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Abstract

Past and recent events have proved that critical infrastructure are vulnerable to

natural catastrophes, unintentional accidents and terrorist attacks. Protecting

these systems is critical to avoid loss of life and to guard against economical

upheaval. A systematic approach to plan security investments is paramount to

guarantee that limited protection resources are utilized in the most efficient man-

ner. This thesis provides a detailed review of the optimization models that have

been introduced in the past to identify vulnerabilities and protection plans for

critical infrastructure. The main objective of this thesis is to study new and

more realistic models to protect transportation infrastructure such as railway and

road systems against man made and natural disruptions. Solution algorithms are

devised to efficiently solve the complex formulations proposed. Finally, several

illustrative case studies are analysed to demonstrate how solving these models

can be used to support efficient protection decisions.
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1 Introduction

The European Program for Critical Infrastructure Protection (EPCIP), defines

critical infrastructure systems as that ”which are of the highest importance for the

Community and which if disrupted or destroyed would affect two or more member

states” (EU COM, 2006). Nowadays, the well-being of society relies heavily on the

proper functioning of infrastructure such as transportation, telecommunication,

energy supply, and information. Planning and protecting infrastructure systems

is a complex task, especially because of their large sizes and interdependencies.

Even small, random disruptions can severely affect the normal functioning of one

or more infrastructure systems. Intelligent attacks or large natural catastrophes

can have even more dramatic consequences in terms of economic damage and loss

of life. Examples of such events include the 1995 Paris metro bombing, the 2004

Madrid train bombing, the 2005 London underground suicide attacks, the 2010

Moscow bombing, and the 2016 Brussels attacks. Most recently, severe floods

hit some western regions of the UK and forced Network Rail to pay £12.5M for

disrupted services and a further £15M to repair the rail network (Wintour and

Topham, 2014). It is therefore paramount to protect infrastructure systems in the

most efficient way so as to guarantee continuity in service provision and safety for

users in the event of disruption.

A critical aspect in planning infrastructure protection is the scarce availability of

protection resources. Protecting all the components of an infrastructure system to

desired safety levels is often cost prohibitive. For example, the Kent (UK) railway

system serves 179 stations and has 1094 miles of tracks. Protecting every station

and all the tracks is economically impossible.
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1.1 Research contributions

In this thesis my aim is to contribute to research on transportation systems pro-

tection planning. Novel optimization models are formulated and solved that in-

corporate characteristics and issues that have been considered or neglected in the

literature. Specifically, my primary research contribution includes:

− A model is introduced to protect a railway network system. The aim is to

identify the set of tracks and stations to protect so that the impact of a

worst case disruption is minimised. Impact is estimated in terms of post-

disruption unserved demand. The model is tested on an Italian railroad

network instance.

− A second model is studied that extends the previous one by adding a tem-

poral component. Considering the possibility that budget is allocated over

time renders the model more realistic but more complex as well. Two dif-

ferent solution approaches are proposed and tested on the Kent railway

network.

− A further extension of the first model is also presented which tries to capture

user-behaviour in a post-disruption state. Specifically, it is assumed that the

demand for railway travel changes with the extent of post-disruption delays.

A heuristic is developed to solve the problem efficiently and tested on the

London tube network.

− The final model proposed switches from focusing on worst-case to random

2



disruption scenarios and deals with protecting a road network against flood-

ing. A heuristic is devised to efficiently solve the problem. Key insights from

a case study of the Hertfordshire A-road network are made.

1.2 Outline

The remainder of this thesis is organized as follows. Section 2 provides a detailed

review of the literature related to this current work. In Section 3, I discuss the

various methodologies utilized in model development and solution methods. Sec-

tions 4, 5, and 6 describe three novel models for protecting railway infrastructure

against worst-case disruptions. In Section 7, I introduce a model for the pro-

tection of road networks against flooding. Finally, in Section 8, I provide some

conclusions and recommendations for future research.

3



2 Literature review

The issue of protecting critical infrastructure systems can be investigated from dif-

ferent angles. Generally, the identification of sound protection strategies requires

a mixed approach which includes both qualitative and quantitative aspects. In

this thesis, the main focus is on quantitative research and, more specifically, on

optimization models. Figures 1 and 2 show the number of documents found by

Scopus c©database using interdiction models and fortification models as keywords,

respectively. The graphs indicate that the focus on disruption and protection

models grew significantly over the last decades.

Figure 1: Number of papers on interdictions

In the optimization area, papers can be classified in different ways, for exam-

ple by grouping them according to the methodology, underlying model, or type

4



Figure 2: Number of papers on fortifications

of infrastructure.

The remainder of this chapter presents a review of the literature on optimization

models for protection that has been relevant to this thesis. The main catego-

rization has been done in terms of the methodology used to model the problem.

Figure 3 outlines how research papers have been classified for the literature review.

2.1 Protection

In this category we consider all the papers that, given a system already in place,

study the problem of identifying its vulnerabilities and how a protection budget

should be invested to minimize the impact of disruptions.

5



Figure 3: Classification used in the literature review

2.1.1 Worst-case scenario models

Worst-case scenario models assume that the disruption is perpetrated by an in-

telligent actor who knows the actions to take so as to inflict the worst damage

possible to the system. These models are particularly suitable to plan against

terrorist and deliberate attacks. Nonetheless, decision makers often need to have

a risk-averse approach against natural events as well to safeguard assets and sys-

tem’s users. As a consequence, these models can be used to drive decisions also

when planning protection against random natural disasters.

Interdiction models Interdiction models study the problem from an intelligent

attacker point of view. These models simulate the game between two actors: the

attacker and the system user. The attacker aims at inflicting the highest possible

damage, the system user aims at minimizing the operational cost or maximizing

the system’s value. Interdiction models are generally bi-level (each level represents

6



an actor). By solving an interdiction model one can identify the critical assets of a

system, i.e. the assets that, when disrupted have the greatest impact on the ability

of the system to perform its functions. Several papers have dealt with interdiction

problems on flow-based networks. The seminal work by Wollmer (1964) proposed

an algorithm to identify the n arcs that, when removed, reduce the max-flow the

most. Later on, Wood (1993) proposed an integer programming formulation of

the problem, where the interdictor is subject to a budget constraint. They formu-

lated further extensions with partial arc interdiction, multiple sources and sinks,

undirected networks, multiple resources and multiple commodities. Finally, they

introduced valid inequalities to tighten the formulation. Different solution ap-

proaches to this problem were studied by Royset and Wood (2007). They solved

the problem with a Lagrangian relaxation-based algorithm and with a customized

branch and bound with partial path enumeration algorithm. Cormican et al.

(1998) further extended the interdiction problem on max-flow network by consid-

ering the outcome of an interdiction uncertain. They proposed lower and upper

bounds used in a sequential approximation solution algorithm. They also studied

other cases where arc capacities are uncertain or can assume a discrete number

of realizations, and multiple interdictions are attempted. Lim and Smith (2007)

applied the interdiction model to multi-commodity flow networks. They consid-

ered both discrete interdiction (i.e., an arc is either operational or disrupted) and

continuous (i.e., an arc capacity is reduced according to the amount of resources

used to disrupt the arc). They introduced an exact partitioning algorithm and

an approximate heuristic to solve the continuous case. Myung and Kim (2004),

Murray et al. (2007), and Matisziw and Murray (2009) also studied the same prob-

lem, providing a different formulation, different solution approaches and insights

7



obtained from different case studies. Bell et al. (2008) applied the interdiction

model to study a road network vulnerability problem. They proposed a solution

algorithm based on the successive averages method and a case study on central

London road network. Altner et al. (2010) studied the model introduced by Wood

(1993) and proposed two classes of valid inequalities. Zenklusen (2010) introduced

an efficient algorithm to solve the interdiction problem in planar graphs. They

studied the multi-source version of the problem and proposed an extension for

single-source networks. Rad and Kakhki (2013) added a temporal component to

the problem. They assumed that each arc is characterized by its traversal time

and the disruption occurs in a time interval. They proposed a Benders’ decompo-

sition algorithm and discussed a second algorithm based on the concept of most

vital arcs.

Shifting the focus to distance based networks, Fulkerson and Harding (1977)

were the first that studied the impact of partial interdictions on arcs, to max-

imise the shortest path between two nodes. Other variations of shortest path

interdiction problem include Golden (1978), Corely and David (1982), and Ball

et al. (1989). Israeli and Wood (2002) proposed a bi-level formulation for the

interdiction problem on shortest path networks. They proposed several solution

approaches based on Benders’ and covering decompositions, and Super Valid In-

equalities (SVI). An extension of this work was introduced by Bayrak and Bailey

(2008) who assumed that attacker and system user have different knowledge of

the arcs’ costs and delays. They proposed a solution methodology based on du-

alization and linearization of the problem. Yates and Sanjeevi (2013) studied the

shortest path interdiction problem from a different perspective, where the attacker

8



aims to travel to a specific target, without being detected. They considered two

different types of sensors for detection and provided a case study based on Cali-

fornia highway sub-network.

Focusing on the supply chain context, Church et al. (2004) introduced the

r -interdiction problem for the p-median and max-cover problems. The problem

aims at finding the r facilities that, when removed, would maximise the service’s

cost (p-median) or minimise demand coverage (max-cover). After this paper, the

attention on interdiction models for supply chain systems increased significantly.

Losada et al. (2012a) studied a problem where the outcome of a disruptions is

uncertain. The authors assumed that the probability that a facility is disabled is

dependent on the intensity of the disruption. Different deterministic reformula-

tions of the problem are proposed to solve problems of realistic size to optimality.

Aksen et al. (2014) extended the r -interdiction median problem by considering

capacitated facilities and demand outsourcing. The capacity of each facility is

dependent on the interdiction resources used to disrupt the facility itself. The

excess of the demand is outsourced to an external supplier. Two solution algo-

rithms are proposed: a progressive grid search which is targeted for small-medium

size instances and a more efficient multi-start simplex search. Zhang et al. (2015)

studied the interdiction problem when facilities have limited capacity, the disrup-

tion is partial, and customers can be served by multiple facilities. They developed

a specific heuristic to solve the bi-level problem.
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Protection models Protection or fortification models address the problem of

identifying the optimal protection plans (i.e., the optimal allocation of protec-

tion resources) so that the consequences of worst case disruptions are minimised.

Church and Scaparra (2007) proposed first the fortification model for the p-median

problem. The same problem is formulated as a bilevel mixed-integer model in

Scaparra and Church (2008a). Aksen et al. (2010) extended previous works by

introducing a budget constraint for the protection. They further assumed that

the capacity of a facility can be increased at a fixed known cost. The problem is

solved with an implicit enumeration algorithm implemented on a binary tree. Lib-

eratore et al. (2011) extended the p-median fortification problem by considering

the number of disrupted facilities uncertain. They proposed a max-covering based

formulation and an efficient solution approach using upper and lower bounds. A

heuristic, based on heuristic concentration-type rules, is also presented. Liberatore

et al. (2012) studied the protection of a p-median network subject to disruption

with ripple effect. Specifically, they used a correlation matrix which indicates the

level of disruption of each facility when a specific facility in the vicinity is targeted

for disruption. They solved the problem using an exact approach based on a three

search. Scaparra and Church (2012) introduced facility capacity constraints in the

fortification problem. An implicit enumeration algorithm is proposed to solve the

problem to optimality. Losada et al. (2012) considered the issue of recovery time

in the context of the p-median fortification problem. The problem is studied for a

number of time periods and each facility requires a recovery time to return to its

normal functioning, after an interdiction. They solved the model by using three

different decomposition methods. Aksen et al. (2013) considered the problem

where the defender must decide both the location of facilities and the allocation
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of protective resources to minimise worst case disruptions. They proposed an

exact algorithm, a tabu search heuristic and a sequential solution method. Zhu

et al. (2013) presented a fortification model focused on distributing anti-aircraft

protection resources on a supply system. Each resource has a probability to in-

tercept an attack. A target can be disrupted only if all the protective resources

assigned to that target fail to intercept the attack. They proposed a greedy search

to obtain good approximations of the optimal solutions. Aliakbarian et al. (2015)

studied the fortification problem for the p-median problem where facilities are

organized hierarchically. They implemented an exhaustive enumeration method

and three meta-heuristics to solve the problem.

Less attention has been given to fortification problems for distance-based and

flow-based networks. Cappanera and Scaparra (2011) added the fortification layer

to the shortest path interdiction problem. They proposed an implicit enumeration

algorithm and a heuristic solution for the resulting fortification problem. Alguacil

et al. (2014) proposed a model to find the optimal allocation of defensive resources

on an electric power grid subject to intelligent attacks. They solved the problem

using dualization and an implicit enumeration algorithm. Jenelius et al. (2010)

studied the protection problem for a generic infrastructure when the attacker has

an imprecise perception of the system. They showed that taking into account the

attacker’s perception leads to different protection investment plans. Sarhadi et al.

(2015) introduced a tri-level fortification formulation for rail inter-modal terminal

networks. Their model embeds a capacitated multi-commodity flow problem with

delivery times and penalty costs. To solve the model, they studied explicit and

implicit enumeration algorithms and a traffic based heuristic. Jin et al. (2015)
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developed a model to allocate protection resources optimally over an urban rail

network threatened by intentional attacks. They considered that rail stations

suffer disruptions of different levels, resulting in a decrease of their inbound and

outbound capacity. They solved the model with a nested variable neighborhood

search algorithm.

2.1.2 Stochastic models

A different approach to the study of infrastructure vulnerabilities and protections

entails abandoning the worst-case approach in favour of a stochastic approach.

Stochastic models assume that one or more variables of the problem are random.

The aim of the planner becomes, in general, to optimize an expected cost or

system value. He and Liu (2012) modelled the evolution of daily traffic when

the network is subject to disruptions. They implemented a prediction-correction

model to evaluate how the traffic flow evolves depending on drivers knowledge.

Liu et al. (2009) studied the problem of fortifying transportation links to reduce a

system’s loss when probabilistic disruptions occur. They solved the model using

an algorithm that combines an L-shaped method with Benders’ decomposition.

Fan and Liu (2010) introduced a two stage stochastic model to find the protection

plan that minimizes the expected physical and social losses following transporta-

tion network disruptions. In their model users choose the best route according

to their perception. They used the progressive hedging method to decompose

and subsequently solve the problem. Peeta et al. (2010) addressed the problem

of distributing pre-disaster resources in a shortest path based network subject

to random failures. They reformulated the objective function and obtained a

local optimum using a knapsack formulation. Qin et al. (2013) introduced a two-
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stage stochastic model to plan fortifications for a capacitated logistic problem.

They focused on minimizing the emergency inventory and transportation costs.

They proposed a solution algorithm based on disjunctive decomposition-based

branch-and-cut (D2-BAC). Du and Peeta (2014) presented a model to reduce the

response time of transportation networks by strengthening network links. The

transportation network is subject to random disasters. They also studied a two-

stage heuristic to solve the model. Faturechi and Miller-Hooks (2014) analysed

the road network resilience under probabilistic disasters. They considered a bud-

get available to implement both preparedness and response actions. To evaluate

the traffic flow, they added partial user equilibrium constraints, where only users

directly affected by a disruption are likely to change decisions. Medal et al. (2015)

proposed a two-stage stochastic problem to study the effects of disruptions on a

transportation model where facilities provide relief goods to customers. They as-

sumed that the post-hazard state of a facility is dependent on the intensity level

of the hazard and on the amount of protection resources allocated to it. They

introduced a greedy algorithm to obtain approximate solutions.

2.1.3 Robust models

When no probability assumptions can be made regarding to the parameters of a

problem, robust optimization is frequently used. It is particularly popular when

it comes to protecting against natural events. In this context, in fact, it is usually

easy to find historical data that, once combined with other problem specific data,

can be used to simulate different disruption scenarios. These models generally

aim at finding the solutions that minimise the expected cost across all scenarios.

A few more metrics have been studied and applied to model reliable infrastruc-
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tures. Huang et al. (2007) studied a max-cover model for the optimal allocation

of emergency vehicles over a transportation infrastructure. Scenarios were con-

sidered to contemplate variations in travel times and demand values. They finally

conducted a sensitivity analysis to the budget on a case-study based on the Sin-

gapore metropolitan area. Yin (2008) studied the problem of finding the optimal

allocation of tow trucks so as to allow a faster response to incident and min-

imise disruptions to motorways. They used a scenario-based approach where each

scenario is composed of a set of incidents occurring on the network. Zhang et

al. (2014) proposed a scenario based model to protect supply systems against

random disruption. They also proposed an hybrid model aimed at finding the

optimal protection strategies against both strategic and random attacks. They

finally proposed an implicit enumeration based algorithm to solve their model.

2.2 Design models

As opposed to protection models which deal with a system that is already in place,

in this category we group works that study design models to increase reliability.

More specifically, we list papers that deal with the problem of identifying a design

configuration that makes the system inherently robust to disruptions.

2.2.1 Worst-case scenario models

O’Hanley and Church (2011) developed a design model to identify facility loca-

tions so that a combination of pre-disaster and post-disaster coverage is max-

imised. They also propose two decomposition approaches based on Benders and

Super Valid Inequalities. Parvaresh et al. (2013) studied the problem of locating p

hubs in a network threatened by an intelligent attacker. They developed two solu-
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tion algorithms based on simulated annealing. Hernandez et al. (2014) proposed

a framework to design a supply chain robust to worst case disruptions. They pro-

posed a multi-objective formulation and solved the model with Multi-Objective

Evolutionary Algorithms. Finally, they displayed computational experiments run

on Swain and London datasets.

2.2.2 Stochastic models

Snyder and Daskin (2005) considered the problem of identifying inexpensive and

reliable facility locations for the uncapacitated fixed-charge location problem (UFLP).

They modelled the problem as a multi-objective problem to consider operating

and expected failure costs. They proposed a Lagrangian relaxation solution al-

gorithm and performed an analysis to evaluate the trade-off between operating

and expected costs. The same problem was studied by Cui et al. (2010), which

proposed a compact mixed integer formulation and a continuum approximation.

They also used Lagrangian relaxation for their solution approach. Li and Ouyang

(2010) further inspected reliability issues in the UFLP considering spatially corre-

lated disruptions. Berman et al. (2007) analysed the impact of centralization and

co-location on the problem of identifying facility locations robust to disruptions.

They proposed exact and heuristic approaches and provided an illustrative exam-

ple to locate hospitals in Toronto. Chen et al. (2011) studied a location problem

where facilities are under risk of probabilistic disruption. Among other costs to

minimise, they considered the expected inventory and holding costs. They devel-

oped a Lagrangian relaxation based solution algorithm. O’Hanley et al. (2013)

introduced a general approach to linearise locations problems with site-dependent

failures probability. They used a flow network structure to compute compound

15



probabilities. Li et al. (2013a) proposed a facility location model to design infras-

tructure systems which are reliable to inter-dependent disruptions. They intro-

duced the concept of supporting stations to simulate spatially-correlated disrup-

tions. Facilities are connected to at least one station and stations are subject to

independent disruptions. A facility is disrupted if all the stations connected to it

are disrupted. Rawls and Turnquist (2010) studied emergency response planning

for hurricanes and other natural disasters. They formulated a model to determine

the quantity, type, and location of supplies to be pre-positioned, while taking into

account the availability of transportation links following a disruption event. Li et

al. (2013b) proposed reliable formulations for the p-median and the fixed-charge

location problems. They incorporated facility failure probabilities and the forti-

fication concept, along with a budget constraint. They solved the model using a

solution algorithm based on Lagrangian relaxation.

2.2.3 Robust models

An alternative way for increasing reliability is to design systems which are inher-

ently robust to disruption. Snyder and Daskin (2006) introduced the p-robustness

metric to find the network design which minimise the overall expected cost and at

the same time is robust enough for each disruption scenario. Chen et al. (2006)

proposed another metric, called α-reliability, aimed at minimising the expected

regret by considering a subset of scenarios endogenously chosen according to their

probability of occurrence. Peng et al. (2011) applied the p-robustness metric to

design supply chain networks which are robust to disruption scenarios. They

solved the model using a hybrid meta-heuristic combining genetic, local improve-

ment and shortest augmenting path algorithms. Rawls and Turnquist (2012)
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extended Rawls and Turnquist (2010) by incorporating a regret-based reliability

metric and illustrate their approach using a case study hurricanes threatening the

North Carolina area. They developed an L-shaped method to solve efficiently large

problems. Baghalian et al. (2013) introduced a robust model to design a supply

system where demand is uncertain and manufacturers are subject to disruptions.

In order to solve the model they obtained a transformation and linearization of

the model. They discussed some practical results on a agri-food industry case

study.

2.3 Other

In this section I review works that, despite dealing with vulnerability and protec-

tion evaluation for critical infrastructure, do not clearly fit in any of the previous

categories. Chang (2003) developed a methodology to assess the performances of

a transportation system in the aftermath of a disaster. They used an accessibility

metric estimated in terms of the ratio between the pre and post-disaster min-

imum distances. They tested their methodology on the 1995 Kobe earthquake

in Japan and on a hypothetical earthquake striking the Seattle area. Sohn et

al. (2003) studied an approach to identify a retrofit priority for the links of a

transport network. They consider disrupting each link individually and solve a

multi-commodity flow problem to identify the damage in terms of demand loss

and transport cost. Scott et al. (2006) introduced a new index to identify the

most critical links in a transportation network. They proposed a global approach

to overcome the limits of the popular volume/capacity criteria, which evaluates

each element locally. Their index is computed as the difference between the trans-

portation cost when a link is non operational and the base case cost (all links are
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functioning). Sun et al. (2015) proposed a model to evaluate vulnerabilities of a

urban rail network. They introduced an algorithm that ranks the nodes according

to the network topological efficiency (the mean of the reciprocal of the shortest

paths) and passenger flow. The algorithm is tested on the Shanghai metro. The

results highlight that the network is quite vulnerable to attacks to stations with

larger node degree.

2.4 Conclusions

This brief literature review highlights several research opportunities. The great

majority of works reviewed, tackle generic problems (p-median, max-flow, shortest

path etc.) based on generic assumptions (binary interdictions and protections).

This motivated my idea of moving from a generic critical infrastructure protection

context to a more specific railway and road protection context. As a consequence,

models presented in this thesis incorporate problem-specific issues to enhance their

applicability to realistic problems.

Another interesting gap in the literature can be found by considering that post-

disruption user-behaviour is often represented in a simplistic way. In Chapter 6 a

way to address this issue is proposed, nonetheless more research opportunities can

be pursued by linking disruption literature with non/disruption literature (e.g.,

revenue management).

Although a few works focusing on multiple disruptions can be found, the tem-

poral component has been generally neglected. This is particularly true when

we focus on dynamic aspects from the system planner perspective. For example,

concepts such as defences deterioration over time and protection budget spread

over a planning horizon have been barely inspected.
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Furthermore, in network-based fortification problems it is always assumed that

the system planner decides on single assets (arc/node) protections. This decision

flexibility can be unrealistic in certain contexts such as flooding protection where

the most effective defence measures (dikes, river diversion etc.) are not imple-

mented along the specific asset and generally have impact on multiple assets.

One of the challenges of this research area is the trade off between complexity

and applicability of these models. Adding realistic features to these optimization

models might increase their complexity up to the point where they can no longer

be applied to problem instances of realistic size. Conversely, over-simplifying the

models can lead to inaccurate or sub-optimal results. An example of this trade off

is represented by most of the works grouped as other. These papers study the pro-

tection problem using an algorithmic approach. They generally evaluate and rank

independently and sequentially each asset of the system. On the one hand, this

can obviously lead to suboptimal solutions because interactions between assets

are not considered. On the other hand, the approaches introduced do not share

the computational issues typical of comprehensive optimization models, therefore

they are easily applicable to large real life problems.

Finally, from the literature review it is obvious that significant efforts have been

done to develop efficient solution approaches. A wide and heterogeneous range

of exact and approximate algorithms have been studied. Nonetheless, the likely

increase in the models’ complexity will require a continuous refinement of existing

methodologies and the development of new solution techniques.

To summarize and conclude, I think that the literature reviewed provides a solid

methodological ground that should be used by future researchers to target much

more realistic problems.
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3 Methodology

The common idea behind the models proposed in this thesis is to find the allo-

cation of protective resources which minimizes the consequence of disruptions on

an infrastructure system. This kind of problem can be effectively studied using

mathematical programming, where the purpose is to optimise a function subject

to constraints. Therefore, mathematical programming is the broad methodology

used in this thesis to implement a systematic approach to the problem of protect-

ing critical infrastructures. Specifically, we use two mathematical programming

frameworks: multi-level and scenario-based models.

3.1 Multi-level models

Multi-level formulations have been widely used in the critical infrastructure pro-

tection context. Much like hypergame analysis (Bennett, 1977), these models

simulate a game between two intelligent actors that make their choices to max-

imise their opposite benefits, while observing each others’ strategies. Due to their

structure, hypergames can be generally applied to small, simple problems. On

the other hand, multi-level models studied in this thesis can be used on realis-

tic size problems. As hypergame problems, multi-level models have been firstly

applied to military and anti-terrorism context. Using a framework where two ac-

tors have diametrically opposed aims is indeed particularly helpful to study such

problems. Nonetheless, recent literature applied this approach to the problem

of protection of critical infrastructure against generic threats. The reason why

a framework where two actors share the objective function with opposite aims

can also be applied to study non man-made disruptions lays in the definition of
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critical infrastructure. As explained in the introduction chapter, well-being of

people is highly dependent on how well such critical systems work. Consequently,

risk-adverse approaches are frequent when protecting against both intelligent and

random disruptions.

Furthermore, planning protection strategies for critical infrastructure is obviously

a complex task which cannot be summarized by a single optimization model. A

range of methods and structuring issues (Rosenhead and Mingers, 2001) must be

considered. In this context, solving worst-case scenario models should be seen

as one of those methods which provide information that can be used to support

decision making. Brown et al. (2006) provided a detailed analysis on how these

models are used for critical infrastructure defence.

Two frameworks have been generally used in the literature: attacker-user or in-

terdiction models and defender-attacker-user or protection models.

The attacker-user models can be formulated as follows:

max
x∈X

min
w∈W(x)

ctw. (1)

Variables w are decision variables used to estimate the system’s cost. Vari-

ables x represent interdiction strategies. Problem (1) models a game between two

actors with opposite aims. The user level aims at finding the system’s configura-

tion that minimizes the overall costs. On the other hand, the attacker seeks to

identify the most disruptive interdiction strategy. Let (x̂, ŵ) be the optimal solu-

tion of problem (1), interdiction strategy x̂ represents the disruption scenario that

generates the highest possible damage in terms of cost increment. The solution

sheds light on what are the vulnerabilities of the infrastructure.
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If the aim is to optimally distribute protection resources among the assets of the

system, x̂ is generally different from the optimal protection plan (Church and

Scaparra, 2007). To find the best protection strategy a further level needs to

be added to the interdiction problem so as to explicitly model the allocation of

protection resources. These models are called defender-attacker-user models and

can be formulated as follows:

min
y∈Y

max
x∈X(y)

min
w∈W(x)

ctw. (2)

Variables y identify the protection strategies. Problem (2) introduces a third

actor, the defender, whose aim is to distribute protection resources among the

system’s assets so that the impact of worst-case disruptions is minimised.

3.2 Scenario-based models

When dealing with natural events, worst-case models can be overcautious by

leading to protection plans aimed at very unlikely events. Generally, risk analysis

for events such as earthquakes, flooding, tornadoes etc., highly relies on past

experience. Consequently, it can be convenient to incorporate the risk in the

problem as a set of disruption scenarios. Scenario-based models (also referred to

as robust models) can be formulated as follows:

min
y∈Y, w∈W

∑
s∈S

πsc
t
s(y)w. (3)

S is a set of disruption scenarios and each scenario s occurs with probability

πs. Costs cs are now scenario-indexed to consider the effect that scenario s has

on the system’s cost. The aim of the model is to find the optimal allocation of
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protection resources so that the expected system’s cost is minimised.

A popular metric often used for this kind of problems was introduced by Snyder

and Daskin (2006). Their aim was to obtain solutions that minimise the expected

system’s cost and at the same time bound the relative regret of each scenario.

The metric is called p-robustness and is implemented by adding the following

constraints:

ct
s(y)w ≤ (1 + p)Z∗s ∀s ∈ S. (4)

where Z∗s is the optimal value of problem (3) when only scenario s is considered.

The relative regret for solution w is defined as follows:

ct
s(y)w − Z∗s

Z∗s
. (5)

Therefore, constraints (4) bound the regret of each scenario to be less or equal

than p.

Regret is a popular metric used to drive decisions when some parameters of a

problem are uncertain. Several other regret-based metrics have been studied in

the past. Ghosh and McLafferty (1982) investigated a scenario-based location

problem where they minimize the sum of the regrets or the sum of the square

regrets. Daskin et al. (1997) and Chen et al. (2006) proposed the α-Reliable

Minimax regret and the α-reliable mean-excess regret metrics respectively. Both

these metrics are implemented to minimize the expected regret of a subset of

scenarios that are selected based on their probabilities.
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3.3 Solution approaches

Solving multi-level models can be particularly challenging. Algorithms like branch

and cut cannot be applied directly due to the nested structure of these models.

Two approaches can be used:

− The structure of the problem can be modified so that general purpose algo-

rithms can be applied,

− Ad-hoc exact methods or approximate heuristics are devised.

Here a brief discussion of the approaches that have been used to solve the

models proposed in this dissertation is provided. To better explain the method-

ologies I will introduce the shortest path interdiction problem (Israeli and Wood,

2002) and discuss how those methodologies can be applied to this problem.

The network we consider is connected (i.e., there is at least one path connecting

origin to destination). The notation used for the formulation is as follows:

− i ∈ N is the index for the nodes,

− k ∈ A is the index for the arcs,

− FS(i) is the forward star of node i,

− RS(i) is the reverse star of node i,

− o ∈ N is the origin node,

− d ∈ N is the destination node,

− ck is the nominal length of arc k,
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− dk is the delay (<∞) when k is interdicted,

− P is the maximum number of disrupted arcs,

− wk = 1 if arc k is in the shortest path; 0 otherwise,

− xk = 1 if arc k is disrupted; 0 otherwise.

− Ŵ is a set of paths

The shortest path interdiction problem is formulated as follows:

[SPI] Z = max
x

min
w

∑
k∈A

(ck + xkdk)wk (6)

s. t.
∑

k∈RS(i)

wk −
∑

k∈FS(i)

wk =


1 if i = o

0 ∀i ∈ N \ {o, d}

−1 if i = d

(7)

∑
k∈A

xk ≤ P (8)

wk ≥ 0 ∀k ∈ A (9)

xk ∈ {0, 1} ∀k ∈ A (10)

The aim of the interdictor is to disrupt at most P arcs so that the shortest path

length (6) between o and d is maximised. Constraints (7) are the flow balance

constraints. Constraint (8) imposes that the maximum number of disrupted arcs
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is P . Finally, constraints (9) and (10) are the domain restrictions for the variables

w and x.

3.3.1 Decomposition approaches

Both decomposition approaches discussed in this thesis can be put into the more

generic context of Combinatorial Benders’ cuts (Codato and Fischetti, 2006).

These cuts have been introduced to efficiently solve Mixed-Integer Programs with

constraints using big-M coefficients. The approached used is to decompose the

program into a master (with binary only variables x) and a slave (with contin-

uous variables w). Details of these approach are beyond the scope of this work,

nonetheless it is interesting to briefly summarize the main concept underlying this

methodology so that the reader can appreciate the similarities with the decom-

position approaches introduced for our models. An iterative algorithm based on

Combinatorial Benders’ cuts firstly solves the master problem obtaining an opti-

mal solution x̂. If the slave model is feasible with regard to x̂, then it can be solved

to obtain ŵ and (x̂, ŵ) is an optimal solution for the original problem. Conversely,

if the slave model is infeasible then the algorithm adds a cut to eliminate solution

x̂ from the master problem.

Benders’ decomposition Benders decomposition (Benders, 1962) is a tech-

nique that has been devised to solve large linear programming problems. Same

technique was subsequently generalized to tackle non linear problems (Geoffrion,

1972). The idea behind this approach is to decompose a large problem by iden-

tifying a partition of the variables and invoking the dual representation of the

sub-problems generated.
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It can be also successfully used for multi-level problems such as SPI. In this thesis

the decomposition approach is slightly different from the generic one in that we

do not consider dual representations of the sub-problems because of the binary

requirements of some variables. Other than that, the algorithms introduced are

quite standard and focus on solving decomposed problems iteratively until an op-

timal solution is found. Focusing on the Shortest Path Interdiction problem, the

model is decomposed as follows:

[ INNER(x̂) ] Zi = min
w

∑
k∈A

(ck + x̂kdk)wk (11)

(7), (9)

[ MASTER(Ŵ ) ] Zm = max
x

z (12)

z ≤
∑
k∈A

(ckŵk + xkdkŵk) ∀ ŵ ∈ Ŵ (13)

(8), (10)

The decomposition algorithm is summarized in figure 4:

INNER(x̂) finds the shortest path given an interdiction strategy x̂. The solu-
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Algorithm 1 Benders decomposition algorithm

Ŵ ← ∅; Zinf = −∞;Zsup =∞; x̂← 0; xbest ← 0
while Zsup − Zinf > 0 do

Solve INNER(x̂) to find Zi and ŵ;
Ŵ = Ŵ ∪ {ŵ};
if Zinf < Zi then
Zinf = Zi and xbest ← x̂;

end if
if Zsup − Zinf < 0 then

goto END;
end if
Solve MASTER(Ŵ ) to find Zm and x̂;
Zsup = Zm;

end while
END return (xbest, Zinf );

Figure 4: Benders decomposition algorithm.

tions is a lower bound on the interdiction problem. On the contrary, MASTER(Ŵ )

is the interdiction problem applied to a subset of paths identified by set Ŵ .

Its solution is an upper bound for SPI. The algorithm (4) solves iteratively the

two problems, updating the set of discovered paths and the bounds. The proce-

dures converges to the optimal solution when the lower and upper bound become

equal. Examples of papers that implemented Benders’ decomposition solution ap-

proaches are Israeli and Wood (2002), Losada et al. (2012), and Rad and Kakhki

(2013).

Super Valid Inequalities (SVIs) Another popular decomposition approach

for multi-level models is based on the use of super-valid inequalities. A super-valid

inequality is a cut that eliminates the incumbent solution and may eliminate other

feasible solutions as well. Nonetheless, this cut does not eliminate any optimal
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solution unless an optimum has already been found.

A SVI for the SPI problem can be devised by noticing that an optimal interdiction

must include at least one arc belonging to the shortest path. This observation

can be expressed mathematically as the following inequality:

SVI(ŵ) :
∑
k∈A

ŵkxk ≥ 1. (14)

Proposition. SV I(ŵ) is supervalid.

Proof. : if solution (x̂, ŵ) is not optimal, (14) will yield a new interdiction strat-

egy x̂′ 6= x̂. As a consequence a new shortest path ŵ′ is generated. The inequality

eliminates the incumbent solution, in fact (x̂, ŵ) 6= (x̂′, ŵ′). Furthermore, if the

incumbent solution is optimal, the inequality is super-valid by definition. This

proves, therefore, that (14) is super-valid.

For this approach, the problem is again decomposed into an inner and master

problem. The inner problem is the same as the one introduced earlier. The master

problem is a feasibility seeking problem, with an empty objective function and is

constrained by (8) and (10).

The solution algorithm using the SVIs is shown in figure 5.

At each step, the algorithm solves INNER(x̂) and adds the correspondent SVI

to the MASTER sub-problem. The procedure stops when the MASTER becomes

unfeasible (i.e. there are not enough interdiction resources to thwart all the short-

est paths identified in previous iterations). Examples of papers that implemented

SVI based solution approaches are Israeli and Wood (2002), O’Hanley and Church

(2011), and Losada et al. (2012).
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Algorithm 2 SVIs decomposition algorithm

Zopt = −∞; x̂← 0; xbest ← 0
while MASTER is feasible do

Solve INNER(x̂) to find Zi and ŵ;
add SVI(ŵ) to MASTER problem
if Zopt < Zi then
Zopt = Zi and xbest ← x̂;

end if
end while
END return (xbest, Zopt);

Figure 5: SVIs decomposition algorithm.

3.3.2 Greedy heuristic

Sometimes the structure and the complexity of a problem makes almost impossi-

ble to implement exact algorithms. Often it is impossible to find the optimal value

because of excessively long computing time or memory requirement impossible to

meet. Consequently, non-exact solution approaches sometimes are necessary. A

greedy algorithm is a basic heuristic which builds the solution by repeatedly mak-

ing choices that are locally optimal. Generally these algorithms are not precise

enough and need to be complemented with other more extensive search proce-

dures.

Given a vector x, let us define xk as follows:

xkj =

 xj if j 6= k

1 if j = k
(15)

In Figure 6 the greedy approach is applied to the shortest path interdiction

problem.
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Algorithm 3 Greedy procedure

x← 0; gf ← 0;
for disr = 0; disr < P; disr++ do

for each k ∈ A do
Solve INNER(xk) to find Zi;
gfk = Zi

end for
Select k̂ such that gfk̂ ≥ gfk ∀k ∈ A;
xk̂ = 1;

end for
Solve INNER(x) to find Zi;
Zbest = Zi;
END return (x, Zbest);

Figure 6: Greedy procedure.

Specifically, the greedy procedure always adds to the solution the arc whose

disruption will cause the highest increase in the shortest path length.

3.3.3 Greedy Randomized Adaptive Search Procedure (GRASP)

Here, I discuss a meta-heuristic known as GRASP, which proved to be efficient

when applied to some protection problems proposed in this thesis.

GRASP was introduced by Feo and Resende (1995) and provides a more flexible

and sophisticated approach compared with a pure greedy algorithm. The idea

is to use a greedy metric not to select an element to add to the solution but to

identify a set of candidates, called restricted candidate list (RCL). The element

to add to the solution is chosen randomly from this list. Because of its random

nature, the algorithm is iterated for a fixed number of steps so that a larger space

of solutions is investigated (Figure 7). Finally, a local search is performed to

improve the best solution found.
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Algorithm 4 GRASP procedure

Zbest = −∞; xbest ← 0
for iter = 0; iter < MAX ITER; iter++ do

x̂← 0;
for disr = 0; disr < P; disr++ do

RCL = buildRCL();
arc k∗ is selected randomly from RCL;
x̂k∗ = 1;

end for
Solve INNER(x̂) to find Zi;
if Zi > Zbest then
Zbest = Zi and xbest ← x̂;

end if
end for
(xbest, Zbest) = localSearch();
END return (xbest, Zbest);

Figure 7: GRASP procedure.

In figure 7 there is an example of GRASP applied to the SPI problem.

The RCL is built using a parameter α which is initialized to a value smaller

than 1 (for α = 1 GRASP becomes a pure greedy approach, α = 0 a random

approach). Different types of local search procedures can be implemented, from

single arc swap to more sophisticated searches based on the network topology.

3.3.4 Other solution approaches

To provide a better understanding of the solution algorithms available to solve

multi-level models, here I list some papers where solution approaches different

from the ones previously introduced have been implemented. Scaparra and Church

(2008a) and Cappanera and Scaparra (2011) developed implicit enumeration algo-

rithms to solve two and tri-level models. Losada et al. (2012a) solved their stochas-
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Algorithm 5 buildRCL procedure

gf ← 0 and gfmax = −∞;
for each k ∈ A do

Solve INNER(x̂k) to find Zi;
gfk = Zi;
if gfk > gfmax then
gfmax = gfk;

end if
end for
add to RCL all arcs k such that gfk ≥ αgfmax;
END return RCL;

Figure 8: Build RCL procedure.

tic interdiction median problem by reformulating into a single-level deterministic

model. Lim and Smith (2007) proposed a partitioning algorithm. Aliakbarian et

al. (2015) studied a Simulated Annealing (SA), a Variable Depth Neighborhood

Search (VDNS) and a combination of SA and VDNS to solve their bi-level model.

Liberatore et al. (2012) reformulated their tri-level protection model as a single

level model by using dualization. Aksen and Aras (2012) implemented a Tabu

search heuristic to solve their model.
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4 Optimizing investment decisions for railway

systems protection

This chapter presents a mathematical model for identifying the optimal allocation

of protective resources among the components of a railway network. The aim is

to minimize the impact on passenger flow of worst-case disruptions which might

affect both railway stations and tracks. The proposed model is tested on an

Italian railway system network to demonstrate how the model results can be used

to inform policy making and protection investment decisions.

In light of numerous recent terrorist attacks to transportation systems, the

issue of protecting critical transportation infrastructures has become a necessity.

Railways, in particular, have often been the target of terrorist activity. Exam-

ples include the 1995 Paris metro bombing, the 2004 Madrid train bombing, the

2005 London underground suicide attacks, and the 2010 Moscow bombing. These

events have demonstrated that rail systems are a crucial yet sensitive component

of a nation’s infrastructure and that disruptions in railway system services can

have a significant adverse impact not only on the economy but also on public

health and safety.

In some countries like the US, the rail industry and the government have un-

dertaken extensive efforts to protect the movement of freight and passenger trains.

Nevertheless, rail security remains an exercise in risk mitigation, as opposed to

risk prevention, and protection efforts are mostly undermanned and underfunded

(Hartong et al., 2008). Undoubtedly, railway protection presents some inherent

difficulties, due to the specific characteristics of rail systems. First of all, rail-

ways are geographically extensive, open and easily accessible infrastructures. As
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an example, the Italian railroad comprises 16,741 kilometers of operational rail

lines, and 2,260 passenger stations. Strengthening all these assets to targeted

safety levels may require unacceptable expenditures. In addition, effective secu-

rity improvements specific to rail transport are difficult to identify and implement.

Security mechanisms used by other transportation modes (e.g., aviation passenger

screening) cannot be readily applied in the rail environment. Given these difficul-

ties, it is key that protection expenditures are invested wisely in a manner that

optimises both service efficiency and public safety.

Railway security can be improved by optimizing the allocation of protection

devices within a single asset (e.g., security cameras in a station) but also through

a cost efficient allocation of protective resources across the entire railway net-

work. This involves identifying the most critical network components whose loss

or temporary closure might have the greatest impact on daily service provision

and allocating protection resources among these components so as to make the

overall system as robust as possible to external disruptions.

This chapter considers a bilevel optimization model to deal with security re-

source allocation in railway systems. We model the rail system as a network of

nodes and links, where the nodes represent the stations and the links are the track

segments. A limited budget is available for increasing the system security through

the protection of nodes and or links. Different security measures can be employed,

depending upon the asset to be protected. For example, a link containing a bridge

or a tunnel can be protected through monitoring devices or structural reinforce-

ment. A station can be protected by increasing surveillance and patrolling, or

installing security cameras. Obviously, different costs are incurred for protecting

different components (e.g., protecting a high-traffic commuter station requires sig-
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nificantly more protective resources than protecting a small station or a secondary

rail track). Costs also depend on the type of security measure adopted. We assume

that a protected component becomes completely invulnerable to possible disrup-

tions. Likewise, if a failure occurs, the affected component becomes completely

inoperable and unable to provide service. These assumptions can be considered

strong but are common in the literature. In Chapter 7 we will relax both these

binary assumptions. The aim of the model is to identify a cost-efficient allocation

of the available budget so as to minimize the impact of worst-case scenario disrup-

tions to the system. We focus, in particular, on passenger traffic and measure the

disruption impact in terms of lost customer flow or demand. More specifically, we

assume that if a node or a link fails, traffic must be rerouted through alternative

paths on the network. However, detour routes may not exist or be too long from

a user point of view. In this case, passengers may resort to different transport

modes or abandon the trip altogether. The amount of customer flow which is

lost provides an indication of the disruption extent. To evaluate the worst-case

amount of disrupted flow, we use an adaptation of the flow interdiction model pro-

posed by Murray et al. (2007). A common assumption in interdiction modeling is

that there is a limit to the number of components that can be lost simultaneously.

Without loss of generality, we also assume that interdiction resources are limited

and that the amount of resources needed to disable a component varies according

to the component size and topology.

4.1 The Railway Protection Investment Model

To formulate the railway protection investment problem mathematically, we con-

sider a railway network as composed of a set of nodes N (the stations) and a
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set of arc A (the track segments). We assume that the daily traffic flow between

any two stations s and t is known and that, in case of disruption, passengers are

willing to use alternative railroad routes only if they are not significantly longer

than their normal journey time. These information can be obtained by elaborat-

ing data on historical usage and through passengers’ surveys. We call these routes

acceptable paths and we compute them in a pre-processing phase. This evaluation

is done by comparing each alternative path between an origin and a destination

node with the shortest path: all the paths whose length exceeds a given threshold

are discarded. The threshold is computed by adding a tolerance parameter to the

length of the shortest path.

The other model assumptions can be summarized as follows:

· An interdicted element is excluded from the network.

· Both arcs and nodes can be interdicted. This assumption is made to simulate

the disruptions of tunnels, bridges and stations at the same time.

· All the arcs directly linked to an interdicted node are interdicted as well.

· A protected element cannot be interdicted.

· A limited amount of interdiction resources is available.

The mathematical model uses the following notation.

Sets and Indices

N = set of nodes

A = set of arcs

s ∈ N = index used for flow sources

37



t ∈ N = index used for flow destinations

i ∈ N = index used for network nodes

j ∈ A = index used for network arcs

fst = traffic demand between s and t

Nst = set of acceptable paths that connect s and t

β ∈ Nst = index used for network paths

N(β) = set of nodes along path β

A(β) = set of arcs along path β

B = protection budget (or amount of resources available to the defender)

P = amount of resources available to the attacker

qni = estimate of the amount of resources needed to protect node i

pni = estimate of the amount of resources needed to disrupt node i

qaj = estimate of the amount of resources needed to protect arc j

paj = estimate of the amount of resources needed to disrupt arc j.

Decision variables:

Xn
i =

 1 if node i is disabled

0 otherwise;

Xa
j =

 1 if arc j is disabled

0 otherwise;

Y n
i =

 1 if node i is protected

0 otherwise;
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Y a
j =

 1 if arc j is protected

0 otherwise;

Zst =

 1 if the flow between s and t is lost

0 otherwise;

The railway protection investment model can be formulated as the following

bilevel problem:

min
Y

F (Y) (16)

s.t.
∑
i

qni Y
n
i +

∑
j

qajY
a
j ≤ B, (17)

Y n
i ∈ {0, 1} ∀i ∈ N, (18)

Y a
j ∈ {0, 1} ∀j ∈ A, (19)

where F (Y) = max
X

∑
s

∑
t

fstZst, (20)

s. t.
∑
i

pniX
n
i +

∑
j

pajX
a
j ≤ P, (21)

Xn
i ≤ 1− Y n

i ∀i ∈ N, (22)

Xa
j ≤ 1− Y a

j ∀j ∈ A, (23)

∑
i∈N(β)

Xn
i +

∑
j∈A(β)

Xa
j ≥ Zst ∀s, t, β ∈ Nst, (24)
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Xn
i ∈ {0, 1} ∀i ∈ N, (25)

Xa
j ∈ {0, 1} ∀j ∈ A, (26)

Zst ∈ {0, 1} ∀s, t ∈ N. (27)

In this leader-follower model the leader chooses the optimal strategy to min-

imize the objective function F (16), that is the amount of flow that cannot be

served after the interdiction. Constraint (17) is the budget constraint: the leader

can allocate at most q protection resources among the nodes and arcs of the net-

work. Constraints (18) and (19) are the binary restrictions on the protection

variables. The lower level program (20) − (27) is the interdiction model used

to evaluate worst-case losses. The aim of the follower is to choose the attack

strategy that maximizes the amount of flow disrupted (20). Constraint (21) is

the follower resource constraint: the attacker has at most p resources to interdict

the nodes and arcs of the network. Constraints (22) state that protected nodes

cannot be disrupted. Similarly, constraints (23) state that protected arcs cannot

be disrupted. Constraints (24) state that the flow between s and t can be con-

sidered disrupted (Zst = 1) only if all the acceptable paths between s and t are

disrupted, i.e., at least one of their nodes or arcs is interdicted. If there is at least

one acceptable path without interdicted components, the value of the variable Zst

is forced to be zero. Finally, constraints (25)− (27) are binary restrictions on the

interdiction and path variables.
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4.2 Solution methodology

Multi-level models are generally very difficult to solve. Hansen et al. (1992) proved

that even the simplest bilevel models, the ones with continuous variables on ev-

ery level, are strongly NP-hard. Several solution approaches have been studied

in the literature, including both heuristic techniques and exact methods. Exam-

ples of heuristic approaches can be found in Aksen and Aras (2013), Aksen et

al. (2013, 2014), Parvaresh et al. (2013). Exact methods can be broadly classi-

fied into reformulation, enumeration and decomposition methods (Saharidis and

Ierapetritou, 2009). Reformulation and enumeration techniques are usually only

applicable to bilevel problems with linear lower level programs. A few exceptions

to this are the reformulation of the p-median interdiction problem with fortifica-

tion (Scaparra and Church, 2008b) and the implicit enumeration algorithm used

to solve several protection-interdiction problems (Cappanera and Scaparra, 2011,

Liberatore et al., 2012). Solution methods based on dualization cannot be applied

to this problem because of the non continuous nature of the protection and in-

terdiction variables. In general, the most effective methods for tackling problems

with discrete variables in both levels are decomposition methods. These directly

exploit the decomposable structure of the model and solve a series of smaller sub-

problems to find an overall optimal solution.

We used a decomposition method based on super valid inequalities. As described

in Chapter 3, the bilevel model is split into two interlinked subproblems: an upper

level protection problem (MASTER), and a lower level interdiction subproblem

(INNER). Each protection strategy identified by the master problem is fed into

the subproblem to determine an optimal interdiction plan. Special cuts, called

supervalid inequalities (SVI), are then generated based on the solution to the in-
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terdiction problem and added to the master problem, which then computes a new

protection strategy. The process is iterated until a sufficient number of SVIs has

been added to make the protection problem unfeasible. The SVI is built on the

idea that, for a given interdiction strategy X̂, an effective protection must include

at least one disrupted element.

Formally:

SVI(X̂)
∑
i

X̂n
i Y

n
i +

∑
j

X̂a
j Y

a
j ≥ 1 (28)

[
INNER(Ŷ)

]
Z = max

X

∑
s

∑
t

fstZst (29)

s.t. Xn
i ≤ 1− Ŷ n

i ∀i ∈ N, (30)

Xa
j ≤ 1− Ŷ a

j ∀j ∈ A, (31)

(21), (24)− (27) (32)

For each generic iteration of the algorithm, MASTER problem is a feasibility

seeking problem subject to constraints (17) − (19) and to the set of SVIs added

up to that iteration.

Figure 9 shows the pseudo-code of the implemented algorithm.

The decomposition algorithm was implemented in C++ inside the Visual Stu-

dio environment. At each iteration, both the master problem and the sub-problem

were solved using the IBM ILOG optimization software Cplex 12.5.
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Algorithm 6 SVIs decomposition algorithm

Zopt = −∞; Ŷ ← 0; Ybest ← 0
while MASTER is feasible do

Solve INNER(Ŷ) to find Z and X̂;
add SVI(X̂) to MASTER problem
if Zopt > Z then

Zopt = Z and Ybest ← Ŷ;
end if

end while
END return (Ybest, Zopt);

Figure 9: SVIs decomposition algorithm.

4.3 Case study and Analysis

To demonstrate the practical applicability of our approach, we applied the model

to the railway network infrastructure of Campania, a region in Southern Italy.

The region Campania is populated by almost 6 million people, making it the

second-most-populous region of Italy. Its capital city is Naples. The railway net-

work under consideration is composed by a primary network which connects major

cities in Italy and has high traffic (high speed and inter-regional rail services), a

secondary network which connects an highly populated urban centre to outer sub-

urbs (Cumana, Circumflegrea, Circumvesuviana and north-east metro services),

and some complementary lines which connect small regional centres. The overall

network is depicted in Fig. 10. The network has 26 nodes, corresponding to cities

and towns in the region, and 37 arcs.
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Figure 10: Campania rail network.

In the absence of real data on passenger traffic between pairs of stations, we

have generated estimates of the origin-destination flows as a function of the size

and distance of the connected cities. We assumed that disrupting an arc requires

one unit of resource (paj = 1), whereas the cost of protecting an arc, qaj , depends

upon the number of tunnels and bridges along the arc. We do not consider the

protection of arcs without tunnels or bridges. To generate realistic values for

the interdiction and protection resources associated with the nodes (qni and pni ),

we have divided the stations in four groups according to their dimension. The

values chosen for the stations in each group are shown in Table 1. Obviously,
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bigger stations require more resources to be protected/disrupted. As an example,

Caianello is a very small station and only requires 2 units, whereas Naples is the

biggest station and requires 12 units.

Table 1: Resources needed to protect/interdict a node

Node dimension Interdiction/Protection resources
Very small 2

Small 4
Medium 8

Big 12

In our empirical study, we have analysed and compared protection strategies

to hedge against disruptions of different magnitudes. Specifically, we considered

small, medium, large and very large disruptions. The amount of interdiction

resources associated with each event size are displayed in Table 2. With this

choice, a small disruption can only affect a very small station, whereas a very

large event is able to interdict a big station and a few other smaller assets.

Table 2: Disruption scenarios

Size Resource units
Small 2

Medium 5
Large 10

Very large 20

The analysis also considers different budget levels. These were chosen as a

percentage of the budget needed to protect the whole network.

Some preliminary results are displayed in Table 3, which shows the total

amount of flow which is lost in different disruption scenarios and for different

protection investment levels. It can be seen that even a small disruption can
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have a considerable impact on traffic flow if protective measures are not carried

out: the worst-case loss after a small disruption can result in a loss of 38% of

the total flow. This can reach 67%, 88%, and 98% for medium, large, and very

large disruptions respectively. The effect of protecting even as little as 1% of the

assets can be considerable, if protection resources are allocated optimally. This

is true especially for small and medium size disruption scenarios, where the total

losses can be reduced from 38% to 18% for small events and from 67% to 39% for

medium events. We run some tests to assess the benefits of allocating resources

optimally. As an example, for small scenarios, with a 5% budget, a random alloca-

tion resulted in a 17% (average) flow loss increment, compared with the optimal

allocation. For large and very large events, greater protection investments are

needed to get significant reductions in flow losses. As an example, an optimal

investment equal to 5% of the protection cost of the total network, can more than

halve the flow loss resulting from a large disruption (from 88% to 35%).

Table 3: Percentage of lost flow for different disruption scenarios and protection
budget levels.

No protection 1% 5% 10%
small 38% 18% 10% 5%

medium 67% 39% 20% 16%
large 88% 75% 35% 28%

very large 98% 96% 77% 54%

To provide a better understanding of how increasing budget levels may affect

the system losses in case of disruption, in 11 we show the percentage marginal

reduction in flow losses for each percentage point increase in protection resources.

We let the budget vary between 1% and 10% of the protection cost of the whole

network.
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Figure 11: Marginal percentage decrease in flow loss due to percentage point
increments of the protection budget.

This analysis sheds light on possible tradeoffs between protection expenditures

and flow loss reductions in case of worst-case system disruptions. As an example,

if a large disruptive event is considered, a 1% investment results in a worst-case

loss reduction of about 15% (first segment of the third bar in the chart). However,

if an investment of 2% can be made, the benefit is more than doubled, bringing

an additional 25% flow loss reduction and an overall reduction of 40%.

The differences between the four disruption scenarios can be further analysed

through the graphs plotted in Fig. 12, Fig. 13, Fig. 14, and Fig.15. For each

scenario, the corresponding graph displays the contribution of a percentage point

increment in protection resources on the overall objective improvement.
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Figure 12: Analysis of the contribution of percentage point increases of the pro-
tection resources on the overall improvement for small disruptions.

Figure 13: Analysis of the contribution of percentage point increases of the pro-
tection resources on the overall improvement for medium disruptions.
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Figure 14: Analysis of the contribution of percentage point increases of the pro-
tection resources on the overall improvement for large disruptions.

Figure 15: Analysis of the contribution of percentage point increases of the pro-
tection resources on the overall improvement for very large disruptions.

The first clear difference is that in the scenarios with low and medium level
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disruptions (Fig. 12 and Fig. 13) the first percentage point increase is respon-

sible for more than half of the overall benefit. To reach similar results for large

disruptions, a two point increment is needed (Fig. 14). When very large disrup-

tions are considered, the first few increments have a somewhat limited effect on

reducing flow losses whereas a peak can be noticed in correspondence of a 5%

investment (Fig. 15). An additional percentage point increase, results in another

significant flow loss reduction. This seems to indicate that if large disruptions

are anticipated, a protection budget in this range (5%-6% of the total protection

costs) should be warranted to maximize the benefits of security investments.

It is clear that the protection strategies identified by the model may differ

quite significantly, depending on the magnitude of the disruption given in input

to the model (parameter p). Our next analysis aims at identifying protection

plans which are robust across all scenarios, so as to hedge against the uncertainty

characterizing the size and extent of disruptive events. To this end, we evaluate

how the optimal solution identified for a given disruption size performs in all the

other scenarios.

The results of this analysis are shown in Table 4 and Table 5 for two budget

levels, equal to 5% and 10% of the resources needed to protect the whole network.

These cases correspond to values of q equal to 17 and 35 respectively. The tables

show the percentage flow loss increase which is observed when the optimal pro-

tection strategy computed for a given scenario (supposed scenario) is used in a

different scenario (actual scenario). The last two columns display the maximum

and average increase across all the other scenarios. From the analysis of Table 4

(q = 17), it is clear that the optimal solution for medium and large events is the

same. It is also the solution that works better across the different scenarios, with
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an average error of 11.1% and a maximum error of 22.5%. In the second case

(Table 5), all the solutions are different and the best choice, in terms of average

percentage increase of disrupted flow, is the optimal protection strategy computed

for very large disruptions. Nevertheless, assuming a medium size disruption may

result in a better compromise solution: the average percentage increase is really

close to the one obtained for very large events (41.5% vs. 41.4%) but the max-

imum value is considerably smaller (85.7% vs. 126.1%). Overall this analysis

indicates that the assumptions made on the disruption size may have a significant

impact on the identification of effective protection strategies. In general, avoiding

the extreme cases and assuming medium to large disruptions leads to the most

robust defensive plans.

Table 4: Cross-comparison of different optimal protection plans. Relative flow
loss increase in percentage. Case: q = 17.

Supposed Actual scenario MAX AVG
scenario small medium large very large

small 0% 98.8% 75.2% 20.3% 98.8% 48.6%
medium 21.8% 0% 0% 22.5% 22.5% 11.1%

large 21.8% 0% 0% 22.5% 22.5% 11.1%
very large 133.8% 104% 78.1% 0% 133.8% 79%

Table 5: Cross-comparison of different optimal protection plans. Relative flow
loss increase in percentage. Case: q = 35.

Supposed Actual scenario MAX AVG
scenario small medium large very large

small 0% 138.4% 106.3% 74.8% 138.4% 79.9%
medium 85.7% 0% 8.6% 71.6% 85.7% 41.5%

large 98.1% 3.2% 0% 74% 98.1% 43.8%
very large 126.1% 19.9% 19.7% 0% 126.1% 41.4%

Finally, in Table 6 and Table 7 we display the solutions to the model for
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different disruption scenarios and protection budget levels. Table 6 shows the

network components chosen for protection, whereas Table 7 shows the interdiction

plans (i.e., the worst-case losses) after protection.

We can see that Afragola and Barra appear quite often in the protection and

disruption strategies. This can be explained by noticing that the first station is

a crucial node of the high speed service and its disruption affects the connection

between Rome and Naples; the second station belongs to the Circumvesuviana

railway network and intercepts a huge portion of the traffic generated by that

service. It is interesting to note that Cancello appears very frequently among the

components to be interdicted, in spite of being a very small station. This may be

due to its very central position. Cancello, in fact, intercepts the flow between the

largest cities of the region and this makes it an attractive target for an intelligent

attacker. Finally, it can be noted that Naples only appears in a few solutions

probably because, although it is the most important station, is also the most

difficult and expensive asset to protect and/or disrupt.
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5 Optimizing dynamic investment decisions for

railway systems protection

In this chapter we further extend the previous model by adding a temporal com-

ponent. An important issue that should be taken into account when modelling

protection efforts is that protection resources can become available at different

times. Our model addresses this issue by including a temporal component whereby

the available budget for protection is spread over a planning horizon. This choice

renders the model more applicable to real situations. In fact, public expenditures

to protect and modernize critical infrastructures are usually set in spending re-

views that cover a number of years. For instance, the last UK spending review

(HM Treasury, 2013) allocated £100bn for the modernisation of the energy and

transportation sectors. This budget is spread over a five-year period (2015-2020).

Furthermore, after 2013-2014 floods in UK, £130m were allocated by the govern-

ment. Of the whole budget, £30m were made available in 2014, the rest in 2015

(Carrington and Weaver, 2014).

In addition,the UK Department for Environment, Food and Rural Affairs (DE-

FRA) set out a six-year programme of capital investment to improve flood defences

up to 2021, of 2.3bn. Fixed capital settlements were allocated for each year, al-

though flexibility to move funds between years was allowed for effective delivery

(DEFRA, 2015). These examples demonstrate that funds availability is often

time-related. Consequently, prioritizing expenditures over time is key to the de-

velopment of long-term, effective strategies for improving infrastructures security

and resiliency. To respond to the practical planning needs of railway stakehold-

ers and operators, we therefore propose a protection model that optimizes the
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allocation of scarce protection resources over time.

The allocation of defensive and offensive resources over time has recently been

analysed by a few researchers within a game theoretic framework. The majority of

these models focused on the protection and disruption of a single target. For ex-

ample, Levitin and Hausken (2010) proposed a defender-attacker model where the

attacker can launch sequential attacks. Hausken and Zhuang (2011a) considered

a government-terrorist game over multiple time periods, where the terrorist can

stockpile its resources for later attacks and the government can allocate resources

for defending the asset or attack the terrorist’s resources. Other single-asset se-

quential defender-attacker problems can be found in Hausken and Zhuang (2011b),

Hausken and Zhuang (2012), and Levitin and Hausken (2012a). A multiple-target

version of these problems has been considered in Levitin and Hausken (2009), who

studied the problem of protecting identical elements in a parallel system against

two sequential attacks. Levitin and Hausken (2012b) extended this model by

including the possibility of imperfect detection of the first attack outcomes. In

Levitin and Hausken (2013) both the attacker and the defender can stockpile their

resources over a planning horizon. Note that the game-theoretic approach used

in this literature stream is quite different from our approach in that the problems

are represented as a two-stage game and require a closed-form analytic solution

for the identification of Nash equilibria. Therefore, the application of these mod-

els is limited to simple problems (i.e. two time periods only, single target, small

system). On the contrary, our approach is able to solve problem with several time

periods and networks of realistic size.

Our dynamic network protection problem (DNP) is formulated as a bilevel

model where the aim of the upper level is to find the best allocation of protection
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resources, over a planning horizon, to minimize the amount of disrupted flow. The

lower level is used to evaluate worst-case losses in response to a given protection

plan. The resulting model is complicated and requires ad-hoc expedients tailored

to its dynamic structure. We propose two decomposition approaches that are

tested using randomly generated networks. In both the approaches, the dynamic

structure of the problem can lead to solve the same lower problem more than once.

We use hash structures to avoid recomputation, obtaining significant improvement

in the computing time. Finally insights of the problem are provided using a

network representing the railway infrastructure of Kent (UK).

5.1 The Dynamic Network Protection Problem (DNP)

We consider a directed graph G = (N,A) representing the transportation net-

work. In a railway network, the nodes represent the stations and the arcs are the

tracks connecting the nodes. Assumptions, parameters and decision variables are

introduced below:

(a) The problem is studied over a planning horizon represented by the set T =

{0, 1, ..., T̂}.

(b) Interdiction is complete (i.e., an interdicted component is completely unus-

able in the time period when interdiction takes place).

(c) A protected element becomes completely immune to interdiction. Therefore

the same element does not need to be protected more than once in the

planning horizon. Both arcs and nodes can be disrupted and protected.

(d) Each element has a different protection cost and there is a limited protection
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budget in each time period. Any unutilized budget can be carried forward

to the next time period.

(e) In each time period, interdiction resources are limited and the amount of

resources needed to disrupt a component varies according to the component

size and topology. Interdiction resurces cannot be carried forward.

(f) In case of disruption, system users are willing to use alternative paths to

reach their destinations only if they are not significantly longer than their

shortest route. We refer to these alternative routes as acceptable paths.

All the paths that establish connectivity between two nodes s and d are

computed in a preprocessing phase. The paths that are too long from a user

perspective are then removed from further considerations. This evaluation

is done by comparing each path with the shortest one: all paths exceeding

a given length threshold are discarded.

(g) The daily traffic flow between any two nodes is known with certainty and

the flow matrix is symmetric.

The bilevel model for DNP uses the following notation.

Indices, sets and parameters

s ∈ N : index used for flow sources.

d ∈ N : index used for flow destinations.

i ∈ N : index used for network nodes.

j ∈ A : index used for network arcs.

t, u ∈ T : index used for time periods.

fsd : traffic demand between s and d.
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Nsd : set of acceptable paths that connect s and d.

r ∈ Nsd : index used for network paths.

N(r) : set of nodes along path r.

A(r) : set of arcs along path r.

Bt : cumulative protection budget available up to period t.

Pt : amount of interdiction resources in period t.

qni : estimate of the amount of resources needed to protect node i.

pni : estimate of the amount of resources needed to disrupt node i.

qaj : estimate of the amount of resources needed to protect arc j.

paj : estimate of the amount of resources needed to disrupt arc j.

λt : weight used in the objective function to give different importance to the time

periods. The parameter is normalized (i.e.,
∑

t λt = 1).

Decision variables

Xn
it = 1 if node i is disabled in period t; 0 otherwise.

Xa
jt = 1 if arc j is disabled in period t; 0 otherwise.

Y n
it = 1 if node i is protected in period t; 0 otherwise.

Y a
jt = 1 if arc j is protected in period t; 0 otherwise.

Zsdt = 1 if the flow between s and d is unserved in period t; 0 otherwise.

The DNP can be formulated as follows.

[DNP] min
Y

F (Y) (33)

s.t.
t∑

u=1

(
∑
i∈N

qni Y
n
iu +

∑
j∈A

qajY
a
ju) ≤ Bt ∀t ∈ T (34)

Y n
it ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (35)
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Y a
jt ∈ {0, 1} ∀j ∈ A,∀t ∈ T (36)

where F (Y) = max
X

∑
t∈T

λt
∑
s

∑
d

fsdZsdt (37)

s.t. Xn
it ≤ 1−

t∑
u=1

Y n
iu ∀i ∈ N, ∀t ∈ T (38)

Xa
jt ≤ 1−

t∑
u=1

Y a
ju ∀j ∈ A,∀t ∈ T (39)

∑
i∈N

pniX
n
it +

∑
j∈A

pajX
a
jt ≤ Pt ∀t ∈ T (40)

∑
i∈N(r)

Xn
it +

∑
j∈A(r)

Xa
jt ≥ Zsdt ∀s, d ∈ N, r ∈ Nsd,∀t ∈ T (41)

Xn
it ∈ {0, 1} ∀i ∈ N, ∀t ∈ T (42)

Xa
jt ∈ {0, 1} ∀j ∈ A,∀t ∈ T (43)

Zsdt ∈ {0, 1} ∀s, d ∈ N, ∀t ∈ T. (44)

In the bilevel model above, the leader seeks the optimal protection strategy

to minimize the function F (33), which represents the weighted sum of demand

that cannot be served after interdiction, over the planning horizon. Constraint

(34) represents the budget limit: the amount of resources utilized up to period t

for nodes and arcs protection cannot exceed the available cumulative budget Bt.

Constraints (35) and (36) are the binary requirements for the protection variables.

The lower level program (37)-(44) is the interdiction model. The follower seeks

the attack strategy that maximizes the overall amount of unserved demand (37).

Constraints (38) state that a node cannot be disrupted at period t, if it is pro-

tected in the time window {1, ..., t}. Similarly, constraints (39) state that an arc
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cannot be disrupted at period t, if it is protected in the time window {1, ..., t}.

Constraints (40) set a limit on the interdiction resources available in each time

period. Constraints (41) state that the demand between s and d is unserved in

period t (Zsdt = 1), only if all the acceptable paths connecting the two nodes are

disrupted at period t. This occurs if at least one node or arc on each path is

disabled. Finally, constraints (42)-(44) enforce binary restrictions on the lower

level variables.

5.2 Solution methodology

In this chapter, we present two different decomposition approaches for DNP. The

first is based on the use of Benders cuts. Benders decomposition has been widely

used in the literature to deal with large-scale MILP problems (Benders, 1962).

More recently, the use of Benders-like decomposition algorithms has been extended

to multi-level programs (Israeli and Wood, 2002, O’Hanley and Church, 2011,

Losada et al., 2012). The second approach utilizes special cutting planes known as

Super Valid Inequalities (SVIs). A SVI is a cutting plane that reduces the feasible

region without excluding any optimal solution unless the incumbent solution is

itself optimal. SVIs were initially introduced by Israeli and Wood (2002) to speed

up a Benders decomposition approach. SVIs were also used explicitly as a stand

alone solution method in O’Hanley and Church (2011) and in Losada et al. (2012).

In all our decomposition approaches, DNP is split into two connected subprob-

lems referred to as the Restricted Master Problem (RMP) and the SubProblem

(SP). These subproblems are solved alternatively until the algorithms converge to

an optimal solution. The RMP entails decisions about what to protect to thwart

the most disruptive interdiction plans identified in previous iterations. At each
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iteration, the most disruptive interdiction plan in response to a given protection

strategy is identified by solving SP, which is the interdiction problem (37)-(44)

with the protection variables fixed to the feasible values identified by the current

RMP’s solution. The solution to the SP is then used to generate either Benders

or SVIs cuts to be appended to the RMP and the process is iterated.

The description of the decomposition methods uses the following additional

notation.

w : iterations index.

Ŷw = [Ŷn
w, Ŷ

a
w] : RMP’s solution at iteration w. This vector holds the values of

the protection variables Y n
it and Y a

jt.

ẐwX̂w : SP’s optimal response plan given protection strategy Ŷw. This vector

holds the values of the variables Zsdt, X
n
it, and Xa

jt.

Ẑw : sub-vector of ẐwX̂w holding the variables Zsdt.

X̂w = [X̂n
w, X̂

a
w] : sub-vector of ẐwX̂w holding the variables Xn

it and Xa
jt.

Given a protection strategy Ŷw, the subproblem SP , which is the same for both

the approaches, is simply:[
SP(Ŷw)

]
max
X

∑
t∈T

λt
∑
s

∑
d

fsdZsdt (45)

s.t. Xn
it ≤ 1−

t∑
u=1

Ŷ n
iuw ∀i ∈ N,∀t ∈ T (46)

Xa
jt ≤ 1−

t∑
u=1

Ŷ a
juw ∀j ∈ A, ∀t ∈ T (47)

(40)− (44)

62



By solving this model to optimality, we obtain a feasible solution, [Ŷw, ẐwX̂w],

for DNP and an upper bound to its objective. Additionally, the optimal response

strategy X̂w can be used to generate cutting planes for the RMP, as described in

the following sections.

5.3 Benders Decomposition (BND-D)

The Benders decomposition algorithm uses the following additional notation.

artw : number of different elements along path r which are interdicted at time t

in the interdiction plan identified at iteration w.

Z̄w = {(s, d, t) ∈ N ×N × T | Zsdtw = 1}: indices of the disrupted flows at itera-

tion w.

Qrtw : binary variable which takes value 1 if the interdiction of path r at time t

in iteration w is thwarted; 0 otherwise.

Qsdtw : binary variable which takes value 1 if the interdiction of the flow from s

to d at time t in iteration w is thwarted; 0 otherwise.

The Q variables are introduced to reconstruct the link between a protection

strategy and the correspondent thwarted interdictions. In BND-D, the RMP at

iteration w̄ is a mixed-integer program defined as follows:

[RMP (w̄)]

min
Y

z (48)

s. t. (34)− (36)

z ≥
∑

(s,d,t)∈Z̄w

λt (fsd(1−Qsdtw)) ∀w ∈ [1, w̄] (49)
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∑
i∈N(r)

X̂n
itw

t∑
u=1

Y n
iu +

∑
j∈A(r)

X̂a
jtw

t∑
u=1

Y a
ju ≥ artw Qrtw

∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀r ∈ Nsd,∀w ∈ [1, w̄]

(50)

∑
r∈Nsd

Qrtw ≥ Qsdtw ∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀w ∈ [1, w̄] (51)

Qrtw ∈ {0, 1} ∀s ∈ N, d ∈ N, t ∈ T : (s, d, t) ∈ Z̄w,∀r ∈ Nsd,∀w ∈ [1, w̄]

(52)

Qsdtw ∈ {0, 1} ∀(s, d, t) ∈ Z̄w,∀w ∈ [1, w̄] (53)

z ∈ R+. (54)

The aim of the objective function (48) is to find the best protection strategy

that thwarts the interdiction plans identified in the previous iterations. Con-

straints (49) are called Benders cuts. They are lower bounds to the objective

function z generated by all the interdiction strategies found in the previous it-

erations. Constraints (50) represent the relationship between the variables Qrtw

and the protection variables. Specifically, they state that a path r connecting s

and d can no longer be disrupted at time t by the interdiction strategy X̂w (i.e.,

Qrtw = 1), if all its interdicted arcs and nodes are protected either at time t or

in some time period prior to t. Constraints (51) state that the interdiction of the

flow between s and d at time t in iteration w can be thwarted (i.e., Qsdtw = 1)

only if the protection strategy thwarts the interdiction of at least one acceptable

path r connecting s and d at time t. If at least one path is not disrupted, then the

objective function pushes the variable Qsdtw to take value 1 and the flow fsd at

time t is no longer considered unserved in (49). Finally, constraints (52) and (53)

represent the binary requirements for the variables Qrtw and Qsdtw and constraint
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(54) states that variable z is a non negative real.

The pseudo-code of BND-D is displayed below.

Algorithm 7 Bender decomposition

Set w = 1, Ŷw = 0, Yopt = 0, zsup =∞ and zinf = −∞
MAINSTEP
Solve SP(Ŷw) to obtain ẐwX̂w and the objective value ẑ
if ẑ < zsup then

zsup = ẑ and Yopt ← Ŷw

end if
if zsup − zinf = 0 then

goto TERMINATE
end if
w = w + 1
Solve RMP(w) to obtain Ŷw and zinf
if zsup − zinf > 0 then

goto MAINSTEP
end if
TERMINATE
Return(Yopt)

The solution of the SP provides an upper bound to the DNP. Conversely,

the solution of the RMP is a lower bound for the DNP (the RMP is in fact a

relaxation of DNP as it only includes a subset of all possible interdiction plans).

When the two sub-problems have the same objective function value, the algorithm

stops. It is easy to prove that BND-D converges in a finite number of iterations.

The resource constraints, in fact, guarantee that the number of interdiction and

protection strategies is finite.

5.3.1 SVI Decomposition (SVI-D)

The basic idea behind this approach is that, to thwart a worst-case interdiction and

hence lower the objective function value of the follower, the protection strategy
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must include at least one element belonging to the optimal interdiction set (Church

and Scaparra, 2007). Our SVIs embed this idea by enforcing the protection of

at least one of the arcs or one of the nodes interdicted in the current follower

response X̂w. More specifically, the SVI generated at each iteration w is:

SV I
(
X̂w

)
:
∑
i

∑
t

X̂n
itw

t∑
u=1

Y n
iu +

∑
j

∑
t

X̂a
jtw

t∑
u=1

Y a
ju ≥ 1. (55)

This inequality states that at least one interdicted component in X̂w must be

protected, either at time t or in a previous time period.

At each iteration w, the RMP for SVI-D is simply a feasibility seeking prob-

lem, including constraints (34)−(36) and all the SVIs generated up to the current

iteration. If a feasible solution to the RMP can be identified, SP is solved again

with the new protection strategy Ŷw as input and the process is repeated. The

algorithm stops when in the master model the protection resources are insufficient

to thwart all the interdiction strategies discovered in the previous iterations, and

thus the RMP becomes infeasible. Considering that the protection and interdic-

tion resources are limited, the number of possible strategies is finite. Consequently,

the RMP will become infeasible after a finite number of iterations.

The fact that inequalities (55) are supervalid is proven in the following propo-

sition.

Proposition. SV I(X̂w) is supervalid.

Proof. : Let [Ŷw, ẐwX̂w] be the feasible solution of DNP found at iteration

w. If this solution is optimal, then by definition inequality (55) is super-valid.

If the solution is sub-optimal, adding inequality (55) to the RMP problem will

generate a new protection strategy Ŷw+1 6= Ŷw. This strategy will in turn lead to
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a solution Ẑw+1X̂w+1 of the SP that is different from the previous one because of

constraints (46) and (47). Thus, for every w, the inequality is super-valid because

it eliminates the incumbent solution, i.e.:

[Ŷw+1, Ẑw+1X̂w+1] 6= [Ŷw, ẐwX̂w]. 2

The main steps of the SVI-D algorithm are outlined below:

Algorithm 8 SVI-D

Set w = 1, Ŷw = 0, Yopt = 0, zopt =∞.
MAINSTEP
Solve SP(Ŷw) to obtain ẐwX̂w and the objective value ẑ
if ẑ < zopt then

zopt = ẑ and Yopt ← Ŷw.
end if
Add SV I(X̂w) to RMP .
w = w + 1
Solve RMP to obtain Ŷw.
if RMP is feasible then

goto MAINSTEP
end if
TERMINATE
Return(Yopt)

5.4 Results and Analysis

In this section, we investigate the computational efficiency of solving the dynamic

network protection problem using BND-D and SVI-D. Both algorithms were im-

plemented in C and run on a 64-bit machine with a quad-core 3.4GHz processor

and 4GB of RAM. The Restricted Master Problems and the SubProblems were

solved using the IBM ILOG CPLEX version 12.5 callable library. In our compu-

tational analysis, we set a time limit of 10, 000 seconds. In the algorithms’ imple-
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mentation, we used specialized data structures to store and retrieve information

efficiently. Specifically, we observed that, given a protection strategy, each Sub-

Problem could be decomposed into |T | independent interdiction problems. Some

of these sub-problems recurred multiple times across different iterations. For in-

stance, consider a protection planning problem over two time periods and assume

that in two different iterations of the algorithm we have to solve the interdiction

problem with the two protection strategies listed in Table 8 as inputs.

Table 8: Protection strategies at two different iterations

T Arcs Nodes
0 1, 3 7
1 2 5

T Arcs Nodes
0 1, 2 5
1 3 7

The two protection strategies are different but, since protections are perma-

nent, the sub-problem solved when t = 1 is the same in both iterations. In fact,

in both cases, the arcs protected in the second period are 1, 2, 3 and the nodes are

5, 7.

It is possible to improve the algorithm by storing the solutions without solving

the same problem multiple times. To store and retrieve the solutions efficiently

we use a hash table. In fact, by using this data structure, insertions and search

functions have a time complexity equal to O (1) (Cormen et al., 2001). A hash

table is an associative array in which keys are mapped to values, using a function

known as hash function. For this problem we are using the protection strategy

as key and the modulo as the hash function. As showed in Figure 16, the binary

string representing the protection strategy is first converted into a decimal number

and then is modulated by the function H. The protection strategy identifies a

cell that holds the objective function value and optimal interdiction strategy of
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the lower level model. In order to consider the possibility of collisions, each cell

of the table is a list.

Figure 16: Hash data structure.

The initial testing was performed on two sets of randomly generated problems.

Specifically, we generated 5 undirected networks with 10 nodes and 15 arcs, and 5

undirected networks with 20 nodes and 25 arcs. Distances were chosen uniformly

from the set {1, 2, ..., 6}. The flow demand matrix was generated by drawing each

value uniformly from {0, 1, ..., 100}. Each unit of flow can be interpreted as 10, 000

passengers. The costs of protecting / disrupting a node (qni and pni ) were drawn

uniformly among the values {2, 4, 6}. These three values were chosen to model

stations of different size (small, medium and large). We also assumed paj = 1. This

choice was driven by the observation that in real life disrupting an arc is usually

easier than disrupting a station. Tracks, in fact, are highly vulnerable because

of their length and the presence of accessible and easily attackable structures

(overpasses, bridges, tunnels). Just hitting one of these structures would impair
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the full link. On the other hand, the complete protection of a track can be

an expensive task. Therefore, the values qaj were chosen uniformly from the set

{1, 2, ..., 6}.

One of the assumptions of our model is that there is a limit to the number of

arcs and nodes that can be disrupted. This budget limit is introduced to model

disruptions of different magnitude. For example, a small interdiction budget indi-

cates that the disruptive event only affects a few small components of the network.

Conversely, a large disruption can affect a larger number of elements of the net-

work and/or big assets. In our analysis, we consider three disruption scenarios.

The interdiction resources associated with each scenario are shown in Table 9.

Specifically, we assume that a small event is able to interdict only a small station

or two arcs, whereas a large event is able to completely disrupt a big station or

a combination of small components. The protection budget is assumed to be a

percentage α of the total amount of resources needed to protect the full network,

denoted by B. Namely, B|T | = αB. We consider values of α equal to 5% and

10%. The protection resources are spread in a 5-period planning horizon. The

time periods are all weighted equally (λ = [0.2, 0.2, 0.2, 0.2, 0.2]).

Table 9: Disruption scenarios

Size Resource units
Small 2

Medium 4
Large 6

The results for the two data sets are displayed in Table 10 and Table 11,

respectively.

70



Table 10: Computational comparison between BND-D and SVI-D for the 10-15-x
networks

Network Disr units Prot Objective Computing time (sec) Prot Prot Disr Disr
name per period budget value BND-D SVI-D arcs nodes arcs nodes

10-15-1 2 5% 6886 0.52 0.01 1 0 6 2
2 10% 6414 0.75 0.05 1 1 8 1
4 5% 8513 0.59 0.05 1 1 18 1
4 10% 8179 8.01 0.89 2 1 20 0
6 5% 9992 0.64 0.03 1 1 9 5
6 10% 9516 7.39 0.70 1 3 22 2

10-15-2 2 5% 5336 0.61 0.04 1 1 6 2
2 10% 4884 4.26 0.36 2 1 8 1
4 5% 7782 0.94 0.09 2 1 16 2
4 10% 7449 66.79 2.02 4 1 16 2
6 5% 9126 1.77 0.41 2 1 26 2
6 10% 8829 > 10000 25.96 4 1 24 2

10-15-3 2 5% 5235 0.52 0.02 0 1 8 1
2 10% 4611 0.76 0.04 2 1 10 0
4 5% 7760 0.57 0.04 1 1 16 2
4 10% 7200 2.14 0.44 2 1 18 1
6 5% 9196 0.83 0.08 0 2 18 6
6 10% 8796 62.24 3.16 1 3 26 2

10-15-4 2 5% 5122 0.71 0.04 3 0 10 0
2 10% 4398 2.35 0.53 4 0 10 0
4 5% 7280 2.09 0.39 2 0 16 2
4 10% 6797 208.82 5.93 4 1 12 4
6 5% 8832 7.74 0.62 3 0 20 5
6 10% 8405 3479.83 33.82 4 1 16 6

10-15-5 2 5% 4642 0.52 0.02 1 0 10 0
2 10% 4270 0.83 0.08 1 1 8 1
4 5% 7270 0.74 0.05 1 1 14 3
4 10% 6892 12.47 0.61 2 2 18 1
6 5% 8811 1.43 0.43 1 2 22 4
6 10% 8385 144.07 7.81 2 2 28 1

AVG 7226.93 138.65 2.82 1.87 1.07 15.30 2.03

For each network, disruption scenario and protection budget level, the tables

show the DNP’s objective function values, i.e., the worst-case disrupted flow over

the planning horizon, the computing times of the two algorithms, and the number

of network elements protected and disrupted in the optimal solutions. In these

initial tests, the threshold for the path choice was fixed to 1, i.e., only the shortest

paths are considered acceptable.
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Table 11: Computational comparison between BND-D and SVI-D for the 20-25-x
networks

Network Disr units Prot Objective Computing time (sec) Prot Prot Disr Disr
name per period budget value BND-D SVI-D arcs nodes arcs nodes

20-25-1 2 5% 21807 2.28 0.11 2 0 10 0
2 10% 19367 204.54 1.68 4 1 8 1
4 5% 32436 1.89 0.16 2 0 4 4
4 10% 31257 > 10000 11.43 3 2 12 2
6 5% 37113 16.75 0.73 3 0 10 5
6 10% 36580 > 10000 232.22 3 2 26 1

20-25-2 2 5% 22773 1.05 0.03 1 1 8 1
2 10% 20241 20.15 1.11 4 1 8 1
4 5% 31581 12.27 0.56 2 1 14 3
4 10% 29370 9430.88 32.80 4 2 12 4
6 5% 36833 41.37 2.56 1 2 12 9
6 10% 35242 > 10000 1965.73 4 2 24 3

20-25-3 2 5% 24297 1.10 0.03 1 1 8 1
2 10% 21534 14.03 0.88 3 1 8 1
4 5% 32058 2.15 0.22 1 1 16 2
4 10% 30800 487.11 8.39 5 1 14 3
6 5% 37155 2.84 0.65 2 1 20 5
6 10% 35646 > 10000 128.42 5 1 18 6

20-25-4 2 5% 27102 1.15 0.06 1 1 8 1
2 10% 24255 21.37 0.64 3 1 8 1
4 5% 34934 2.06 0.17 1 1 18 1
4 10% 33105 853.55 9.52 4 1 12 4
6 5% 39368 5.87 0.96 2 1 18 6
6 10% 37842 > 10000 393.51 3 1 20 5

20-25-5 2 5% 27791 829.00 0.04 1 1 8 1
2 10% 26065 43.73 1.45 4 2 6 2
4 5% 36440 15.19 0.48 2 1 12 4
4 10% 34949 6093.55 11.99 4 2 8 6
6 5% 40817 82.36 1.82 1 2 24 3
6 10% 39344 > 10000 3444.29 4 2 24 3

AVG 31270.07 757.76 208.42 2.67 1.20 13.27 2.97

The tables clearly show that SVI-D outperforms BND-D in every case. This is

mostly due to the fact the RMP in the SVI-D approach does not have an objective

function and, upon solving it, one stops as soon as a feasible solution is identified.

As a consequence, the RMPs can be solved very quickly. The drawback is that

without an objective to drive the protection strategy selection, the algorithm takes

a considerable number of iterations (thousands for the complex instances) before
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converging to an optimal solution. Conversely, finding a solution to each RMP in

the BND-D algorithm is quite time-consuming. Although this algorithm converges

in a much smaller number of iterations compared to SVI-D, this is not sufficient

to offset the greater difficulty of solving each RMP and its overall computing time

is considerably higher. Furthermore, using both the approaches in one combined

algorithm is inefficient. Results for this experiment are not reported because they

are very similar to the results obtained by BND-D.

The impact of the size of the network is evident by comparing the two tables.

Nonetheless, the high variability in the computing time suggests that the com-

plexity of the problem depends on a combination of several factors, including the

network topology. For instance, networks 20-25-4 and 20-25-5, although of equal

size, have very different computing times.

In Table 12, we report some additional results for the largest data set using

different path thresholds. The threshold value determines the number of accept-

able paths, which in turn affects the size of the problems in terms of number of

variables and constraints. Table 4 shows the impact of three different threshold

values on the number of available paths and the computing time. A threshold

value equal to 1.5 indicates that the users are willing to accept a 50% increase

on their normal travel time, before switching to other transportation services or

abandoning the trip. Similarly, a value equal to 2 indicates that a travel delay

up to 100% is considered acceptable. Given the superiority of SVI-D, the com-

puting times are reported for this algorithm only. In the analysis, we consider

two protection levels (α = 5%, 10%) and three disruption scenarios (2, 4, and 6

disruption units).

Although in most of the cases an increase in the path threshold value results
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Table 12: Computational results for different path threshold values

Network Threshold Paths Computing time (sec.)
Protection level (α) 5% 10%

Disruption scenario (pt) 2 4 6 2 4 6
20-25-1 1 172 0.11 0.16 0.73 1.68 11.43 232.22

1.5 247 0.19 1.44 4.00 1.64 198.13 1684.57
2 327 0.18 4.66 6.29 3.86 114.65 1002.78

20-25-2 1 166 0.03 0.56 2.56 1.11 32.80 1965.73
1.5 229 0.07 0.60 3.95 1.35 25.40 2730.99
2 299 0.11 0.99 4.60 2.78 31.22 2469.20

20-25-3 1 172 0.03 0.22 0.65 0.86 8.39 128.42
1.5 220 0.04 0.97 1.23 0.74 28.25 543.99
2 317 0.04 1.04 4.02 1.75 41.19 1089.08

20-25-4 1 170 0.06 0.17 0.96 0.64 9.52 393.51
1.5 245 0.06 0.77 1.10 0.95 26.88 395.96
2 323 0.13 1.55 3.08 1.81 87.27 2587.95

20-25-5 1 175 0.04 0.48 1.82 1.45 11.99 3444.29
1.5 269 0.11 0.78 1.71 1.59 14.27 4183.99
2 331 0.26 0.75 6.18 1.91 24.76 1224.40

in an increase in computing time, there are some exceptions to this general trend,

especially for large instances (α = 10% and pt = 6). For these instances, the

most critical threshold value seems to be 1.5. As previously noted, these results

point out that the performance of the algorithms are influenced by an interaction

of different elements, such as the protection and disruption budgets, the network

topological structure and the flow demand matrix. In general, increasing the num-

ber of acceptable paths increases the number of elements that must be targeted

to disrupt a flow. As a consequence, the interdiction problems may become more

difficult to solve. However, an increment in the path threshold value may also

render some flows too difficult or even impossible to disrupt, thus reducing the

number of possible interdiction plans and, consequently, the overall solution time.

To highlight how the path threshold affects the interdiction and protection

optimal plans, in Figure 17 we compare the number of arcs and nodes protected
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and interdicted over the planning horizon.

Figure 17: Impact of the path threshold on the number of protected/interdicted
elements (pt = 6, ∀t, α = 10%).

Changing the threshold value almost always results in different protection and

interdiction plans. In some cases the changes are small, in others can be signif-

icant. For example, consider network 20-25-1. When the threshold is increased

from 1 to 2, the number of interdicted arcs drops from 26 to 10, whereas the

number of nodes increases from 1 to 8. This indicates that the interdiction plans
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are significantly different.

In summary, this analysis shows that changes to the path threshold parame-

ter can have significant effects on both the problem complexity and the optimal

solutions. Consequently, modelling users’ behaviour accurately is a critical issue

when solving this type of protection models for service systems.

5.5 Case study analysis

In this section, we test the efficiency of the decomposition approaches and anal-

yse the results using a case study which represent the railway network of Kent

(UK). The strategic position of this county makes the case study particularly in-

teresting. Kent has a nominal border with France and, therefore, intercepts all

the passenger flow from and to France. Although most of the traffic flow is rep-

resented by London commuters, Kent’s railway has also a considerable traffic of

tourists, attracted by historical places like Canterbury and Rochester. The overall

network comprises 18 nodes, corresponding to cities and towns of the region, and

22 undirected arcs. The actual railway network is more complex, having more

nodes and arcs. We simplified it by aggregating neighbouring stations and the

corresponding flow generated/attracted by them. A graphic representation of the

network is showed in Figure 18.

In the absence of real flow data, we generated the flow matrix as a function

of the dimension of the connected towns. As in the computational result section,

we assumed that disrupting an arc requires one unit of resources (paj = 1). We

also used the same assumption made for the protection/disruption of nodes: we

divided the stations into three groups according to their annual passenger usage

(Table 13). For example, Battle which is a small touristic town with less than
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Figure 18: Railway network in Kent (UK).

half a million annual passengers, needs two units to be disrupted/protected. On

the other hand, Ashford, which is a town of considerable size with more than 2

million annual passengers, requires six units. The number of protection units, qaj ,

needed to fully protect an arc depends on the number of tunnels and bridges that

can be found on that arc. These numbers are displayed along the arcs in Figure

18. The disruption scenarios are the same as the ones used in the previous section

(see Table 9).

Table 13: Resources needed to disrupt/protect a node

Node dimension Disr/Prot resources
Small (annual passengers < 0.5 M) 2
Medium (0.5 M ≤ annual passengers < 1.5 M) 4
Big (annual passengers ≥ 1.5 M) 6

To compute the acceptable paths, we choose a threshold value equal to 1.5

(i.e., increases up to 50% of the normal travel time are considered acceptable).

We focus on a 5-period planning horizon. In our initial investigation each period
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is weighted equally.

5.5.1 Impact of protection investments

In this section, we analyse the impact that different levels of protection resources

have on the amount of flow loss, for different disruption scenarios.

Table 14: Percentage amount of flow loss for different disruption scenarios and
protection budgets.

Scenario No protection 5% 6% 7% 8% 9% 10%
small 27.37% 25.38% 24.48% 24.48% 23.97% 23.21% 22.34%

medium 34.50% 34.11% 32.92% 32.65% 32.65% 31.51% 31.12%
large 41.24% 38.18% 37.93% 36.50% 36.23% 35.69% 34.77%

For each disruption scenario and protection budget level, Table 14 displays

the worst-case percentage flow loss when the optimal protection strategy for that

scenario is implemented. The results show that even a small disruption can result

in a loss of traffic flow as high as 27.37% of the total traffic, if no protection is

carried out. This suggests that the network under study is highly vulnerable: even

small, but possibly frequent, disruptive events can affect a significant portion of

the flow. Obviously, the impact of disruption is more pronounced for medium and

large disruption scenarios, with a flow loss of 34.50% and 41.24%, respectively.

Investing in protection measures brings notable benefits. In particular, with a

protection investment equal to 10%, the worst-case percentage flow loss can be

reduced by about 18%, 10% and 16% in the three scenarios.

Figure 19 displays the marginal percentage decrease in flow loss, for each

percent unit increment in protection resources. This graph provides in depth in-

formation on how each budget increment affects potential system losses. This

analysis is useful to highlight the trade-off between protection expenditures and
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flow loss reductions in case of disruption. As an example, if small disruptions are

considered, a 5% investment results in a worst-case flow loss reduction of about

7% (first segment of the first bar in the chart). If protection investments can

be increased to 10%, the benefit is more than doubled with an overall flow loss

reduction of about 18%. The graph also highlights possible investment ineffi-

ciencies. For example, for medium disruptive scenarios (second bar), increasing

the budget from 7% to 8% has no impact on the worst-case flow loss, to denote

that this added budget, although optimally allocated, is insufficient to thwart any

additional interdiction plan.

Figure 19: Marginal percentage decrease in flow loss due to unit increments of the
protection budget.

5.5.2 Uncertainty of disruption events

One of the main issues involved in infrastructure protection planning is the intrin-

sic uncertainty of the disruption events. It is difficult and sometimes impossible to
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forecast when a disruption will happen and what its magnitude will be. The aim of

the protection planner is to make the network as robust as possible, which means

identifying a strategy that works well in all the possible scenarios. To this end, we

consider how the optimal solution found for a given scenario, works if a different

scenario occurs. The analysis is performed considering five equally weighted time

periods and a protection budget equal to 10% of the resources needed to protect

the full network. The results are shown in Table 15.

Table 15: Cross-comparison of different optimal protection plans. Relative per-
centage flow loss increase.

Actual scenario MAX AVG
Supposed scenario small medium large

small 0% 4.3% 8.0% 8.0% 4.1%
medium 13.8% 0% 14.4% 14.4% 9.4%

large 12.7% 5.6% 0% 12.7% 6.1%

The table shows the percentage increase in unserved flow when an optimal

strategy, obtained with a fixed scenario (supposed scenario), is used in a different

scenario (actual scenario). The table also shows the maximum and the average

increase across all different scenarios. Both solutions obtained for medium and

large disruptions can be highly sub-optimal if a small disruption takes place, re-

sulting in a flow loss increase of 13.8% and 12.7%, respectively. The best solution,

in terms of both maximum and average values, is the one obtained for small dis-

ruptions. This seems to indicate that planning for a small disruption is overall

a more robust strategy for this railway network. This result is further confirmed

when the analysis takes into account that the three scenarios may have a differ-

ent probability of occurring. For example, let us suppose that small, medium

and large scenarios have a probability of occurrence equal to 0.7, 0.25, 0.05, re-
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spectively. These probabilities can be incorporated in the decision process, for

example by considering the expected percentage increase in flow loss. This can be

computed as follows: EV (small) = 0.25 ∗ 4.3 + 0.05 ∗ 8.0 = 1.5, EV (medium) =

0.7∗13.8+0.05∗14.4 = 10.4, and EV (large) = 0.7∗12.7+0.25∗5.6 = 10.3. Using

this criterion amplifies the benefit of adopting the protection strategy identified

for small scenarios. Ultimately, which strategy to implement depends on the risk

attitude of the decision maker. A risk adverse decision maker would probably

opt for the optimal solution obtained for large disruptions, whereas a risk neutral

decision maker may select the strategy found for small disruptions. Obviously,

a thorough analysis of this issue would require the development of more sophis-

ticated optimization models, which account for the probability of occurrence of

different scenarios and explicitly incorporate robustness measures (Snyder and

Daskin , 2006).

5.5.3 Dynamic investments

When dynamic investments are considered, a key questions is whether to opt for a

protection strategy which renders the network as robust as possible at the end of

the planning horizon, or for a strategy which guarantees high levels of protection

as soon as possible (although this may decreases the overall efficiency of the final

protection plan). In this subsection we investigate how the protection strategies

change when the time periods are weighted differently. Specifically, we consider

three different cases:

− CASE 1: λ = [0.8, 0.05, 0.05, 0.05, 0.05]. Here the aim of the protection

planner is to obtain a good level of protection from the very first time

period.
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− CASE 2: λ = [0.2, 0.2, 0.2, 0.2, 0.2]. Here all the periods are equally weighted.

− CASE 3: λ = [0.05, 0.05, 0.05, 0.05, 0.8]. Here the aim of the protection

planner is to maximise the safety level achieved when the protection strategy

is fully implemented.

The protection budget used in this analysis is equal to 10% of the budget needed

to protect all the assets in the network.

Table 16: Impact of the time weights on the worst-case percentage flow loss.

CASE1 CASE2 CASE3
Scenario TL IL FL TL IL FL TL IL FL

Small 22.34% 26.40% 17.76% 22.34% 26.40% 17.76% 22.21% 27.01% 16.55%
Medium 31.12% 36.01% 28.10% 31.12% 36.01% 28.10% 31.51% 36.01% 27.86%

Large 34.77% 39.78% 30.90% 34.77% 39.78% 30.90% 34.77% 39.78% 30.90%

Table 16 has three columns for each case. The first one represents the total

worst-case percentage flow loss over all the time periods (TL). The second rep-

resents the worst-case percentage flow loss in the initial time period (IL). The

third represents the worst-case percentage flow loss in the final period (FL). This

gives an indication of the protection level reached by the network at the end of

the planning horizon. The analysis is done for three different disruption scenarios.

Interestingly, the optimal protection strategy identified for large disruptions is the

same, independently on the weights used in the objective function. Conversely,

the other two scenarios present differences in the optimal protection strategies

when more importance is given to the last time period (the first two cases are

still equal). For small disruptions, giving more importance to the last period

results in a more resilient final network, with a drop of the worst-case flow loss

from 17.76% to 16.55%. Also the total flow loss slightly reduces from 22.34% to

22.21%. This indicates that aiming for the safest possible network after 5 years
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also results in a more resilient network during the transitory periods in which

protections are implemented. For medium disruptions, the strategy to obtain a

good level of protection in the last period results in higher losses of traffic (from

31.12% to 31.51%) throughout the planning horizon. Overall, for this case study,

the weights given to the different time periods do not seem to have a massive

impact on the protection strategies and on the network resiliency achieved of the

end of the planning horizon.

5.5.4 Robust analysis

Robust analysis is a popular and powerful tool that has been extensively used to

support decision making under uncertainty (Caplin and Kornbluth (1975), Best

et al. (1986), Gupta and Rosenhead (1968)). Here we perform a robust analysis

following the approach used by Rosenhead and Mingers (2001). The decision

process is organized as a three-stage planning problem (Fig. 20)
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Figure 20: A three-stage planning problem with end-state valued.

A decision point represents a couple identifying the investment policy (case1,

case2, and case3) and the scenario anticipated (small, medium , large). For exam-

ple, decision C1M means that the decision planner is targeting medium scenarios

aiming to obtain good level of protection from the very first time period (i.e., case

1). For sake of clarity, we have excluded large scenarios from the figure. Real

scenario column is evaluated in terms of percentage flow loss. Finally, valuation

column uses three possible options: desirable, acceptable and undesirable. The

options for each state have been set using a reasonable empirical approach aiming

at penalizing flow loss increments. Results are further summarized in Table 17.
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Table 17: Summary of robust analysis.

Options left open
Initial decision ∗ + −

C1S 1 1 0
C2S 1 1 0
C3S 1 1 0
C1M 1 0 2
C2M 1 0 2
C3M 0 1 2
C1L 1 0 0
C2L 1 0 0
C3L 1 0 0

The analysis further confirms the results obtained in the last two sections:

Solutions targeting small scenarios are more robust and weighting different time

periods has only a small impact on this case study.

5.5.5 Solution analysis

In this section we show a sample solution of the proposed model. In particular,

Figure 21 displays the assets chosen in the optimal protection plans, over the

planning horizon, for the three disruption scenarios. The protection budget is

again equal to 10% of the budget necessary to protect the entire network and all

the time periods have equal weights.

It is clear that protecting the traffic to and from London is of strategic impor-

tance. In fact, both the arcs connected to Swanley and Dartford are chosen for

protection. Also some arcs connected to Maidstone and Ashford are protected.

These towns are among the most populated in Kent and therefore generate and

attract high volumes of traffic. It is also interesting to notice that two relatively

small stations like Otford and Strood are protected. This is a consequence of their
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strategic position. They intercept the traffic to and from London and are also di-

rectly connected to Maidstone. The main difference between the three graphs is

that when the extent of a possible disruption increases (Figure 21c), more stations

can be disrupted. Consequently, more stations appear in the optimal protection

strategy.

Finally, Figure 22 shows the network components involved in a worst case dis-

ruption, after the implementation of the optimal protection strategies displayed in

Figure 21. The interdiction strategies follow a pattern similar to the one identified

in the protection plans. The affected components are, in fact, on the paths to and

from London (link connected to Ebbsfleet), and on the paths to big or touristic

stations (Maidstone, Ashford, Canterbury and Hastings).

Table 18 provides the details of how the optimal protection strategies are im-

plemented over the planning horizon and, for each time period, displays the worst

case interdictions. It can be noticed that the three protection plans share several

targets to protect. Nonetheless the periods in which these targets are protected are

usually different. Interestingly, in the second time period no protection is imple-

mented for the small disruption scenario. This is because the resources available

in this time period are saved to protect a larger asset (Maidstone-Otford link)

in the successive period. This table highlights how, in a real protection planning

situation, not only it is critical to choose what to protect but also when to protect

the different assets.
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(a) Small disruption.

(b) Medium disruption.

(c) Large disruption.

Figure 21: Optimal protection plans for different disruption scenarios.
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(a) Small disruption.

(b) Medium disruption.

(c) Large disruption.

Figure 22: Post-protection worst case losses in different disruption scenarios.
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Table 18: Optimal protection plans and worst case losses over the planning hori-
zon.

PROTECTIONS INTERDICTIONS
Scenario T Arcs Nodes Arcs Nodes

0 Dartford-Strood Ashford-Ebbsfleet
Maidstone-Strood

1 Maidstone-Strood Ashford-Ebbslfeet
Otford-Swanley Maidstone-Otford

SMALL 2 Ashford-Ebbslfeet
Maidstone-Otford

3 Maidstone-Otford Ashford-Ebbsfleet
Rochester-Strood

4 Rochester-Strood Ashford-Maidstone
Otford-Sevenoaks

0 Dartford-Strood Ashford-Ebbslfeet
Maidstone-Strood
Otford-Swanley

Rochester-Strood
1 Maidstone-Strood Ashford-Ebbslfeet Otford

Rochester-Strood Ashford-Maidstone
MEDIUM 2 Ashford-Maidstone Ashford-Ebbsfleet

Ashford-Hastings
Maidstone-Otford
Otford-Swanley

3 Otford-Sevenoaks Ashford-Ebbsfleet
Ashford-Hastings
Maidstone-Otford
Otford-Swanley

4 Otford-Swanley Otford Ashford-Ebbsfleet
Ashford-Hastings
Maidstone-Otford

Sevenoaks-Tonbridge
0 Dartford-Strood Ashford-Ebbslfeet Strood

Otford-Swanley
1 Strood Ashford-Canterbury

Ashford-Ebbsfleet
Dover-Folkestone
Maidstone-Strood
Otford-Swanley

Rochester-Strood
2 Maidstone-Strood Ashford-Canterbury

Rochester-Strood Ashford-Ebbsfleet
Ashford-Maidstone

LARGE Dover-Folkestone
Maidstone-Otford
Otford-Sevenoaks

3 Otford-Swanley Ashford-Canterbury
Ashford-Ebbsfleet
Ashford-Maidstone
Dover-Folkestone
Maidstone-Otford
Otford-Sevenoaks

4 Otford-Sevenoaks Otford Ashford-Canterbury
Ashford-Ebbsfleet
Ashford-Maidstone
Dover-Folkestone
Maidstone-Otford
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5.6 Conclusions

In this chapter we introduced a bi-level fortification model to identify the best

allocation of protection resources against worst case scenario disruptions in trans-

portation networks. This model includes the important issue of considering dy-

namic investments. Two decomposition methods to find optimal solutions to the

model were proposed and compared. The method based on super-valid inequalities

clearly outperformed a classic Benders decomposition approach in terms of com-

putational efficiency. Our analysis showed how the model results can be used to

identify the optimal investment level to achieve a desirable degree of protection,

and highlighted possible trade-offs between protection expenditures and traffic

flow preserved in case of disruption. We applied the modelling approach to the

Kent railway network and showed the optimal protection strategies for different

disruption scenarios (small, medium and large). For this particular case study,

the weights given to the different time periods in the objective of our dynamic

model did not seem to have a significant impact on the optimal protection plans.

Tests on some randomly generated problems indicated that a critical problem pa-

rameter is the path threshold value. This parameter is used to model the users’

behaviour and identify the acceptable paths from a user perspective.
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6 A model with variable post-disruption demand

service for railway protection

In this chapter, we present a new optimization problem for railway network pro-

tection. The model is an extension of the first protection model introduced in

chapters 4. A practical limitation of previous interdiction models for flow-based

networks is that the flow between two nodes is considered lost or unserved only

if the two nodes are completely disconnected after interdiction. Although this

assumption simplifies the mathematical representation of the problems and their

solution, it also limits their practical applicability, especially to the context of

transportation networks. In transport systems, in fact, passenger demand be-

tween two nodes may be lost even if a connection does exist but the service is

significantly deteriorated. As an example, if an interdiction causes long delays,

travellers may resort to different modes of transportation or even abandon the

trip. In the models introduced in chapter 4 and 5 we make a first attempt at

redressing this shortcoming by introducing the concept of acceptable paths, i.e.,

paths whose length does not exceed the length of a shortest path by more than

a given threshold. User demand is considered unserved if, after a disruption, no

acceptable path is available between the two origin-destination nodes. However,

these models still present some limitations in that each origin-destination path

is either acceptable or not, and the resulting solutions are highly sensitive to the

path threshold parameter used to define acceptable paths.

Following, we propose a bi-level protection model for railway infrastructures where

the post-disruption user behaviour is modelled in a more accurate and realistic

way. We refer to the proposed problem as the Network Protection Problem with
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Variable Demand Loss (NPVDL). The aim is to find the optimal allocation of

protection resources among railway assets (stations, tunnels, bridges, flyovers,

rail tracks, etc.) so as to minimize the impact of worst-case disruptions on the

service provision to rail passengers. The disruption impact is measured in terms

of passenger flow (or demand) loss. A key aspect of our model is that it takes into

account the system users’ behaviour after a disruption. Travel time is one of the

most important factors influencing route choice behaviour (Wang et al., 2014).

After a disruption, increased travel times may cause some passengers to abandon

the trip or resort to other means of transportation, with associated user disutility

and system-wide costs. Failure to capture flow demand adjustments as a response

to increased travel time in a mathematical model may lead to the identification of

inaccurate and or suboptimal protection plans. Our protection model is unique

by virtue of its inclusion of flow demand adjustments in response to increased

travel time. Our model also considers the different costs of protection measures

associated with the various assets.

6.1 Problem statement and formulation

6.1.1 Model assumptions

The NPVDL problem is formulated as a bi-level linear mixed integer model. The

transportation network is modelled as a graph G(N,A), where N is the set of

nodes (e.g., stations) and A is the set of arcs (e.g., rail tracks). A limited budget

is available for protecting the network. Interdiction resources are also assumed

to be limited. This is a common assumption in interdiction modelling, where

interdiction resources are used as a surrogate for the disruption magnitude. The
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demand for service between any two nodes is known and entirely served by the

shortest path. If the shortest path becomes unavailable, the amount of flow loss

depends on the length of the alternative routes. A disrupted element is completely

unusable and, therefore, is removed from the network. An element, once protected,

is immune to any disruption. Both arcs and nodes can be disrupted/protected.

We also assume that the amount of resources needed to protect/disrupt an element

is known.

6.1.2 A bilevel formulation for the NPVDL problem

The bilevel model for NPVDL uses the following notation.

Indices, sets and parameters

s ∈ N : index used for flow sources.

d ∈ N : index used for flow destinations.

i ∈ N : index used for network nodes.

j ∈ A : index used for network arcs.

cj : nominal length of arc j.

fsd : passenger flow between s and d.

Nsd : set of paths that connect s and d.

r, t ∈ Nsd : indexes used for network paths.

A(r) : set of arcs along path r.

N(r) : set of nodes along path r.

αr : percentage of passenger flow using the service when path r is the shortest

available path.

P (r) = {t ∈ Nsd : length(t) < length(r)}.
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B : protection budget.

P : amount of interdiction resources available.

pni , p
a
j : resource units needed to disrupt node i and arc j, respectively.

qni , q
a
j : resource units needed to protect node i and arc j, respectively.

Decision variables

Xn
i = 1 if node i is disabled; 0 otherwise.

Xa
j = 1 if arc j is disabled; 0 otherwise.

Y n
i = 1 if node i is protected; 0 otherwise.

Y a
j = 1 if arc j is protected; 0 otherwise.

ωr = 1 if path r is available; 0 otherwise.

Sr = 1 if path r is the shortest non-disrupted path between a given origin and

destination; 0 otherwise.

Zsd = percentage of disrupted (or lost or unserved) flow, between s and d.

The problem is formulated as follows:

[NPVDL] min
Y

F (Y) (56)

s.t.
∑
i∈N

qni Y
n
i +

∑
j∈A

qajY
a
j ≤ B (57)

Y n
i ∈ {0, 1} ∀i ∈ N (58)

Y a
j ∈ {0, 1} ∀j ∈ A (59)

where F (Y) = max
X

∑
s

∑
d

fsdZsd (60)
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s.t. Xn
i ≤ 1− Y n

i ∀i ∈ N (61)

Xa
j ≤ 1− Y a

j ∀j ∈ A (62)

∑
i∈N

pniX
n
i +

∑
j∈N

pajX
a
j ≤ P (63)

Zsd = 1−
∑
r∈Nsd

Srαr ∀s, d ∈ N (64)

∑
r∈Nsd

Sr ≤ 1 ∀s, d ∈ N (65)

∑
r∈Nsd

Sr ≥
∑
r∈Nsd

ωr/|Nsd| ∀s, d ∈ N (66)

Sr ≤ ωr ∀s, d ∈ N, r ∈ Nsd (67)

Sr ≤ 1−
∑
t∈P (r)

ωt/|Nsd| ∀s, d ∈ N, r ∈ Nsd (68)

ωr ≥ 1−
∑
j∈A(r)

Xa
j −

∑
i∈N(r)

Xn
i ∀s, d ∈ N, r ∈ Nsd (69)

Xn
i ∈ {0, 1} ∀i ∈ N (70)

Xa
j ∈ {0, 1} ∀j ∈ A (71)

0 ≤ Zsd ≤ 1 ∀s, d ∈ N (72)

Sr ∈ {0, 1} ∀s, d ∈ N, r ∈ Nsd (73)

ωr ∈ {0, 1} ∀s, d ∈ N, r ∈ Nsd (74)

The aim of the defender is to minimize the overall flow loss (56), by distributing

protection resources over the elements of the network. Constraint (57) represents

the protection budget limit. The aim of the attacker is to maximize the flow loss
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(60), by targeting the unprotected elements of the network. Constraints (61) and

(62) state that nodes and arcs cannot be disrupted if they are protected. Con-

straint (63) limits the number of elements that can be interdicted. Constraints

(64) define the percentage amount of flow between s and d which is lost. This

is computed based on the available shortest path between the two nodes. Con-

straints (65) state that, for each pair of nodes, there can be at most one shortest

path available. Constraints (66) state that, if there is at least one path available

between s and d, there must also be a non-disrupted shortest path connecting

the two nodes. Constraints (67) impose that a path can be the shortest available

path only if it is available (i.e., not disrupted). Constraints (68) ensure that,

given an origin-destination pair s and d, a path r can be the shortest available

one connecting the two nodes only if all the paths shorter than r are unavailable.

Constraints (69) state that a path r is disrupted only if at least one element (node

or arc), belonging to that path, is interdicted. Finally, constraints (58)-(59) and

(70)-(74) represents the domain restrictions of the decision variables.

6.2 SVI decomposition algorithm

To solve the problem, we propose a decomposition algorithm based on the use of

Super Valid Inequalities (SVI).

The proposed approach involves decomposing the NPVDL into two sub-problems

which are solved alternately: the Relaxed Master Problem (RMP) and the Sub-

Problem (SP). The RMP is simply a feasibility seeking problem, consisting of a

set of SVIs and constraints (57), (58), and (59). At each iteration, the RMP is

solved to identify a feasible protection strategy Ŷ. The Sub-Problem is subse-
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quently solved to obtain the most disruptive interdiction strategy, X̂, in response

to protection plan Ŷ. Namely, SP is the lower level interdiction problem where

the protection variables are fixed. SP is defined as follows:

[
SP (Ŷ)

]
zsp = max

X

∑
s

∑
d

fsdZsd (75)

s.t. Xn
i ≤ 1− Ŷ n

i ∀i ∈ N (76)

Xa
j ≤ 1− Ŷ a

j ∀j ∈ A (77)

(63)− (74)

By solving SP, we obtain a feasible solution (Ŷ , X̂) to the NPVDL and an

upper bound to the problem. In addition, the new interdiction plan X̂ is used

to generate an SVI, which is appended to the RMP in the next iteration. For a

given X̂, the corresponding SVI is defined as:

SV I(X̂) :
∑
i∈N

Y n
i X̂

n
i +

∑
j∈A

Y a
j X̂

a
j ≥ 1 (78)

Inequality (78) simply states that to thwart an interdiction strategy, at least

one element of that strategy must be protected.

The algorithm starts with an empty protection strategy and solves the SPs

and the RMPs alternately. The iterative process terminates when the RMP be-

comes infeasible, i.e., the available protection resources are insufficient to thwart

all the interdiction strategies discovered up to that iteration. Given that protec-

tion resources are limited, the algorithm is guaranteed to converge to an optimal

solution in a finite number of iterations.
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The following proposition states that constraint (78) satisfies the conditions

of being super-valid (O’Hanley and Church, 2011).

Proposition. SV I(X̂) is super-valid.

Proof. : Let X̂ be the solution of SP (Ŷ) found during a generic step of the

algorithm. Then (Ŷ, X̂) is the incumbent solution for the bi-level problem. If

(Ŷ, X̂) is optimal, the inequality is super-valid by definition. If it is sub-optimal,

the inclusion of inequality (78) in the RMP will generate a new protection plan

Ŷ′ 6= Ŷ to block interdiction strategy X̂. In turn, a new response X̂′ to Ŷ′ will be

generated. Therefore, at each iteration (Ŷ, X̂) 6= (Ŷ′, X̂′). Thus, the incumbent

solution is eliminated, making the inequality super-valid.

6.3 Heuristic approach

In the next section, we will show that the SVI-D decomposition method can only

be employed to solve NPVDL instances of modest size. We, therefore, propose

a heuristic approach that can be used as a good approximation of the exact

algorithm and can tackle bigger size networks. The heuristic, referred to as GLS-

H, is composed of a greedy-based construction phase, followed by a local search

procedure. The algorithm uses two auxiliary models. The first model, called

USER(X̂), is the system user sub-model. It computes the system’s value (i.e.,

the amount of disrupted flow) associated with a specific interdiction plan X̂.

[
USER(X̂)

]
zuser(X̂) = max

Z

∑
s

∑
d

fsdZsd (79)

s.t. (64)− (68)
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ωr ≥ 1−
∑
j∈A(r)

X̂a
j −

∑
i∈N(r)

X̂n
i ∀s, d ∈ N, r ∈ Nsd (80)

(72)− (74)

The second model, called SP2(Ŷ), is a simplified version of SP (Ŷ). This

model assumes that the flow between two nodes is entirely lost only if all the

paths connecting the two nodes are disrupted. If at least one path is available,

independently on its length, all the flow is preserved. The mathematical formu-

lation of SP2(Ŷ), therefore, no longer requires the path variables Sr and ωr and

all the constraints associated with these variables. Also, the variables Zsd are

redefined as binary.

[
SP2(Ŷ)

]
zsp2(Ŷ) = max

X

∑
s

∑
d

fsdZsd (81)

s.t. (63)(70)(71)(76)(77)

Zsd ≤
∑
j∈A(r)

Xa
j +

∑
i∈N(r)

Xn
i ∀s, d ∈ N, r ∈ Nsd (82)

Zsd ∈ {0, 1} ∀s, d ∈ N (83)

Constraints (82) state that the flow between an origin s and a destination

d is disrupted only if at least one element on each path connecting s and d is

interdicted.

6.3.1 Greedy construction phase

In the initial step of the heuristic, we estimate how important each element of

the network is, from the attacker point of view. For the sake of clarity, in this

section we will ignore the difference between nodes and arcs and we will refer
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to them as network elements, belonging to the set E. X and Y will represent

the interdiction and protection variables, respectively. Also, the disruption and

protection resource vectors pn,pa,qn and qa are merged into two vectors p and

q.

Let Xi be a vector such that X i
j = 1 if i = j and 0 otherwise. Namely, Xi is an

interdiction strategy where only element i ∈ E is interdicted. The importance ρi of

element i is computed by first solving USER(Xi) to obtain zuser(X
i). This value

is then weighted by the resources needed to disrupt i. Formally, ρi = zuser(X
i)/pi.

This parameter is used as an estimate of the likelihood that element i appears in

an interdiction plan and, consequently, in a protection plan. From now on, all the

greedy choices will be made with reference to this parameter.

The greedy construction phase is a knapsack based heuristic. At each iteration

the best element from a set of candidates is chosen and added to the solution. Let

Yg
0 represent the initial protection plan. This plan is initialized with the best T

elements, with respect to ρ. The exact value of T depends on the network size

and protection budget. Let Yg
k be the greedy protection plan after k iterations.

Yg
k is build from Yg

k−1 by adding the best element from the subset Ē. Ē is the

set of disrupted elements in the optimal interdiction plan, obtained by solving

SP (Yg
k−1). The constructive algorithm ends when no element can be added to

the solution, without violating the budget constraint.

6.3.2 Local search phase

After the greedy initial solution is built, a local search procedure is used to ex-

plore the solution space in the attempt to find improving solutions in the neigh-

bourhoods of the current solution. The neighbourhood is defined by one-to-many
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swap moves. Let Bg and objg be the protection cost and the objective value of the

greedy solution Yg, respectively. The pseudo-code of the local search procedure

is shown below.

Algorithm 9 LocalSearch()

objsp = objg, objsp2 = objg,Ybest ← Yg, Bbest = Bg

for i = 1 to |E| do
Ys ← Ybest, Bs = Bbest

if Y s
i == 1 and ρi < ρH then

Y s
i = 0
swapin(0, Bs − qi)

end if
end for
return Ybest, objsp

This procedure simply scans the list of protected elements in the incumbent

solution and tries to swap them out. Subsequently, the subroutine swapin() is

called to identify the best elements to replace the outgoing element in the solution.

To reduce the computational effort of the search phase, we restrict the set of

elements that can be swapped out, by only considering those elements i with an

importance factor less than a given threshold ρH (ρi < ρH).
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Algorithm 10 swapin(ind,Bs)

while Bs < B do
for j = ind+ 1 to |E| do

if Y s
j == 0 and ρj > ρL and Bs + qj ≤ B then

Y s
j = 1

Solve SP2(Ys) to obtain zsp2
if zsp2 ≤ objsp2 + ε then

Solve SP (Ys) to obtain zsp
if zsp2 < objsp2 then
objsp2 = zsp2

end if
if zsp < objsp then
objsp = zsp, Ybest ← Ys, and Bbest = Bs + qj

end if
end if
Bs = Bs + qj
swapin(j, Bs)

end if
end for

end while

The recursive routine swapin examines all the possible combinations of el-

ements that can be swapped in. Every time a feasible swap is identified, the

objective value of the new solution must be computed. In order to do this effi-

ciently, we first solve the model SP2, which is significantly easier to solve than

SP and may provide an indication of the quality of the new protection plan. If

the new solution to SP2 improves or is close enough (ε is used to define how close)

to the best solution found for SP2 (from the defender perspective), then there

are good chances that the same solution may improve SP as well. Otherwise, the

problem SP is not solved and another swap is attempted. This expedient reduces

the number of times that SP is solved and, consequently, the overall computing

time of the algorithm. As for the outgoing elements, we use a parameter ρL to

reduce the number of elements that can be swapped in. The specific values of ρH
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and ρL will be defined in the next section.

6.4 Results and analysis

In this section, the two solution approaches SVI-D and GLS-H are tested and

compared on some randomly generated instances.

6.4.1 Data sets and problem parameters

We evaluate the algorithms’ performances on a set of undirected networks of

different size. We call the networks n-m-x, where n denotes the number of nodes,

m the number of arcs and x is used to differentiate networks of same size. We

focus on three different network sizes: 16-24, 25-40 and 36-60. For each size, 5

instances with the same grid topology were generated. Figure 23 illustrates the

topology of a 16-24-x network. The networks 25-40 and 36-60 have the same

square structure.
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Figure 23: 16-24 grid topology

The other parameters of the problems are generated as follows:
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− The length (or travel distance) of each arc cj is drawn uniformly from the

interval [1, 100]. We assume that the cost for protecting an arc depends on

its length and set qaj = cj.

− We model the presence of three different station sizes: small, medium and

big stations. We assume that 40% of the stations are small, 40% are medium

and 20% are big.

− The cost of protecting a node qni , depends on the station’s size. Namely,

we assume that small stations require 20 units of protection resources to be

fully protected, medium stations require 40 units and big stations require

60 units.

− The cost of interdicting a node pni , depends on the station’s size. Namely,

we assume that small stations require 2 units of interdiction resources to be

disrupted, medium stations require 4 units and big stations require 6 units.

− The cost paj of disrupting any arc is set to 1. Tracks, in fact, are highly

vulnerable and easy to disrupt because of their length and the presence of

accessible and easily attackable structures (overpasses, bridges, tunnels).

− The flow matrix is assumed to be symmetrical and its values are drawn

uniformly from [0, 100].

− The disruption budget, P , is initially chosen to be equal to 6. This indicates

that a disruption can disable a big station, 6 different links, or a combination

of smaller assets (e.g., one small station and 4 links).

− The protection budget B is defined as a percentage of the budget T needed
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to protect the entire network, i.e. B = QT . We initially consider values of

Q equal to 15% and 20%.

Finally, the values of the parameters used to model the travellers’ behaviour,

αr, are given in Table 19. For each origin-destination pair, we use 4 different

values which depend on the shortest path length increase. For instance, if the

shortest path r connecting two nodes after a disruption is less than 20% longer

than the shortest path connecting the two nodes before the disruption, then all the

passenger demand is preserved (αr = 1). In contrast, an increase of the shortest

path length over 100% (i.e., the new shortest path is more than twice as long as

the initial shortest path) results in the loss of the entire demand (αr = 0).

Length increment ≤ 20% > 20% and ≤ 50% > 50% and ≤ 100% > 100%
αr 1 0.5 0.1 0

Table 19: Values of αr as a function of the shortest path length increase.

6.4.2 Solution algorithms’ setting

Both the exact and heuristic approaches are implemented using Cplex 12.5 em-

bedded in a C++ program. Tests were run on a computer with 3.4 GHz quad-core

processor and 8GB of RAM. The SVI-D algorithm uses Cplex default parameters.

We enforce a time limit of 10, 000 seconds for its execution. The values of the

parameters used by GLS-H were chosen empirically after some preliminary tests.

Their setting is as follows:

− ε = 30.

− ρH is the T th highest value of ρ.
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− ρL is chosen such that |EL| = |E|/4, where EL =
{
i ∈ E : ρi < ρL

}
.

The values of T , shown in Table 20, were chosen empirically. These values

depend on the network size and the protection budget. For example, for the

25-40-x networks and with a 15% budget, Yg is initialized with the first 5 best

elements.

Network name
Q 16-24-x 25-40-x 36-60-x

15% 3 5 10
20% 6 10 16

Table 20: Values of T for each combination of network size and protection budget
values.

6.4.3 Performance comparison

In Table 21 and Table 22 we compare the performance of SVI-D and GLS-H for

two protection budget levels: 15% and 20%, respectively. For both algorithms, the

tables list the objective values and the computing times. The gap column shows

the percentage error of the GLS-H solutions compared with the SVI-D solutions.

For the heuristic approach, we also show the execution time for the two phases of

the algorithm.
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SVI-D GLS-H
Network Objective Computing Objective Gap Greedy Search Overall

Name value time (s) value time (s) time (s) time (s)
16-24-1 3076.0 25.24 3076.0 0% 0.78 1.64 2.42
16-24-2 3582.0 17.75 3634.7 1.5% 1.45 3.82 5.23
16-24-3 3390.8 9.83 3390.8 0% 0.40 1.31 1.71
16-24-4 3201.2 24.36 3208.6 0.2% 0.51 4.45 4.98
16-24-5 3143.0 12.33 3143.0 0% 0.61 1.36 1.99
25-40-1 5590.3 2316.24 5590.3 0% 25.90 88.94 114.84
25-40-2 5435.2 1958.49 5435.2 0% 16.94 133.81 170.76
25-40-3 5579.8 1611.01 5609.2 0.5% 10.43 67.73 78.16
25-40-4 5825.8 2156.72 5848.9 0.4% 19.05 95.04 114.09
25-40-5 5528.0 1821.43 5528.0 0% 24.95 158.22 183.17
36-60-1 11195.7? 10000 10441.1 -6.7% 634.26 1349.67 1983.94
36-60-2 12834.4? 10000 10556.5 -17.7% 160.19 399.46 559.66
36-60-3 12714.8? 10000 9962.5 -21.6% 114.19 499.19 613.39
36-60-4 12027.7? 10000 10711.0 -10.9% 284.17 1557.88 1842.06
36-60-5 11997.4? 10000 10325.5 -13.9% 174.04 769.05 943.10
AVG 7008.14 3996.89 6430.75 0.3%† 97.86 342.10 441.30

? Objective value obtained after 10,000 sec.
†The average is computed excluding the cases where the gaps are negative.

Table 21: Computational results (Q = 15% and P = 6)
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SVI decomposition Heuristic
Network Objective Computing Objective Gap Greedy Search Overall

Name value time (s)) value time(s) time(s) time(s)
16-24-1 2725.7 46.37 2725.7 0% 0.65 1.69 2.34
16-24-2 3313.0 53.2 3313.0 0% 0.61 2.47 3.08
16-24-3 2791.8 29.28 2791.8 0% 0.63 2.79 3.47
16-24-4 2836.3 46.57 2836.3 0% 0.53 4.60 5.19
16-24-5 2859.8 26.3 2859.8 0% 0.84 2.56 3.41
25-40-1 5388.1 3385.82 5439.3 1.0% 24.35 391.7 416.05
25-40-2 4864.3 3339.65 4864.3 0% 31.75 37.52 69.28
25-40-3 5051.7 3173.4 5051.7 0% 31.09 93.19 124.23
25-40-4 5322.0 3619.15 5322.0 0% 26.59 50.13 76.73
25-40-5 4818.0 3826.99 4818.0 0% 39.51 120.00 159.52
36-60-1 10322.4? 10000 9079.0 -12.0% 318.03 689.05 1007.50
36-60-2 10843.0? 10000 9503.0 -12.4% 98.71 387.32 486.04
36-60-3 11627.8? 10000 8999.9 -22.6% 79.80 318.93 398.75
36-60-4 11204.4? 10000 8437.6 -24.7% 1820.16 3055.88 4876.05
36-60-5 12423.3? 10000 9729.4 -21.7% 166.25 288.61 454.87
AVG 6426.11 4503.12 5718.05 0.1%† 175.97 363.10 539.10

? Objective value obtained after 10,000 sec.
†The average is computed excluding the cases where the gaps are negative.

Table 22: Computational results (Q = 20% and P = 6)

From the analysis of the tables, it is clear that SVI-D is able to solve to

optimality only small and medium problem instances. The algorithm not only

does not converge in any of the 36-60-x cases, but its solutions, after a considerable

amount of time (10,000 secs), are always very far from the solutions obtained

heuristically. GLS-H is able to identify good approximate solutions. This is true

particularly when the protection budget is 20%. In this case the optimal solution

is found for all small and medium networks, except the 25-40-1 network, where

there is a 1% gap. The average gap, for proven optimal solutions, is 0.3% when

Q = 15% and 0.1% when Q = 20%. The heuristic seems to be both accurate

and efficient. Its computing time is always considerably smaller than SVI-D’s

computing time. As an example, for the network 25-40-5 and Q = 20%, the
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heuristic is 96% faster than the exact algorithm (Table 22). In the next section,

we will show that the heuristic algorithm can be successfully used to identify

cost-efficient protection plans for even larger networks.

6.5 Case study

In this section, we present a case study on the central London Tube. Fig. 24

displays the central portion of the London tube. The corresponding network,

with 51 nodes and 70 undirected arcs, is shown in Fig. 25.

Figure 24: Central London tube map
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Figure 25: Central London tube network

To set the parameters of the problem, we use the open data available on the

Transport For London website (TFL) (www.tfl.gov.uk/info-for/open-data-users).

We use the running time between two directly connected stations to set the nom-

inal cost of each arc, which is then used for computing the paths’ length. The

length of each path includes a 10-minute delay for each line change along the path.

The physical distance of a connection is used to estimate its protection cost. This

choice is motivated by the fact that typical protection strategies, such as digging

draining pits, fortifying water pipes and sewers, and installing video surveillance,

are all dependent on the length of the link. TFL also provides information regard-

ing the flow from all the origins to all the destinations. This is used to build the

demand matrix. We categorize the stations into three groups based on their sizes:

small (pni = 2), medium (pni = 4) and big (pni = 6). The annual flow of passengers

is used to identify the category of each station. Namely, a station is small if the

110



amount of annual passengers going through it is less than 25 millions, medium if

it is between 25 and 50 millions, big otherwise. The rest of the parameters are set

as explained in the previous section. We analyse different scenarios which varies

in terms of protection budget (0%, 5%, 10%, 15%, 20%) and amount of disruption

resources (1, 2, 3, 4, 5, 6).

6.5.1 Impact of the protection budget on the flow loss

The impact of different protection budget levels on the system worst-case flow loss

is displayed in Fig. 26. The analysis is performed for six scenarios, which differ

in terms of the disruption magnitude, defined by the parameter P .

Figure 26: Flow loss for different budget levels and disruption scenarios

Clearly, increasing the protection resources from 0% to 20% can reduce the

worst-case flow loss quite significantly, in every disruption scenario. For the largest
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disruption scenario (P = 6), the flow loss drops from more than 56% to about

34%. This means that, without any protection, a large disruption can potentially

affect more than half of the entire traffic on the network. If 20% of the network

is protected in a cost-efficient way, then the worst-case scenario flow loss drops to

about one third of the total flow. Generally, all the budget increments prove to

have a beneficial impact on the demand losses, although the marginal benefit due

to the last increment decreases for small disruption scenarios (i.e., P = 1).

6.5.2 Optimal protection plans analysis

In this section, we analyse the protection plans identified by the model in different

scenarios. We consider the same six disruption scenarios used in the previous

section and four protection budget levels (5%, 10%, 15%, 20%). Tables 23 and 24

show the most frequently protected nodes and links of the network across the 24

scenarios.

Station No. of protections
Westminster 18
Notting Hill 16
St. Paul’s 10

Chancery Lane 9
Moorgate 9
Old Street 8

Marble Arch 7
Lancaster Gate 6

Bank/Monument 5
Holborn 3

Table 23: Frequency of protections for stations
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Link No. of protections
Holborn-Tottenham Court Road 24

Chancery Lane-St. Pauls’s 24
Bank/Monument-St. Pauls’s 24

Bond Street-Mable Arch 23
Chancery Lane-Holborn 23

Oxford Circus-Tottenham Court Road 21
Lancaster Gate-Marble Arch 19
Bond Street-Oxford Circus 19

Notting Hill-Queensway 18
Queensway-Lancaster Gate 18

Table 24: Frequency of protections for links

Table 24 shows that some key links (the first three) appear in every single

protection plan. This is a clear evidence of how critical these assets are for the

network: independently on the disruption scenario and available protection re-

sources, these links must be protected to minimize the system’s losses in case of

disruption. Among the stations, Westminster and Notting Hill are clearly the

most critical: they are protected in 18 and 16 out of the 24 cases, respectively

(Table 23).
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Figure 27: Most frequently protected elements

In Fig. 27 the most frequently protected elements of the network are high-

lighted. The figure shows a clear pattern in the protection. All the protected arcs

and most of the protected nodes belong to the Central line. This is a plausible

result, considering that the Central line is the busiest tube line, with over 260

million annual passengers.

6.5.3 The importance of considering variable post-disruption demand

To prove the importance of modelling the user behaviour in an accurate way

when planning protection efforts, we propose a comparison between the solutions

obtained with NPVDL and the solutions obtained with the model introduced in

Section 4 (referred to as NPCDL). As mentioned in previous Sections, this model

relies on the definition of acceptable paths. In the following analysis, we consider

two threshold values to define the acceptable paths: 2 (meaning that a path twice

as long as the shortest path or less is considered acceptable) and 1.5 (meaning
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that a path up to 50% longer than the shortest path is considered acceptable).

In Fig. 28, we display the optimal protection plans and the post-protection,

worst-case interdictions identified by the two models (NPVDL and NPCDL with

threshold 2) for three different disruption scenarios (P = 2, 4, 6). For the sake of

clarity, the figure displays the results for a protection budget level equal to 5%

(protection plans involving fewer elements can be better visualized in the pictures).

The pictures in the left column (28a, 28c, 28e) show the NPVDL solutions, whereas

the pictures in the right column (28b, 28d, 28f) show the NPCDL solutions. It is

evident that the solutions identified by the two models differ quite significantly,

both in terms of protected elements and in terms of post-protection, worst-case

disruptions. For example, when P = 2 and P = 4 the protection plans are

completely different. Substantial differences were also noted for other values of

the parameter Q.

To evaluate the impact that overlooking the user behaviour may have on the

evaluation of worst-case demand losses, we use the optimal protection plans iden-

tified by NPCDL to compute the worst-case losses in our modelling framework

(i.e., when the post-disruption passengers demand varies with the extent of the

travel delay according to the pattern displayed in Table 19). Tables 25 and 26

display the percentage demand loss increase for different disruption scenarios and

protection budget levels, when the threshold is equal to 2 and 1.5, respectively.

By observing the tables, it can be noticed that the solutions found by NPCDL

are strongly suboptimal, especially for large values of Q and small disruptions. In

this case study, the demand loss increase for both threshold values can be as high

as 153% when Q = 20% and P = 1. Although the increase is less substantial for

other combinations of the parameters P and Q, in all cases but two, solving the
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(a) P = 2, Q = 5% (b) P = 2, Q = 5%

(c) P = 4, Q = 5% (d) P = 4, Q = 5%

(e) P = 6, Q = 5% (f) P = 6, Q = 5%

Figure 28: Optimal protection plans and post-protection interdictions for NPVDL
and NPCDL
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more simplistic NPCDL model results in a misestimation of the real worst-case

scenario losses in case of disruption. Note that the negative increase in Table 26,

observed when P = 3 and Q = 5%, is due to the fact that the heuristic solution

to the NPVDL is not the optimal one.

Q
P 5% 10% 15% 20%
1 16% 57% 129% 153%
2 12% 12% 58% 71%
3 14% 19% 38% 56%
4 11% 19% 32% 51%
5 6% 12% 3% 8%
6 4% 9% 7% 16%

AVG 11% 21% 45% 59%

Table 25: Demand loss increase when using NPCDL with threshold 2

Q
P 5% 10% 15% 20%
1 16% 59% 139% 153%
2 11% 10% 49% 85%
3 −1% 16% 48% 99%
4 1% 15% 30% 24%
5 4% 2% 21% 8%
6 0% 5% 11% 16%

AVG 5% 18% 50% 64%

Table 26: Demand loss increase when using NPCDL with threshold 1.5

These results show empirically that failure to accurately represent the user

behaviour into a modelling framework may lead to highly sub-optimal protection

strategies, where limited protection resources are not allocated in a cost-effective

way.
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6.5.4 Solution analysis with a different user behaviour

In the previous section, we have demonstrated that considering the user behaviour

is crucial to identify sound protection strategies. In this section, we analyse the

sensitivity of our solutions to different values of the parameter αr, used to capture

the users behaviour. To this end, we run a new set of experiments where the values

of αr have been changed to the values shown in Tab. 27.

Length increment ≤ 40% > 40% and ≤ 70% > 70% and ≤ 100% > 100%
αr 1 0.5 0.1 0

Table 27: New values of α as a function of the shortest path increase.

These values indicate that users are willing to accept longer travel delays,

as compared to the ones used in the previous analysis. For instance, a travel

time increase up to 40% does not cause any flow loss, whereas previously a 40%

increment would have led to the loss of 50% of the flow.

Tables 28 and 29 show the most frequently protected stations and links, across

all the proposed scenarios.

Station No. of protections
Westminster 15
Notting Hill 15
Old Street 10

Chancery Lane 9
St. Paul’s 9

Marble Arch 8
Moorgate 7

Lancaster Gate 6
Bank/Monument 4

Holborn 3

Table 28: Frequency of protections for stations, with new α values.
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Link No. of protections
Bond Street-Mable Arch 24
Chancery Lane-Holborn 24

Chancery Lane-St. Pauls’s 22
Holborn-Tottenham Court Road 22

Bank/Monument-St. Pauls’s 20
Lancaster Gate-Marble Arch 20

Oxford Circus-Tottenham Court Road 18
Notting Hill-Queensway 18

Queensway-Lancaster Gate 18
Bond Street-Oxford Circus 14

Table 29: Frequency of protections for links, with new α values.

Changing α has an obvious impact on the objective function. There is, in

fact, an average 4.4% decrease in the flow loss. Nonetheless, it seems that the

protection plans have not changed significantly. Tables 28 and 29 show the same

patterns highlighted by Tables 23 and 24. No new element appears in the protec-

tion plans and there are only small variations in the frequency of the protected

elements. This suggests that, for this particular case, the solutions identified by

our model are quite robust to variations of the parameter α. As mentioned in the

introduction, estimates of this parameter can be obtained by surveying a sample

of the railway system users. A small misestimation of this figure should not have

a major impact on the protection strategies identified by the model.

6.6 Conclusions

In this chapter we introduced a new modelling approach for increasing the relia-

bility and security of flow-based networks. Our focus is on railway systems. The

proposed approach overcomes some of the limitations of pre-existing models, by

capturing the user behaviour in a post-disruption period. Specifically, our model
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assumes that the demand for service after a disruption depends upon the extent

of travel delay of each origin-destination route on the network. Results show that

failing to consider the user behaviour may lead to sub-optimal protection plans

and an underestimation of disruption consequences.

The inclusion of the post-disruption user behaviour into a mathematical model

significantly increases the model’s complexity and tractability. To identify opti-

mal or near-optimal solutions to the problem, we developed an exact method

and a heuristic solution approach. The exact algorithm is an iterative proce-

dure based on the concept of Super-Valid Inequalities. The heuristic algorithm is

composed by a greedy construction phase followed by a local search procedure.

Computational tests on some randomly generated networks show that the exact

method, although useful to assess the accuracy of the heuristic on small problems,

can only tackle networks of modest size. In contrast, the heuristic proves to be

both efficient and effective in identifying high quality solutions. The application

of the modelling approach to a real rail network (the London tube) provides a

practical demonstration of how limited protection resources can be allocated in a

cost-efficient way among the most vulnerable assets of a rail system. It also high-

lights how some key elements must be protected in every disruption scenario to

achieve high level of network security. Finally, the case study highlights the fact

that neglecting the post-disruption user behaviour may lead to the identification

of highly inefficient protection strategies, with worst-case disruption losses 150%

higher than those obtained with our model.
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7 A model to protect road network infrastruc-

ture against flooding

This chapter focuses on the problem of identifying optimal protection strategies

to reduce the impact of flooding on a road network. We propose a dynamic

mixed-integer programming model that extends the classic concept of road net-

work protection by shifting away from single-arc fortifications to a more general

and realistic approach involving protection plans that cover multiple components.

We also consider multiple disruption scenarios of varying magnitude. To efficiently

solve large problem instances, we introduce a customized GRASP heuristic. Fi-

nally, we provide some analysis and insights from a case study of the Hertfordshire

road network in the East of England. Results show that optimal protection strate-

gies mainly involve safeguarding against flooding events that are small and likely

to occur, whereas implementing higher protection standards are not considered

cost-effective.

Natural hazards can have serious impacts in terms of economic losses and human

casualties. Floods can be particularly dangerous due to the high number of people

living in at-risk areas and due to the high frequency of occurrence. Both coastal

and inland areas can be affected by floods caused by the overflow of rivers and the

sea. Even areas that are far from a water course or coastal zone can still be at risk

of flooding caused by heavy rain. The World Resources Institute estimates that

climate change and population rise will more than double (from 21 to 54 millions)

the number of people exposed to floods (Luo et al., 2015). In the UK, one in six

properties are at risk of flooding (Environmental Agency, 2009). The 2005 flood

in New Orleans caused by Hurricane Katrina is one of the most tragic examples
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of the disruptive power of such events. Even less dramatic floods can still lead

to major disruption of vital services and significant economic losses. During the

winter of 2013-14 in the UK, heavy rainfall triggered numerous floods that left

major roadways under water and disrupted several train lines. The government

subsequently allocated £130M to repair and maintain flood defences (Carrington

and Weaver, 2014).

The first step to mitigate flood risk has to be done at the policy-level so as to reg-

ulate urban development in hazardous areas. Subsequently, risk analysis should

be implemented to identify vulnerabilities and suitable protection measures. Re-

sources should also be used to devise post-disaster strategies to reduce loss of life

and economic damages.

Flood damages can be split into three categories: urban, rural, and infrastructure

(Dutta et al., 2003). In this chapter we deal with the issue of protecting the road

transportation system. Transportation systems are often highly exposed to flood

risk due to their considerable size, which makes implementing fully comprehen-

sive protection measures all but impossible. In order to cope with the limited

availability of resources for securing road networks, we propose a multi-period

optimization model for selecting multiple asset protection plans to guard against

a specified set of flood scenarios. Flood events are usually classified using the

”return period” concept (Gumbel, 1941). The return period is the time interval

between two events of the same disruption size and can be used to estimate the

probability of a given scenario occurring. A 100 year flood, for instance, it is

estimated to happen with a 1% chance in any given year.

The same concept is normally used to define the standard of protection offered by

an engineered flood defence measure, which may include building/replacing dikes,
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sluices, slopes, embankments, and culverts. These structures differ in terms of

the standard of protection guaranteed, the cost to implement them, and the size

of the area afforded protection. Relatively inexpensive defences like vertical walls

or concrete structures can often be quickly built to protect a small, targeted area.

More ambitious plans, such as the construction of diversion canals or large dams

can impact larger areas, but normally at a much higher cost.

Although the literature dealing with transportation disruption is vast (Chang

(2003), Huang et al. (2007), Fan and Liu (2010), He and Liu (2012)), very little

attention has been given to the effects of extreme weather conditions on trans-

portation services. Suarez et al. (2005) propose a model to assess how flooding

and climate change impact the performances of urban transportation. They use

an Urban Transportation Modelling System (UTMS) to simulate traffic flows and

apply the model to the Boston Metro Area. Sohn (2006) assess the critical links

in a highway network under flood damage. Criticality is estimated according to

an accessibility metric based on shortest distances and traffic flows.

7.1 Model Formulation

Let a road network be represented as a graph G(N,A), where N is the set of nodes

(junctions) and A the set of arcs (road links). Suppose a set of flood disruption

scenarios S is under consideration. A given flood disruption scenario s ∈ S, which

occurs with probability πs, will cause a subset of arcs As ⊆ A to be disrupted.

The disruption caused by any scenario s can vary spatially such that arcs may

face a range of discrete flood magnitudes represented by set L. The return period

of a given flood size ` ∈ L is given by r` and expresses the average time interval

(normally expressed in years) between two floods of the same magnitude. A flood’s
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magnitudes and return period are directly linked. Specifically, flood events with

longer return periods have higher magnitude and vice versa. Set R = {r` : ` ∈ L}

denotes all possible return periods associated with flood sizes L.

Under normal conditions, travel time along an arc k ∈ A is given by dk.

Assuming no additional protection is provided to an arc, flood scenario s ∈ S will

cause a delay in travel time of ∆dks for arc k ∈ As as a result of facing a flooding

event with a return period of ρks ∈ R. We assume that protection of any arc k to a

standard sufficient to withstand a flood of magnitude ` ∈ L will protect it against

any flood of lesser magnitude (i.e., no delay will occur for any flood `′ ∈ L having

a return period r`′ < r`). With this in mind, let P be a set of protection plans.

An individual protection plan p ∈ P , which costs cp to implement, can protect

multiple arcs Âp ⊆ A to various standards. Specifically, plan p will protect arc

k ∈ Âp against any flood with a return period of σkp ∈ R or less.

Now the aim of our problem is to select a subset of protection plans in P over

a specified planning horizon of length T in order to minimise, across disruption

scenarios S, the expected all-pairs shortest path from a defined origin o ∈ N .

Each time period is subject to the same set of scenarios S. It is assumed that

there is a budget bt available in each period for implementing protection plans and

that unused portions of the budget can be carried forward to subsequent periods.

It is further assumed that protection of any arc in time t = 1, ..., T lasts for the

remainder of the planning horizon t, ..., T . In cases where two or more protection

plans are implemented and would provide overlapping protection to the same arc,

the arc will be protected to the highest standard among the plans (e.g., if an arc

has already been protected to a standard ` and a subsequent plan would protect

it to a lower standard `′ such that r`′ < r`, then the previous higher standard `
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would be retained).

7.2 A Dynamic model for Road Protection against Flood-

ing

To formulate our Dynamic Road Protection against Flooding (DRPF) model,

consider the following additional notation:

FS(i) = the forward star of node i

RS(i) = the reverse star of node i

M = some very large constant ( ≥ the largest return period in set R)

We also introduce the following decision variables:

yokst = the number of times arc k is included in a shortest path originating from

node o to any other node if scenarios s occurs in period t

zpt =


1 if plan p is implemented in period t

0 otherwise

αkst =


1 if arc k is disrupted by scenario s in period t

0 otherwise

βkt = the largest return period that arc k would be protected against in period t

With this in place, a non-linear formulation of DRPF, based on the well known
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single origin to multiple destination problem, is given below.

[DRPF] min
∑
s∈S

πs

T∑
t=1

∑
o∈N

∑
k∈A

(dky
o
kst + ∆dksαksty

o
kst) (84)

s.t.

t∑
u=1

∑
p∈P

cpzpu ≤ Bt t = 1, ..., T (85)

∑
k∈RS(i)

yokst −
∑

k∈FS(i)

yokst =


−|N |+ 1 if i = 0

1 otherwise

∀o ∈ N, ∀i ∈ N,∀s ∈ S, t = 1, ..., T (86)

βkt = max
u≤t, p∈P

{σkpzpu} ∀k ∈ A, t = 1, ..., T (87)

Mαkst ≥ ρks − βkt ∀k ∈ A,∀s ∈ S, t = 1, ..., T (88)

yokst ≥ 0 ∀o ∈ N,∀k ∈ A,∀s ∈ S, t = 1, ..., T (89)

zpt ∈ {0, 1} ∀p ∈ P, t = 1, ..., T (90)

αkst ∈ {0, 1} ∀k ∈M,∀s ∈ S, t = 1, ..., T (91)

βkt ∈ R ∀k ∈M,∀t = 1, ..., T. (92)

The aim of DRPF model is to choose protection plans that minimize the

expected all-pairs shortest path cost over all disruption scenarios (84). Inequalities

(85) impose a budget restriction on the cost of protection plans in each time period

t. Equations (86) are the flow-balance constraints for an all-pairs shortest-path
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problem. Equations (87) set βkt to the largest return period that arc k would be

protected against taking into account all of the protection plans covering arc k

that have been implemented in periods u ≤ t. Constraints (88) require variable

αkst to be equal to 1 whenever the highest safety standard implemented for arc k

by period t is insufficient to protect against scenario s (i.e., if ρks > βkt). Finally,

constraints (89)-(92) impose necessary the restrictions on the decision variables.

7.3 Linearization of the objective function

The second term of the objective function dkαksty
o
kst is non-linear. To linearize it,

we introduce auxiliary variables γokst as well as a large constant M ′.

Objective function (84) can then be replaced by:

min
∑
s∈S

πs

T∑
t=1

∑
k∈A

∑
o∈N

(dky
o
kst + ∆dkγ

o
kst) (93)

subject to (85)-(92) and the following.

γokst ≥ yokst +M ′(αkst − 1) ∀o ∈ N,∀k ∈ A,∀s ∈ S, t = 1, ..., T (94)

γokst ≥ 0 ∀o ∈ N, ∀k ∈ A,∀s ∈ S, t = 1, ..., T (95)

Constraints (94) are introduced so that γokst = yokst whenever αkst = 1, 0

otherwise. Constant M ′ needs to be larger than the total number of origin-

destination couples. Constraints (95) are the non-negativity requirements for

the γokst variables.

127



7.4 Linearization of the protection level constraints

Constraint (87) can be linearized by introducing additional decision variables xkt`

defined as:

xkt` =


1 if the highest protection standard afforded to arc k in period t

is sufficient to withstand a flood of size `

0 otherwise

Further, let Pk` be the subset of plans in P that would protect arc k to a

standard sufficient to withstand a flood of size `. With this in place, equalities

(87) can be replaced with the following set of linear constraints.

βkt =
∑
`∈L

r`xkt` ∀k ∈ A, t = 1, ..., T (96)

∑
`∈L

xkt` ≤ 1 ∀k ∈ A, t = 1, ..., T (97)

xkt` ≤
t∑

u=1

∑
p∈Pk`

zpu ∀k ∈ A,∀` ∈ L, t = 1, ..., T (98)

xkt` ∈ {0, 1} ∀k ∈ A, t = 1, ..., T (99)

Constraints (96) are used to set βkt to the highest protection standard imple-

mented for arc k by period t. Inequalities (97) stipulate arc k can be protected to

at most one safety standard ` in period t. Constraints (98) state that arc k can

be protected to a safety standard of ` in period t if a plan p ∈ Pk` has been imple-

mented in the time window 1, ..., t. Constraints (99) are the binary requirements

for variables xkt`.
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7.5 Solution approach

The proposed model can be solved directly with a general purpose mixed inte-

ger linear programming (MILP) solver like CPLEX. The formulation, however,

requires a very large number of variables and constraints,even when moderate

numbers of scenarios, protection plans, and time periods are considered. This

has a strong impact on the performance of the MILP solver, both in terms of

computing time and memory requirements. Furthermore, shortest-path problems

can be solved very efficiently using specialized algorithms. These considerations

suggest that more effective solution approaches can be devised. Here, we present

a heuristic algorithm based on the GRASP meta-heuristic for building an initial

solution combined with a local search to further explore the feasible space.

7.5.1 GRASP step

The GRASP (Greedy Randomised Adaptive Search Procedure) meta-heuristic

was introduced by Feo and Resende (1995) to overcome the limits of purely greedy

construction algorithms. It is an iterative procedure that at each step builds up a

solution by randomly choosing elements from a dynamically constructed restricted

candidate list (RCL). The RCL consists of a subset of elements which are selected

according to a greedy scheme. Once GRASP has produced a starting solution, a

local search can be carried out to find an improved solution. The entire process

can be repeated multiple times in an effort to more fully explore the solution space.

The following is the notation used in our GRASP implementation:

− itr is the iteration index
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− plansitr and objitr are the solution and the corresponding objective value

obtained at iteration itr

− bestP lans and bestObj refer to the best solution found and the correspond-

ing objective value

− MAXITER is maximum the number of iterations

− RCLSIZE is the size of the restricted candidate list

− Φpt is a greedy metric used to rank the pair (p, t) (i.e., the importance of

plan p implemented at time t)

− Sk` is the set of scenarios that disrupt arc k at level `

− ∆s is the increment in the all-pairs shortest path expected cost generated

by disruption scenario s

We further introduce some crucial subroutines used in the algorithm:

− computeShortestPath(plansitr) finds a solution to the all-pairs shortest

path problem, subject to the disruption scenarios and with protection strat-

egy plansitr as input. The function is implemented efficiently using the

Floyd-Warshall algorithm (Floyd, 1962).

− updateImportance(plansit) updates the metric Φpt given the plansit as in-

put. Before defining Φpt mathematically, we need to introduce an addi-

tional parameter λk` for each arc and flood size pair (k, `). Specifically, let

λk` =
∑

`′≤`
∑

s∈Sk`
∆s. Parameter λk` which gives the cumulative incre-

ment in the shortest path expected travel cost generated by all scenarios
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disrupting arc k at level `′ ≤ `. For the sake of clarity, we define fit =

computeShortestPath(plansitr) and fit(p, t) = computeShortestPath(plansitr∪

(p, t)). The difference between these two values fit−fit(p, t) represents the

net decrease in overall travel costs obtained when adding (p, t) to the solu-

tion. The importance metric is then computed by the following formula:

Φpt =

∑
k∈Âp

λkσkp(fit− fit(p, t))
cp

(100)

Looking at (100), importance is defined as the benefit obtained by including

plan p at time t to the set of implemented protections weighted by parameter

λkσkp and the inverse of the cost cp of implementing that plan.

− buildRCL(plansitr) creates the restricted candidate list of size RCLSIZE

by selecting the best pairs (p, t) according to their Φpt values.

− updateFeasibeP lans(plansitr) is used to keep track of plans that can be

added to plansitr without violating the budget constraints.

In Algorithm 11, we provide pseudo-code of the GRASP heuristic.

7.5.2 Improvements to the GRASP algorithm

Here, we briefly discuss some expedients that have been adopted to improve the

GRASP algorithm both in terms of efficiency and accuracy. The first improve-

ment takes advantage of multi-core processors by implementing a multi-thread

version of the algorithm. Using concurrent programming allows for a more in-

depth exploration of the solution space without an increase in the execution time.

Furthermore, threads can work with different algorithm settings to implement
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Algorithm 11 GRASP pseudo-code.

bestP lans← ∅; bestObj =∞; itr = 1
while itr ≤MAXITER do
plansitr = ∅; objitr =∞
updateImportance(plansitr)
updateFeasibeP lans(plansitr)
while there are feasible plans do
buildRCL(plansitr)
randomly select a plan

(
p̂, t̂
)

from RCL

plansitr = plansitr ∪
(
p̂, t̂
)

updateImportance(plansitr)
updateFeasibeP lans(plansitr)

end while
objitr = computeShortestPath(plansitr)
if objitr < bestObj then
bestP lans← plansitr; bestObj = objitr

end if
itr = itr + 1

end while
return bestP lans; bestObj

different policies so that the probability of exploring the same solution is reduced.

To provide this flexibility, we extend the definition of Φpt as follows:

Φpt =
µ(p)

∑
k∈M bkpλkσp(fit− fit(p, t))

rp
(101)

The function µ(p) is used to weight each plan according to the protection level

offered. Specifying different functional forms of µ for each thread will result in dif-

ferent solutions explored, thus increasing the chance of finding an optimal solution.

For example, µ(p) = 1 weights all plans p equally. Alternatively, µ(p) = `maxp ,

where `maxp is the index number of the maximum protection standard afforded to

any arc in plan p (i.e., `maxp = arg maxk∈Âp
σkp), puts higher weight on plans offer-

ing potentially higher levels of protection. This, in turn, increases the probability
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of having such plans in the solutions.

The algorithm can be further improved by optimizing the routine updateImportance().

The idea behind the improvement is as follows. If there are available protection

resources at time t, the most important plans (the ones with higher Φ) will more

likely be the plans (p, t′) with t′ ∈ [t, t+ 1]. As a consequence, we can reduce the

number of plans for which Φ needs to be recomputed by excluding the plans (p, t′)

such that t′ ∈ [t+ 2, T ].

Finally, if we keep track of the highest possible level of disruption threatening each

arc, we can ignore any plans that over protect. Formally, a plan p is excluded

from consideration if:

σp > max
s∈S
{ρks} ∀k ∈ Âp ∧ ∃p′ s.t. c′p < cp, Â

′
p ⊆ Âp,

σkp ≥ σkp′ ≥ max
s∈S
{ρks} ∀k ∈ Âp′ (102)

7.5.3 Local search step

The best solution found by the GRASP procedure is used as the starting point for

a local search. The temporal component of the model makes the implementation

of an effective local search challenging. In fact, a search procedure should take

into account the fact that the GRASP solution generated might include plans

that are not included in the optimal solution and/or plans that are in the optimal

solution but should be implemented at different time periods. To tackle this issue,

we implemented two types of swap moves: internal and external. For each type,

two approaches were devised. The four different swaps are carried out sequentially
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in the same order as they are introduced in the next sections.

Internal swaps can perform single or multiple swaps between the elements

of a solution. Specifically, these swaps change only the time when plans are

implemented, not the type of plans chosen. Swaps are done only among plans

implemented in consecutive time periods. We consider two combinations of swaps:

− 1-to-2 swap: A plan (p, t) with t ∈ [1, T − 1] is postponed one period. Si-

multaneously, up to two plans implemented at time t+1 are brought forward

one period. Every combination involving 1 or 2 plans is considered. Non-

feasible solutions are discarded. The pseudo-code of this approach is shown

in Algorithm 12.

− 2-to-3 swap: This approach is almost identical to the previous one. The

only difference is the number of plans that are postponed (2) and those that

are brought forward (up to 3).

Table 30 shows an example of 1-to-2 internal swap, where the plans in bold are

those being swapped. The code is implemented to avoid unnecessary computation.

For instance, assuming that the swap p2 ↔ (p3, p5) generates a feasible solution,

then swaps p2 ↔ p3 and p2 ↔ p5 are not considered.

Before
t Plans
0 p1 p2

1 p3 p4 p5

2 p6 p7

After
t Plans
0 p1 p3 p5

1 p2 p4

2 p6 p7

Table 30: Example of 1-to-2 internal swap.
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Algorithm 12 Internal 1-to-2 swap

plans← bestP lans
for t = 1; t < T ; t+ + do

for (p, t) ∈ planst do
plans← plans \ (p, t) ∪ (p, t+ 1)
for (p′, t′)1 ∈ planst+1 do
plans← plans \ (p′, t′)1 ∪ (p′, t′ − 1)1

if plans is a feasible solution then
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
for (p′, t′)2 ∈ planst+1 ∧ (p′, t′)2 6= (p′, t′)1 do
plans← plans \ (p′, t′)2 ∪ (p′, t′ − 1)2

if plans is a feasible solution then
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
end if
plans← plans \ (p′, t′ − 1)2 ∪ (p′, t′)2

end for
end if
plans← plans \ (p′, t′ − 1)1 ∪ (p′, t′)1

end for
plans← plans \ (p, t+ 1) ∪ (p, t)

end for
end for

External swaps remove one or more plans from the best solution and replace

them with one or more plans not currently included in the solution. As with

internal swaps, we consider two cases:

− 1-to-2 swap: A plan (p, t) is removed from the solution. Simultaneously,

up to two plans are added in its place. Only plans that would generate a

feasible solution are considered. The pseudo-code of this approach is shown

in Algorithm 13.
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− 2-to-3 swap: This approach is nearly identical to the previous one. The only

difference is the number of plans swapped out (2) and swapped in (up to 3).

Algorithm 13 External 1-to-2 swap

plans← bestP lans
for (p, t) ∈ plans do
plans← plans \ (p, t)
updateFeasibeP lans(plans)
for (p′, t′)1 ∈ FeasibleP lans do
plans← plans ∪ (p′, t′)1

updateFeasibeP lans(plans)
if FeasibleP lans \ (p, t) 6= ∅ then

for (p′, t′)2 ∈ FeasibleP lans do
plans← plans ∪ (p′, t′)2

obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
plans← plans \ (p′, t′)2

end for
else
obj = computeShortestPath(plans)
if obj < bestObj then
bestP lans← plans; bestObj = obj

end if
end if
plans← plans \ (p′, t′)1

end for
plans← plans ∪ (p, t)

end for

Table 31 shows an example of 1-to-2 external swap with swapped plans shown

in bold.
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Figure 29: An example 16× 24 grid.

Before
t Internal plans External plans
0 p1 p2 p8 p9 p10

1 p3 p4 p5 p8 p9 p10

2 p6 p7 p8 p9 p10

After
t Internal plans External plans
0 p1 p2 p7 p8

1 p3 p4 p5 p7 p8

2 p6 p9 p10 p7 p8

Table 31: Example of 1-to-2 external swap.

7.6 Computational tests

For our initial computational tests, we generated non-directed square networks of

size n × m, where n is the number of nodes and m is the number of arcs. We

work on non directed-networks because we assume that the travel time of a link

is independent of the travel direction and that protections and disruptions affect

simultaneously and equally both directions. In Figure 29, we show the topology

of an example 16 × 24 grid. Arcs travel times dk were drawn uniformly in the

range [1, 10].

We consider 4 different flood sizes categorized in terms of their return period:
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20, 50, 100, and 250 years. The same values are used to identify the levels of

protection. Therefore, R = {20, 50, 100, 250}. According to the disruption level

of each scenario, the delay ∆dks is set to 2.5, 5, 10, and 20 times the baseline

travel time dk. We examined three types of protection plans: arc, node and,

row/column plans. Arc plans protect a single arc. Node plans protect all the arcs

incident to a node. Finally, row/column plans include all the arcs forming a row

or a column in the grid. For example, if we consider the grid in Figure 29, the

node plan corresponding to node 6 will include arcs 2-6, 5-6, 6-7 and 6-10. The

row plan corresponding to the second row will include arcs 2-6, 6-10 and 10-14.

Overall, we can identify m+ 3n different plans using this scheme. Each plan can

be implemented at 4 levels of protection. Consequently, for each instance we use

4(m + 3n) protection plans. In Table 32, we show the criteria used to estimate

the costs of implementing the protection plans.

The discount factor f was set to 1.3. It is incorporated so that adopting a

node or row-column plan p will be cheaper than independently protecting all the

arcs included in p.

We assume that all arcs face the same level of disruption flooding for any given

scenario (i.e., ρks = ρs, ∀k ∈ As) and that the number of arcs disrupted in each

scenario is dependent on the scenario’s return period. The least damaging scenario

is capable of disrupting only 1 arc. The number of disrupted arcs increases with

Return period (yrs)
Type of plan 20 50 100 250
Arc dk 2dk 3dk 4dk
Node [f−1

∑
k∈A bkpck] [2f−1

∑
k∈A bkpck] [3f−1

∑
k∈A bkpck] [4f−1

∑
k∈A bkpck]

Row/Column [f−1
∑

k∈A bkpck] [2f−1
∑

k∈A bkpck] [3f−1
∑

k∈A bkpck] [4f−1
∑

k∈A bkpck]

Table 32: Cost of implementing a given type of plan according to its protection
level.
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the scenario’s size from 1 to m/4 (i.e., the most severe disruption scenario can

disrupt 25% of the network). In Table 33, we list the number of disrupted arcs

for each of the return periods considered.

Return period (yrs)
20 50 100 250

No. disrupted arcs 1 d(m+ 20)/24e d(m+ 5)/9e dm/4e

Table 33: Number of disrupted arcs based on a scenario’s return period.

Scenarios were built in such a way that arcs affected by a given scenario formed

a connected sub-network. This was done so that the elements affected by a flood

event were contiguous, as is often the case in real life. Finally, we report in Table

34 the number of scenarios generated for each level of flooding. The probability

of occurrence for a scenario was set as the inverse of the scenario’s return period.

We generated 30 instances using networks of size 9× 12, 16× 24, and 25× 40.

Return period (yrs)
20 50 100 250

No. scenarios m dm/2e dm/4e dm/8e

Table 34: Number of scenarios generated for each return period.

We considered a 4-periods planning horizon (i.e., T = 4). We chose a total

protection budget equal to 10% of the resources needed to protect the entire

network at the highest safety level. The budget was equally spread over the time

periods. We ran the heuristic with the number of threads set to 4. Each thread

uses a different µ vector to compute Φ based on equation (101). The values for

the different policies used in each thread are listed in Table 35.
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Return period (yrs)
Thread ID 20 50 100 250

0 1 1 1 1
1 1 2 3 4
2 1 1.3 1.6 1.9
3 1 2 2 1

Table 35: Set of µ values used for each thread.

Thread 0 treats all the protection plans equally. Threads 1 and 2 give more

importance to plans that grant higher levels of protection. Finally, thread 4

weights more heavily medium level protection plans. These values were chosen

empirically to maximize the probability of discovering an optimal solution. The

size of the RCL is dependent on the problem size. It was set to 3 for 9× 12 and

16× 24 networks and to 4 for 25× 40 networks. The number of iterations was set

to 100 and we specified a 6-hour limit on the run time of the algorithm.

In Table 36, we compare the performance of CPLEX against our GRASP

heuristic on the 30 test problem instances. The “Obj” and “Time” columns show

the objective value and the solution time obtained by the two algorithms. “Gap”

is the percentage gap between the best feasible solution obtained with CPLEX

and the value returned by the heuristic. A negative value for “Gap” indicates

that the heuristic found a better solution. Finally, “Time diff” is the percentage

difference between the computing time of the two algorithms. A negative value for

“Time diff” indicates that the heuristic was faster than CPLEX. The table shows

that CPLEX can find a verified optimal solution within 6 hours only for small

and mediums sized instances. In fact, on the 25 × 40 networks, CPLEX never

converges to an optimal solution. The heuristic, on the other hand, finds optimal

or near-optimal solutions much more efficiently. It is on average at least 82%

faster than CPLEX and always returns better solutions for the 25× 40 networks.
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CPLEX Heuristic
Network size Instance Obj Time(s) Obj Time(s) Gap(%) Time diff(%)

9× 12 1 2168.6 7 2168.6 2.5 0.00% -64.29%
2 2595.5 6.9 2595.5 3.3 0.00% -52.17%
3 2282.4 9.7 2282.4 3.8 0.00% -60.82%
4 2831.9 6.5 2831.9 2.9 0.00% -55.38%
5 2476.4 4.7 2476.4 3.1 0.00% -34.04%
6 3107.9 6.6 3107.9 3.3 0.00% -50.00%
7 2360.5 8.8 2360.5 3.8 0.00% -56.82%
8 2600.1 6.9 2600.1 3.6 0.00% -47.83%
9 2505.0 5.6 2505.0 3.3 0.00% -41.07%
10 1755.5 8.9 1756.1 2.7 0.03% -69.66%

Avg 7.2 3.2 0.00% -53.21%
16× 24 1 17020.9 1900.1 17020.9 176.9 0.00% -90.69%

2 19487.3 3581.8 19487.3 164.7 0.00% -95.40%
3 21347.0 1714.5 21347.0 131.6 0.00% -92.32%
4 16744.5 1553.9 16747.5 166.6 0.02% -89.28%
5 18646.8 1354.2 18646.8 129.4 0.00% -90.44%
6 16661.8 4395.2 16662.7 187.8 0.01% -95.73%
7 15346.2 4322.8 15349.1 135.1 0.02% -96.87%
8 14288.9 387.1 14288.9 207.4 0.00% -46.42%
9 18783.4 2177.7 18783.4 192.2 0.00% -91.17%
10 12225.7 1971.92 12225.7 180.9 0.00% -90.83%

Avg 2335.9 167.3 0.00% -87.92%
25× 40 1 106278.9† 21600.0 106064.0 3183.7 -0.20% -85.26%

2 88124.5† 21600.0 87981.4 3665.6 -0.16% -83.03%
3 97700.2† 21600.0 97684.1 3676.1 -0.02% -82.98%
4 91102.4† 21600.0 91025.2 3448.5 -0.08% -84.03%
5 109276.9† 21600.0 109091.0 3876.9 -0.17% -82.05%
6 80102.2† 21600.0 79972.0 4384.8 -0.16% -79.70%
7 88891.3† 21600.0 88729.7 4102.1 -0.18% -81.01%
8 97849.8† 21600.0 97818.4 4315.6 -0.03% -80.02%
9 115763.9† 21600.0 115681.0 3937.2 -0.07% -81.77%
10 83557.7† 21600.0 83530.9 3988.9 -0.03% -81.53%

Avg 21600.0 3857.9 -0.11% -82.14%

†Best objective value found after 6 hours of running time.

Table 36: Computational results for test problem instances.

7.7 Case study

In this section, we present a case study based on the A-road network infrastruc-

ture of Hertfordshire in the UK. The network is composed of 36 nodes and 47

undirected arcs. We used historical data on floods, which are publicly available

through the Environmental Agency (EA). Using geographic information system
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Figure 30: Hertfordshire A road network.

(GIS) software (ArcGIS), we generated disruption scenarios by identifying regions

where floods and the road network overlapped. Over the past 70 years, 29 floods

in Hertfordshire are recorded in the EA database. Among them, 16 overlapped

with the A-road network.

In Figure 30, we show the road network considered in our case study. Recorded

floods are shown in light blue; in dark blue are shown events that affected the A-

road network. Unfortunately, floods are not ranked in the database. Consequently,

we rank them into three size categories (small, medium, and large) according to
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the extent of the area flooded. The approach used is explained in Table 37.

Coming up with precise estimates for the return periods and, consequently, the

likelihood for each flood category requires a detailed hydrogeological analysis that

goes beyond the scope of this chapter. For simplicity, we use the number of events

that occurred over the past 70 years to estimate their return period (see Table

37).

Area flooded (km2)
(0, 2.5] (2.5, 10] (10, 50]

Category Small Medium Large
No. observed events 13 2 1
Return period (yrs) 5 35 70

Table 37: Return period estimation.

We consider all single arc protection plans. To this, we add some multiple arc

plans based on a proximity criteria. The costs of implementing the protection

plans are again dependent on arc lengths in the same way as explained in the

computational results for the test instances. The protection budget is computed

as a percentage of the resources needed to implement the highest level of protec-

tion for the entire network (equivalent to 9,825 protection units).

Table 38 reports how the shortest path cost decreases when the protection

budget is increased. The first two increments (from 0% to 2% and from 2% to

4%) are the most significant. Investing a budget of 10% results in a 26% reduction

in the expected shortest path cost over the planning horizon.
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Budget
0% 2% 4% 6% 8% 10%

∆Obj 0% 8% 16% 21% 23% 26%

Table 38: Change in objective function value (∆Obj) versus budget.

In Figure 31, we show the optimal protection plans when the protection budget

is equal to 10%. The map shows, along with the protected links, the protection

level of each plan. The majority of protections are designed to thwart small floods.

No link is fortified at the highest possible level of protection. The results indicate

that the central area of the network (close to the town of Hertford) is the most

critical. Interestingly, arc 29-30 is initially protected at a small level in the first

period and subsequently upgraded to a medium level in the last period.

Next, we compare the results of our base model with those obtained by adopt-

ing the p-robustness criteria introduced by Snyder and Daskin (2006). The

p-robustness measure is combined with our model by adding the following set of

constraints:

T∑
t=1

∑
k∈A

∑
o∈N

(dky
o
kst + ∆dkγ

o
kst) ≤ (1 + p)D∗s ∀s ∈ S (103)

where D∗s is the objective value obtained by solving our base model with only

scenario s as input.

The results of this analysis are summarized in Figure 32. The values of p are

obtained following the same approach used by Snyder and Daskin (2006). We

solve the problem with p = ∞ and then set p to the maximum regret minus

0.00001. Subsequently, p is decremented by 0.00001 until the problem becomes

infeasible. Figure 32 shows that improvements in robustness are not justified
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Figure 31: Optimal protections with the protection budget equal to 10%.

by the costs. At best, a 0.00018 (0.23%) decrease in relative regret (p) can be

achieved for a 7.5% increase in expected travel cost when the protection budget

is 5%. Using higher budgets and or different values of p for different scenarios did

not have any appreciable impact on robustness, therefore results have not been

included.

We also carried out a sentivity analysis to understand how uncertainty in the

estimation of return periods might impact optimal protection strategies. Specifi-

cally, we allowed the return period to vary by ±20% from the base case for small,
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Figure 32: Maximum regret vs expected travel cost when the protection budget
is equal to 5%.

Return period (yrs) Return period (yrs) Return period (yrs)
Case Small Medium Large Case Small Medium Large Case Small Medium Large

1 4 28 56 10 5 28 56 19 6 28 56
2 4 28 70 11 5 28 70 20 6 28 70
3 4 28 84 12 5 28 84 21 6 28 84
4 4 35 56 13 5 35 56 22 6 35 56
5 4 35 70 14 5 35 70 23 6 35 70
6 4 35 84 15 5 35 84 24 6 35 84
7 4 42 56 16 5 42 56 25 6 42 56
8 4 42 70 17 5 42 70 26 6 42 70
9 4 42 84 18 5 42 84 27 6 42 84

Table 39: List of different return period value permutations for small, medium,
large floods.

medium, and large floods, resulting in a total of 27 cases as shown in Table 39.

The budget used in this analysis was set to 10%.

Figure 33 shows the net percentage change in expected travel cost relative to a
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0% protection budget. The figure clearly highlights that it is the return period of

small floods that has the strongest impact on the objective value. In particular,

the different flood scenarios clearly separate into three sub-categories (cases 1-9,

cases 10-18, and cases 19-27) based entirely on the return period for small floods.

Within these three sub-categories, only relatively small changes in the objective

value are observed depending on the return periods for medium and large floods.

For example, increasing the return period of small floods from just 4 to 5 years

(the equivalent of going from a 0.25 to a 0.2 chance of occuring in any given year),

causes net expected travel cost to drop by more than 2-fold, with values in the

range [−9%,−12%] versus [−25%,−28%], respectively. What this suggests is that

errors in return periods estimates for medium and large floods are of less concern

compared to small floods.

Finally, we evaluate the robustness of optimal protection strategies to uncer-

tainty in flood return periods. Table 40 reports the percentage increase in the

Figure 33: Net percentage change in expected travel cost give a protecton budget
of 10%.
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objective function for the base case solution (i.e., case 14) across all 27 permuta-

tions for small, medium, and large flood return period values. The table indicates

that base case optimal solution is highly robust even when the estimation error

for return periods is as high as 20%. Indeed, the base case solution produced no

increase in expected travel cost for 21 out the 27 cases. In the remaining 6 cases,

the increase in cost was marginal (i.e., under 0.3%).

Case Inc (%) Case Inc (%) Case Inc (%)
1 0.00% 10 0.00% 19 0.17%
2 0.00% 11 0.00% 20 0.24%
3 0.00% 12 0.04% 21 0.29%
4 0.00% 13 0.00% 22 0.00%
5 0.00% 14 0.00% 23 0.00%
6 0.00% 15 0.00% 24 0.00%
7 0.00% 16 0.00% 25 0.00%
8 0.01% 17 0.00% 26 0.00%
9 0.03% 18 0.00% 27 0.00%

Avg 0.01% 0.00% 0.08%

Table 40: Robustness of the base case optimal solution to flood return period
uncertainty.

7.8 Conclusions

In this chapter, we introduce a scenario-based model to identify the optimal set

of plans to adopt for protecting a road infrastructure against flooding. When

dealing with flood protection, a large number of measures can be considered.

These measures may differ significantly in terms of cost and protection standard

guaranteed. We incorporate this issue by considering different safety levels and

using protection plans involving potentially many arcs as opposed to single arc

fortifications. A multi-period planning horizon is adopted to take into account the

possibility that protection resources are distributed over time. The consequences
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of disruptions are estimated in terms of the expected all-pairs shortest path travel

cost.

We find that solving the problem with a general purpose solver is challenging. A

GRASP heuristic is, therefore, introduced. Tests on randomly generated networks

of different size demonstrate the efficiency of the heuristic. Finally, a case study

of the Hertfordshire A-road network provides some useful insights.
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8 Conclusions

8.1 Summary

In this thesis, new models to protect transportation infrastructure against dis-

ruption are studied. The first model considers a fortification framework type for

optimally allocating protection resources to a railway network subject to worst-

case disruptions. This model is extended in two different ways.

Firstly, a temporal component is introduced. This is done to consider the more

realistic case of having protection resources allocated over a planning horizon.

Two decomposition approaches are presented to solve this bi-level model.

Secondly, user-behaviour is modelled in a more accurate way. Specifically, it is

assumed that post disruption delays directly affect the number of passengers us-

ing the rail system. To solve the model, an exact and a heuristic approach are

introduced and compared.

Finally, the last problem focuses on protecting a road-network against random

flooding. In contrast with the models proposed in the previous chapters, for this

problem we use a scenario-based optimization model so as to identify robust so-

lutions across a range of disruption scenarios. A heuristic solution approach is

proposed to overcome the limitations of general purpose solvers.

8.2 Suggestions

While the study of critical infrastructure protection has increased significantly in

the last decade, there are still many open questions.

The literature review shows that the great majority of works has focused on
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generic problems (e.g., protecting a network against non specified disruptions).

Although these works have been fundamental in building a base knowledge on

how to model and solve critical infrastructure protection problem, now research

must narrow the focus to specific problems driven by real life data.

The problems analysed in this thesis are significantly complex. A comprehen-

sive study analysis of counter-terrorism plans cannot ignore the geographical,

sociological and historical issues involved. Similarly, protecting against natural

catastrophes involves multiple topics (forecasting, structural engineering etc.). To

this aim, an interesting extension of the work proposed here would be a multidis-

ciplinary research project focusing on flood protection. The project will aim to

support decision making both at a strategic and operational level. Optimization

models can be integrated with accurate weather forecasting (driven by historical

data) and structural engineering analysis to assess the impact of flooding on both

infrastructure’s assets and defence structures. This multi-disciplinary knowledge

can be used in two ways:

− To develop cost-efficient and accurate long-term protection plan to decide

what defence measures should be implemented and where.

− To support a live decision system capable of predicting, to some extent, the

occurring of a flooding and suggesting a set of mitigation strategies, such as

traffic re-routing, evacuation, distribution of emergency supplies etc.

The assumption that disruptor and system protector in fortification problem share

same information and objective function although common can be considered as a

strong one. Very few attempts (Bayrak and Bailey (2008); Jenelius et al. (2010))

have been made to stir away from it. Nonetheless, these attempts simply resulted
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in models where actors estimate a few parameters differently. A more interest-

ing line of research would be to study multi-objective models where actors have

asymmetric knowledge of the system and evaluate their benefits using different

functions.

More efforts can be made into studying dynamic aspects of protection problems.

The challenge is that a protection problem is generally characterized by sev-

eral dynamic components which require significantly different time units. For

instance, protection planning is usually driven by spending review spread over

years, whereas assessing the impact of disruptions may require to evaluate the

system over a hour or even a minute scale. Harmonizing these different time com-

ponents in comprehensive models is a difficult yet interesting research direction.

A more general research direction to undertake focuses on relaxing as many as

possible of the following strong assumptions commonly made in the literature:

− Binary interdictions

− Binary fortifications

− Binary user decisions

− Perfect information

− Same objective function for attacker and defender

For example, when dealing with earthquakes and flooding, protection mea-

sures are generally characterized by fragility curves (Hall et al., 2003). These

curves represent the relationship between conditional probabilities of failure and

levels of stress acting on the defences. One interesting line of research would be

to integrate this concept to describe protection efforts.
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I also plan on further investigating the user behaviour in post-disruption contexts.

In Chapter 6, we model user decisions using a parameter that can be pre-computed

by doing surveys. A logic extension would be to represent travel behaviour as an

endogenous element to the model. Customer choice models such as multinomial

logit (MNL) and ranking based models have been successfully used in the revenue

management context to represent the behaviour of a customer facing different

products. I think that these models can be applied to evaluate user behaviour

in a post-disruption context. In particular, MNL has been already used in the

past in a transportation context (Ben-Akiva and Lerman, 1985), therefore I will

consider the possibility of using it to extend the model described in Chapter 6.

As explained in the introduction, one of the challenge in protecting Critical In-

frastructure is the degree of inter-dependence of these systems. For example, if

we focus on transportation, railway and roadway systems cannot be considered as

two clearly separated and independent systems. Their infrastructure often over-

lap and so does their demand. Failing into considering these systems’ interactions

can lead to less realistic results. Nonetheless, very few works have considered the

impact of disruptions on more than one system.

Focusing on road-transportation protection, models that better represent user

behaviour are needed. For example, static and dynamic user-equilibrium models

could be used to better estimate the impact of disruptions on road-transportation.

Further, an integrated model for protecting urban areas, rural areas, and or in-

frastructure against flooding would be particularly useful.

Finally, this thesis highlights how complex is the task of devising efficient and

accurate solution methods. Additional work might focus on refining current solu-

tion approaches or propose new decomposition, heuristic or hybrid methods able
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to cope with the complexity of bi-level, probabilistic, dynamic and multi-objective

protection models.
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