
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Oliveira, Luiz O.V.B. and Miranda, Luis F. and Pappa, Gisele L. and Otero, Fernando E.B. and
Takahashi, Ricardo H.C. (2016) Reducing Dimensionality to Improve Search in Semantic Genetic
Programming. In: 14th International Conference on Parallel Problem Solving from Nature (PPSN
2016), 17-21 Sep 2016, Edinburgh, Scotland.

DOI

https://doi.org/10.1007/978-3-319-45823-6_35

Link to record in KAR

http://kar.kent.ac.uk/56211/

Document Version

Author's Accepted Manuscript

Reducing Dimensionality to Improve Search in

Semantic Genetic Programming

Luiz Otavio V. B. Oliveira1, Luis F. Miranda1, Gisele L. Pappa1,
Fernando E. B. Otero2, and Ricardo H. C. Takahashi3

1 Computer Science Dep., Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil, {luizvbo,luisfmiranda,glpappa}@dcc.ufmg.br,

2 School of Computing, University of Kent, Chatham Maritime, UK,
F.E.B.Otero@kent.ac.uk,

3 Mathematics Dep., Universidade Federal de Minas Gerais, Belo Horizonte, Brazil,
taka@mat.ufmg.br

Abstract. Genetic programming approaches are moving from analysing
the syntax of individual solutions to look into their semantics. One of the
common definitions of the semantic space in the context of symbolic re-
gression is a n-dimensional space, where n corresponds to the number of
training examples. In problems where this number is high, the search pro-
cess can became harder as the number of dimensions increase. Geometric
semantic genetic programming (GSGP) explores the semantic space by
performing geometric semantic operations—the fitness landscape seen
by GSGP is guaranteed to be conic by construction. Intuitively, a lower
number of dimensions can make search more feasible in this scenario,
decreasing the chances of data overfitting and reducing the number of
evaluations required to find a suitable solution. This paper proposes two
approaches for dimensionality reduction in GSGP: (i) to apply current
instance selection methods as a pre-process step before training points
are given to GSGP; (ii) to incorporate instance selection to the evolution
of GSGP. Experiments in 15 datasets show that GSGP performance is
improved by using instance reduction during the evolution.

Keywords: dimensionality reduction, semantic genetic programming,
instance selection

1 Introduction

Evolutionary computation methods have recently turned their attention to the
semantics of the solutions represented by individuals instead of focusing only
on their syntax [17]. Particularly, in the case of genetic programming, many
methods are switching from the syntactic space to work on a n-dimensional
semantic space, where n is the number of training instances we learn the function
from. When applying any function—e.g., an individual—to the training set, the
produced output corresponds to a point in the semantic space.

Given the definition above, the number of dimensions of the semantic space
equals the number of training examples. In problems where this number is high—
a common scenario in real-world applications—the search process can became

harder as the number of dimensions increase, a problem well-known as the curse
of dimensionality [5]. As the number of dimensions of the problem increases, the
volume of the search space also increases exponentially.

One of the simplest ways to deal with the curse of dimensionality is to reduce
the number of dimensions of the search space [5]. As in geometric semantic
genetic programming each space dimension corresponds to a training instance, an
alternative is to perform what in the machine learning literature is known as data
instance selection. Data instance selection is a well-known problem within the
context of data classification, but there is not extensive work regarding regression
problems [2]. Instance selection methods are strongly based on distances between
training instances from both the set of input and output features.

This paper evaluates the impact of reducing the number of dimensions of the
semantic space in the context of geometric semantic genetic programming. This
scenario is interesting since the crossover and mutation operators guarantee the
semantic fitness landscape explored by GP is conic, which can be optimized by
evolutionary algorithms with good results for virtually any metric, as indicated
by [13]. Intuitively, a lower number of dimensions can make search more feasible,
reducing the number of evaluations required to find a suitable solution while
decreasing the chances of data overfitting.

Looking at how current instance selection methods work, we take advantage
of previous knowledge and propose two approaches for instance selection: (i)
apply current instance selection methods as a pre-process step before training
points are given to GSGP; (ii) incorporate instance selection to the evolution
of GSGP. In the first case, we use the methods Threshold Condensed Nearest
Neighbor (TCNN) and Threshold Edited Nearest Neighbor (TENN) [9] to select
instances, which are then given to GSGP. The second approach incorporates
instance selection to the evolution of GSGP, through the proposed Probabilistic
instance Selection based on the Error (PSE) method.

Computational experiments in 15 real-world and synthetic datasets, where
the number of training instances varies from 50 to 4000 and instance number
reduction (i.e. search space dimension reduction) of up to 68.50%, show that
results obtained by TCNN and TENN are no better than those generated by a
random selection scheme. PSE, in turn, shows results statistically significantly
better than GSGP with all instances in 5, and no statistical difference in 7 cases.

2 Related Work

Instance selection methods are commonly used in the classification literature [6],
and play different roles in noisy and noise-free application scenarios. In noise-free
scenarios, the idea is to remove points from the training set without degrading
accuracy, such as improving storage and search time. In noisy application do-
mains, the main idea is to remove outliers. In classification, these methods rely
on the class labels of neighbour instances to determine the rejection/acceptance
of an instance to the selected set. However, there are not many methods for in-
stance selection in regression problems. A few works have extended well-known
instance selection methods for classification to the context of regression [2].

The authors in [7] introduced a method based on mutual information, in-
spired by feature selection methods that rely on this criterion. The method
focuses on noise-free scenarios, and has as its main objective to choose the best
subset of instances to build a model. In this same direction, the authors in [16]
propose Class Conditional Instance Selection for Regression (CCISR). It extends
the Class Conditional Instance Selection method for classification, which uses a
class conditional nearest neighbour relation to guide the search process. The au-
thors in [9] proposed the Threshold Condensed Nearest Neighbor (TCNN) and
Threshold Edited Nearest Neighbor (TENN) algorithms—regression versions of
the ENN and CNN methods for classification, respectively. These algorithms will
be discussed in the next section, as they are used in this paper.

Recently, the authors in [2] compared different strategies for instance se-
lection in regression: discretization techniques—which transform the continuous
outputs of the problem into discrete variables and then apply the traditional ver-
sion of instance selection methods for classification—TCNN and TENN. They
also proposed an ensemble method, namely bagging, to combine several instance
selection algorithms. Each algorithm within the ensemble returns an array of
binary votes (0 means the instance is not selected and 1 otherwise), and the
relevance of an instance in the training set is considered proportional to the
number of accumulated votes. The final instance selection is given by a thresh-
old, which defines the percentage of votes an instance must have to be selected.
As expected, the ensemble method presented the best results overall.

In our context, the use of an ensemble is not justifiable, as it is a time
consuming task and would add too much time overhead to the search. For this
reason, we adopted the threshold versions of TCNN and TENN, as the first
assumes noise-free scenarios and the second focuses on outliers.

3 Strategies for Semantic Space Dimensionality

Reduction

This section introduces two strategies to reduce the dimensionality of the seman-
tic search space. First, we formally introduce the problem and motivation for
instance selection in this scenario. Given a finite set of input-output pairs repre-
senting the training cases, defined as T = {(xi, yi)}

n
i=1—where (xi, yi) ∈ R

d ×R

(i = 1, 2, . . . , n)—symbolic regression consists in inducing a model p : Rd → R

that maps inputs to outputs, such that ∀(xi, yi) ∈ T : p(xi) = yi.
Let I = {x1,x2, . . . ,xn} and O = [y1, y2, . . . , yn] be the input set and output

vector, respectively, associated to the training instances. The semantics of a
program p represented by an individual evolved by GSGP, denoted by s(p),
is the vector of outputs it produces when applied to the set of inputs I, i.e.,
s(p) = p(I) = [p(x1), p(x2), . . . , p(xn)]. The semantics of any program can be
represented as a point in a n-dimensional topological space S, called semantic
space, where n is the size of the training set.

GSGP introduces geometric semantic operators for GP that act on the syntax
of the programs, inducing a geometric behaviour on the semantic level [14]. These
operators guarantee the semantic fitness landscape explored by GP is conic, a

Algorithm 1: TENN

Input: T = {(xi, yi)}
n

i=1, k, α
Output: Instance set P ⊂ T

1 Shuffle T ;
2 P ← T ;
3 for i← 1 to n do

4 ŷ ← regression(xi, P \ (xi, yi));
5 N ← knn(k, T);
6 θ ← α · sd(N);
7 if θ = 0 then

8 θ ← α

9 if |yi − ŷ| > θ then

10 P ← P \ (xi, yi)

11 return P ;

Algorithm 2: TCNN

Input: T = {(xi, yi)}
n

i=1, k, α
Output: Instance set P ⊂ T

1 Shuffle T ;
2 P ← (x1, y1);
3 for i← 2 to n do

4 ŷ ← regression(xi, P);
5 N ← knn(k, T);
6 θ ← α · sd(N);
7 if θ = 0 then

8 θ ← α

9 if |yi − ŷ| > θ then

10 P ← P ∪ (xi, yi)

11 return P ;

property with positive effects on the search process. There is formal evidence
that indicates evolutionary algorithms with geometric operators can optimise
cone landscapes with good results for virtually any metric [13].

As the semantics in GSGP is defined as a point with a number of dimensions
equivalent to the number of instances given as input to a candidate regression
function, by reducing the number of input instances we automatically reduce the
number of dimensions of the semantic space, which in turn reduces the complex-
ity of the search space. Intuitively, the smaller the complexity the smaller the
number of possible convex combinations, which may help the speed of conver-
gence to the optimum. In this context, the first strategy we propose to reduce
the number of dimensions of the search space is executed before data is given as
input to GSGP, and depends only on the characteristics of the dataset. The sec-
ond strategy, in turn, takes into account the median absolute error of an instance
during GSGP evolution to select the most appropriate instances.

3.1 Pre-Processing Strategies

We first introduce two methods for instance selection in regression. The Thresh-
old Edited Nearest Neighbor (TENN) and Threshold Condensed Nearest Neigh-
bor (TCNN) [9] adapt instance selection algorithms for classification problems—
ENN [18] and CNN [8]—to the regression domain. They are presented in Algo-
rithms 1 and 2.

These algorithms employ an internal regression method to evaluate the in-
stances according to the similarity-based error. The decision of keeping or re-
moving the i-th instance from the training set is based on the deviation of the
instance prediction ŷi and the expected output yi, given by |ŷi − yi|. If this dif-
ference is smaller than a threshold θ, ŷi and yi are considered similar and the
instance is accepted or rejected, depending on the algorithm. The threshold θ is
computed based on the local properties of the dataset, given by α ·sd(N), where
α is a parameter controlling the sensitivity and sd(N) returns the standard de-

Algorithm 3: PSE method

Input: Training set (T), population (pop), lower bound (λ)
Output: Instance set P ⊂ T

1 foreach inst = (xi, yi) ∈ T do // Compute the median absolute error

2 E ← [|p1(xi)− yi)|, |p2(xi)− yi)|, . . . , |pm(xi)− yi)|];
3 inst.med← median(E);

4 Sort T by med value in descending order;
5 P ← {};
6 for i← 1 to |T | do
7 inst← (xi, yi) ∈ T ;

8 r̃ ← (i−1)
|T |−1

; // Compute the normalized rank

9 probsel ← 1− (1− λ) · r̃2 ; // Probability of selecting inst

10 if probsel ≥ rand() then // Add inst to P with probability probsel
11 P ← P ∪ {inst};

12 return P ;

viation of the outputs of the set N , composed by the k nearest neighbours of
the instance.

The internal regression method adopted by TCNN and TENN—the pro-
cedure regression presented in Algorithms 1 and 2—can be replaced by any
regression method. Our implementation uses the version of the kNN (k-nearest
neighbour) algorithm for regression to infer the value of ŷ. Besides the training
set T , these algorithms receive as input the number of neighbours to be consid-
ered and a parameter α, which controls how the threshold is calculated. At the
end, the set P of instances selected to be used to train the external regression
method is returned.

TENN is a decremental method, starting with all training cases in the set
P and iteratively removing the instances diverging from their neighbours. An
instance (xi, yi) is considered divergent if the output ŷ inferred by the model
learned without the instance is dissimilar from its output (yi). TCNN, on the
other hand, is an incremental method, beginning with only one instance from the
training set in P and iteratively adding only those instances that can improve
the search. The instance (xi, yi) is added only if the output ŷ inferred by the
model learned with P diverges from yi.

3.2 GSGP Integrated Strategies

Both TENN and TCNN disregard any information about the external regression
algorithm, since they are used in a pre-processing phase. In order to overcome
this limitation, we propose a method to select instances based on their median
absolute error, considering the output of the programs in the current population.
The method, called Probabilistic instance Selection based on the Error (PSE),
probabilistically selects a subset of the training set at each ρ generations, as
presented in Algorithm 3. The higher the median absolute error, the higher the
probability of an instance being selected to compose the training subset used

by GSGP. The rationale behind this approach is to give higher probability to
instances which are, in theory, more difficult to be predicted by the current
population evolved by GSGP.

Given a GSGP population P = {p1, p2, . . . , pm}, the median absolute error
of the i-th instance (xi, yi) ∈ T is given by the median value of the set E =
{|p1(xi)− yi|, |p2(xi)− yi|, . . . , |pm(xi)− yi|}. These values are used to sort T in
descending order, and the position of the instance in T is used to calculate its
probability of being selected to be part of the training set.

In order to compute this probability, the method normalizes the rank of the
instance in T to the range [0, 1] by

r̃ =
(i− 1)

|T | − 1
, (1)

where i is the position of the instance in the ordered set T , |.| denotes the
cardinality of the set and r̃ ∈ [0, 1] is the normalized rank. The value of r̃ is used
to calculate the probability of selecting the instance, given by

probsel = 1− (1− λ) · r̃2 , (2)

where λ is a parameter that determines the lower bound of the probability
function. The higher the value of λ, the more instances are selected. The area
under the function, equivalent to 2+λ

3 , corresponds to the proportion of instances
selected from T .

4 Experimental Results
This section presents an experimental analysis of the instance selection strate-
gies. The results obtained by GSGP with instance selection performed by TCNN
and TENN (Section 4.1), and PSE (Section 4.2) are compared with GSGP with
all instances.

The experiments were performed in a collection of datasets selected from
the UCI machine learning repository [11], GP benchmarks [12] and a GSGP
study from the literature [1], as presented in Table 1. For real-world datasets,
we performed 5-fold cross-validations with 10 replications, and for synthetic
ones, the data was sampled five times—according to Table 3 from [12]—and
the algorithms were applied 10 times, both cases resulting in 50 executions. This
sampling strategy justifies the adoption of the t-test in the statistical analysis
performed in this section—the number of replications is larger than 30 [4] For
compatibility purposes, we removed the categorical attributes of the datasets.

All executions used a population of 1,000 individuals evolved for 2,000 gener-
ations with tournament selection of size 10. The grow method [10] was adopted
to generate the random functions inside the geometric semantic operators, and
the ramped half-and-half method [10] used to generate the initial population,
both with maximum individual depth equals to 6. The terminal set included the
variables of the problem and constant values randomly picked from the interval
[−1, 1]. The function set included three binary arithmetic operators (+,−,×)
and the analytic quotient (AQ) [15] as an alternative to the arithmetic division.
The GSGP method employed the crossover for Manhattan-based fitness func-
tion and mutation operators from [3] with probabilities 0.9 and 0.1, respectively.

Table 1: Datasets used in the experiments.

Dataset Size Nature Source Dataset Size Nature Source

airfoil 1503 Real [1, 11] keijzer-7 100 Synthetic [12]
bioavailability 359 Real [1] ppb 131 Real [1]
concrete 1030 Real [1, 11] towerData 4999 Real [1]
cpu 209 Real [1, 11] vladislavleva-1 100 Synthetic [1, 12]
energyCooling 768 Real [1, 11] wineRed 1599 Real [1, 11]
energyHeating 768 Real [1, 11] wineWhite 4898 Real [1, 11]
forestfires 517 Real [1, 11] yacht 308 Real [1, 11]
keijzer-6 50 Synthetic [1, 12]

Table 2: Median training and test RMSE and reduction (% red.) achieved by
the algorithms for each dataset. Values highlighted in bold corresponds to test
RMSE statically worst than GSGP, according to a t-test with 95% confidence.

GSGP GSGP-TCNN GSGP-TENN GSGP-Rnd

Dataset tr ts tr ts % red. tr ts % red. tr ts

airfoil 7.89 8.42 7.76 8.74 38.60 8.06 8.60 1.90 7.65 8.38
bioavailability 9.89 30.74 4.95 36.29 46.30 9.84 31.38 0.90 4.55 34.39

concrete 3.65 5.39 2.80 6.40 38.20 3.65 5.21 3.20 3.18 5.95

cpu 6.13 30.92 5.46 33.61 11.20 5.06 51.54 65.40 5.67 32.28
energyCooling 1.26 1.51 1.28 2.49 14.70 1.28 1.83 36.60 1.19 1.71

energyHeating 0.80 0.96 0.83 1.87 11.10 0.67 1.84 45.40 0.77 1.11

forestfires 30.74 51.63 13.68 101.90 42.80 30.75 51.94 5.80 22.49 57.57

keijzer-6 0.01 0.40 0.01 0.36 10.60 0.00 1.25 53.00 0.01 0.32
keijzer-7 0.02 0.02 0.02 0.02 5.30 0.01 0.40 68.50 0.01 0.05

ppb 0.92 28.74 0.20 32.08 41.50 0.91 28.04 3.80 0.25 30.50
towerData 20.44 21.92 19.82 22.71 12.60 20.44 43.86 41.90 20.40 22.06

vladislavleva-1 0.01 0.04 0.01 0.07 20.90 0.01 0.07 43.40 0.01 0.06

wineRed 0.49 0.62 0.40 0.73 51.10 0.49 0.62 0.10 0.41 0.66

wineWhite 0.64 0.70 0.66 0.78 52.30 0.64 0.69 0.10 0.60 0.71

yacht 2.12 2.52 2.20 5.19 36.90 2.11 2.83 24.30 2.01 2.63

The mutation step required by the mutation operator was defined as 10% of the
standard deviation of the outputs (O) given by the training data.All instances
in the training set were used as input for the instance selection methods and
GSGP.

4.1 Comparing Instance Selection Methods

In this section we compare the results obtained by GSGP with and without the
instance selection performed before the evolutionary stage (pre-processing). The
selection was performed by TCNN (GSGP-TCNN) and TENN (GSGP-TENN)
methods, with k = 9 and 10 different values for α equally distributed in the
intervals [0.1, 1] and [5.5, 10], respectively. Table 2 presents the median training
and test RMSE’s and the data reduction obtained with α resulting in the largest
data reduction by TCNN and TENN methods—1 and 5.5, respectively.

In order to investigate the significance of instance selection methods in GSGP,
we randomly selected l instances from each dataset, with no replacement, to
compose a new training set used as input by GSGP. The value of l is defined
as the smaller of the sizes of the sets resulting from TENN and TCNN. Table 2
presents the median training and test RMSE’s of these experiments in the last
two columns (denoted as ‘GSGP-Rnd’). The results obtained show that using

Table 3: Median training RMSE of the GSGP-PSE with different values of λ and
ρ for the test bed. The smallest RMSE for each dataset is presented in bold.

ρ = 5 ρ = 10 ρ = 15

Dataset λ = 0.1 λ = 0.4 λ = 0.7 λ = 0.1 λ = 0.4 λ = 0.7 λ = 0.1 λ = 0.4 λ = 0.7

airfoil 8.03 8.15 8.11 7.97 8.05 8.16 8.12 8.05 8.11
bioavailability 9.66 9.66 9.88 9.70 9.69 9.83 9.53 9.77 9.81
concrete 3.35 3.49 3.56 3.35 3.45 3.58 3.34 3.45 3.56
cpu 4.93 5.46 5.70 5.02 5.33 5.89 5.01 5.39 5.88
energyCooling 1.13 1.19 1.23 1.12 1.18 1.22 1.12 1.17 1.23
energyHeating 0.66 0.72 0.77 0.67 0.72 0.76 0.67 0.71 0.76
forestfires 25.94 27.67 29.21 25.72 27.61 29.43 25.55 27.87 29.58
keijzer-6 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
keijzer-7 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
ppb 0.50 0.65 0.81 0.53 0.65 0.80 0.52 0.63 0.76
towerData 19.22 19.74 19.98 19.22 19.61 20.09 19.18 19.61 19.92
vladislavleva-1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
wineRed 0.47 0.48 0.49 0.47 0.48 0.49 0.47 0.48 0.49
wineWhite 0.63 0.64 0.64 0.63 0.64 0.64 0.63 0.64 0.64
yacht 1.94 2.02 2.09 1.94 2.01 2.08 1.94 2.00 2.09

TCNN and TENN do not make any systematic improvement on GSGP results.
Moreover, the results obtained by them are no better than those generated by
a random selection scheme. Hence, the strategies used by these methods do not
seem appropriate for the scenario we have.

4.2 Evaluating the Effects of PSE

In this section, we first investigate the sensitivity of PSE parameters and then
compare the performance of GSGP with and without the PSE method. PSE
parameters ρ and λ have a direct impact on the number of instances selected
and how they are selected. In order to analyse their impact on the search, we
fixed the GSGP parameters and focus on looking at the results as we varied these
parameters. The values of ρ were set to 5, 10 and 15 while we varied the value of
λ in 0.1, 0.4 and 0.7. Table 3 presents the median training RMSE obtained by
the GSGP with these PSE configurations. The results show that higher values
of ρ (15) with lower values of λ (0.1) tend to reduce the training RMSE.

The experiments with PSE adopt the values of ρ and λ resulting in the small-
est median training RMSE, as presented in Table 3. Table 4 presents the median
training and test RMSE’s obtained by GSGP and by GSGP with PSE (GSGP-
PSE). In order to identify statistically significant differences, we performed t-
tests with 95 % confidence level, regarding the test RMSE of both methods in 50
executions. The symbol in the last column indicates datasets where the results
present significant difference. Overall, GSGP-PSE performs better in terms of
test RMSE than GSGP, being better in five datasets and worse in three.

Figure 1 compares the evolution of the fitness of the best individual along
the generations in the training and test sets for GSGP and GSGP-PSE, for
two different datasets. Note that GSGP errors are overall higher than PSE.
For instance, looking at the convergence of the dataset towerData, if we stop
the evolution at generation 1,000, GSGP would have a test error of 25.02 and
GSGP-PSE of 23.64. GSGP needs 293 more generations to reach that same
error.

Table 4: Median training and test RMSE’s obtained for each dataset. The symbol
N(H) indicates GSGP-PSE is statistically better (worse) than GSGP in the test
set according to a t-test with 95% confidence.

GSGP GSGP-PSE

Dataset tr ts tr ts

airfoil 7.88 8.42 7.97 8.55 N

bioavailability 9.89 30.74 9.53 32.16 H

concrete 3.65 5.39 3.34 5.24 N

cpu 6.13 30.92 4.93 33.44 N

energyCooling 1.26 1.51 1.12 1.38 N

energyHeating 0.80 0.96 0.66 0.84 N

forestfires 30.74 51.63 25.55 51.32 N

keijzer-6 0.01 0.40 0.01 0.32 N

keijzer-7 0.02 0.02 0.02 0.02 N

ppb 0.92 28.74 0.50 28.96 N

towerData 20.44 21.92 19.18 20.95 N

vladislavleva-1 0.01 0.04 0.01 0.05 N

wineRed 0.49 0.62 0.47 0.62 H

wineWhite 0.64 0.70 0.63 0.69 H

yacht 2.12 2.52 1.94 2.47 N

5 Conclusions and Future Work

This paper presented a study about the impact of instance selection methods
on GSGP search. Two approaches were adopted: (i) selecting the instances in a
pre-processing step; and (ii) selecting instances during the evolutionary process,
taking into account the impact of the instance on the search.

Experiments were performed in a collection of 15 datasets in order to eval-
uate the impact of the instance selection. The first analysis showed GSGP fed
with the whole dataset performs better in terms of test RMSE than when using
subsets selected with TENN, TCNN or randomly. The second analysis showed
that overall GSGP with PSE performs better in terms of test RMSE than the
GSGP alone, and that instance selection to reduce the semantic space is worth
further investigation.

Potential future works include analysing the effect of fitness functions that
weight semantic space dimensions, exploring the impact of noise in the PSE
method and studying approaches to insert information about the noisy instances
during the selection.

Acknowledgements. The authors would like to thank CNPq (141985/2015-1),
CAPES and Fapemig for their financial support.

References

1. Albinati, J., Pappa, G.L., Otero, F.E.B., Oliveira, L.O.V.B.: The effect of dis-
tinct geometric semantic crossover operators in regression problems. In: Proc. of
EuroGP. pp. 3–15 (2015)

2. Arnaiz-González, Á., Blachnik, M., Kordos, M., Garćıa-Osorio, C.: Fusion of in-
stance selection methods in regression tasks. Information Fusion 30, 69–79 (2016)

3. Castelli, M., Silva, S., Vanneschi, L.: A C++ framework for geometric semantic
genetic programming. Genetic Prog. and Evolvable Machines 16(1), 73–81 (2015)

0 500 1000 1500 2000

0
1
4

Generation

0
1
4

1900 2000

2
.0

2
.5

2
.0

2
.5

GSGP − training
GSGP − test
GSGP-PSE − training
GSGP-PSE − test

T
r
a
in

in
g
 R

M
S
E

T
e
s
t

R
M

S
E

(a) yacht dataset.

T
r
a
in

in
g
 R

M
S
E

T
e
s
t

R
M

S
E

1900 2000

1
9
.5

2
2
.0

1
9
.5

2
2
.0

GSGP − training
GSGP − test
GSGP-PSE − training
GSGP-PSE − test

(b) towerData dataset.

Fig. 1: Median RMSE in the training and test sets over the generations for GSGP
with and without PSE for yacth and towerData datasets.

4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Jour-
nal of Machine Learning Research 7, 1–30 (2006)

5. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (Oct 2012)

6. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: Taxonomy and empirical study. IEEE Transactions on Pattern
Analysis and Machine Intelligence 34(3), 417–435 (2012)

7. Guillen, A., Herrera, L.J., Rubio, G., Pomares, H., Lendasse, A., Rojas, I.: New
method for instance or prototype selection using mutual information in time series
prediction. Neurocomput. 73(10-12), 2030–2038 (2010)

8. Hart, P.: The condensed nearest neighbor rule (corresp.). Information Theory,
IEEE Transactions on 14(3), 515–516 (1968)

9. Kordos, M., Blachnik, M.: Instance selection with neural networks for regression
problems. In: Villa, A.E.P., et al. (eds.) Proc. of the ICANN’12, part II. pp. 263–
270. Springer Berlin Heidelberg (2012)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT Press (1992)

11. Lichman, M.: UCI mach. learning repository (2015), http://archive.ics.uci.edu/ml
12. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,

Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.M.: Genetic
programming needs better benchmarks. In: Proc. of GECCO. pp. 791–798 (2012)

13. Moraglio, A.: Abstract convex evolutionary search. In: Proc. of the 11th FOGA.
pp. 151–162 (2011)

14. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Proc. of PPSN XII, vol. 7491, pp. 21–31. Springer (2012)

15. Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in
genetic programming. Evolut. Computation, IEEE Trans. on 17(1), 146–152 (2013)

16. Rodrguez-Fdez, I., Mucientes, M., Bugarn, A.: An instance selection algorithm for
regression and its application in variance reduction. In: Fuzzy Systems (FUZZ),
2013 IEEE International Conference on. pp. 1–8 (July 2013)

17. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genetic Prog. and Evolvable Machines 15(2), 195–214 (2014)

18. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data.
Systems, Man and Cybernetics, IEEE Trans. on 2(3), 408–421 (1972)

