Citation for published version


DOI

Link to record in KAR

https://kar.kent.ac.uk/56658/

Document Version

Other

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Introduction

It has been shown that transcranial direct current stimulation (tDCS) can improve many aspects of cognition, including decision making and learning⁴. However, it has not been studied whether the brain is capable of adapting itself to perform at least equally well without tDCS, after initially learning the task under the influence of tDCS. A probabilistic learning task was used to investigate this question.

Methods

Participants took part in three groups of Active-Active (n = 17), Active-Sham (n = 16) and Sham-Sham (n = 15) transcranial direct current stimulation (tDCS) (Figure 1). Each participant attended two experimental sessions. In both sessions participants were asked to perform a probabilistic decision making task. In this task participants adapted to changes in reward contingencies. Participants were presented with two options with one of them being designated as the better choice, leading to higher probability of rewarding than punishing feedback (Figure 2). Participants were asked to maximise their gain by choosing the better option. The contingencies changed over the course of the trials. Consequently, participants had to adjust to the changes in the environment. Participants received 15 minutes or 16 seconds of anodal tDCS over the left dorsolateral prefrontal cortex for Active and Sham stimulation conditions, respectively.

Results

Independent sample t-tests showed no significant differences between performance in the 1st session of different groups². More importantly, comparison of performance in the sessions of different groups showed a significant difference for the Active-Sham condition, showing an impairment in Session 2 (Figure 3). Further analysis showed that participants in the 2nd session of Active-Sham group changed their decision more often³ (Figure 4).

Conclusions

• This result shows that learning under the influence of TES leads to adaptation, which induces changes that might not be efficient without tDCS in a later session.
• In more general terms, this result indicates that learning a task under the influence of tDCS leads to creation of a model which may no longer be valid without tDCS.

Acknowledgement

I would like to thank Fadi Ifram for data collection.

References