Citation for published version
Hsu, Chieh and Jaquet, Vincent and Gencoglu, Mumun and Becskei, Attila (2016) Protein dimerization generates bistability in positive feedback loops. Cell reports, 16 (5). pp. 1204-1210. ISSN 2211-1247.

DOI
https://doi.org/10.1016/j.celrep.2016.06.072

Link to record in KAR
http://kar.kent.ac.uk/55964/

Document Version
Publisher pdf

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Protein Dimerization Generates Bistability in Positive Feedback Loops

Highlights

- RNA stem loops tune translation rates over two orders of magnitude
- Positive feedback loops with reduced translation generate bistable cell fates
- Dimerizing transcription factors generate bistability without cooperative binding

Authors
Chieh Hsu, Vincent Jaquet, Mumun Gencoglu, Attila Becskei

Correspondence
attila.becskei@unibas.ch

In Brief
Using RNA stem loops to attenuate translation rates, Hsu et al. designed synthetic feedback loops in yeast to study the sources of bistability. They show that cooperative binding of a transcription factor to its promoter or its dimerization generates bistability. Bistability is particularly robust when the dimerizing transcription factor binds to the promoter cooperatively.

Hsu et al., 2016, Cell Reports 16, 1–7
August 2, 2016 © 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.06.072
Protein Dimerization Generates Bistability in Positive Feedback Loops

Chieh Hsu, Vincent Jaquet, Mumun Gencoglu, and Attila Becskei

INTRODUCTION

Bistability, the persistence of two alternative stable-activity states under identical conditions, can uphold alternative cell fates and differentiation states, store cellular memory of past stimuli, and enhance adaptation in organisms ranging from bacteria to mammals (Angel et al., 2011; Arnoldini et al., 2014; Bouchouca et al., 2013; Chickarmane et al., 2009; Park et al., 2012).

Positive feedback is a necessary, but not sufficient, condition for bistability in a gene regulatory network. The second requirement is that the feedback loop contains reactions such as cooperative binding, sequestration by inhibitor molecules, and multiple phosphorylation of a protein by a kinase (Chen and Arkin, 2012; Ferrell and Ha, 2014; Májer et al., 2015; Shopera et al., 2015; Thomson and Gunawardena, 2009). These reactions display a sigmoidal, switch-like nonlinear response, also termed ultrasensitive response. Without ultrasensitive responses, a feedback loop can have only a single steady-state expression level, i.e., the system is monostable.

In transcriptional regulation, dimerization and cooperative binding of a transcription factor are expected to be common sources of ultrasensitivity (Buchler and Louis, 2008). Most transcription factors bind to DNA as dimers, and binding can be cooperative when more than one binding site is present in a promoter (Becskei et al., 2005). Despite the ubiquity of protein homodimerization, its ability to generate bistability remained elusive.

The difficulty to identify the sources of bistability may be explained by the effect of the feedback loop on cell growth. In positive feedback loops, the transcription factors are often expressed at high levels; therefore, they can sequester mediators of transcription (Becskei et al., 2001; Kelleher et al., 1990). This results in squelching of global gene expression, which reduces cellular growth and alters the behavior of networks. Even more, growth alterations rather than ultrasensitivity in the feedback can generate bistability (Brophy and Voigt, 2014; Tan et al., 2009).

In this work, we illustrated a design principle to tackle this difficulty with synthetic feedback loops. We show that alteration of the cell growth caused by overexpression of the transcription factor can be circumvented by using RNA stem loops to adjust translation rates. After translation rate adjustment, we show that either of the two ultrasensitive reactions, cooperative binding to the promoter or homodimerization, can support bistability. When they were both present, a particularly robust bistability emerged.

RESULTS

Design of Synthetic Loop and Control Elements

Synthetic positive feedback loops were created by placing the gene encoding the transcription factor rtTA (reverse tetracycline transactivator) under the control of a promoter containing tet operators and inserted into the chromosome of the yeast S. cerevisiae (Table S1). rtTA is composed of the bacterial rTetR DNA-binding domain and the VP16 activation domain; rtTA binds to the tet operators only in dimeric form (Kamionka et al., 2006). The ligand doxycycline enables rtTA to bind to tet operators; thus, the affinity of rtTA binding to DNA was adjusted by the ligand concentration (Figure 1A).
To study the effect of dimerization, we compared the original dimeric rtTA with a monomeric form. To create this monomeric form, two rTetR DNA-binding domains were fused. The resulting single-chain monomer (sc-rtTA) alone is capable of binding to the palindromic operators, eliminating the ultrasensitive dimerization reaction (Zhou et al., 2007). To study the effect of cooperativity, we changed the number of tet operators in the promoter. The binding of rtTA to a single tet operator is non-cooperative, while binding to seven operators in a promoter is cooperative (Becskei et al., 2005) (Figure 1A).

If a transcriptional positive feedback loop incorporates cooperative binding or dimerization, bistability is expected in a certain doxycycline concentration range. This range is expected to be broader when both reactions are present (Figure 1B). To test the individual and joint effect of these mechanisms, we constructed all four variants of the feedback loop. We measured the activity of a feedback loop with a GFP reporter controlled by a promoter with tet operators (Figure 2A).

Growth Alteration by Overexpression of the Transcription Factor Caused Atypical Hysteresis

We evaluated bistability with hysteresis experiments that test whether the system activity depends on the initial condition, i.e., on its history. Pre-cultures with either low or high expression levels of rtTA were prepared, which defines the initial conditions, and the cells were further cultured at different doxycycline concentrations. The range of doxycycline concentrations at which the expression in each culture remains close to the respective initial condition—and, therefore, different from each other—defines the range of hysteresis. To adjust the initial condition, we integrated an inducible rtTA construct into the chromosome. Its expression was controlled by the P_{GAL} promoter. By a transient exposure of cells to galactose, the rtTA is expressed at a high level to establish the high initial condition (Figure 2A).

When hysteresis experiments were performed for the cooperative-dimeric feedback loop, the cell expression deviated markedly from the initial state. Even more, the high expression level was observed only in cells with the low initial condition, while cells with the high initial condition failed to maintain high expression (Figure 2B). This is the exact opposite of the conventional hysteresis behavior. Similarly unusual was the behavior of the non-cooperative-dimeric feedback loop (Figure S1A).

We suspected that the high expression of the rtTA affects the cell growth and alters the system’s behavior. Indeed, a reduced growth rate was observed at a high doxycycline concentration at which the system should have been fully activated (Figure 2C).

Translation Rate Tuning with RNA Stem Loop and Feedback Loop Optimization

To eliminate the growth rate alteration, we lowered the protein expression level by decreasing the translation rate with RNA stem loop. A stem loop upstream of the start codon is expected to reduce the translation rate by preventing ribosome from initiating the translation. When a stem loop with a stem containing six G-C base pairs (or SL$_{6GAT}$) (Beelman and Parker, 1994) was incorporated into the cooperative-dimeric feedback loop, no growth defect was detected anymore, and the growth rates in all conditions were identical (Figure 2C). However, the reporter gene expression was very weak, indicating that the rtTA protein concentration was too low to activate the system (Figure 2B).

To reach a sufficient protein expression level without causing growth defect, we synthesized stem loops and measured their respective translation rates. The strength of translation inhibition of the stem loop depends on its structure. We weakened the stem structure of the initial SL$_{6GAT}$ by shortening the stem length to five base pairs and by increasing the proportion of A-T base pairs. The absolute translation rate was calculated from the steady-state levels in the respective translation rates. The molecule numbers of RNAs and proteins were measured with single-molecule fluorescence in situ hybridization (smFISH) and mass spectrometry, respectively (Experimental Procedures; Supplemental Experimental Procedures). We obtained a variety of stem loops that can tune the translation rate over two orders of magnitude (Figure 3A). We also checked how robust the stem loops behave in different sequence contexts. For this purpose, we inserted these stem loops upstream of the
start codon of a fluorescent reporter gene, YFP (yellow fluorescent protein). The decrease of fluorescence with increasing stem-loop strength was very similar to that observed for the absolute translation rates of the rtTA mRNA (Figure 3A).

A specific stem loop was selected for each feedback construct in order to eliminate growth alterations without reducing protein concentration to below the level required to activate the feedback loops (Figures 3B and S1). The decay rates of the rtTA and the sc-rtTA proteins were similar, with half-lives of 79 and 83 min, respectively (Figure 3C). The similar decay rates of the two proteins permit their consistent comparison of the feedback loops in the hysteresis experiments.

Homodimerization and Cooperativity Generate Bistability

With the optimized feedback loops, we observed classical hysteresis behavior: cells with the high initial condition had higher or equal expression than cells with the low initial condition (Figure 4A). The non-cooperative-monomeric loop displayed no hysteresis, the expressions of cells were very similar, independent of the initial condition. When one of the ultrasensitive reactions—either cooperative binding or dimerization—was included in the feedback loop, bistability emerged. The non-cooperative-dimeric loop displayed hysteresis over one order of magnitude of doxycycline concentration, which is broader than that for the cooperative-monomeric circuit. Combining the two mechanisms, a particularly broad range of hysteresis emerged. The cells with a high initial condition remained in the high expression state; and cells with the low initial condition remained in the low expression state over at least two orders of magnitude of doxycycline concentrations. This represents a robust form of cellular memory. These results confirm the expectations from the theoretical model (Figure 1B).

Negative Feedback Reduces the Robustness of Bistability

Positive feedback loops are often combined with negative ones. This combination is expected to reduce the bistable range (Tian et al., 2009). To extend the cooperative-dimeric positive feedback loop with a negative loop, additional tet operators were integrated downstream of the TATA box in the promoter (Figure 4B). The binding of rtTA to these two tet operators was shown to repress transcription. At low doxycycline concentration, the binding to the seven upstream tet operators activates gene expression, while at higher doxycycline concentration, repression predominates. Consequently, the promoter displays a bell-shaped response (Figure S2A) (Buetti-Dinh et al., 2009).
In theory, a feedback loop with this promoter has a narrower range of bistability compared to the cooperative-dimeric feedback loop (Figure S2B). Furthermore, the higher expression state is predicted to be lower. This may explain why no growth alteration was observed and no stem loop was needed for this feedback loop. The range of hysteresis of this dual positive-negative feedback system was narrower than that of the corresponding positive feedback (cooperative-dimeric). However, it was still wider than the hysteresis range of loops with a single ultrasensitive reaction step (Figure 4C), which indicates again the robustness of the bistability when cooperative binding and homodimerization act together.

DISCUSSION

We observed bistability due to ultrasensitive molecular mechanisms only when cell growth alterations due to the feedback loops were eliminated. This behavior stands in contrast to those systems where bistability arises due to the interaction of the feedback loop and cellular growth. For example, regulators have been identified that slow down cell growth, which then establishes a positive feedback loop to control cell differentiation (Chiodini et al., 2013; Kueh et al., 2013; Tan et al., 2009). Coupling of feedback loops with growth rate is likely to represent an important phenomenon, since differentiating cells that enter distinct cell lineages often have disparate growth rates (Cheeseman et al., 2014). In our system, the reduction of cell growth was due to the squelching of gene expression of a highly expressed activator. Interestingly, endogenous transcriptional activators are also known that can repress gene expression by squelching (Guertin et al., 2014; Schmidt et al., 2015).

To eliminate growth alterations, we reduced protein concentration by translational inhibition. Interestingly, the range of inhibition was quite narrow that permitted the activation of the feedback loops without affecting growth rate. This requirement was met by the stem-loops we created because it was possible to modulate the translation rate over a broad dynamic range, which makes them an ideal tool in systems and synthetic biology (Chappell et al., 2015; McKeague et al., 2016). Furthermore, the stem loops reduce the translation of different proteins similarly (Figure 3A). The absolute translation rate without stem-loop was around 20 min⁻¹, while it was around 0.2 min⁻¹ with the stem loop having the highest GC content. This means that, on average, 20 protein molecules are translated from an RNA molecule per minute without the stem loop. To our knowledge, no absolute translation rate has been measured in yeast, but a comparison of genome-wide studies on yeast mRNA, protein abundances, and protein half-lives yields similar estimates for the average translation rate (23 min⁻¹) (Belle et al., 2006; To and Maheshri, 2010).

The loop with the monomeric transcriptional activator and a single site in the promoter lacks any ultrasensitive reaction, and bistability was absent. By adding either dimerization or...
cooperative binding to the circuit, we can assess their contribution to bistability separately. In principle, the following two feedback loops can generate identical bistable ranges: (1) the dimeric transcription factor that binds to a single site in the DNA, provided the concentration of the protein is less than its dimerization equilibrium dissociation constant; and (2) a monomeric factor that binds cooperatively to multiple sites in a promoter with a Hill coefficient of 2 (Májer et al., 2015). However, the binding of rtTA to the cooperative promoter has a Hill coefficient of 1.45 (Becskei et al., 2005). Thus, the larger potential ultrasensitivity of dimerization may explain why bistability had a broader range in the presence of homodimerization than in the presence of cooperative binding (Figure 4A).

Bistability based on dimerization reactions has eluded detection, although the majority of proteins di- or multi-merize across all domains of life (Lynch, 2012; Marianayagam et al., 2004). This apparent paradox may have several reasons. First, it is difficult to separate the specific effect of dimerization exactly, because it is ubiquitous. In typical networks, dimerization is combined with other, more evident, ultrasensitive reactions exemplified by sequestration or cooperative binding. Second, a dimerization reaction becomes ultrasensitive and, thus, can support bistability only if the protein concentration is low enough (Buchler and Louis, 2008; Májer et al., 2015). The reduced concentration of the dimerizing protein in our circuits is likely to have facilitated the emergence of bistability.

Positive feedback loops have been uncovered in a broad range of regulatory processes (Chiodini et al., 2013; Kueh et al., 2013; Park et al., 2012). Our study provides clues on how to detect the bistability due to homodimerization in feedback loops. It has the potential to contribute to other dynamical behaviors, such as oscillation and pattern formation (Ferrell and Ha, 2014). Given the ubiquity of homodimerization, it is likely that it plays an important role in these processes as well.

EXPERIMENTAL PROCEDURES

Design of Synthetic Circuits and Yeast Strains

Each feedback strain contained a feedback circuit, a fluorescent reporter construct (P_{GAL1}-yEGFP), and a P_{GAL}-rtTA/sc-rtTA expression cassette. The P_{GAL}-rtTA/sc-rtTA expression cassette was utilized to generate the high initial condition by adding 0.5% galactose for the hysteresis experiments. Galactose activates expression driven by the P_{GAL} promoter through the endogenous Gal4p. The P_{GAL} is a modified version of P_{GAL1} (denoted as $P_{\text{GAL1UAS-CYC1c}}$ in Table S1).

All yeast strains are derivatives of S. cerevisiae W303 (Table S1). All genetic constructs were integrated into the chromosome with a single copy, with the exception of the $P_{\text{GAL1-GFP}}$ construct, which has three copies. To minimize the position effect, genes with promoters containing tet operators were integrated to the ura3 locus, and those with P_{GAL} were integrated to the ade2 locus.

The synthetic genetic components share a common core promoter and transcriptional terminator of CYC1, unless otherwise specified. The CYC1 core promoter, CYC1c, is a 137-bp sequence upstream of the start codon of CYC1, which contains the TATA box. The upstream activation sequences (UASs), including tetO and GAL1, were integrated to the ura3 locus, and those with P_{GAL} were integrated to the ade2 locus.

The synthetic genetic components share a common core promoter and transcriptional terminator of CYC1, unless otherwise specified. The CYC1 core promoter, CYC1c, is a 137-bp sequence upstream of the start codon of CYC1, which contains the TATA box. The upstream activation sequences (UASs), including tetO and GAL1, were integrated to the ura3 locus, and those with P_{GAL} were integrated to the ade2 locus.

![Figure 4. Hysteresis in Feedback Circuits Incorporating Protein Homodimerization or Cooperative Binding to the Promoter](image)

(A) Hysteresis experiments with circuits with optimized stem loops as indicated in Figure 3. Cells with the low (gray dots) or the high (orange dots) initial condition were grown at the indicated doxycycline concentration for 24 hr.

(B and C) Hysteresis in dual positive-negative feedback based on the cooperative-dimeric circuit. The negative feedback was established by inserting transcription factor binding sites downstream of the TATA box site in the promoter, which inhibits transcription (red) (B). Hysteresis experiments were performed with the cells containing this feedback construct without RNA stem loop for 24 hr.

See also Figure S2.
The stem loop sequences were derived from the following SL pair sequence, 5′-CCGCGGTTCGCGCCAGG-3′ (Beelman and Parker, 1994); 5′-CCGCGG TTCGCCGCCG-3′ (SL2ATG), 5′-CCTGCTGCCAGGG-3′ (SL3ATG), 5′-CCTTG TCCAGCGG-3′ (SL4ATG) and 5′-CCTTATCGTAAAGGG-3′ (SL5ATG). The stem loops were inserted into the CYC1 region of the promoter with a 13-bp spacing before the start codon. The sequences upstream and downstream of the stem loop were ATTACCAGGATCA and ATTTCGGGggatccATG; the ATG at the 3′ end is the start codon, and ggtacc is a BamHI recognition site. The design of the stem loop was checked by the free energy calculated from the Vienna RNA Websuite (Zuker et al., 2003).

For the rtTA protein, the S2 version of the reverse tetracycline transactivator was used (Becskei et al., 2005). sc-rtTA is a chain of two connected tetR modules followed by a single VP16 activation domain. The F68Y and G138D mutations (FYGD) were introduced in both tetR modules to enhance transcription activity (Bonde et al., 2014). The FYGD version of tetR included in the sc-rtTA sequence, an extra HindIII site was introduced to the rtTA sequence (silent mutation, position 102 in ORF [open reading frame]), and the sequence of a codon-humanized FYGD version of tetR (Zhou et al., 2007) containing the linker was inserted into the HindIII site. The Stul and BamHI sites in the ORF sequence were inactivated.

Hysteretic Experiment

General growth conditions and flow cytometry are described in the Supplemental Experimental Procedures. Low and high expression states were created as initial conditions, termed low and high initial conditions. The high initial condition was generated by culturing cells overnight with 2 μM doxycycline and 0.5% galactose, while no inducers were added for the low initial condition. This was achieved by growing cells overnight with 2 μM doxycycline concentration so that cells with different initial conditions were grown in identical conditions. There was no need to wash the cells prior to inoculation to remove the inducers, since the inoculum was diluted at least 1,000 times. The initial culture density was adjusted so that the OD600 reached values between 0.6 and 1.0 at 24 hr.

Translation Rate Constant Determination

The translation rate was determined in steady-state conditions. The protein concentration [P] is governed by:

$$\frac{d[P]}{dt} = \rho [mRNA] - \delta_p [P]$$

δp is the protein decay rate constant; ρ is the translation rate constant; and [P] and [mRNA] represent the copy numbers of protein and mRNA in a cell, respectively.

Therefore, ρ is equal to (δp[P]/[mRNA]) in steady state.

The decay rate constant of the protein was determined as explained in the Supplemental Information. To determine the effect of stem loops on translation, strains (indicated by “Translation rate determination” in the Function column of Table S1) were constructed that express rtTA with different stem loops inserted. These haploid strains, indicated in Table S1 with “translation efficiency strains,” were incubated with 80 nM estradiol for 24 hr to reach steady-state expression levels of the fluorescent reporter.

Mathematical Modeling

Details are provided in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, two figures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2016.06.072.

AUTHOR CONTRIBUTIONS

A.B. designed the project. M.G. performed the proteomics measurements and the initial experiments with the dual-feedback constructs. C.H. and V.J. performed all the other experiments and data analysis. A.B., C.H., and V.J. wrote the paper.

ACKNOWLEDGMENTS

We thank A. Das for the sc-rtTA plasmid; S. Voegeli, J. Kelemen, and S. Scherrer for help with plasmid construction and sequencing; J. Zankl for help with the flow cytometry; and A. Schmidt for help with proteomic measurements. This work was supported by grants from the Swiss National Foundation, the StoNets (RTD), and IFPhD from SystemsX. C.H. was a Long-Term Fellow of the Human Frontier Science Program.

Received: September 24, 2015
Revised: May 22, 2016
Accepted: June 16, 2016
Published: July 14, 2016

REFERENCES

