clicking	
on	the	object.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

When we first published Blue and then BlueJ, we had a somewhat naïve view of how adop-
tion might work. We had designed an environment to allow a different pedagogical approach
to teaching (which we thought preferable), and we assumed that teachers would see its value,
adopt the environment and follow this teaching approach.

In practice, this did not happen, at least not to the extent to which we hoped it would. In-
stead, a good number of teachers started to use BlueJ, but did not adapt their teaching approach.
They continued to teach structured programming, now in Java, often with examples and projects
ported directly from earlier Pascal or C versions. BlueJ was used, but objects-first was ignored.

We observed this phase with mixed feelings. It was good to see an increasing number of
people adopting BlueJ and starting to teach an object-oriented language, but we could not avoid
feeling that they	were	doing	it	wrong. For us, the whole point of developing BlueJ was to allow
an objects-first approach, with interaction, experimentation, and concepts before syntax. Instead,
many lecturers adopted BlueJ because it was easy to install, had an easy-to-use editor and good
tool integration. They used it as they would use any other environment, but ignored what we
thought of as the most important features.

We were not sure about the reasons: did lecturers not know how to use (and teach with)
object interaction, or did they disagree with this approach and chose not to? In any case, we
realized that to get our message across, making the software available is not enough. We needed
to talk more explicitly about pedagogy.

We spent the next few years delivering a series of workshops and seminars, and eventually
publishing a textbook (Barnes & Kölling, 2002). The seminars were largely successful—a good
share of participants adopted an objects-first approach and BlueJ—but did not achieve significant
scale. The book managed to reach a much larger audience. After the publication of the textbook
(in 2002), adoption of BlueJ with an objects-first teaching approach increased substantially4.

Later Extensions

With increasing numbers of users came an increasing number of suggestions and requests for
additional features and functionality. While many of the suggestions were sensible, taken together
they would have entirely ruined one of the most important aspects of BlueJ: the small size of
the system and simplicity of the interface.

We established criteria for selecting areas of functionality that we did consider for inclusion:
the feature had to be useful and widely used for introductory teaching at first-year university
level (our target user group). We did not aim at supporting later work, more advanced workflows,
or program sizes beyond what one might encounter in a first year course. In practice, there was
an additional, highly subjective, criterion: we had to be able to envision ourselves using it in
our own course.

While we made many and frequent changes and improvements to the system (we typically
released two or three updates per year), additions of larger areas of functionality were very
conservatively controlled. The main ones were the addition of explicit unit testing support in
2003 (Patterson, Kölling, & Rosenberg, 2003), ad-hoc single-statement evaluation (a read-eval-
print-loop) in 2004, and support for repository-based team work tools in 2007.

The Lessons Learned

So far in this paper, we presented a lengthy discursive history of our Blue and BlueJ projects.
The purpose is to extract some lessons that may be useful in a more general context. Before we
go on to describe development from this point forward, we will summarize the main lessons we
learned from our experiences so far.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 15

1. Visualization, interaction, simplicity. The most important aspects of our system, which
were crucial to its success, are these three overarching design goals: visualization, interaction,
and simplicity. For any educational programming environment, designers should identify
the main concepts to be learned by the users, and make those visible as first class entities
in the user interface. They should then design interactions that illustrate the characteristics
of these conceptual abstractions and allow users to experiment with them. This has to be
balanced with a simple, clear interface. Every other design goal and design decision has to
become subordinate to these goals.

2. Know your target group. One of the most important aspects to be clear in the minds of
the designers are the characteristics of the system’s target user group. This sounds obvious
when stated explicitly, but is nonetheless easy to lose track of. Many competing ideas will
have to be weighed, each competing for attention, interface space, and development time. It
happens easily to get excited by an idea, and be tempted to add it, because it is clearly use-
ful for someone. The crucial question to ask is: is it important for	our	target	group? Many
ideas are good ideas, and still do not belong in your system.

3. Do one thing well. The narrower the user group is chosen, the better job the system can do
to serve it. Once you have chosen your well defined user group and application area, build
the best tool you can for	that	group, to the exclusion of everyone else. It is tempting—but
counter-productive—to try to be everything for everyone.

4. Beware feature creep. Very closely related to the two previous points is the importance of
saying no. As soon as you have a useful and successful system, someone will start using it
for application areas at the edge or outside of your envisioned domain. They will ask for
additional features and extensions to support their tasks. Often, these are very reasonable
and interesting ideas, and would extend the usefulness of your systems to new users. Going
down this path, however, always opens the danger of unintended consequences. Feature
creep—while very hard to avoid—is the mortal enemy of simplicity. And simplicity, as
mentioned earlier, is one of the fundamental, immovable goals. Often, in the years of lead-
ing the development of BlueJ, one of our most important tasks for the project has been to
say no to people. A good idea might be a good idea, and still not fit well with this project.
When in doubt, leave it out. Features can always be added later, but it is nearly impossible
to ever remove them to regain simplicity.

5. Do not be afraid to make decisions. Often, when designing a system, design decisions have
to be made. Sometimes, two competing options seem equally good, or might be a matter
of preference of different users. A common response is to allow both versions, for example
having individual preference settings for system look or behavior, or allowing alternative
syntax for a language construct. In education systems, this is a fundamental mistake. Ev-
ery additional alternative forces users to make a choice. Beginners often do not have the
knowledge to make an informed choice, or do not care. We are not doing users a favor by
asking them to make a decision about an aspect that they either don’t know or don’t care
about. In addition, every possible variant complicates the development of teaching material.
Your job as a designer of an educational system is to make the choice. If some users don’t
like it—bad luck. The system will be more usable and users more productive if the system
is clearer and simpler.

6. Availability. It is important that a system is easily available, both to institutions and individu-
als. This means that it has to run on multiple popular operating systems, and be affordable.
(The most affordable price, of course, is free.) Whether the system needs to be open source,
however, is much less clear. BlueJ was initially free, but not open source. We received
regular complaints from users who demanded an open source system, and stated that they

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

need to make source amendments. We eventually open-sourced the system, mostly to allow
inclusion into Linux repositories and distributions that would not consider closed-source
systems. There are, however, no contributors to the BlueJ source code outside of our team,
and open-sourcing seems to have made no practical difference other than silencing those
people demanding it on principle.

7. Support material matters. A software system—no matter how well designed—does not,
by itself, make an impact in education. What actually drives adoption is an ecosystem of
support material. This can take different forms: a textbook, as in the case of BlueJ, or an
active, supportive user community (as we discuss below). In any case, what makes teachers
adopt a new system is—by and large—not the software itself, but the opportunity to teach
differently. To make teachers see these opportunities, context is required that shows them
what is possible. This can be a book, online videos, or a supportive group of peers in a shared
community. The software and the pedagogical material are both equally necessary—one
without the other will fail.

GREENFOOT

In 2004 we started work on a new system, named Greenfoot (Henriksen & Kölling, 2004) (Figure
3), which was first published in 2006. A number of different developments led to the decision to
work on a new design. The two main motivations came from two different directions: one was
technical, the other was driven by a change in the user group. We discuss both in

Object Look and Behavior

In BlueJ, classes could be instantiated, and the objects were visualized as red rectangles with
rounded corners on the object bench. When the objects in question were representing graphical

Figure	3.	The	main	window	of	the	Greenfoot	environment.	The	class	diagram	is	on	the	right;	
the	main	part	of	the	window	is	used	to	show	the	world.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 17

entities, a disconnect developed. We had, for example, one project frequently used in early teach-
ing that showed graphical shapes (Figure 4), which could be displayed in a separate window and
be manipulated via method calls. The manipulation (i.e., interactive method calls), however, had
to be done on the object bench, while the visible effect occurred in the separate window. Every
object was duplicated and possessed two representations. This was irritating.

We started to think: what if the objects on the object bench could change their appearance,
or their position? What if they could react directly and visibly to interactive method invocations?

Changes in the Novice Programmer Population

At the same time, over a number of years, a fundamental shift happened in programming edu-
cation: for more and more students the introductory university course was not the first point
of contact with programming anymore. Many beginners were encountering programming at
school age, often in formal school instruction and sometimes on their own. Concurrently, in the
first half of the 2000s, enrolment numbers in computer science courses were declining in many
western countries.

We were always interested in the teaching of initial programming, and supporting that area
of instruction as well as we could. When we worked on Blue and BlueJ, the context in our mind
had been the introductory university course.

Now we were in a situation where pupils encountered programming—and often decided
that they are not interested in studying it—well before they ever came to us in our university
departments. If we really wanted to influence early learning of programming, we had to target
school age learners.

BlueJ at the time had a significant user base in schools, mostly in the last two or three years
of school education: about a quarter of our users were in schools, the rest mostly at universities.
However, even though some teachers thought it worked well for them, we felt that this was not
the right system for initial programming at school.

Figure	4.	The	BlueJ	environment	with	the	figures	example.	Objects	are	represented	on	the	object	
bench,	and	then	again	graphically	in	a	separate	window.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

New Target Group, New Goals, New Design

The changed target group—school pupils instead of university students—changed our goals,
and with it, our design. The most fundamental question we asked ourselves is: what is the most
important thing we are trying to achieve? And that question had different answers at the two dif-
ferent age groups. For BlueJ, our goal was to teach the fundamental concepts of object-oriented
programming well. We wanted students to develop a clear and consistent understanding of the
most important and useful concepts. For Greenfoot, it was different: the main goal was motivation.

The Importance of Motivation

The most important difference between the two target groups—secondary school and first-year
university—is that the latter is a selective group. All the students have chosen to be there, so a
certain level of motivation can be assumed. Students generally have an interest in the subject.

This is not true in secondary school. Programming there is presented to the complete popu-
lation, and many of the pupils were—by default—not interested. This does not even have to do
with the manner in which programming is presented: strong pre-conceived opinions often existed
about programming and programmers—even among those who had never practiced it—and the
aversion was already well established at	the	start of programming instruction.

This means that the first and most fundamental problem of a programming tool dedicated to
this age group was not to teach them something, but to get	them	interested. Generating motiva-
tion—and achieving this quickly—became the main goal.

Plus Ça Change, Plus C’est La Même Chose

These two strands of thinking—the importance of motivation, and aiming for a more visual object
bench—merged into the design of Greenfoot, a new environment aimed specifically at school age.

To increase motivation, we decided to concentrate on very visual, graphical, animated
examples, where it is quick and easy for beginners to create a first interesting looking program.
This had to include the ability to easily make use of graphics, animation, sound, and keyboard
control, so that interactive games become achievable as a first example. This approach, called
“Game-first programming” by Goschnick and Balbo (2005) and shown to be effective in increas-
ing motivation, had been impossible in BlueJ.

To achieve the goal of a more individual object representation, we decided to push the class
diagram, which dominated the interface of BlueJ, to one side, and make the object bench the
central part of the user interface (Figure 5). This object bench was now called the world, could
be styled with a custom background, and objects were given individual appearance, location,
and rotation. They could then be programmed to alter their location and appearance, and this
change could be automatically visualized. With this, we arrived at a well known destination:
micro-worlds.

In a sense, we had come full circle: we were doing things very similar to what Turtle Graph-
ics and Karel the Robot had done decades before. In fact, both Turtle Graphics and Karel the
Robot became very easy-to-implement examples in Greenfoot. But Greenfoot was more: Firstly,
the micro-world characters could not only be programmed, they could also be interactively
manipulated. Characters could be instantiated easily, placed, methods invoked, state inspected,
all without writing code. This allowed experimentation to support understanding of the system.

Secondly, more characters could be created. While Turtle Graphics and Karel provided
exactly one programmable actor, Greenfoot could produce any number of actors. This is one of
the advantages of object orientation.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 19

Thirdly, Greenfoot was not a library, but a complete development environment. It included
an editor, runtime system, debugger, graphics library, and more. Programming and execution
was more flexible, practicalities easier to handle, and interaction more interactive.

But most importantly, Greenfoot was not a micro-world, but a micro-world	meta	framework.
While Turtle Graphics and Karel (and many others over time) presented a single world with a
fixed set of possible actors, Greenfoot was not a micro-world; Greenfoot allowed the creation
of endless micro-worlds.

The design was carefully created to be generic enough to allow the creation of any program
whose output was primarily two-dimensional graphics. Possible projects included micro-worlds
and birds-eye-view games, but also other examples such as platform-style games, simulations
of ant colonies, a playable on-screen piano, simulations of solar systems, physics simulations,
and many more.

In short, while Greenfoot restricted the application domain to two-dimensional graphical
applications, it was still a generic programming environment.

The Next Lessons Learned

After more than ten years of continued development, releases, user feedback and maintenance of
the Greenfoot system, we can again summarize the major lessons we learned from this experi-
ence. Again, most of these are not new insights—others learned and expressed the same lessons
before, arrived at the same conclusions from different directions, or might find some of these
obvious—but we hope identifying what we consider the most important points might help to

Figure	5.	Greenfoot	with	the	shapes	example:	Objects	have	a	single	representation	that	is	both	
graphical	with	custom	appearance	and	interactive.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

prioritize: there are numerous demands and goals for the design of educational development
systems, and our contribution is to suggest that these are the ones that are fundamental to an
extent that they should take precedence over competing alternatives.

1. Motivation. The most important lesson for us from our experience with Greenfoot is the
power of motivation. As university teachers, when we started out in our designs of educational
systems, we were very much concerned with What	to	teach and How	to	teach. The Blue
design reflected this thinking. With Greenfoot, we concentrated on creating motivation and
a sense of ownership. The goal was to get users into a situation where they want	to	learn—if
we can achieve that, we can teach them anything. For us, this constituted a significant shift
from a teacher perspective to a learner perspective. This also meant that self-directed learning
(and use of the system without a teacher present) became a significant design goal. These
goals shape the design decisions and functionality of the system. Other systems—most
notably Scratch—started with this insight from the beginning. Their designers knew what
we took a long time to learn: that in the learning process the learner is more important than
the teacher. We will come back to this below. Almost all the other points listed below are in
support of this one: they are more concrete aspects helping to increase learner motivation.

2. Taking control. To allow users to become self-motivated, it is important to put them in a
position where they can take control and ownership of a project quickly. In programming,
this is not easy. Since novices at the beginning usually do not know any programming con-
structs, they can often only do what they are shown to do. In many introductory approaches,
this leads to a fairly mechanical observe-and-copy methodology, where students re-create
code shown to them by an instructor (or a book, or a video), and then create minor variations
(e.g. in parameter values). To create true motivation, this is not enough. The goal of a well-
designed system must be to get users into a position where they can set their own goals and
then try to achieve them as soon as possible. For this, aspects of the system have to be easily
changeable, and discoverable. Most block-based systems achieve this very well by present-
ing block palettes and a mechanism to try out blocks very quickly and easily. This supports
discoverability and recognition of language elements not present in text-based languages,
and supports self-directed learning. In text-based systems, this is harder: language constructs
are not easily discoverable and typically require explanation; syntax must be learned. In
Greenfoot, which initially provided only Java with a traditional text-based editor as a user
language, we tried to overcome this by adding other opportunities for taking control. Even
before knowing much about programming, users can change images and sounds, and eas-
ily create and arrange additional actors. This often leads to widely different background
stories for early programming examples, even though the programming constructs used are
very similar. When introducing programming to groups of teenagers we often see projects
of, for example, rabbits eating pizza, space craft picking up astronauts, or cars racing each
other. In a typical case, a teenager saw an image of a wasp in the built-in icon library and
was immediately excited to create a project with a “Hunger Games” theme (a popular book
and movie at the time, where killer wasps feature in one of the story lines). Even though
the programs pupils created are near-identical from a programming point of view (they all
concerned one or more keyboard controlled actors moving across the screen and interact-
ing with another kind of actor), each of the users had their own story that they had decided
on themselves. Sounds also had a very powerful effect on the sense of ownership: the easy
ability to record and add sounds to projects (which allows pupils to add their own voices
to their games) led to much excitement and engagement. In short: any environment should

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 21

strive to let users take control as early and as far as possible, and the extent to which this
can be done will greatly influence motivation, and with that, acceptance.

3. Visualization and experimentation—again. Greenfoot again reinforced our belief in the
importance of visualization and support for experimentation. Greenfoot is more visual than
BlueJ and—especially for younger learners—this was an important characteristic.

4. Visualization of program execution. In addition to visualizing the program components
(classes and objects), Greenfoot also visualizes the execution of the program. While the
program is running, actors can be seen to move on screen. When the program contains an
error, this is often immediately obvious in the unexpected behavior of a visible actor. This
visualization of the program as it is running is a very fundamental tool that aids greatly in
the construction and understanding of programs. This is the fundamental design idea that
Turtle Graphics popularized in the 1960s and 70s, and it is inherent in all micro-world related
environments. Many later systems, however, do not make use of this, so we feel it is worth
reiterating here.

5. The power of community. In 2007, one year after the initial publication of Greenfoot,
we added an export feature that allowed users to upload their projects to a public website,
where others could then execute, download, and comment on these projects. Scratch, inde-
pendently, added a similar feature in the same year. In the Scratch community, this is taken
a step further: users are encouraged to “remix” projects (upload a modified version), and
these remixes are tracked and attributed. Remixing, for the Scratch community, turned out
to be a powerful motivator for engagement. In each of these communities, members can
build a reputation by providing useful content or helping others. These user communities
have a high impact. They work in two distinct ways: they serve to provide help and guidance
when users have questions or problems, and they greatly increase motivation by giving an
opportunity to share and publish projects, and by receiving feedback and encouragement
from others. Both aspects are strong drivers of motivation and engagement.

6. Teacher communities. In support of teaching with Greenfoot, we created the Greenroom
(Fincher, Kölling, Utting, Brown, & Stevens, 2010), a community for teachers. As opposed
to the Greenfoot user community, the teacher community is not public and not anonymous—
teachers have to apply for access, and we ensure that members actually are who they say they
are. The Greenroom provides resources for teaching and learning, and a discussion forum for
members. The advantage of excluding public access is two-fold: firstly, tests, examinations
and projects for assessment can be published here with solutions, without pupils having
access to them. And secondly, teachers can talk much more freely, admit more easily when
they have problems, and ask for help in the knowledge that they are talking to their peers
without being overheard. When creating this community site, we evaluated various exist-
ing platforms, but decided eventually to create our own. Aspects influencing this decisions
included questions of resource curation, access control, and encouragement of participation.
These aspects are further discussed in (Brown & Kölling, 2013). The Greenroom plays a
significant role in the pedagogical support of the system, by providing teaching material
and support, much beyond what we could provide directly ourselves. For us, coming from
a teaching-oriented perspective, this was a natural development. Other systems, such as
Scratch, which developed from a more learner-centric view, also moved in this direction.
Scratch was initially designed with self-directed learners in mind, consciously assuming that
a teacher might not be present. However, as Scratch became widely used, it was also often
used in classrooms, and many teachers started to look for support and material. Providing
support for instructors will be crucial for every popular system.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

7. Programming language. The programming language used within Greenfoot is Java. (A
second alternative, Stride, has recently been added, discussed below.) Java is a traditional,
text-based language originally designed for professionals. This has a major influence on us-
ability and potential target groups. Using a language such as Java imposes a hard limit on the
lower age bound of potential users. For Greenfoot, we aim at users aged from 13 upwards.
Below this age, many children do not have the necessary typing and abstraction capabilities
to cope with the text-based editor and resulting syntax errors. Languages avoiding this type
of syntax, most notably block-based languages, are usable at a much lower age range and
can better focus on the initial learning of fundamental concepts. Using a standard text-based
language has an advantage only when the learning of syntax and text-based programming
is an explicit goal of the learning process. For us, the choice of Java as the user language
was pragmatic: as a team, we did not have the capacity to design and implement a language
including all necessary libraries at the same time as developing the environment. Blue,
for example, never had the scope of libraries that were now routinely expected in modern
systems, and we did not want to spend multiple years on implementing a new language.
Choosing Java allowed us to reuse significant portions of the implementation of BlueJ and
made the project possible, even though it created limitations in its potential use. The choice,
however, also has positive aspects: while it imposes a lower age boundary, it removes the
limit at the other end. Since the system is full, standard Java, and is executed on a standard
Java VM, very complex and sophisticated projects can be created and run efficiently. As
a result, Greenfoot is occasionally used, for example, in artificial intelligence courses for
the implementation of sophisticated AI algorithms. Overall, the most important aspect of
programming language choice is to be aware how the style of syntax and language limits
the potential user groups, and to ensure that the language is appropriate for the target group
of the system.

RELATION TO OTHER ENVIRONMENTS

Our environments were not developed in a vacuum, and many other learning environments were
published at the same time. In this section, we briefly discuss selected aspects of some other
systems, and how they relate to our environments.

The Rise of Blocks

Arguably the most significant impact on early learning of programming is made by the avail-
ability and popularity of block-based programming systems, a modern incarnation of a Visual
Programming Language (VPL). Visual programming languages have a long history, starting
with early graphical systems such as Sutherland’s Sketchpad in the 1960s (Sutherland, 1963)
and going through many iterations and variants (Boshernitsan & Downes 2004). However, only
with the development of modern block-based education environments did these systems escape
a niche existence where they are not only of interest to researchers and hobbyists, but achieved
large scale adoption by practitioners in programming teaching.

Block-based systems, by side-stepping most syntactical problems, have greatly shifted the
possible starting age of programming learners downwards. Seven- or eight-year olds can com-
fortably use some of these systems and learn fundamental programming concepts in the process.

The early block-based languages, such as Alice and Scratch, were embedded in environments
that offered a host of other advantages as well: visual micro-worlds, simple execution models,

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 23

block palettes that made language constructs discoverable, easy experimentation, engaging
context, and user communities. Later systems, such as App Inventor (Wolber, Abelson, Spertus,
& Looney, 2011), added development for mobile devices as an additional motivator.

While we cannot fully separate visual from textual programming (Good (2011) quite jus-
tifiably stipulates that “’Visual vs. Textual’ is no longer a useful distinction for programming
languages” since each makes significant use of elements of the other), the terms block-based and
text-based programming are sufficiently clearly understood to form a useful distinction in the
discussion of educational systems. The impact of this aspect is, in fact, so fundamental and so
lasting that in any categorization of educational programming environments today the division
into to block-based and text-based environments might be the first, top-level category choice.

Block-based systems have, over the last ten years, managed to bring programming to large
groups of users that were previously considered too young. Text-based systems, at the same time,
continue to thrive, with the change to text-based programming currently seen as an important
step towards a fuller programming education.

In the remainder of this section, we briefly discuss some aspects of selected block- and
text-based systems where they relate to our own environments.

Selected Other Systems

Scratch

Maybe the most interesting system to discuss in comparison with Greenfoot is Scratch. Scratch
and Greenfoot were designed and published at about the same time, and thus developed inde-
pendently. The interesting aspect is that—despite significant differences in many details—many
design decisions follow very similar paths and arrive at similar solutions, despite the difference
in target group and concrete functionality.

Scratch started with a learner centric view that placed discoverability and experimentation at
the center of the design5. It uses a custom block-based language and a concurrent, object-based
programming model. In these aspects it differs from Greenfoot. However, many underlying
design goals align: the use of a micro-world to visualize execution, the goal of supporting easy
experimentation, the value of simplicity over extended functionality, the importance of com-
munity, and the clear sense of target group. Scratch could have equally been used as an example
to illustrate the main conclusions of this paper.

The different age of the target group leads to very different concrete design choices in many
cases, and in some aspects—such as the simplification of syntax—Scratch goes much further
than Greenfoot. However, it is interesting to observe that the fundamental principles are constant.
The two systems illustrate two different implementations of similar design principles for dif-
ferent age groups and different contexts, thus providing two examples of similar abstract ideas.

Because of their similarity of many important aspects, Scratch and Greenfoot form a well-
working possible sequence for learners as successive systems.

Alice

Alice is notable as one of the early successful block-based systems that attracted a large user base
in many schools and with many individual users. It has some unique characteristics: firstly, it
uses a three-dimensional (instead of a 2D) world. The Alice team has argued that the 3D nature
of the system adds to its attraction and creates engagement. On balance, evidence for this as-
sertion is thin. Anecdotal evidence points both ways: some teachers report positive comments
from users, while others question the benefit in light of increased complexity. Successor systems

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

developed later do not provide much support for this argument: 3D systems have not become
more popular than their 2D competitors. Despite the open question of impact of this particular
design decision, it is interesting to note yet again the same underlying goal: increasing motiva-
tion and engagement. Another interesting observation has to do with breadth of target group.
Alice 2, the popular version early in this century, focused on its own block-based language
for implementation. In 2007, the Alice team released a major new version, Alice 3, that added
programming in Java as one of the major named goals. Alice 3 was intended to be usable for a
very wide age group, starting in primary school and reaching into university level education.
However, it failed to gain the same level of traction that Alice 2 had achieved earlier. Today,
almost 10 years later, a significant share of the Alice user base still prefer to use Alice 2 with
its more limited functionality. This may be an example how targeting a narrower user base may
lead to a more successful system than attempting to offer more functionality.

Processing

Processing (Reas & Fry, 2003) is another environment that uses a variant of Java as its user
language. It is interesting in our context because it presents another example of a successful
educational system that makes use of a pre-existing programming language not originally de-
veloped for education. It is also interesting because it represents another example of a different
concrete realization of the same design goals: leading to learning by creating engagement. Pro-
cessing offers the ability to very easily and quickly create graphical programs with very quick
visual feedback. In doing this, it combines motivation with learning of a traditional, text-based
language and shows an alternative of creating engagement.

FUTURE TRENDS

Transition Issues: From Blocks to Text

The success of these two classes of educational environments—block-based for early learners
and text-based for a slightly older age group—leads to a relatively new phenomenon: learners
that transition from one to the other. Viewing these systems, and their respective successes, in
isolation, is not enough anymore. With the earlier encounter of programming, often in primary
school, many learners will now transition through multiple educational systems, and the com-
bination, sequence, and transition between these should be planned in context.

One of the transition points generating most interest is the one from blocks to text (Armoni,
Meerbaum-Salant, & Ben-Ari, 2015; Dorling & White, 2015; Hundhausen, Farley, & Brown,
2009; Powers, Ecott, & Hirshfield, 2007; Price & Barnes, 2015; Weintrop & Wilensky, 2015a;
Weintrop & Wilensky, 2015b). Recently, teachers have discovered that this transition can create
significant problems for learners, and that the added complexity of text-based systems—even
when familiar with foundational programming concepts—can present a difficult hurdle (Powers,
Ecott, & Hirshfield, 2007; Price & Barnes, 2015).

As a result, designers have started to look at blocks and text in combination.

Combining Blocks and Text

The most common approach to try to support this transition step is by providing a dual system:
the programming system is able to present the same program both as blocks or as text, and us-
ers are able to switch between these two representations, or to view both of them side-by-side.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 25

Alice 3 introduced a “Java Code On The Side” feature, which displays block based code under
construction as Java code (Figure 6). Only the blocks can be edited; the Java code is read-only.
Tiled	Grace (Homer & Noble, 2014) is an environment for the Grace language (Black, Bruce,
Homer, Noble, Ruskin, & Yannow, 2013)—originally designed to be text-based—that can show
the same program alternatively as blocks or as text, with the ability to edit either representation,
and offering an animated transition between them. Pencil Code is another system that allows
this, either in its online environment (Pencil Code, 2016) or in the Droplet editor (Bau, 2015).
Other systems, such as App Inventor (Wolber, Abelson, Spertus, & Looney, 2011) and a reusable
library derived from it, Blockly (Fraser, 2013) offer similar functionality.

All these examples are based on a common assumption: that seeing blocks and text side-by-
side (or alternately), and the same program in each, can aid in the learning of textual program-
ming languages.

We believe, however, that this approach—though popular—is not an ideal solution to the
problem, and that we can do better. Instead of offering blocks and text as alternatives, and transi-
tions between them, we propose to offer a single	system that combines aspects from both blocks
and text. This then can serve as a stepping stone between the two worlds.

Frame-Based Editing: Merging Blocks and Text

In Greenfoot 3, published in 2015, we introduced a new language called Stride, and a new editor
to manipulate its programs. The interesting aspects of this work are not in the language, but in
its frame-based	editor: it combines aspects from blocks and text into a single system, aiming to
benefit from lessons learned in both (Brown, Altadmri, & Kölling, 2016).

In frame-based editing, some elements (such as scope) are presented graphically, while the
overall text-flow is as sequential and aims to be as readable as a text-based program (Figure 7).
Statements are represented by frames, which are inserted in their entirety with a single keystroke.
No half statements can ever exist. Frames, when inserted, may contain slots—areas for nested
code to be filled in (Figure 8). Two different kinds of slots exist: text	slots and frame	slots. While
frame slots can receive nested frames, text slots are filled by typing (structured) text. The whole
system can be used entirely keyboard-driven, without the need to use the mouse. However, if
desired, frames can be manipulated as first class interface elements, including dragging them

Figure	6.	The	Alice	3	environment	with	side-by-side	view	of	blocks	on	the	left	and	Java	code	on	
the	right.	(Source:	Cooper,	S.,	Dann,	W.	(2015)	The	Role	Of	Programming	In	A	Non-Major	CS	
Course,	ACM	Inroads	6,	1.)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

to a different (syntactically valid) location (Figure 9). A “cheat sheet” is available to facilitate
recognition over recall for program statements, akin to the block palettes in block-based systems
(Figure 7).

Overall, the system avoids some of the main drawbacks of both blocks and text, while com-
bining several of their advantages. Many syntax errors common in text-based systems cannot be
made anymore, indentation, layout and other program representation is improved and cannot be

Figure	7.	Greenfoot’s	frame-based	editor	with	the	Stride	language.	The	source	code	is	on	the	
left;	a	clickable	cheat	sheet	is	shown	on	the	right.	Statements	are	represented	by	frames	with	
colored	background.	Frames	are	entered	with	a	single	keypress.

Figure	8.	Frames	may	contain	slots.	Text	slots	are	filled	by	entering	text	with	the	keyboard,	while	
frame	slots	receive	frames,	either	through	key	commands	or	mouse	actions.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 27

incorrect, statement syntax does not have to be memorized. At the same time, the edit viscosity
of block-based systems is avoided, and programs of professional scale can be developed and
remain readable. Entirely keyboard-based editing—faster than either block or text systems—is
available, as well as mouse-based alternatives.

This system, with its combination of aspects from block-based and text-based systems, helps
to facilitate the transition from one to the other by avoiding incidental overhead and separating
the process into two steps: first to frames, and later to text—by then a purely syntactical exercise.
Frame based editing, including this aspect of transition from blocks to text, is discussed in more
detail in Kölling, Brown, & Altadmri (2015).

We are not alone in the belief that combining aspects of these two types of system can bring
benefits. Mönig, Ohshima, & Maloney (2015), for example, are working on a new language
called GP, which has a similar goal. This is interesting especially since these authors are designers
of existing successful block-based languages (BYOB/Snap and Scratch among them), and are
thus approaching the target from the other side: while our experience is with textual languages,
and our work adds block-like aspects to those, their background is with blocks, which are now
receiving some text-related features. It may be that we meet in the middle with systems that
share some commonalities. The most interesting observation, though, is the joint belief that the
future of environments supporting the transition lies not in dual systems that offer blocks and
code, but in systems offering new functionality combining aspects of the two worlds in a single
representation.

On the Obsoleteness of Text

Frame-based editing, should it become successful, will not replace block-based systems.
Block systems have their well deserved place as programming environments for young

(i.e. primary school) novice learners. For that target group, they are—and will remain for the
foreseeable future—the most appropriate system.

Figure	9.	Frames	in	the	Stride	editor	are	user	interface	elements:	they	can	be	dragged	or	selected,	
and	they	have	a	context	menu	with	frame	operations.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

Text-based editing, however, is much less defensible. Frame-based programming is—in
principle—superior to text-based programming in just about every aspect. When implemented
well, it is more readable, quicker and easier to edit, leads to fewer syntax errors, and is easier
to process and build good tools for, than text. In theory, although our current implementation
is in an educational system, it could be implemented for standard programming languages in
professional IDEs.

The replacement of text by frames—should it ever happen at all—will not be quick. The
existing tool chain of software development tools, with its plethora of different software systems,
currently relies on plain program text as a common interchange format. Any change must be
necessarily slow. However, there is nothing in principle stopping us all from programming in
frame-based systems in coming decades.

CONCLUSION

The popularity of educational programming environments has boomed in the last ten years. More
systems have been published than ever before, and more are being developed. Programming
as a subject is currently being strengthened or introduced (or re-introduced) at school level in
many countries (Brown, Kölling, Crick, Peyton Jones, Humphreys, & Sentance, 2013), and this
development is again increasing the interest in these types of system. Many environments are
currently under development, and more will follow.

In designing these environments, there are many possible paths that can be taken and many
design decisions to be made. In this paper, we have described our experiences with the design
and support of three systems, Blue, BlueJ and Greenfoot, and attempted to extract some general
design principles that are fundamental, system independent, and that can guide the development
of other systems in future. We believe that awareness of these principles can improve the design
of such systems.

In addition, we have highlighted one area of development that we think will be relevant to
many teachers in the near future, and where significant improvements can be made: the combina-
tion of block-based and text-based programming modes. Frame-based editing, as implemented
in the most recent Greenfoot system, is one possibility of how these two types of system can
be combined.

ACKNOWLEDGMENT

Many people have contributed great amounts to the systems discussed in this paper.
John Rosenberg was my PhD supervisor during the creation of the Blue project, and also
closely involved in the creation of BlueJ. Without him, none of this would have happened.
Many people have contributed to the implementation of BlueJ and Greenfoot, to varying
degrees. The most significant contributions here are from Bruce Quig, Andrew Patterson,
Davin McCall, Poul Henriksen, and Neil Brown, all of which are fantastic programmers.
Ian Utting has made various contributions to BlueJ over many years. David Barnes is my
co-author for the BlueJ book and with this contributed immensely to BlueJ’s success;
without him this book may never have been written. Finally, Sun Microsystems, Oracle
Inc, and Google have supported the projects over the years; I am very grateful for their
continued support for our projects in particular and to the computer science education
community in general.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 29

REFERENCES

Allen, E., Cartwright, R., & Stoler, B. (2002). DrJava: A lightweight pedagogic environment for Java.
Proceedings	of	the	33rd	SIGCSE	Technical	Symposium	on	Computer	Science	Education, 34(1) 137-141.
doi:10.1145/563340.563395

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming. ACM	
Transactions	on	Computing	Education, 14(4), 25. doi:10.1145/2677087

Astrachan, O., Bruce, K., Koffman, E., Kölling, M., & Reges, S. (2005). Resolved: Objects early has failed.
ACM	SIGCSE	Bulletin, 37(1), 451–452. doi:10.1145/1047124.1047359

Barnes, D., & Kölling, M. (2002). Objects	First	with	Java	-	A	Practical	Introduction	using	BlueJ. Prentice-Hall.

Bau, D. (2015). Droplet, a blocks-based editor for text code. Journal	of	Computing	Sciences	in	Colleges,
30(6), 138–144.

Bau, D., Bau, D. A., Dawson, M., & Pickens, C. (2015). Pencil code: block code for a text world.
Proceedings	 of	 the	 14th	 International	Conference	 on	 Interaction	Design	 and	Children (pp. 445-448).
doi:10.1145/2771839.2771875

Begel, A., & Klopfer, E. (2007). StarLogo TNG: An introduction to game development. Journal	of	E-Learning.

Bergin, J., Pattis, R., Stehlik, M., & Roberts, J. (1997). Karel. Wiley.

Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. (2005). Karel	J	Robot:	A	gentle	introduction	to	the	art	of	
object-oriented	programming	in	Java. Dream Songs Press.

Black, A. P., Bruce, K. B., Homer, M., Noble, J., Ruskin, A., & Yannow, R. (2013). Seeking Grace: a new
object-oriented language for novices.Proceeding	of	the	44th	ACM	technical	symposium	on	Computer	sci-
ence	education (pp. 129-134). doi:10.1145/2445196.2445240

Boshernitsan, M., & Downes, M. (2004, December). Visual	Programming	Languages:	A	Survey. Technical
report No. UCB/CSD-04-1368. Computer Science Division (EECS), University of California Berkeley.

Brown, N., Altadmri, A., & Kölling, M. (2016). Frame-Based Editing: Combining the Best of Blocks
and Text Programming.Proceedings	of	the	Fourth	International	Conference	on	Learning	and	Teaching	in	
Computing	and	Engineering.

Brown, N., & Kölling, M. (2013). A Tale of Three Sites: Resource and Knowledge Sharing Amongst Com-
puter Science Educators. Proceedings	of	theNinth	Annual	International	Computing	Education	Research	
Conference	(ICER) (pp. 27-34). doi:10.1145/2493394.2493398

Brown, N. C. C., Kölling, M., Crick, T., Peyton Jones, S., Humphreys, S., & Sentance, S. (2013). Bringing
computer science back into schools: lessons from the UK.Proceeding	of	the	44th	ACM	technical	symposium	
on	Computer	science	education (pp. 269-274).

Caspersen, M. E., & Christensen, H. B. (2000). Here, there and everywhere–on the recurring use of turtle
graphics in CS1.Proceedings	of	the	Fourth	Australasian	Computing	Education	Conference (ACE ‘00) (pp.
34-40). doi:10.1145/359369.359375

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science. Pro-
ceedings	of	the	34th	SIGCSE	Technical	Symposium	on	Computer	Science	Education (SIGCSE ‘03) (pp.
191-195). doi:10.1145/611892.611966

Dahl, O. J., Myhrhaug, B., & Nygaard, K. (1967). Simula 67 common base language.

Dorling, M., & White, D. (2015). Scratch: A way to logo and python.Proceedings	of	the	46th	ACM	Technical	
Symposium	on	Computer	Science	Education (pp. 191-196). doi:10.1145/2676723.2677256

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

Fincher, S., Kölling, M., Utting, I., Brown, N. C. C., & Stevens, P. (2010). Repositories of Teaching Material
and Communities of Use: Nifty Assignments and the Greenroom.Proceedings	of	the	Sixth	international	
workshop	on	Computing	education	research (pp. 182-196). doi:10.1145/1839594.1839613

Fraser, N. (2013). Blockly: A visual programming editor. Google	 developers. Retrieved from https://
developers.google.com/blockly/

Goldberg, A., & Robson, D. (1983). Smalltalk-80:	the	language	and	its	implementation. Addison-Wesley
Longman Publishing Co., Inc.

Good, J. (2011). Learners at the Wheel: Novice Programming Environments Come of Age. International	
Journal	of	People-Oriented	Programming, 1(1), 1–24. doi:10.4018/ijpop.2011010101

Goschnick, S., & Balbo, S. (2005). Game-first programming for information systems students. Proceed-
ings	of	the	second	Australasian	conference	on	Interactive	entertainment (IE ‘05) (pp. 71-74). Creativity
& Cognition Studios Press.

Gosling, J. (2000). The	Java	language	specification. Addison-Wesley Professional.

Harvey, B., & Mönig, J. (2010). Bringing “no ceiling” to Scratch: Can one language serve kids and computer
scientists. Proc.	of	Constructionism (pp. 1-10).

Harvey, B., & Mönig, J. (2015). Lambda in blocks languages: Lessons learned. Proceedings	of	the	IEEE-
Blocks	and	Beyond	Workshop	(Blocks	and	Beyond) (pp. 35-38). doi:10.1109/BLOCKS.2015.7368997

Henriksen, P., & Kölling, M. (2004). Greenfoot: combining object visualisation with interaction. Companion	
to	the	19th	annual	ACM	SIGPLAN	conference	on	Object-oriented	programming	systems,	languages,	and	
applications (pp. 73-82).

Homer, M., & Noble, J. (2014). Combining tiled and textual views of code.	Proceedings	of	the2014	Second	
IEEE	Working	Conference	on	Software	Visualization (pp. 1-10). doi:10.1109/VISSOFT.2014.11

Hundhausen, C. D., Farley, S. F., & Brown, J. L. (2009). Can direct manipulation lower the barriers to
computer programming and promote transfer of training?: An experimental study. ACM	Transactions	on	
Computer-Human	Interaction, 16(3), 13. doi:10.1145/1592440.1592442

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to the future: The story of Squeak,
a practical Smalltalk written in itself. ACM	SIGPLAN	Notices, 32(10), 318–326. doi:10.1145/263700.263754

Kay, A. (2005). Squeak	Etoys	Authoring	&	Media. Viewpoints Research Institute.

Kölling, M. (1999a). The	Design	of	an	Object-Oriented	Environment	and	Language	for	Teaching [Ph.D.
thesis]. Basser Department of Computer Science, University of Sydney.

Kölling, M. (1999b). The Problem of Teaching Object-Oriented Programming, Part 1: Languages. Journal	
of	Object-Oriented	Programming, 11(8), 8–15.

Kölling, M. (1999c). The Problem of Teaching Object-Oriented Programming, Part 2: Environments.
Journal	of	Object-Oriented	Programming, 11(9), 6–12.

Kölling, M. (2010). The Greenfoot Programming Environment. ACM	Transactions	on	Computing	Educa-
tion	(TOCE),	10(4),182-196.

Kölling, M., Brown, N., & Altadmri, A. (2015). Frame-Based Editing: Easing the Transition from Blocks
to Text-Based Programming.Proceedings	of	 the	10th	Workshop	 in	Primary	and	Secondary	Computing	
Education (pp. 29-38). doi:10.1145/2818314.2818331

Kölling, M., Koch, B., & Rosenberg, J. (1995). Requirements for a First Year Object-Oriented Teaching
Language.Proceedings	of	the	26th	SIGCSE	Technical	Symposium	on	Computer	Science	Education (pp.
173-177). doi:10.1145/199688.199770

Kölling, M., Quig, B., Patterson, A., & Rosenberg, J. (2003). The BlueJ system and its pedagogy. Computer	
Science	Education, 13, 249–268. doi:10.1076/csed.13.4.249.17496

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015 31

Kölling, M., & Rosenberg, J. (1996). An object-oriented program development environment for the first
programming course. ACM	SIGCSE	Bulletin, 28(1), 83–87. doi:10.1145/236462.236514

Kölling, M., & Rosenberg, J. (2000). Objects first with Java and BlueJ (seminar session). ACM	SIGCSE	
Bulletin, 32(1), 429. doi:10.1145/331795.331912

MacLaurin, M. (2009). Kodu: End-user programming and design for games.Proceedings	of	the	4th	Inter-
national	Conference	on	Foundations	of	Digital	Games. doi:10.1145/1536513.1536516

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch programming language
and environment. ACM	Transactions	on	Computing	Education, 10(4), 16. doi:10.1145/1868358.1868363

Meyer, B. (1988). Eiffel: A language and environment for software engineering. Journal	of	Systems	and	
Software, 8(3), 199–246. doi:10.1016/0164-1212(88)90022-2

Microsoft. (2016, February 14). Visual Studio Express. Retrieved from https://www.visualstudio.com/
en-us/products/visual-studio-express-vs.aspx

Mönig, J., Ohshima, Y., & Maloney, J. (2015). Blocks at your fingertips: Blurring the line between blocks and
text in GP. Proceedings	of	theBlocks	and	Beyond	Workshop	(Blocks	and	Beyond) (pp. 51-53). doi:10.1109/
BLOCKS.2015.7369001

Overmars, M. (2004). Learning object-oriented design by creating games. Potentials,	IEEE, 23(5), 11–13.
doi:10.1109/MP.2005.1368910

Papert, S. (1980). Mindstorms:	Children,	Computers,	and	Powerful	Ideas. New York, NY, USA: Basic
Books, Inc.

Patterson, A., Kölling, M., & Rosenberg, J. (2003). Introducing Unit Testing With BlueJ.Proceedings	of	
the	8th	conference	on	Information	Technology	in	Computer	Science	Education	(ITiCSE	2003) (pp. 11-15).

Pattis, R. E. (1981). Karel	the	Robot:	A	gentle	introduction	to	the	art	of	programming. New York, USA:
John Wiley & Sons, Inc.

Pencil Code. (2016, February 14). Pencil Code. Retrieved from https://pencilcode.net

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: Teaching CS0 with Alice.
ACM	SIGCSE	Bulletin, 39(1), 213–217. doi:10.1145/1227504.1227386

Price, T. W., & Barnes, T. (2015). Comparing Textual and Block Interfaces in a Novice Programming
Environment.Proceedings	of	the	eleventh	annual	International	Conference	on	International	Computing	
Education	Research (pp. 91-99). doi:10.1145/2787622.2787712

Python Software Foundation. (2012). Python standard library: Turtle graphics for tk. Retrieved from http://
docs.python.org/library/turtle.html

Reas, C., & Fry, B. (2003). Processing: a learning environment for creating interactive Web graphics. ACM	
SIGGRAPH	2003	Web	Graphics.

Roque, R. V. (2007). OpenBlocks:	an	extendable	framework	for	graphical	block	programming	systems
[Doctoral dissertation]. Massachusetts Institute of Technology.

Sanders, D., & Dorn, B. (2003). Jeroo: A tool for introducing object-oriented programming.Pro-
ceedings	 of	 the	 34th	 SIGCSE	 Technical	 Symposium	 on	 Computer	 Science	 Education (pp. 201-204).
doi:10.1145/611892.611968

Slack, J. M. (1990). Turbo	Pascal	with	turtle	graphics. St. Paul: West Publishing Co.

Storey, M. A., Damian, D., Michaud, J., Myers, D., Mindel, M., German, D., & Hargreaves, E. et al. (2003).
Improving the usability of Eclipse for novice programmers.Proceedings	of	the	2003	OOPSLA	workshop	
on	eclipse	technology	eXchange (pp. 35-39). doi:10.1145/965660.965668

Stroustrup, B. (1986). The	C++	programming	language. Pearson Education India.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal of People-Oriented Programming, 4(1), 5-32, January-June 2015

Sutherland, I. B. (1963) Sutherland, I. B. SKETCHPAD, a man-machine graphical communication system.
Proceedings	of	the	Spring	Joint	Computer	Conference (pp. 329–346).

Weintrop, D., & Wilensky, U. (2015a). To block or not to block, that is the question: students’ perceptions
of blocks-based programming.Proceedings	of	the	14th	International	Conference	on	Interaction	Design	and	
Children (pp. 199-208). doi:10.1145/2771839.2771860

Weintrop, D., & Wilensky, U. (2015b). Using commutative assessments to compare conceptual understand-
ing in blocks-based and text-based programs.Proceedings	of	the	Eleventh	Annual	International	Conference	
on	International	Computing	Education	Research,	ICER	15 (pp. 101-110). doi:10.1145/2787622.2787721

Wolber, D., Abelson, H., Spertus, E., & Looney, L. (2011). App	Inventor. O’Reilly Media, Inc.

ENDNOTES
1 In Logo’s case, this also involved physical “turtles”—robots in the real world, while later micro-

worlds were often software simulation only.
2 Smalltalk was an exception: it provided a full integrated development environment. It had, however,

failed to get traction in programming education and was rarely used for introductory teaching.
3 This functionality has been described in some detail elsewhere (Kölling, 1999a; Kölling, Quig,

Patterson, & Rosenberg, 2003).
4 In 2001, BlueJ was downloaded just over 100,000 times; in the following years, growth was expo-

nential for some time and this number doubled every two years, exceeding 2.5 million downloads
per year by 2010.

5 Some earlier systems, such as Squeak (Ingalls, Kaehler, Maloney, Wallace, & Kay, 1997) and Etoys
(Kay, 2005) were based on a similar approach, but failed to achieve the same impact as Scratch.

Michael	Kölling	is	a	Professor	at	the	School	of	Computing,	University	of	Kent,	in	Canterbury,	
UK.	He	holds	a	PhD	in	computer	science	from	Sydney	University,	and	has	worked	in	Australia,	
Denmark	and	the	UK.	Michael’s	research	interests	are	in	the	areas	of	object-oriented	systems,	
programming	 languages,	 software	 tools,	 computing	 education	 and	 HCI.	 He	 has	 published	
numerous	papers	on	object-orientation	and	computing	education	topics	and	is	the	author	and	
co-author	of	two	Java	textbooks.	Michael	is	the	lead	developer	of	BlueJ	and	Greenfoot,	two	
educational	programming	environments.	He	is	a	UK	National	Teaching	Fellow,	Fellow	of	the	
UK	Higher	Education	Academy,	Oracle	Java	Champion,	and	a	Distinguished	Educator	of	the	
ACM.	In	2013,	he	received	the	ACM	SIGCSE	Award	for	Outstanding	Contribution	to	Computer	
Science	Education.	Michael	is	a	founding	member	of	‘Computing	At	School’,	a	UK	organisation	
furthering	computing	teaching	at	school	level.

CALL FOR ARTICLES

 Please recommend this publication to your librarian. For a convenient easy-
to-use library recommendation form, please visit:

 http://www.igi-global.com/IJPOP

Ideas for Special Theme Issues may be submitted to the Editor-in-Chief.

 All inquiries regarding IJPOP should be directed to the attention of:
 Steve Goschnick, Editor-in-Chief • IJPOP@igi-global.com

 All manuscript submissions to IJPOP should be sent through the online submission system:
 http://www.igi-global.com/authorseditors/titlesubmission/newproject.aspx

 COVERAGE/MAJOR TOPICS:
• Activity theory and modeling
• Agent meta-models, mental models
• Alert filter and notification software, automated task

assistance
• Augmented reality, augmented interaction
• Automating personal ontologies, personalised content

generation
• Client-side conceptual modeling
• Computational models from psychology
• Context-aware systems, location-aware computing, ubiq-

uitous computing
• Cultural probes, self-ethnography
• End-user composition, end-user multi-agent systems
• Game development support tools
• Game mods, game engines, open game engines
• Home network applications
• Human-centered software development
• Interface generators, XML-based UI notation generators
• Interface metaphors
• Life logs, life blogs, feed aggregators
• Mashups, mashup tools, cloud mashups
• Model-driven design, didactic models, model-based design

and implementation
• New generation visual programming
• People-Oriented Programming (POP)
• People-Oriented Programming case studies
• Personal interaction styles, touch and gestures
• Personal ontologies and taxonomies

 MISSION:
 The primary mission of the International Journal of People-Oriented Programming (IJPOP) is to
be instrumental in the improvement and development of the people-oriented programming, appealing
to both academics and practitioners. It also educates a wider audience discussing the conceptualiza-
tion, design, programming, configuration and orchestration of self-fashioned tools and products that
ultimately suit the user’s own unique needs and aspirations. The journal publishes original material of
high quality concerned with the theory, concepts, techniques, methodologies and the tools that service
a market-of-one—the empowered user.

ISSN 2156-1796
eISSN 2156-1788

Published semi-annual

An offi cial publication of the Information Resources Management Association

 International Journal of People-Oriented
Programming

• Personalisation, individu-
alisation, market of one

• Personalized learning
• Personas and actors
• Real-time narrative gen-

eration engines
• Role-based modeling
• Service science for

individuals
• Situated computation,

social proximity
applications

• Smart-phone mashups, home network mashups, home
media mashups

• Software analysis & design, software process modeling
• Software component selection
• Speech and natural language interfaces
• Storyboarding, scenarios, picture scenarios
• Task flow diagrams, Task-based design
• Task models, task analysis, cognitive task models, concur-

rent task modeling
• Use case models, user interface XML notations
• User interface tools, XML-based UI notations
• User modelling, end user programming, end user development
• User-centered design, usage-centered design
• Wearable Computing
• Wearable computing, bodyware
• Web-service orchestration, web-service co-ordination

