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Introduction

Fredholm operators are one of the most important classes of linear operators in mathematics.

They were introduced around 1900 in the study of integral operators and by definition they

share many properties with linear operators between finite dimensional spaces. They appear

naturally in global analysis which is a branch of pure mathematics concerned with the global

and topological properties of systems of differential equations on manifolds. One of the basic

important facts says that every linear elliptic differential operator acting on sections of a vector

bundle over a closed manifold induces a Fredholm operator on a suitable Banach space comple-

tion of bundle sections. Every Fredholm operator has an integer-valued index, which is invariant

under deformations of the operator, and the most fundamental theorem in global analysis is the

Atiyah-Singer index theorem [AS68] which gives an explicit formula for the Fredholm index of

an elliptic operator on a closed manifold in terms of topological data. An important special case

are selfadjoint elliptic operators, which naturally appear in geometry and physics but for which,

however, the Fredholm index vanishes. Atiyah, Patodi and Singer introduced in [APS76] the

spectral flow as an integer-valued homotopy invariant for (closed) paths of selfadjoint Fredholm

operators. Roughly speaking, the spectral flow is the number of eigenvalues which pass through

zero in the positive direction from the start of the path to its end. Atiyah, Patodi and Singer

proved in [APS76] that the spectral flow of a closed path of selfadjoint elliptic differential opera-

tors on a closed manifold can be computed by a topological index in essentially the same way as

the Fredholm index in the previous index theorem [AS68] of Atiyah and Singer. In what follows,

we denote the spectral flow of a path A = {Aλ}λ∈S1 of selfadjoint Fredholm operators by sf(A).

The spectral flow has been defined in several different but equivalent ways and it has become

a well known and widely used integer-valued homotopy invariant for generally non-closed paths

A = {Aλ}λ∈I of selfadjoint Fredholm operators (cf. [Ph96], [BLP05]). For example, lots of ef-

forts have been made to compute the spectral flow for paths A of operators induced by boundary

value problems for first order selfadjoint elliptic operators on manifolds with boundary. Several

spectral flow formulas have been found in this setting expressing sf(A) in terms of various in-

variants (cf. e.g. [LW96] among many other references). The spectral flow has also been used

in symplectic analysis, where, e.g., Floer introduced it as a substitute for the Morse index in

order to define a grading of his celebrated homology groups [Fl88]. It was thoroughly studied

in this setting by Robbin and Salamon in [RS95], and it was also used before by Salamon and
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Zehnder in [SZ92].

The aim of these notes is an essentially self-contained introduction to the spectral flow for paths of

(generally unbounded) selfadjoint Fredholm operators. We begin by recapitulating well known

theory about bounded and unbounded operators in the first two sections following [GGK90],

[Go06], [Wei80] and [Ru91], where we particularly focus on spectral theory. The third section is

devoted to the gap-topology on the space of all closed operators on a given Hilbert space, which

we need in order to deal with continuous paths of operators. In the fourth section we construct

the spectral flow and discuss some of its properties following [BLP05], [Le05] and [RS95]. The

final section is devoted to a simple example and some hints for further reading.

This manuscript are extended lecture notes of a PhD course that the author gave at the Università

degli studi di Torino in Italy in spring 2013. We are grateful to Anna Capietto and Alessandro

Portaluri for inviting us to give these lectures, and to the audience for several valuable questions.



Chapter 1

Linear Operators

1.1 Bounded Operators and Subspaces

Let E and F be non-trivial complex Banach spaces. We denote throughout by IE , IF the identity

operators on E and F , respectively. Recall that a linear operator A : E → F is bounded if there

exists a constant c ≥ 0 such that

‖Au‖ ≤ c‖u‖, u ∈ E. (1.1)

The smallest possible bound in (1.1) is the norm ‖A‖ of A and it is given by

‖A‖ = sup
u6=0

‖Au‖
‖u‖ = sup

‖u‖≤1

‖Au‖ = sup
‖u‖=1

‖Au‖. (1.2)

It is a simple exercise for boring train trips to check the equalities in (1.2) as well as the following

lemmata.

1.1.1 Lemma. The following assertions are equivalent:

• A is continuous,

• A is continuous at some u ∈ E,

• A is continuous at 0 ∈ E,

• A is bounded.

In what follows, we denote by L(E,F ) the set of all bounded operators A : E → F which is a

normed linear space with respect to the operator norm (1.2).

1.1.2 Lemma. L(E,F ) is a Banach space.

7



8 CHAPTER 1. LINEAR OPERATORS

The proof of the previous lemma only uses that F is complete and hence the dual space N∗ :=

L(N,C) of any normed linear space N is a Banach space.

The following important result in functional analysis is called the open mapping theorem, and it

is frequently applied to prove the continuity of inverses of operators.

1.1.3 Theorem. If A ∈ L(E,F ) is surjective, then A is an open map, i.e., A(U) ⊂ F is open

for any open subset U ⊂ E.

In contrast, compact operators are never boundedly invertible on infinite dimensional spaces:

1.1.4 Definition. A linear operator A : E → F is compact if A(U) ⊂ F is relatively compact

for any bounded subset U ⊂ E.

We denote by K(E,F ) the set of all compact operators A : E → F .

1.1.5 Lemma. Every compact operator is bounded; i.e., K(E,F ) ⊂ L(E,F ). Moreover, K(E,F )

is closed and products of compact and bounded operators are compact.

Now we assume that U, V are subspaces of E such that E = U ⊕ V algebraically. In this case

we have a unique projection P : E → E onto U with respect to this decomposition and we can

ask about the boundedness of P .

1.1.6 Lemma. The projection P : E → E is bounded if and only if U and V are closed.

A strictly related problem concerns the following definition.

1.1.7 Definition. A closed subspace U of a Banach space E is called complemented if there

exists a closed subspace V of E such that E = U ⊕ V .

A well known example of a non-complemented subspace of a Banach space is given by

{{xn}n∈N ⊂ C : lim
n→∞

xn = 0}

which is a closed subspace of

l∞ = {{xn}n∈N ⊂ C : sup
n∈N

|xn| < ∞}, ‖{xn}n∈N‖ = sup
n∈N

|xn|.

However, we have the following two positive results.

1.1.8 Theorem. Any closed subspace U of a Hilbert space H is complemented.

Note that the latter result is just the well known theorem on orthogonal projections and decom-

positions H = U ⊕ U⊥ for any closed subspace U ⊂ H .

1.1.9 Lemma. Any subspace U of E of finite dimension is complemented.
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Lemma 1.1.9 suggests the question if the same result holds if we require the codimension of U

instead of its dimension to be finite. That is, we assume to have a decomposition E = U ⊕ V

where V is of finite dimension. Since finite dimensional spaces are closed we obtain immediately

that any closed subspace of E of finite codimension is complemented. However, by the following

result, we cannot omit the closedness assumption.

1.1.10 Lemma. In any Banach space E of infinite dimension, there exists a one-codimensional

subspace U which is not closed.

Proof. Since E is of infinite dimension, there exists an unbounded linear functional f : E → R.

Then U := ker(f) has codimension 1 and it is not closed. For, assume that U is closed. Since V

is of finite dimension, we have E = U ⊕V , where U and V are closed. But f |U≡ 0 and f |V are

continuous and consequently f : E → C would be continuous.

The following remarkable result implies that a finite codimensional subspace U ⊂ F is comple-

mented if it is the image of a bounded linear operator.

1.1.11 Lemma. If A ∈ L(E,F ) is a bounded linear operator and V ⊂ F is a closed subspace

such that F = im(A)⊕ V , then im(A) is closed.

Proof. Let P : E → E/ ker(A) denote the projection onto the quotient space. Then A : E → F

factorises as

E

P
##
❍
❍
❍
❍
❍
❍
❍
❍
❍
❍

A
// im(A) ⊂ F

E/ ker(A)

S

77♣♣♣♣♣♣♣♣♣♣♣

where S : E/ ker(A) → im(A) is the bounded and bijective map defined by S[u] = Au, u ∈ [u] ∈
X/ ker(A). We now define

S : E/ ker(A)× V → F, S([u], v) = S[u] + w

and note that E/ ker(A)×V is a Banach space as V and ker(A) are closed. Now S is a bijective

bounded linear operator and hence S
−1

is bounded by Theorem 1.1.3. As E/ ker(A) × {0} is

closed in E/ ker(A) × V , we obtain that

im(A) = S(E/ ker(A)) = S(E/ ker(A) × {0}) ⊂ F

is closed.
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1.2 Closed Operators

As before, we let E and F be non-trivial complex Banach spaces. A linear operator acting

between E and F is a linear map T : D(T ) → F , where D(T ) is a linear subspace of E. We

usually write

T : D(T ) ⊂ E → F

in order to emphasise the space E. The operator T is called densely defined if D(T ) is dense in

E and it is called bounded if there exists c > 0 such that

‖Tu‖ ≤ c‖u‖, u ∈ D(T ).

Given linear operators T : D(T ) ⊂ E → F , S : D(S) ⊂ E → F R : D(R) ⊂ F → G and α ∈ C,

we define

• αT : D(αT ) ⊂ E → F by (αT )u = α (Tu), u ∈ D(αT ) = D(T ),

• T + S : D(T + S) ⊂ E → F by (T + S)u = Tu+ Su, u ∈ D(T + S) = D(T ) ∩ D(S),

• RS : D(RS) ⊂ E → G by (RS)u = R(Su),

u ∈ D(RS) = S−1(D(R)) = {u ∈ E : u ∈ D(S), Su ∈ D(R)}.

We write T ⊂ S if D(T ) ⊂ D(S) and Tu = Su for all u ∈ D(T ). Moreover, we set T = S if T ⊂ S

and S ⊂ T . Finally, we denote by 0 the operator acting by u 7→ 0 on the domain D(0) = E.

For three operators R,S, T acting between E and F , one easily verifies that

• 0T ⊂ 0, 0 + T = T + 0 = T ,

• (R + S) + T = R+ (S + T ),

• S + T = T + S,

• (S + T )− T ⊂ S.

Moreover, if T, T1, T2 are operators from E to F , S, S1, S2 map from F to G and R has its range

in E, then

• (ST )R = S(TR),

• (αS)T = S(αT ) = α(ST ) if α 6= 0,

• (0S)T = 0(ST ) ⊂ T (0S),

• (S1 + S2)T = S1T + S2T ,

• S(T1 + T2) ⊃ ST1 + ST2,
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• IFT = TIE = T .

1.2.1 Definition. We call an operator T : D(T ) ⊂ E → F invertible, if T maps D(T ) bijectively

onto F . We say that T has a bounded inverse, if T is invertible and T−1 : F → D(T ) ⊂ E is

bounded.

Let us point out that there are various non-equivalent definitions of invertibility in the literature.

For example, in [Ka76] an operator is called invertible if it is injective. On the contrary, in [HS96]

an operator is said to be invertible if it has a bounded inverse according to Definition 1.2.1.

For an operator T : D(T ) ⊂ E → F , we denote by

graph(T ) = {(u, Tu) ∈ E × F : u ∈ D(T )} ⊂ E × F

the graph of T , which is a linear subspace of the Banach space E×F . Clearly, T ⊂ S is equivalent

to graph(T ) ⊂ graph(S).

1.2.2 Definition. The operator T : D(T ) ⊂ E → F is called closed if graph(T ) is a closed

subspace of E × F .

Note that T is closed if and only if, for every sequence {un}n∈N ⊂ D(T ) such that (un, T un) →
(u, v) ∈ E × F for some u ∈ E and v ∈ F we have u ∈ D(T ) and Tu = v.

1.2.3 Example. We consider the operator

T : C1[0, 1] ⊂ C[0, 1] → C[0, 1], T u = u′,

which is not bounded as ‖Tun‖∞ = n = n‖un‖∞ for un(t) = tn, n ∈ N. We claim that T is

closed. Let {un}n∈N ⊂ C1[0, 1] be a sequence and v ∈ C[0, 1] such that un → u and Tun = u′
n → v

uniformly. Then

∫ t

0

v(s) ds =

∫ t

0

lim
n→0

u′
n(s) ds = lim

n→∞

∫ t

0

u′
n(s) ds = u(t)− u(0), t ∈ [0, 1],

and hence

u(t) = u(0) +

∫ t

0

v(s) ds, t ∈ [0, 1],

where v ∈ C[0, 1]. Consequently, u ∈ C1[0, 1], Tu = v and so T is closed.

In what follows we denote the set of all closed operators acting between E and F by C(E,F ). In

contrast to L(E,F ), the set C(E,F ) is not a linear space:

1.2.4 Example. Assume that D ⊂ E is dense and strictly contained in E and let T : D(T ) ⊂
E → F be a closed operator defined on D(T ) = D (e.g., E = C[0, 1], Tu = u′ on D(T ) = C1[0, 1]

as in Example 1.2.3). Then T − T = 0T ⊂ 0 is not closed because

graph(T − T ) = graph(0T ) = D × {0}
is not a closed subspace of E × F .
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1.2.5 Lemma. A bounded operator T is closed if and only if D(T ) is closed in E.

Proof. Assume that T is bounded and closed, and let {un}n∈N ⊂ D(T ) be a sequence such that

un → u in E. Since T is bounded, {Tun}n∈N is a Cauchy sequence in F and hence converges

to some v ∈ F . Consequently, (un, T un) → (u, v), n → ∞, and as T is closed, we conclude that

u ∈ D(T ) (and v = Tu).

Conversely, assume that T is bounded and D(T ) is closed. If {un}n∈N is a sequence converging

to some u ∈ E, then u ∈ D(T ). As T is bounded, we obtain that Tun → Tu and hence T is

closed.

We obtain as a consequence of the previous lemma that L(E,F ) ⊂ C(E,F ).

1.2.6 Lemma. Let T ∈ C(E,F ) be a closed operator.

(i) αT is closed for any 0 6= α ∈ C.

(ii) If B : D(B) ⊂ E → F is bounded and D(T ) ⊂ D(B), then T +B ∈ C(E,F ).

(iii) If T is invertible, then T−1 ∈ C(F,E).

Proof. For the first assertion we just note that the map

E × F → E × F, (u, v) 7→ (u, α v)

is a homeomorphism mapping graph(T ) to graph(αT ). In order to show the second assertion

let {un}n∈N be a sequence in D(T + B) = D(T ) such that un → u ∈ E and assume that

(T + B)un = Tun + Bun → v, n → ∞. As B is bounded, D(B) is closed by Lemma 1.2.5 and

Bun → Bu. We obtain Tun → v−Bu. Since T is closed, this implies u ∈ D(T ) and Tu = v−Bu.

Consequently, u ∈ D(T +B) and v = (T + B)u. For the last assertion, we only have to observe

that

{(T−1u, u) ∈ E × F : u ∈ F} = {(u, Tu) ∈ E × F : u ∈ D(T )} = graph(T )

and that the left hand side is mapped to graph(T−1) under the homeomorphism E×F → F ×E,

(u, v) 7→ (v, u).

1.2.7 Example. Let us consider the operator T : D(T ) ⊂ C[0, 1] → C[0, 1], Tu = u′, where

D(T ) = {u ∈ C1[0, 1] : u(0) = 0}. Then T has a bounded inverse given by

T−1 : C[0, 1] → C[0, 1], (T−1u)(t) =

∫ t

0

u(s) ds

and hence T is closed by Lemma 1.2.6 and Lemma 1.2.5.

Let T : D(T ) ⊂ E → F and S : D(S) ⊂ E → F be two linear operators such that D(T ) ⊂ D(S).

Then S is said to be T -bounded if there exists a, b ≥ 0 such that

‖Su‖ ≤ a‖u‖+ b‖Tu‖, u ∈ D(T ). (1.3)
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The infimum of all b ≥ 0 for which an a ≥ 0 exists such that (1.3) holds is called the T -bound of

S. Note that the T -bound is 0 if S is bounded. The second part of the previous lemma can be

improved as follows.

1.2.8 Theorem. Let T : D(T ) ⊂ E → F and S : D(S) ⊂ E → F be two linear operators such

that S is T -bounded with T -bound less than 1. Then T + S is closed if and only if T is closed.

Proof. [Wei80, Theorem 5.5]

1.2.9 Lemma. If T ∈ C(E,F ), then ker(T ) ⊂ E is closed.

Proof. This follows from

ker(T )× {0} = graph(T ) ∩ (E × {0}),

as graph(T ) and E × {0} are closed.

The following important result is usually called the closed graph theorem.

1.2.10 Theorem. If T ∈ C(E,F ) and D(T ) = E, then T ∈ L(E,F ).

Proof. By assumption, graph(T ) ⊂ E × F is closed and hence a Banach space in its own right.

We define an operator

S : E → graph(T ), Su = (u, Tu)

and note that S is bijective and its inverse is the restriction P1 |graph(T ): graph(T ) → E, where

P1 denotes the projection onto the first component in E × F . As P1 |graph(T ) is bounded and

surjective, it is an open map by the open mapping theorem (Theorem 1.1.3). Accordingly,

(P1 |graph(T ))
−1 = S

is bounded. To show the assertion, we just have to observe that T = P2 ◦ S, where P2 denotes

the projection on the second component in E × F .

Note that Theorem 1.2.10 implies that D(T ) 6= E if T ∈ C(E,F ) is unbounded. Moreover, if

T ∈ C(E,F ) is invertible, then T−1 ∈ C(F,E) by Lemma 1.2.6 and D(T−1) = F . Accordingly,

T−1 ∈ L(F,E), and so a closed operator is invertible if and only if it has a bounded inverse.

1.2.11 Lemma. If B ∈ L(E,F ) and T ∈ C(F,G) are such that im(B) ⊂ D(T ), then TB ∈
L(E,G).

Proof. By Theorem 1.2.10 we only need to show that TB is closed since D(TB) = E by assump-

tion. Let {un}n∈N be a sequence in E such that un → u ∈ E and assume that (TB)un → v,

n → ∞. As B is bounded, we obtain Bun → Bu. Moreover, since T is closed, we get that

Bu ∈ D(T ) and (TB)(un) → T (Bu). Hence v = TBu and so TB is closed.
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Now let T : D(T ) ⊂ E → F be a linear operator. The graph norm on D(T ) is defined by

‖u‖T = (‖u‖2 + ‖Tu‖2) 1

2 , u ∈ D(T ).

Note that T : D(T ) → F is bounded when considered as an operator on the normed linear space

D(T ) with respect to the graph norm. The normed linear space D(T ) with respect to ‖ · ‖T is

isometric to the linear subspace graph(T ) of E × F . Hence we immediately obtain the following

result.

1.2.12 Lemma. T ∈ C(E,F ) if and only if D(T ) is a Banach space with respect to the graph

norm.

The following result shows that the Banach space structures are essentially determined by the

underlying domains of the operators.

1.2.13 Lemma. If T1, T2 ∈ C(E,F ) have the same domain D = D(T1) = D(T2), then the graph

norms of T1 and T2 on D are equivalent.

Proof. We denote by DT1
and DT2

the space D with the graph norm of T1 and T2, respectively.

Let us consider T1 : DT2
→ F and let {(un, T1un)}n∈N ⊂ graph(T1 : DT2

→ F ) be any sequence

which converges in DT2
× F to an element (u, v) ∈ DT2

× F . Since un → u in DT2
implies that

un converges also to u with respect to the norm of E, we get from the closedness of T1 that

(un, T1un) → (u, T1u) in E × F . Hence (un, T1un) → (u, T1u) in DT2
× F which implies that

T1 : DT2
→ F is closed. As DT2

is complete, we obtain from Theorem 1.2.10 that T1 : DT2
→ F

is bounded. Accordingly, there exists a constant c > 0 such that

‖T1u‖F ≤ c(‖u‖E + ‖T2u‖F )

and thus

‖u‖E + ‖T1u‖F ≤ (c+ 1)(‖u‖E + ‖T2u‖F ).

By using elementary inequalities, we finally obtain

(‖u‖2E + ‖T1u‖2F )
1

2 ≤
√
2(c+ 1)(‖u‖2E + ‖T2u‖2F )

1

2 .

The assertion follows by swapping T1 and T2.

We now consider special classes of closed Operators.

1.2.14 Definition. An operator T ∈ C(E,F ) is called Fredholm if ker(T ) is of finite dimension

and im(T ) of finite codimension. The Fredholm index of a Fredholm operator is defined as

ind(T ) = dim ker(T )− codim im(T ).
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Note that T is assumed to be a closed operator. The following result is often required as an

additional assumption in the definition of a Fredholm operator.

1.2.15 Lemma. If T ∈ C(E,F ) is Fredholm, then im(T ) ⊂ F is closed.

Proof. If we consider T on its domain D(T ) with respect to the graph norm, then T is bounded.

As a change of the norm in the domain does not affect im(T ), the assertion follows from Lemma

1.1.11.

1.2.16 Example. Let us consider once again the operator T : C1[0, 1] ⊂ C[0, 1] → C[0, 1]

given by Tu = u′. We have already seen in Example 1.2.3 that T is closed. The kernel of T is

the one-dimensional subspace of C[0, 1] consisting of the constant functions. Given v ∈ C[0, 1],

then u(t) =
∫ s

0 v(s) ds, t ∈ [0, 1], defines an element in C1[0, 1] such that Tu = v. Hence T is

surjective and we conclude that T is a Fredholm operator of index 1.

Finally, we mention without proof the following two results on the stability of Fredholmness.

1.2.17 Theorem. Let T ∈ C(E,F ) be Fredholm. Then there exists γ > 0 such that for every

S : D(S) ⊂ E → F such that D(T ) ⊂ D(S) and

‖Su‖ ≤ γ(‖u‖+ ‖Tu‖), u ∈ D(T ),

the operator T + S is Fredholm and

(i) dimker(T + S) ≤ dim ker(T ),

(ii) codim im(T + S) ≤ codim im(T ),

(iii) ind(T + S) = ind(T ).

Proof. [GGK90, Theorem XVII.4.2]

1.2.18 Theorem. Let T ∈ C(E,F ) be Fredholm and S : D(S) ⊂ E → F such that D(T ) ⊂ D(S)

and S |D(T ): D(T ) → F is compact with respect to the graph norm of T on D(T ). Then T + S

is Fredholm and

ind(T + S) = ind(T ).

Proof. [GGK90, Theorem XVII.4.3]

1.3 Spectral Theory

Let T : D(T ) ⊂ E → E be a linear operator. We call λ ∈ C an eigenvalue of T if there exists

u ∈ D(T ), u 6= 0, such that Tu = λu. If λ is not an eigenvalue, then λ−T is injective and hence

the resolvent operator
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R(λ, T ) = (λ− T )−1, D(R(λ, T )) = im(T ) ⊂ E,

is well defined. We define the resolvent set of T by

ρ(T ) = {λ ∈ C : λ− T bijective, R(λ, T ) ∈ L(E)}.

A first important observation reads as follows:

1.3.1 Lemma. If T /∈ C(E), then ρ(T ) = ∅.

Proof. If λ ∈ ρ(T ) 6= ∅, then R(λ, T ) = (λ− T )−1 is bounded and hence closed by Lemma 1.2.5.

Then λ− T is closed by Lemma 1.2.6 and so T is closed as well.

Accordingly, we assume in what follows that T ∈ C(E). Note that in this case we obtain from

Theorem 1.2.10 that

ρ(T ) = {λ ∈ C : λ− T is bijective}.

We define the spectrum σ(T ) of T to be C \ ρ(T ) and the point spectrum σp(T ) ⊂ σ(T ) as the

set of all eigenvalues of T .

1.3.2 Lemma. The resolvent set ρ(T ) ⊂ C is open and, accordingly, σ(T ) ⊂ C is closed.

Moreover, if λ0 ∈ ρ(T ) 6= ∅ and |λ− λ0| < ‖R(λ0, T )‖−1, then λ ∈ ρ(T ) and

R(λ, T ) =

∞∑

k=0

(λ− λ0)
kR(λ0, T )

k+1,

where the series converges in the norm of L(E). In particular, R(·, T ) is analytic on ρ(T ).

Proof. We assume that ρ(T ) 6= ∅ and take some λ0 ∈ ρ(T ). If |λ− λ0| < ‖R(λ0, T )‖−1 then the

series

S(λ) :=

∞∑

k=0

(λ− λ0)
kR(λ0, T )

k+1

converges absolutely and we claim that S(λ) = R(λ, T ) = (T − λ)−1. If u ∈ D(T ), then

R(λ0, T )(T − λ)u = (T − λ0)
−1(T − λ0 − (λ − λ0))u = u− (λ− λ0)R(λ0, T )u (1.4)

and we obtain
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S(λ)(T − λ)u =

∞∑

k=0

(λ− λ0)
kR(λ0, T )

k(u − (λ− λ0)R(λ0, T )u)

=

∞∑

k=0

(λ− λ0)
kR(λ0, T )

ku−
∞∑

k=0

(λ− λ0)
k+1R(λ0, T )

k+1u = u.

Consequently, S(λ)(T − λ) = ID(T ). Now let v ∈ E be given. We define

un :=

n∑

k=0

(λ − λ0)
kR(λ0)

k+1v, n ∈ N,

which is a sequence in D(T ) converging to u := S(λ)v ∈ E. By using a computation as in (1.4),

we obtain

(T − λ)un =

n∑

k=0

(λ− λ0)
k(T − λ)R(λ0, T )

k+1v

=

n∑

k=0

(λ− λ0)
k(IH − (λ− λ0)R(λ0, T ))R(λ0, T )

kv

=

n∑

k=0

(λ− λ0)
kR(λ0, T )

kv −
n∑

k=0

(λ− λ0)
k+1R(λ0, T )

k+1v

= v − (λ− λ0)
n+1R(λ0, T )

n+1v

and so we see from our assumption on λ that (T − λ)un → v ∈ E, n → ∞. As T − λ is closed,

we conclude that u ∈ D(T ) and (T − λ)S(λ)v = (T − λ)u = v. Consequently, (T − λ)S(λ) = IE

and we finally obtain that S(λ) = (T − λ)−1 = R(λ, T ).

Let us point out that in contrast to operators in L(E), the spectrum of elements in C(E) can be

unbounded and even empty:

1.3.3 Example. We consider again the closed operators

T : D(T ) ⊂ C[0, 1] → C[0, 1], T0 : D(T0) ⊂ C[0, 1] → C[0, 1],

where

D(T ) = C1[0, 1], D(T0) = {u ∈ C1[0, 1] : u(0) = 0}

and both operators map elements u to their first derivative.

For the operator T , we see that eλ t ∈ ker(λ − T ) for all λ ∈ C and hence σ(T ) = C. For

T0 it is readily seen that ker(λ − T0) = {0} for all λ ∈ C. Moreover, if g ∈ C[0, 1], then

u(t) = −eλt
∫ t

0 e
−λs g(s) ds, t ∈ [0, 1], is a solution of the equation (λ− T0)u = g and so
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‖(λ− T0)
−1g‖ = ‖u‖ ≤ e|λ|‖g‖.

Hence σ(T0) = ∅.

There are various definitions of subsets of σ(T ) other than σp(T ). Here we just want to introduce

the essential spectrum σess(T ) which consists of all λ ∈ C such that λ − T is not a Fredholm

operator. In contrast to the case of bounded operators, it is possible that σess(T ) = ∅. Note

that in general we neither have σ(T ) = σp(T ) ∪ σess(T ) nor σp(T ) ∩ σess(T ) = ∅.
As next step we introduce Riesz projections. Let T ∈ C(E) and assume that we have a disjoint

union σ(T ) = σ ∪ τ , where σ is contained in a bounded Cauchy domain1 ∆ such that τ ∩∆ = ∅.
Let Γ denote the oriented boundary of ∆. For N ∈ N sufficiently large we approximate Γ by a

union of straight-line segments ∆i, i = 1, . . .N , such that
⋃N

i=1 ∆i is a closed polygonal contour

containing σ. We choose λi ∈ ∆i, i = 1, . . . , N and set

PN
σ =

1

2πi

N∑

i=1

R(λi, T )|∆i|,

where |∆i| denotes the length of the segment ∆i. In this way we can construct a sequence

{PN
σ } ⊂ L(H) such that the lengths of the straight-line segments Λi converge to 0. One can

show that the limit limN→∞ PN
σ exists in L(E) and does not depend on the choices made in the

construction of {PN
σ }. We denote the obtained operator by

1

2πi

∫

Γ

(λ− T )−1 dλ.

Given an operator T acting on a linear space E, a subspace M ⊂ E is called T -invariant if

T (M ∩D(T )) ⊂ M . In this case T |M denotes the operator T with domain M ∩D(T ) and range

in M .

1.3.4 Theorem. Let T ∈ C(E) with spectrum σ(T ) = σ ∪ τ , where σ is contained in a bounded

Cauchy domain △ such that △∩ τ = ∅. Let Γ be the oriented boundary of △. Then

(i) Pσ := 1
2πi

∫

Γ (λ− T )−1 dλ does not depend on the choice of △,

(ii) Pσ is a projection, i.e., P 2
σ = Pσ,

(iii) the subspaces M = im(Pσ) and N = ker(Pσ) are T -invariant,

(iv) the subspace M is contained in D(T ) and T |M is bounded,

(v) σ(T |M ) = σ and σ(T |N ) = τ .

1The definition of Cauchy domain can be found in [GGK90, Sec. I.1]. For example, any open and connected

subset of C whose boundary is a closed rectifiable Jordan curve is a Cauchy domain.
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Proof. [GGK90, Theorem XV.2.1]

Pσ is called the Riesz projection of the operator T with respect to σ.

We call a point λ ∈ σ(T ) an eigenvalue of finite type if λ is isolated in σ(T ) and the associated

projection P{λ} has finite rank. Since by Theorem 1.3.4, {λ} = σ(T |im(P{λ})) and im(P{λ}) is

finite dimensional, it follows that λ ∈ σp(T ). Moreover, note that im(P{λ}) ⊃ ker(λ − T ) but

equality does not hold in general. However, we will see in the next chapter that im(P{λ}) =

ker(λ− T ) if T is selfadjoint.

A quite often appearing situation is considered in the following theorem.

1.3.5 Theorem. Let T ∈ C(E) be such that R(λ0, T ) = (λ0 − T )−1 is compact for some λ0 ∈
ρ(T ). Then R(λ, T ) is compact for any λ ∈ ρ(T ), σ(T ) does not have a limit point in C and

every point in σ(T ) is an eigenvalue of finite type. Moreover, for any λ ∈ C we have

dimker(λ− T ) = codim im(λ− T ) < ∞

so that each operator λ− T is Fredholm of index 0.

Proof. [GGK90, Theorem XV.2.3]

We call T ∈ C(E) an operator with compact resolvent if there exists λ0 ∈ C such that R(λ0, T )

is compact. Note that σess(T ) = ∅ in this case.

1.3.6 Lemma. If T ∈ C(E) has a compact resolvent and B ∈ L(E) is bounded, then T +B is a

Fredholm operator of index 0.

Proof. We fix λ ∈ ρ(T ) and obtain a compact operator (λ− T )−1 : E → E. Then B(λ − T )−1 :

E → E is compact as well since the composition of a bounded and a compact operator is still

compact. Consequently,

B = (B(λ− T )−1)(λ− T ) : D(T ) → E

is compact with respect to the graph norm of T on D(T ). Now the assertion follows from Theorem

1.2.18 and Theorem 1.3.5.



20 CHAPTER 1. LINEAR OPERATORS



Chapter 2

Selfadjoint Operators

2.1 Definitions and Basic Properties

Let H be a complex non-trivial Hilbert space. The following result is known as the Riesz

representation theorem.

2.1.1 Theorem. Let f : H → C be a continuous linear functional. Then there exists a unique

v ∈ H such that

f(u) = 〈u, v〉, u ∈ H.

Let T : D(T ) ⊂ H → H be a densely defined operator acting on H . We define

D(T ∗) = {v ∈ H : u 7→ 〈Tu, v〉H is bounded onD(T )},

and note that, as D(T ) is assumed to be dense in H , each functional u 7→ 〈Tu, v〉H , v ∈ D(T ∗),

has a continuous extension on all of H . Hence, by the Riesz Representation Theorem, we can

associate to any v ∈ D(T ∗) an element T ∗v ∈ H such that

〈Tu, v〉H = 〈u, T ∗v〉H , u ∈ D(T ), v ∈ D(T ∗).

The resulting operator T ∗ on H with domain D(T ∗) is linear and it is called the adjoint of T .

We make at first a rather simple observation, which is however often used when dealing with

adjoints of operators.

2.1.2 Lemma. Assume that T : D(T ) ⊂ H → H is densely defined and S : D(S) ⊂ H → H is

any linear operator. If

〈Tu, v〉 = 〈u, Sv〉, u ∈ D(T ), v ∈ D(S), (2.1)

then S ⊂ T ∗.

21
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Proof. We obtain from (2.1) and the definition of the adjoint that D(S) ⊂ D(T ∗). Hence we

conclude from (2.1) that 〈u, T ∗v〉 = 〈u, Sv〉 for all u ∈ D(T ) and v ∈ D(S). This implies that

Sv = T ∗v, as D(T ) is dense by assumption.

2.1.3 Lemma. If T is densely defined, then T ∗ ∈ C(H).

Proof. Let us assume that {un}n∈N ⊂ D(T ∗) is such that un → u and T ∗un → v, n → ∞,

for some u, v ∈ H . We obtain for all w ∈ D(T ) that 〈w, T ∗un〉 = 〈Tw, un〉 → 〈Tw, u〉 and

〈w, T ∗un〉 → 〈w, v〉. Hence 〈w, v〉 = 〈Tw, u〉 for all w ∈ D(T ) which shows that u ∈ D(T ∗) by

the definition of T ∗. Moreover, we obtain 〈w, v〉 = 〈w, T ∗u〉 for all w ∈ D(T ) and conclude that

v = T ∗u. This shows that T ∗ is closed.

Let us point out that it is possible that D(T ∗) = {0} for a densely defined operator T (cf.[GGK90,

p.291]). However, since we are solely interested in closed operators, such singular phenomena

cannot occur:

2.1.4 Lemma. If T ∈ C(H) is densely defined, then T ∗ is densely defined as well and T ∗∗ = T .

Proof. [Wei80, Theorem 5.3]

A densely defined operator T acting on a Hilbert space H is called symmetric if T ⊂ T ∗ and

selfadjoint if T = T ∗. Note that a selfadjoint operator is closed by Lemma 2.1.3.

2.1.5 Lemma. Let T be a densely defined operator acting on H.

(i) T is symmetric if and only if T ⊂ T ∗∗ ⊂ T ∗ = T ∗∗∗. In this case T ∗∗ is symmetric as well.

(ii) T ∈ C(H) is symmetric if and only if T = T ∗∗ ⊂ T ∗.

(iii) T is selfadjoint if and only if T = T ∗∗ = T ∗.

Proof. [We05, VII.2.5]

The next result is the Hellinger-Toeplitz theorem:

2.1.6 Theorem. If T is symmetric and D(T ) = H, then T is selfadjoint and T ∈ L(H).

Proof. Since T ⊂ T ∗ and D(T ) = H , it is clear that T is selfadjoint. In particular, T is closed

by Lemma 2.1.3 and hence bounded by the closed graph theorem (Theorem 1.2.10).

The following lemma holds analogously to the bounded case:

2.1.7 Lemma. Let T : D(T ) ⊂ H → H be densely defined. Then

(i) (im T )⊥ = ker(T ∗),

(ii) im T = (kerT ∗)⊥.
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Proof. Since (U⊥)⊥ = U for all U ⊂ H , the second assertion follows from the first one. In order

to show (i) let us assume at first that u ∈ (imT )⊥. Then 〈Tv, u〉 = 0 for all v ∈ D(T ) and we

conclude that u ∈ D(T ∗) and T ∗u = 0. Consequently, u ∈ ker(T ∗). If, conversely, v ∈ ker(T ∗),

then 〈u, T ∗v〉 = 0 for all u ∈ H . Hence 〈Tu, v〉 = 0 for all u ∈ D(T ) and so v ∈ (im T )⊥.

2.1.8 Lemma. If T ∈ C(H) is densely defined and invertible, then T ∗ is invertible as well and

(T ∗)−1 = (T−1)∗.

Proof. As T−1 : H → H , the domain of the adjoint (T−1)∗ is H and we obtain for all v ∈ H

and u ∈ D(T )

〈Tu, (T−1)∗v〉 = 〈T−1Tu, v〉 = 〈u, v〉.

Hence

(T−1)∗v ∈ D(T ∗), T ∗(T−1)∗v = v, v ∈ H, (2.2)

and we note that T ∗ is surjective. As T is invertible, T ∗ is injective as well by Lemma 2.1.7, and

so T ∗ has a bounded inverse by the closed graph theorem. Finally, from (2.2) we deduce that

(T ∗)−1 = (T−1)∗.

2.1.9 Lemma. Let T, S ∈ C(H) be densely defined. If ST is densely defined, then

T ∗S∗ ⊂ (ST )∗.

Moreover, if S ∈ L(H) then

(ST )∗ = T ∗S∗.

Proof. If u ∈ D(ST ) and v ∈ D(T ∗S∗), then

〈Tu, S∗v〉 = 〈u, T ∗S∗v〉

and

〈STu, v〉 = 〈Tu, S∗v〉.

Consequently, 〈STu, v〉 = 〈u, T ∗S∗v〉 and the first assertion is shown.

Now assume that S ∈ L(H) and v ∈ D((ST )∗). As S∗ ∈ L(H), we have D(S∗) = H and so we

obtain for all u ∈ D(ST )

〈Tu, S∗v〉 = 〈STu, v〉 = 〈u, (ST )∗v〉.

We conclude that S∗v ∈ D(T ∗) and so v ∈ D(T ∗S∗). Consequently, (ST )∗ = T ∗S∗ by the first

assertion of the lemma.
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The following example can be found, e.g., in [Ru91].

2.1.10 Example. We consider H = L2[0, 1] and define

D(T1) = H1[0, 1] = {u : [0, 1] → C : u absolutely continuous, u′ ∈ L2[0, 1]},

as well as

D(T2) = {u ∈ D(T1) : u(0) = u(1)}
D(T3) = {u ∈ D(T1) : u(0) = u(1) = 0}.

If we set Tku = i u′ for k = 1, 2, 3, then

T ∗
1 = T3, T ∗

2 = T2, T ∗
3 = T1. (2.3)

As T3 ⊂ T2 ⊂ T1 we note in particular that T3 is symmetric and T2 is selfadjoint.

In order to show (2.3) we compute for u ∈ D(Tk), v ∈ D(Tm), m+ k = 4,

〈Tku, v〉 =
∫ 1

0

(iu′)v dt = iu(1)v(1)− iu(0)v(0)
︸ ︷︷ ︸

=0

−i

∫ 1

0

uv′ dt = 〈u, Tmv〉

and see that

T1 ⊂ T ∗
3 , T2 ⊂ T ∗

2 , T3 ⊂ T ∗
1 .

Now we assume that v ∈ D(T ∗
k ) and we set w(t) :=

∫ t

0 T ∗
k v ds, t ∈ [0, 1]. We obtain for u ∈ D(Tk)

∫ 1

0

iu′v dt = 〈Tku, v〉 = 〈u, T ∗
k v〉 = u(1)w(1)− u(0)w(0)

︸ ︷︷ ︸

=0

−
∫ 1

0

u′w dt. (2.4)

If now k = 1 or k = 2, then Y := {u ∈ L2[0, 1] : u ≡ const.} ⊂ D(Tk) and we see from (2.4) that

w(1) = 0, k = 1, 2. (2.5)

If k = 3, we have u(1) = 0 for all u ∈ D(T3) and we conclude that in all cases

iv − w ∈ (im Tk)
⊥, k = 1, 2, 3. (2.6)

Now let us consider at first T1. As T1 is surjective, we obtain from (2.6) that iv = w. By (2.5),

this implies that v(0) = v(1) = 0 and hence v ∈ D(T3) which shows that T ∗
1 ⊂ T3.



2.1. DEFINITIONS AND BASIC PROPERTIES 25

For k = 2 and k = 3, we note at first that im(Tk) = Y ⊥ and so we obtain from (2.6) that iv−w

is a constant function. By the definition of w, we conclude that v is absolutely continuous and

v′ = T ∗
k v ∈ L2[0, 1]. Hence v ∈ D(T1), and for k = 3 we see that T ∗

3 ⊂ T1. For k = 2 we have in

addition w(1) = 0 by (2.5) which shows v(0) = v(1). Hence v ∈ D(T2) and T ∗
2 ⊂ T2.

2.1.11 Lemma. If T : D(T ) ⊂ H → H is symmetric and surjective, then T is selfadjoint.

Proof. As T is symmetric, we only need to show that D(T ∗) ⊂ D(T ). Let v ∈ D(T ∗). Since T

is surjective, there exists u ∈ D(T ) such that Tu = T ∗v. So for every w ∈ D(T )

〈Tw, v〉 = 〈w, T ∗v〉 = 〈w, Tu〉 = 〈Tw, u〉,

and consequently v = u ∈ D(T ), where we use again the surjectivity of T .

2.1.12 Example. We revisit the differential operator T2 on L2[0, 1] from Example 2.1.10, where

we modify the domain slightly. We consider for λ ∈ [−π, π] the operator Tλu = i u′ on

D(Tλ) = {u ∈ H1[0, 1] : u(0) = eiλu(1)}.

Note that Tλ = T2 for λ = 0, so that in this case Tλ is selfadjoint by Example 2.1.10. If, however,

λ 6= 0 and v ∈ L2[0, 1], then a straightforward computation shows that

u(t) = −i

∫ t

0

v(s) ds− ieiλ

1− eiλ

∫ 1

0

v(s) ds, t ∈ [0, 1],

belongs to D(Tλ) and Tλu = v. Hence Tλ is surjective for every λ 6= 0. Moreover, if u, v ∈ D(Tλ)

〈Tλu, v〉 =
∫ 1

0

(iu′)v dt = ieiλu(0)eiλv(0)− iu(0)v(0)
︸ ︷︷ ︸

=0

−i

∫ 1

0

uv′ dt = 〈u, Tλv〉,

and so Tλ is symmetric. Consequently, by Lemma 2.1.11, Tλ is selfadjoint for all λ ∈ [−π, π].

Note that the sum of two selfadjoint operators is in general not selfadjoint. The Kato-Rellich

theorem is a classical result giving conditions on how much a selfadjoint operator can be perturbed

without losing its selfadjointness. Here we just prove a much weaker assertion which, however,

is often sufficient for applications and is a rather direct consequence of the definitions.

2.1.13 Theorem. Let T : D(T ) ⊂ H → H be selfadjoint and let S : H → H be symmetric.

Then T + S is selfadjoint on D(T ).

Proof. Let v ∈ D(T + S) = D(T ) = D(T ∗). Then

〈(T + S)u, v〉 = 〈Tu, v〉+ 〈Su, v〉 = 〈u, T v〉+ 〈u, Sv〉 = 〈u, (T + S)v〉
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and the functional u 7→ 〈(T + S)u, v〉 is bounded on D(T + S) = D(T ). Hence v ∈ D((T + S)∗)

and we have shown that T + S ⊂ (T + S)∗.

Now we assume that v ∈ D((T + S)∗). Then the functional

u 7→ 〈(T + S)u, v〉 = 〈Tu, v〉+ 〈Su, v〉, u ∈ D(T + S) = D(T ),

is bounded. If we now assume that u 7→ 〈Tu, v〉 is unbounded on D(T ), then there exists a

sequence {un}n∈N ⊂ D(T ), ‖un‖ = 1, n ∈ N, such that 〈Tun, v〉 → ∞, n → ∞. As |〈Sun, v〉| ≤
‖S‖‖v‖, we would obtain that 〈(T + S)un, v〉 → ∞ which is a contradiction. Hence u 7→ 〈Tu, v〉
is bounded on D(T ) and so v ∈ D(T ∗) = D(T ) = D(T +S). Consequently, (T +S)∗ = T +S.

2.2 Spectral Theory of Selfadjoint Operators

2.2.1 Lemma. Let E be a Banach space. If T ∈ C(E) and there exists β ≥ 0 such that

‖Tu‖ ≥ β‖u‖, u ∈ D(T ), (2.7)

then im(T ) is closed.

Proof. Let {Tun}n∈N be a sequence in im(T ) such that Tun → v ∈ E. We obtain from (2.7)

that {un}n∈N is a Cauchy sequence in E and so un → u for some u ∈ E. As T is closed, we

conclude that u ∈ D(T ) and v = Tu ∈ im(T ). Consequently, im(T ) is closed.

2.2.2 Lemma. If T : D(T ) ⊂ H → H is selfadjoint, then σ(T ) ⊂ R and

‖(λ− T )−1‖ ≤ |β|−1, λ = α+ i β, α, β ∈ R, β 6= 0. (2.8)

Proof. Assume that λ = α+ i β, α, β ∈ R and β 6= 0. We obtain for u ∈ D(T )

〈(α+ iβ)u− Tu, (α+ iβ)u− Tu〉 = 〈(αu − Tu) + iβu, (αu− Tu) + iβu〉
= ‖αu− Tu‖2 + β2‖u‖2 − iβ〈(α − T )u, u〉+ iβ〈u, (α− T )u〉

and conclude that

‖(λ− T )u‖2 ≥ β2‖u‖2, u ∈ D(T ), (2.9)

where we use that T is symmetric. Hence im(λ−T ) is closed by Lemma 2.2.1. As ker(λ−T ) = 0

by (2.9), we obtain from Lemma 2.1.7
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H = im(λ − T )⊕ ker(λ− T ) = im(λ− T )

and so λ ∈ ρ(T ). Finally, (2.8) follows from (2.9).

The first part of the previous lemma can be improved as follows:

2.2.3 Lemma. Let T ∈ C(H) be densely defined and symmetric. Then precisely one of the

following assertions hold:

(i) σ(T ) = C;

(ii) σ(T ) = {α+ iβ ∈ C : β ≥ 0};

(iii) σ(T ) = {α+ iβ ∈ C : β ≤ 0};

(iv) σ(T ) ⊂ R.

Moreover, σ(T ) ⊂ R if and only if T is selfadjoint.

Proof. [Ka76, Sec. V.3.4]

Note that in particular a closed symmetric operator is selfadjoint if ρ(T ) ∩R 6= ∅.

2.2.4 Lemma. If T ∈ C(H) is densely defined and selfadjoint, then

σ(T ) = σp(T ) ∪ σess(T ).

Proof. Since σ(T ) ⊂ R, any λ−T , λ ∈ σ(T ), is selfadjoint as well. Hence we can assume without

loss of generality that 0 ∈ σ(T ) and it suffices to consider the case λ = 0.

As ker(T ) = (imT )⊥ by Lemma 2.1.7, we see that either T is not injective or its image is dense

in H . If T is not injective, then 0 ∈ σp(T ). If on the other hand T is injective, then T has a

dense image but im(T ) 6= H as otherwise 0 ∈ ρ(T ). Hence im(T ) is not closed and so T is not a

Fredholm operator which implies that 0 ∈ σess(T ).

Finally, we consider selfadjoint Fredholm operators.

2.2.5 Lemma. Let T ∈ C(H) be selfadjoint and Fredholm. Then 0 is either in the resolvent set

ρ(T ) or it is an isolated eigenvalue of finite multiplicity.

Proof. As T is Fredholm, we get from Lemma 1.2.17 that there is ε > 0 such that λ− T is also

Fredholm for all λ ∈ (−ε, ε). Consequently, (−ε, ε) ∩ σess(T ) = ∅ and by Lemma 2.2.4 we only

need to show that 0 is isolated in σ(T ) if it is not in the resolvent set.

We set X := (kerT )⊥ = im(T ) which is a Hilbert space as it is a closed subspace of H . We claim

that
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T ′ := T |X : D(T ′) = X ∩ D(T ) ⊂ X → X

is closed. Indeed, if {un}n∈N ⊂ D(T ′) is a sequence such that un → u and T ′un → v for some

u, v ∈ X , then we obtain for all w ∈ D(T )

〈T ′un, w〉 = 〈un, Tw〉 → 〈u, Tw〉.

Since 〈T ′un, w〉 → 〈v, w〉, we get that 〈u, Tw〉 = 〈v, w〉 for all w ∈ D(T ) and so u ∈ D(T ∗) =

D(T ). As un ∈ (kerT )⊥ for all n ∈ N, we also have that u ∈ (kerT )⊥ and so u ∈ D(T ′).

Moreover, we obtain

〈v, w〉 = 〈T ∗u,w〉 = 〈Tu,w〉 = 〈T ′u,w〉, w ∈ D(T ),

which shows that T ′u = v, and so T ′ is closed.

Since T ′ is moreover bijective, we obtain from the closed graph theorem that (T ′)−1 : X → X

is bounded and hence 0 ∈ ρ(T ′). Accordingly, there exists a neighbourhood of 0 in C belonging

entirely to the resolvent set of T ′.

Now let us assume that there is some λ ∈ (−ε, ε) \ {0} such that λ ∈ ρ(T ′) and that there exists

u = u1+u2 ∈ D(T ) = (ker(T )⊕ im(T ))∩D(T ) such that λu−Tu = λu1+λu2−Tu2 = 0. Then

λu1 = (T − λ)u2 = (T ′ − λ)u2 and since the right hand side is in im(T ) and the left hand side

in ker(T ), we see that both sides vanish. As 0 6= λ ∈ ρ(T ′), we get that u1 = u2 = 0 and hence

u = 0 which shows that λ ∈ ρ(T ).

Finally, let us note the following result on spectral projections for later reference.

2.2.6 Lemma. Let T ∈ C(H) be selfadjoint and let λ0 be an isolated point in the spectrum σ(T ).

Then λ0 ∈ σp(T ) and

im(P{λ0}) = ker(λ0 − T ).

Proof. [HS96, Prop. 6.3]



Chapter 3

The Gap Topology

3.1 Definition and Properties

As before we let H 6= {0} be a complex Hilbert space. We denote by Csa(H) the set of all densely

defined, selfadjoint operators T : D(T ) ⊂ H → H and the aim of this section is to introduce a

metric on the space Csa(H).

If T ∈ Csa(H), then ±i /∈ σ(T ) and we obtain in particular that T + i has a bounded inverse

(T + i)−1 : H → H . As T − i ∈ C(H) and im((T + i)−1) = D(T ) = D(T − i), we conclude by

Lemma 1.2.11 that

κ(T ) := (T − i)(T + i)−1 ∈ L(H).

The operator κ(T ) is called the Cayley-transform of T ∈ Csa(H) and we note that

κ(T ) = (T + i− 2i)(T + i)−1 = IH − 2i (T + i)−1. (3.1)

Consequently, if T1, T2 ∈ Csa(H), then

‖κ(T1)− κ(T2)‖ = 2‖(T1 + i)−1 − (T2 + i)−1‖ (3.2)

and κ : Csa(H) → L(H) is injective.

3.1.1 Definition. The gap metric on Csa(H) is defined by

dG(T1, T2) = ‖κ(T1)− κ(T2)‖.

Note that dG indeed defines a metric because of the injectivity of κ : Csa(H) → L(H). Moreover,

by (3.2) we obtain an equivalent metric δ by

29
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δ(T1, T2) = ‖(T1 + i)−1 − (T2 + i)−1‖. (3.3)

Let us recall that a linear operator U : H → H is called unitary if U∗ = U−1, and moreover

every surjective isometry is unitary. We prove the following results along the lines of §1.1 of

Booss-Bavnbek, Lesch and Phillips’ article [BLP05].

3.1.2 Theorem. If U is unitary and U − IH injective, then T := i(IH + U)(IH − U)−1 is

selfadjoint on D(T ) = im(IH − U). Moreover, T = i(IH − U)−1(IH + U).

Proof. Since U is in particular normal we see that ker(IH − U∗) = ker(IH − U) and so

im(IH − U) = ker(IH − U∗)⊥ = ker(IH − U)⊥ = H,

as IH − U is injective. Consequently, D(T ) = im(IH − U) is dense. From

(IH − U)(IH + U) = IH − U2 = (IH + U)(IH − U) (3.4)

we obtain

(IH + U)(IH − U)−1 = (IH − U)−1(IH − U)(IH + U)(IH − U)−1

= (IH − U)−1(IH + U) |im(IH−U)⊂ (IH − U)−1(IH + U).
(3.5)

On the other hand, if u ∈ D((IH−U)−1(IH+U)), then (IH+U)u ∈ D((IH−U)−1) = im(IH−U)

and accordingly there exists v ∈ H , such that (IH + U)u = (IH − U)v. We conclude that

u = (IH − U)v + (IH − U)u− u and hence

u =
1

2
(IH − U)(u+ v) ∈ D((IH + U)(IH − U)−1).

We obtain from (3.5) that

T = i(IH + U)(IH − U)−1 = i(IH − U)−1(IH + U).

As next step, we want to show that T is symmetric. If u, v ∈ D(T ) = im(IH − U), then there

exist y, z ∈ H such that v = y − Uy and Tu = i(z + Uz) and we get

〈Tu, v〉 = i〈z + Uz, y − Uy〉 = i(〈z, y〉 − 〈z, Uy〉+ 〈Uz, y〉 − 〈Uz, Uy〉)
= i〈Uz, y〉 − i〈z, Uy〉 = 〈z − Uz, i(y + Uy)〉 = 〈u, T v〉.

Hence T is symmetric and we obtain from Lemma 2.1.9
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T ⊂ T ∗ = −i(IH − U∗)−1(IH + U∗). (3.6)

By arguing verbatim for T ∗ as for T , we have

T ∗ = −i(IH − U∗)−1(IH + U∗) = −i(IH + U∗)(IH − U∗)−1

and so also T ∗ is symmetric. Hence

T ∗ ⊂ T ∗∗ = i(IH − U)−1(IH + U) = T

and we conclude from (3.6) that T = T ∗.

We obtain two important corollaries from the previous theorem.

3.1.3 Corollary. If U and T are as in Theorem 3.1.2, then κ(T ) = U .

Proof. By Theorem 3.1.2 we have T = i(IH − U)−1(IH + U). Hence

T + i = i(IH − U)−1(IH + U) + i(IH − U)−1(IH − U) = 2i(IH − U)−1,

and so

(T + i)−1 =
1

2i
(IH − U).

Analogously,

T − i = i(IH − U)−1(IH + U)− i(IH − U)−1(IH − U) = 2i(IH − U)−1U

and we obtain

κ(T ) = (T − i)(T + i)−1 = (IH − U)−1U(IH − U) = U.

3.1.4 Corollary. The Cayley transform κ induces a homeomorphism

κ : Csa(H) → {U ∈ L(H) : U∗ = U−1 , ker(U − IH) = {0}} ⊂ L(H).
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Proof. By Theorem 3.1.2, we only have to show that U := κ(T ) is unitary and IH−κ(T ) injective

for all T ∈ Csa(H).

It is clear that U is surjective. For u ∈ D(T ) we have

‖Tu+ iu‖2 = 〈Tu+ iu, Tu+ iu〉 = ‖Tu‖2 + ‖u‖2 + i〈u, Tu〉 − i〈Tu, u〉
= ‖Tu‖2 + ‖u‖2 = ‖Tu− iu‖2

and since U(Tu + iu) = Tu − iu, we conclude that ‖Uv‖ = ‖v‖ for all v ∈ H . Hence U is a

surjective isometry defined on all of H , and consequently it is a unitary operator.

Now we assume that u ∈ H is such that κ(T )u = u. Then we obtain from (3.1)

u = κ(T )u = u− 2i(T + i)−1u

and hence (T + i)−1u = 0 which implies that u = 0.

Let us recall that

κ : R → S1, κ(t) =
t− i

t+ i

induces a homeomorphism onto S1 \ {1} ⊂ C.

3.1.5 Lemma. If T ∈ Csa(H), then

λ− T = (λ+ i)(κ(λ) − κ(T ))(IH − κ(T ))−1.

Proof. This follows from

λ− T = λ− i(IH + κ(T ))(IH − κ(T ))−1 = (λ(IH − κ(T ))− i(IH + κ(T )))(IH − κ(T ))−1

= (λ− λκ(T )− i− iκ(T ))(IH − κ(T ))−1 = ((λ− i)− (λ + i)κ(T ))(IH − κ(T ))−1

= (λ+ i)((λ− i)(λ+ i)−1 − κ(T ))(IH − κ(T ))−1 = (λ + i)(κ(λ)− κ(T ))(IH − κ(T ))−1.

As a consequence we obtain the following important corollary illustrating the relation between

the spectrum of an operator in Csa(H) and the spectrum of its Cayley transform.

3.1.6 Corollary. If T ∈ Csa(H), then

(i) ker(λ − T ) 6= {0} if and only if ker(κ(λ) − κ(T )) 6= {0}. Moreover the dimensions of both

spaces coincide.

(ii) im(λ− T ) = im(κ(λ) − κ(T )).
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Moreover,

• λ ∈ ρ(T ) ⇐⇒ κ(λ) ∈ ρ(κ(T )),

• λ ∈ σ(T ) ⇐⇒ κ(λ) ∈ σ(κ(T )),

• λ ∈ σp(T ) ⇐⇒ κ(λ) ∈ σp(κ(T )),

• λ ∈ σess(T ) ⇐⇒ κ(λ) ∈ σess(κ(T )).

Proof. By the previous Lemma 3.1.5 we know that

λ− T = (λ+ i)(κ(λ) − κ(T ))(IH − κ(T ))−1

and moreover (IH − κ(T ))−1 maps D(T ) bijectively onto H . This implies the assertions on

ker(λ − T ) and im(λ − T ). The remaining part of the corollary is an immediate consequence of

them.

3.1.7 Lemma. Let T ∈ Csa(H). Then

(i) 1 ∈ ρ(κ(T )) ⇐⇒ D(T ) = H, and this is true if and only if T is bounded.

(ii) 1 ∈ σess(κ(T )) ⇐⇒ D(T ) 6= H, and this is true if and only if T is unbounded.

Proof. The assertions regarding the boundedness and unboundedness of T follow from Lemma

1.2.5 and the assumption that T is densely defined.

By (3.1) we have

IH − κ(T ) = 2i(T + i)−1 ∈ L(H)

mapping H bijectively onto D(T ). Accordingly, if 1 ∈ ρ(κ(T )), we infer H = im(IH − κ(T )) =

D(T ). Conversely, if D(T ) = H , then IH − κ(T ) maps H bijectively onto H showing that

1 ∈ ρ(κ(T )) by the closed graph theorem (Theorem 1.2.10). Hence assertion (i) is proved.

In order to show (ii) we note at first that by (i), 1 ∈ σ(κ(T )) if and only if D(T ) 6= H . Now it

remains to show that if 1 ∈ σ(κ(T )), then we actually have 1 ∈ σess(κ(T )). But, if D(T ) 6= H ,

we see that im(IH − κ(T )) = D(T ) is a proper dense subspace of H and hence in particular not

closed. Accordingly, IH − κ(T ) is not a Fredholm operator.

We obtain from Corollary 3.1.6:

3.1.8 Corollary. If T ∈ Csa(H), then

(i) κ(σ(T )) = σ(κ(T )) if T is bounded.

(ii) κ(σ(T )) ∪ {1} = σ(κ(T )) if T is unbounded.
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3.2 Stability of Spectra

We recall at first the spectral stability for bounded operators:

3.2.1 Theorem. Let E be a Banach space, A ∈ L(E) and Ω ⊂ C an open neighbourhood of

σ(A). Then there exists ε > 0 such that σ(B) ⊂ Ω for any B ∈ L(E) with ‖A − B‖ < ε.

Moreover, the same conclusion holds true if we replace σ by σess.

Proof. The spectral stability holds for any complex unital Banach algebra R (cf. e.g. [He92,

96.5]), and so the first assertion follows by setting R = L(E). For the stability of the essential

spectrum, we let R be the Calkin algebra Cal(E) = L(E)/K(E) of E and use that the quotient

map q : L(E) → Cal(E) is continuous.

The next two results can be found in [BLP05, §2.2].

3.2.2 Lemma. Let K ⊂ C be compact. Then

{T ∈ Csa(H) : K ⊂ ρ(T )}
and

{T ∈ Csa(H) : K ⊂ ρess(T )}
are open in Csa(H), where ρess(T ) := C \ σess(T ).

Proof. We denote by U(H) the set of all unitary operators acting on H . By using Corollary 3.1.6

and Corollary 3.1.8, we have

{T ∈ Csa(H) : K ⊂ ρ(T )} = {T ∈ Csa(H) : σ(T ) ⊂ (C \K) ∩ R}
= {T ∈ Csa(H) : σ(κ(T )) ⊂ κ((C \K) ∩ R) ∪ {1}}.

We conclude from Theorem 3.1.2 that

{T ∈ Csa(H) : K ⊂ ρ(T )} = κ−1({U ∈ U(H) : σ(U) ⊂ κ((C \K) ∩ R) ∪ {1}}).
As K is compact, the set κ((C \K) ∩ R) ∪ {1} is open and we see from Theorem 3.2.1 that

{U ∈ U(H) : σ(U) ⊂ κ((C \K) ∩ R) ∪ {1}}

is open in L(H). Since κ is a homeomorphism by Theorem 3.1.2 , we obtain the assertion. The

proof for ρess(T ) proceeds along the same lines.

3.2.3 Theorem. Let ∅ 6= K ⊂ C and ΩK = {T ∈ Csa(H) : K ⊂ ρ(T )}. Then the map

R : K × ΩK → L(H), (λ, T ) 7→ (T − λ)−1

is continuous.
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Proof. We fix z0 ∈ K and note that we have for (λ, T ) ∈ K × ΩK

R(λ, T ) = (T − λ)−1 = ((T − z0)− (λ− z0))
−1

= ((T − z0)(IH − (λ− z0)(T − z0)
−1))−1

= (IH − (λ− z0)(T − z0)
−1)−1(T − z0)

−1 = F (G(λ, T )),

(3.7)

where the maps F and G are defined by1

G : K × ΩK → K × {S ∈ L(H) : (K − z0)
−1 ⊂ ρ(S)},

(λ, T ) 7→ (λ, (T − z0)
−1)

and

F :K × {S ∈ L(H) : (K − z0)
−1 ⊂ ρ(S)} → L(H),

(λ, S) 7→ (IH − (λ− z0)S)
−1S,

respectively. G is continuous as dG is equivalent to the metric (3.3). Furthermore, the continuity

of F follows by a simple computation using the continuity of the inversion on GL(H) (cf. [Ka76,

I.(4.24),III.3.1]).

As an important corollary of the previous theorem, we obtain the continuity of the spectral

projections which we introduced in Theorem 1.3.4.

3.2.4 Corollary. Let △ ⊂ C be a Cauchy domain with boundary Γ and

ΩΓ = {T ∈ Csa(H) : Γ ⊂ ρ(T )} ⊂ Csa(H).

Then the map

ΩΓ → L(H), T 7→ PΓ(T ) :=
1

2πi

∫

Γ

(λ − T )−1 dλ

is continuous.

Proof. For any T, S ∈ ΩΓ we have by [He92, (97.4)]

‖PΓ(T )− PΓ(S)‖ ≤ 1

2π
|Γ|max

λ∈Γ
‖(λ− T )−1 − (λ − S)−1‖, (3.8)

1For A ⊂ C \ {0}, we denote A−1
= { 1

z
∈ C : z ∈ A}.



36 CHAPTER 3. THE GAP TOPOLOGY

where |Γ| denotes the length of the contour Γ. The rest of the proof is a standard argument in

analysis:

Let T ∈ ΩΓ and ε > 0. By Theorem 3.2.3 there exists δ(λ′) > 0 for any λ′ ∈ Γ such that

‖(λ− S)−1 − (λ′ − T )−1‖ <
πε

|Γ|

if

λ ∈ U(λ′, δ(λ′)) := {λ ∈ Γ : |λ− λ′| < δ(λ′)} and dG(S, T ) < δ(λ′).

As Γ is compact we can find λ1, . . . , λn ∈ Γ such that
⋃n

i=1 U(λi, δ(λi)) = Γ, and we set δ :=

min1≤i≤n δ(λi).

Now, for any λ ∈ Γ there exists 1 ≤ i ≤ n such that λ ∈ U(λi, δ(λi)) and hence we obtain for

S ∈ ΩΓ such that dG(S, T ) < δ,

‖(λ− T )−1 − (λ− S)−1‖ ≤ ‖(λ− T )−1 − (λi − T )−1‖+ ‖(λi − T )−1 − (λ− S)−1‖ <
2πε

|Γ| .

We get by (3.8)

‖PΓ(T )− PΓ(S)‖ ≤ 1

2π
|Γ|max

λ∈Γ
‖(λ− T )−1 − (λ− S)−1‖ < ε

for all S ∈ ΩΓ such that dG(S, T ) < δ.

3.3 Spaces of Selfadjoint Fredholm Operators

In this section, we briefly consider different topologies on spaces of selfadjoint Fredholm operators

following mainly Lesch’s work [Le05]. We set

CFsa(H) = {T ∈ Csa(H) : T Fredholm}

and recall that CFsa(H) is a metric space with respect to the gap metric

dG(T1, T2) = ‖κ(T1)− κ(T2)‖, T1, T2 ∈ CF sa(H).

For T ∈ Csa(H) one can show that IH + T 2 is invertible and selfadjoint on D(T 2) ⊂ D(T ). We

obtain from Lemma 1.2.11 that F (T ) := T (IH + T 2)−
1

2 ∈ L(H). The Riesz metric on CFsa(H)

is defined by

dR(T1, T2) = ‖F (T1)− F (T2)‖, T1, T2 ∈ CFsa(H).
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We set

BFsa(H) = {T ∈ CFsa(H) : D(T ) = H}

and note that we have a metric on BFsa(H) given by

dN (T1, T2) = ‖T1 − T2‖, T1, T2 ∈ BFsa(H).

The following result is due to Nicolaescu [Ni07].

3.3.1 Theorem. The topology induced by the Riesz metric on CF sa(H) is strictly finer than the

topology induced by the gap metric.

Note that the theorem implies in particular that every path in CFsa(H) which is continuous

with respect to the Riesz metric is also continuous with respect to the gap metric. Let us now

consider BFsa(H) and let us note a classical result by Cordes and Labrousse [CL63]:

3.3.2 Theorem. On BFsa(H) the topologies induced by dN , dR and dG coincide.

The space BFsa(H) was investigated by Atiyah and Singer in [AS69] and it plays a fundamental

role in topology.

3.3.3 Theorem. The space BFsa(H) consists of three connected components

BFsa

+ (H) = {T ∈ BFsa(H) : σess(T ) ⊂ (0,∞)}
BFsa

− (H) = {T ∈ BFsa(H) : σess(T ) ⊂ (−∞, 0)}

and

BFsa

∗ (H) = BFsa(H) \ (BFsa

+ (H) ∪ BFsa

− (H)).

The spaces BFsa

+ (H) and BFsa

− (H) are contractible, whereas for k ∈ N

πk(BF sa

∗ (H)) =







0, if k even

Z, if k odd
.

Here πk(BF sa

∗ (H)), k ∈ N, denote the homotopy groups of the space BFsa

∗ (H). It was shown by

Lesch in [Le05] that the assertions of the previous theorem also hold for CF sa(H) with respect

to the Riesz metric. He also proved the following surprising theorem, which is in strong contrast

to the previously mentioned results:

3.3.4 Theorem. The space CFsa(H) is connected with respect to the gap metric.
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Chapter 4

The Spectral Flow

4.1 Definition of the Spectral Flow

The aim of this section is to introduce the spectral flow along the lines of [BLP05, §2.2]. Before

we begin the construction, we rephrase the results about the spectral stability from Section 3.2.

In what follows, we denote for T ∈ CF sa(H) such that a, b /∈ σ(T ) by

χ[a,b](T ) =
1

2πi

∫

Γ

(λ− T )−1 dλ

the spectral projection with respect to the interval [a, b], where Γ is the circle of radius b−a
2

around a+b
2 . Moreover, we will need the following well known fact.

4.1.1 Lemma. Let P,Q ∈ L(E) be two projections on the Banach space E. If ‖P − Q‖ < 1,

then

dim im(P ) = dim im(Q).

Proof. [GGK90, Lemma II.4.3]

The next lemma is a cornerstone in the definition of the spectral flow.

4.1.2 Lemma. Let T0 ∈ CFsa(H) be given.

(i) There exists a positive real number a such that ±a /∈ σ(T0), and an open neighbourhood

N ⊂ CF sa(H) of T0 such that

N → L(H), T 7→ χ[−a,a](T ) (4.1)

is continuous and, moreover, σess(T ) ∩ [−a, a] = ∅ and the projection χ[−a,a](T ) has finite

rank for all T ∈ N .

39
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(ii) If −a ≤ c < d ≤ a are such that c, d ∈ ρ(T ) for all T ∈ N , then T 7→ χ[c,d](T ) is continuous

on N . Moreover, the rank of χ[c,d](T ), T ∈ N , is finite and constant on each connected

component of N .

Proof. By Lemma 2.2.5 there exists a > 0 such that [−a, a] ∩ σ(T0) ⊂ {0}. Now

N := {T ∈ CFsa(H) : [−a, a] ⊂ ρess(T0), ±a /∈ σ(T0)}
is open with respect to the gap metric by Lemma 3.2.2 and the map (4.1) is continuous by

Corollary 3.2.4. Moreover, χ[−a,a](T ) has finite rank for all T ∈ N as [−a, a] ∩ σess(T ) = ∅.
Hence we have shown the first assertion. The second assertion now follows immediately from

Corollary 3.2.4.

Note that if c, d and N are as in (ii) of the previous lemma, then

im(χ[c,d](T )) =
⊕

µ∈[c,d]

ker(µ− T ) ⊂ H

for all T ∈ N .

Let now A : I → CFsa(H) be a continuous path with respect to the gap topology, where we

denote by I = [0, 1] the unit interval. By the previous Lemma 4.1.2 we conclude that for every

λ ∈ I there exists a > 0 and an open neighbourhood Nλ,a ⊂ CFsa(H) such that ±a ∈ ρ(T ) for

all T ∈ Nλ,a and the map

Nλ,a → L(H), T 7→ χ[−a,a](T )

is continuous. Moreover, all χ[−a,a](T ), T ∈ Nλ,a, have the same finite rank. Now the counterim-

ages of the Nλ,a under A define an open covering of the unit interval and, by using the Lebesgue

number of this covering, we can find 0 = λ0 ≤ λ1 ≤ . . . ≤ λn = 1 and ai > 0, i = 1, . . . n, such

that the maps

[λi−1, λi] ∋ λ 7→ χ[−ai,ai](Aλ) ∈ L(H)

are continuous and of constant rank. In what follows we denote for [c, d] ⊂ [−ai, ai] by

E[c,d](Aλ) =
⊕

µ∈[c,d]

ker(µ−Aλ)

the direct sum of the eigenspaces with respect to eigenvalues in the interval [c, d]. Our intention

is to define the spectral flow of A : I → CFsa(H) by

sf(A) =

n∑

i=1

(
dimE[0,ai](Aλi

)− dimE[0,ai](Aλi−1
)
)

(4.2)

but we need to prove its well definedness before.
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4.1.3 Lemma. sf(A) depends only on the continuous map A.

Proof. We decompose the proof into three steps.

Let us begin by considering λ0, . . . , λn and a1, . . . , an as in (4.2), and we take a further instant

λ∗ ∈ (0, 1) such that λi−1 < λ∗ < λi for some i. If we now use the two maps

[λi−1, λ
∗] ∋ λ 7→ χ[−ai,ai](Aλ), [λ∗, λi] ∋ λ 7→ χ[−ai,ai](Aλ)

instead of

[λi−1, λi] ∋ λ 7→ χ[−ai,ai](Aλ)

for the computation of (4.2), then the sum does not change as the two new appearing terms

cancel each other.

In the second step we do not change the partition of the interval but instead the numbers ai.

Let [c, d] ⊂ [0, 1] be any subinterval and

λ 7→ χ[−a1,a1](Aλ), λ 7→ χ[−a2,a2](Aλ)

two continuous maps as in (4.2) which are defined and continuous on [c, d]. We may assume

without loss of generality that a1 is greater or equal to a2. As a1, a2 /∈ σ(Aλ) for all λ ∈ [c, d],

we obtain by Theorem 1.3.4

dimE[0,a1](Aλ)− dimE[0,a2](Aλ) = dim im(χ[a2,a1](Aλ))

which is a constant function on [c, d] by Lemma 4.1.2 (ii). Consequently,

dimE[0,a1](Ad)− dimE[0,a1](Ac) = (dimE[0,a2](Ad) + dim im(χ[a2,a1](Ad))

− (dimE[0,a2](Ac) + dim im(χ[a2,a1](Ac)))

= dimE[0,a2](Ad)− dimE[0,a2](Ac).

Finally, let us consider the general case, i.e. we have two partitions λ0, . . . , λn and λ′
0, . . . , λ

′
m

having associated numbers a1, . . . , an and a′1, . . . , a
′
m, respectively, as in (4.2). The union of both

partitions yield a third one λ′′
0 , . . . , λ

′′
m+n, which is finer than λ0, . . . , λn and λ′

1, . . . , λ
′
m. By our

first step of the proof we obtain

n∑

i=1

(
dimE[0,ai](Aλi

)− dimE[0,ai](Aλi−1
)
)
=

m+n∑

i=1

(

dimE[0,bi](Aλ′′
i
)− dimE[0,bi](Aλ′′

i−1
)
)

m∑

i=1

(

dimE[0,a′
i
](Aλ′

i
)− dimE[0,a′

i
](Aλ′

i−1
)
)

=

m+n∑

i=1

(

dimE[0,b′
i
](Aλ′′

i
)− dimE[0,b′

i
](Aλ′′

i−1
)
)

,

(4.3)
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for suitable b1, . . . , bm+n ∈ {a1, . . . , an} and b′1, . . . , b
′
m+n ∈ {a′1, . . . a′m}. Now the same partition

is used on the right hand sides in (4.3), and so these sums are equal by the second step of our

proof.

Let us point out that we have defined the spectral flow for paths that are parametrised by the

unit interval only for the sake of simplicity of notation. Clearly, the same formula as (4.2) can

be used to define sf(A) for paths A : [a, b] → CF sa(H), where [a, b] ⊂ R is a compact interval.

In what follows, we will use this without further mention.

4.2 Properties and Uniqueness

In this section we introduce the basic properties of the spectral flow, where we follow essentially

[Ph96]. We begin with some simple observations that all follow from its construction.

4.2.1 Lemma. Let N ⊂ CFsa(H) be a neighbourhood as in the construction of the spectral flow,

i.e. there exists a > 0 such that −a, a ∈ ρ(T ), [−a, a] ∩ σess(T ) = ∅ for all T ∈ N , the map

N ∋ T 7→ χ[−a,a](T ) ∈ L(H)

is continuous and all χ[−a,a](T ) have the same finite rank.

If A1,A2 : I → CFsa(H) are gap continuous and

A1(I),A2(I) ⊂ N, A1
0 = A2

0, A1
1 = A2

1, (4.4)

then

sf(A1) = sf(A2).

Proof. We obtain from (4.4) and the definition (4.2)

sf(A1) = dimE[0,a](A1
1)− dimE[0,a](A1

0)

= dimE[0,a](A2
1)− dimE[0,a](A2

0) = sf(A2).

4.2.2 Lemma. (i) If A1,A2 : I → CFsa(H) are two gap continuous paths such that A2
0 = A1

1,

then

sf(A1 ∗ A2) = sf(A1) + sf(A2).
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(ii) If A : I → CFsa(H) is gap continuous and A′ is defined by A′
t = A1−t, then

sf(A′) = − sf(A).

(iii) If A : I → CFsa(H) is gap continuous and At is invertible for all t ∈ I, then sf(A) = 0.

Proof. The first two assertions follow immediately from the definition (4.2). For the third asser-

tion we just have to observe that by Lemma 3.2.2 we can find δ > 0 such that σ(Aλ)∩ [−δ, δ] = ∅
for all λ ∈ [0, 1]. Then

sf(A) = dimE[0,δ](A1)− dimE[0,δ](A0) = 0.

In what follows we set

GCsa(H) = {T ∈ Csa(H) : T invertible }.

The probably most important property of the spectral flow is its homotopy invariance which we

prove in the following lemma.

4.2.3 Lemma. Let h : I × I → CFsa(H) be a continuous map such that

h(I × ∂I) ⊂ GCsa(H).

Then

sf(h(0, ·)) = sf(h(1, ·)).

Proof. As h(I × I) ⊂ CFsa(H) is compact, we can find a finite open covering

h(I × I) ⊂
n⋃

i=1

Ni,

where Ni ⊂ CF sa(H), i = 1, . . . , n, are open sets as in the construction of the spectral flow.

Accordingly, for each Ni there exists ai > 0 such that −ai, ai ∈ ρ(T ), [−ai, ai] ∩ σess(T ) = ∅ for

all T ∈ Ni, the map

Ni ∋ T 7→ χ[−ai,ai](T ) ∈ L(H)
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is continuous and all χ[−ai,ai](T ) are projections of the same finite rank.

If ε0 > 0 is a Lebesgue number of the open covering

I × I =

n⋃

i=1

h−1(Ni),

then each subset of I × I of diameter less than ε0 is entirely contained in one of the h−1(Ni).

We choose numbers 0 = λ0 < λ1 < . . . < λm = 1 such that |λi − λi−1| < ε0√
2
, 1 ≤ i ≤ m. Then

for each pair 1 ≤ i, j ≤ m, h([λi−1, λi]× [λj−1, λj ]) is contained in one of the Nk. Now we obtain

for any h |[λi−1,λi]×[λj−1,λj ] from Lemma 4.2.1 and Lemma 4.2.2

sf(h(λi−1, ·) |[λj−1,λj ]) = sf(h(·, λj−1) |[λi−1,λi]) + sf(h(λi, ·) |[λj−1,λj ])

− sf(h(·, λj) |[λi−1,λi]).

Moreover,

sf(h(·, 0) |[λi−1,λi]) = sf(h(·, 1) |[λi−1,λi]) = 0, i = 1, . . . ,m,

by the third part of Lemma 4.2.2. By using the first part of Lemma 4.2.2 once again, we obtain

sf(h(λi−1, ·)) =
m∑

j=1

sf(h(λi−1, ·) |[λj−1,λj ])

=

m∑

j=1

sf(h(·, λj−1) |[λi−1,λi]) + sf(h(λi, ·) |[λj−1,λj ])− sf(h(·, λj) |[λi−1,λi])

=

m∑

j=1

sf(h(λi, ·) |[λj−1,λj ]) = sf(h(λi, ·)).

Hence

sf(h(0, ·)) = sf(h(λ0, ·)) = sf(h(λ1, ·)) = sf(h(1, ·)).

We now want to discuss a normalisation property, which is needed for the uniqueness of the

spectral flow. Let {ek}k∈Z be a complete orthonormal system of the Hilbert space H , which

we now assume to be separable. Denote by P+ the orthogonal projection onto the closure of

the space spanned by {ek}k∈N, by P− the orthogonal projection onto the closure of the space

spanned by {e−k}k∈N, and by P0 the orthogonal projection onto the span of e0. Then
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P+ + P− + P0 = IH

and moreover the operator

Lλ = λP0 + P+ − P−

is for each λ ∈ [−1, 1] a bounded selfadjoint Fredholm operator. More precisely, Lλ ∈ GL(H) as

long as λ 6= 0, and in the remaining case L0 has a one dimensional kernel and cokernel which are

both given by the span of e0. Moreover, Lλ is obviously a continuous path with respect to the

norm topology and thus continuous with respect to the gap topology as well. Hence the spectral

flow of L is well defined. As

σ(Lλ) = {−1, 1, λ}, λ ∈ [−1, 1],

it is immediate from the definition that

sf(L) = 1.

Moreover, we note that if we set T0 = P+ + P0 − P− and P = P0, then

(IH − P )T0(IH − P ) = (IH − P0)(P+ + P0 − P−)(IH − P0) = (IH − P0)(P+ − P−) = P+ − P−.

In particular, (IH −P )T0(IH −P ) defines a bounded, invertible and selfadjoint operator on kerP

such that the path

λP + (IH − P )T0(IH − P ) = Lλ, λ ∈ [−1, 1],

has spectral flow 1.

Now we finally state the so called uniqueness of spectral flow which is the main result of [Le05].

For a topological space X and a subspace Y ⊂ X , we use the common notation Ω(X,Y ) for the

set of all paths in X having endpoints in Y .

4.2.4 Theorem. Let H be a separable Hilbert space and let

µ : Ω(CFsa(H), GCsa(H)) → Z

be a map which is additive with respect to concatenation of paths, invariant under gap contin-

uous homotopies inside Ω(CFsa(H), GCsa(H)) and which satisfies the following normalisation



46 CHAPTER 4. THE SPECTRAL FLOW

condition:

There is a rank one orthogonal projection P ∈ L(H) and a bounded selfadjoint operator T0 having

σ(T0) = {−1, 1} such that the selfadjoint operator (IH −P )T0(IH −P ) is invertible on kerP and

µ(L) = 1,

where Lλ = λP + (IH − P )T0(IH − P ), λ ∈ [−1, 1].

Then µ is the spectral flow.

Note that we have verified in this section that the spectral flow indeed has all the properties

mentioned in its uniqueness theorem. In the proof of Theorem 4.2.4 in [Le05], it is shown that

any gap continuous path can be deformed into a path in a certain normal form in which the

spectral flow can be computed by considering finite dimensional matrices. Then the uniqueness

of spectral flow follows from a corresponding result in finite dimensions which can also be found

in [Le05].

4.3 Crossing Forms

In this section we briefly discuss a method which is often helpful for computing the spectral

flow and which was introduced in [RS95] and [FPR99], respectively, and recently generalised by

the author in [Wa15b]. To this aim we have to restrict our considerations to special paths in

CFsa(H).

Let W ⊂ H be a Hilbert space in its own right and assume that W →֒ H is continuous (e.g.,

W = H , or W = H1[0, 1], H = L2[0, 1]). We denote by BFsa(W,H) the set of all T ∈ CFsa(H)

such that D(T ) = W and T ∈ L(W,H). In what follows we consider BFsa(W,H) as a topological

subspace of the Banach space L(W,H). It is shown in [Le05, Prop. 2.2] that the inclusion

BFsa(W,H) →֒ CF sa(H)

is continuous but not a topological embedding, i.e. the resulting topology on BFsa(W,H) is

strictly stronger than the gap topology. From now on we assume that A : I → BFsa(W,H) is a

continuously differentiable path.

4.3.1 Definition. An instant λ0 ∈ [0, 1] is called a crossing if ker(Aλ0
) 6= 0. The crossing form

at a crossing λ0 is the quadratic form defined by

Γ(A, λ0) : ker(Aλ0
) → R, Γ(A, λ0)[u] = 〈( d

dλ
|λ=λ0

Aλ)u, u〉H .

A crossing λ0 is called regular, if Γ(A, λ0) is non-degenerate.

We mention without proof the following two theorems.

4.3.2 Theorem. There exists ε > 0 such that
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i) A+ δ IH is a path in BFsa(W,H) for all |δ| < ε;

ii) A+ δ IH has only regular crossings for almost every δ ∈ (−ε, ε).

For a quadratic form q : V → R on a finite dimensional Hilbert space V , there is a unique

Hermitian matrix A such that q(u) = 〈Au, u〉 for all u ∈ V . In what follows, we denote by

m−(q) the number of negative eigenvalues of A counted with multiplicities, and we set m+(q) :=

m−(−A) as well as sgn(q) := m+(q)−m−(q).

The following theorem shows that the spectral flow of a continuously differentiable path A in

BFsa(W,H) can be computed easily if all crossings are regular.

4.3.3 Theorem. If A has only regular crossings, then they are finite in number and

sf(A) = −m−(Γ(A, 0)) +
∑

λ∈(0,1)

sgnΓ(A, λ) +m+(Γ(A, 1)). (4.5)

Theorem 4.3.2 and Theorem 4.3.3 were firstly proved by Robbin and Salamon in [RS95] under

the additional assumption that W is compactly embedded in H . Later Fitzpatrick, Pejsachowicz

and Recht proved Theorem 4.3.3 for bounded operators, i.e. if W = H . Note that the latter case

is not covered by Robbin and Salamon’s theorem as the inclusion W →֒ H is not compact if W

and H are of infinite dimension. A proof of both Theorems in the generality stated above can

be found in [Wa15b]. Finally, let us mention that crossing forms can also be defined for paths of

operators having varying domains [SW08, App.A].
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Chapter 5

A Simple Example and a Glimpse at

the Literature

5.1 A Simple Example

In this section we consider the Hilbert space H = L2[0, 1] and the differential operators Aλu = iu′

on the domains

D(Aλ) = {u ∈ H1[0, 1] : u(0) = eiλu(1)}.

Our aim is to show that {Aλ}λ∈[−π,π] is a continuous path in CFsa(H) and we want to compute

its spectral flow.

The operators Aλ are selfadjoint and Fredholm

We have already seen in Example 2.1.12 that Aλ is selfadjoint for all λ. Moreover, we have

shown that Aλ is surjective if λ 6= 0. As the kernel of Aλ is trivial in this case, we see that

Aλ ∈ CF sa(H) for λ 6= 0. Let us now consider the operator A0. Clearly, ker(A0) consists of all

constant functions on [0, 1] and, moreover, it is readily seen that the image of A0 is

im(A0) = {v ∈ L2[0, 1] :

∫ 1

0

v(t) dt = 0},

which is closed. Indeed, if {vn}n∈N is a sequence in im(A0) converging to some v ∈ H , then

∣
∣
∣
∣

∫ 1

0

v(t) dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 1

0

vn(t)− v(t) dt

∣
∣
∣
∣
≤ ‖vn − v‖H → 0, n → ∞,

and so v ∈ im(A). Hence A0 ∈ CF sa(H) by Lemma 2.1.7.

Let us note that there is another way to check that A0 is Fredholm. If we let Y denote the

subspace of H consisting of all constant functions, then we have a direct sum decomposition

49
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H = im(A0)⊕Y . Indeed, the intersection of these spaces is trivial and, moreover, every function

v ∈ H can be written as

v(t) =

(

v(t)−
∫ 1

0

v(t) dt

)

︸ ︷︷ ︸

∈im(A0)

+

∫ 1

0

v(t) dt

︸ ︷︷ ︸

∈Y

.

As the kernel of A0 is of finite dimension, this shows that A0 is Fredholm by Lemma 1.1.11.

The path {Aλ}λ∈[−π,π] is continuous

We define Tλ : H → H by Tλ = (Aλ + i)−1 and note that by (3.2) we need to show that Tλ is

a continuous path of bounded operators on H . To this aim, we will first compute Tλ explicitly.

If v ∈ H , then u := Tλv is a solution of iu′ + iu = v, and we obtain from standard methods for

ordinary differential equations that

u(t) = ce−t − ie−t

∫ t

0

v(s)es ds, t ∈ [0, 1],

for some constant c depending on λ and v. As u ∈ D(Aλ), we have to require that

c = u(0) = eiλu(1) = eiλ
(

ce−1 − ie−1

∫ 1

0

v(s)es ds

)

,

which implies that

c = − i

e1−iλ − 1

∫ 1

0

v(s)es ds =: m(λ)

∫ 1

0

v(s)es ds,

and so we finally obtain

(Tλv)(t) = m(λ) e−t

∫ 1

0

v(s)es ds− ie−t

∫ t

0

v(s)es ds.

Clearly, m : [−π, π] → C is a continuous function. If now λ0, λ1 ∈ [−π, π], then it is readily seen

that

‖Tλ1
v − Tλ0

v‖H ≤ 1√
2

√

cosh(2)− 1 |m(λ1)−m(λ0)| ‖v‖H .

Consequently, {Tλ}λ∈[−π,π] is a continuous path of bounded operators on H = L2[0, 1] showing

the continuity of A in CF sa(H).

The spectral flow of {Aλ}λ∈[−π,π]

In order to compute the spectra of the operators Aλ, we need to consider the differential equations

iu′ − µu = 0,
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where µ is a real number. Clearly, the solution of this equation is given by u(t) = ce−iµt, t ∈ [0, 1],

for some constant c. As u is an element of D(Aλ), we get in addition

c = u(0) = eiλu(1) = cei(λ−µ),

and so λ− µ = 2kπ for some k ∈ Z. Consequently, we see that

σ(Aλ) = {2kπ + λ : k ∈ Z}

and each element in σ(Aλ) is a simple eigenvalue, i.e. the corresponding eigenspace is one

dimensional.

For the computation of the spectral flow, we set λ0 = −π, λ1 = −π
4 , λ2 = π

4 and λ3 = π, as

well as a1 = π
8 , a2 = π

2 and a3 = π
8 . Then dimE[0,ai](Aλi

) 6= 0 only if i = 2, and moreover

dimE[0,ai](Aλi−1
) = 0 for all i. Hence

sf(A) = 1.

Note that the path A is closed and hence we have found a non-trivial element in π1(CF sa(H)).

This shows in particular that the spectral flow does not only depend on the endpoints of a path,

for otherwise sf(A) = 0 for every closed path A.

5.2 A Glimpse at the Literature

In this final section we provide some literature on the spectral flow and its applications. Let

us emphasise that our selection of articles is highly subjective and not at all an attempt for an

exhaustive overview of the existing literature. It reflects the author’s personal interests and we

apologise to everyone not mentioned in the following paragraphs.

Definition of the Spectral Flow

The spectral flow was introduced by Atiyah, Patodi and Singer in [APS76] for paths in BFsa(H),

and consequently also on CF sa(H) with respect to the Riesz metric (cf. Section 3.3). A more

analytic approach was given by Floer in [Fl88] and later fully developed by Phillips in [Ph96].

Alternative constructions can be found in [RS95], for paths in BFsa(W,H), and in [FPR99] for

paths in BFsa(H). That the spectral flow can even be defined for paths of unbounded selfadjoint

Fredholm operators which are merely continuous in the gap topology was observed by Booss-

Bavnbek, Lesch and Phillips in [BLP05]. Finally, let us mention that Wahl introduced in [W08a]

a topology on CF sa(H) which is even weaker than the gap topology and she extended the spectral

flow to this setting.
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Uniqueness of the Spectral Flow

As discussed in Section 4.2, one may ask which properties characterise the spectral flow. Theorem

4.2.4 was proved by Lesch in [Le05] and the same source also discusses uniqueness for CFsa(H)

with respect to the Riesz metric, for BFsa(W,H) and for BFsa(H). An alternative approach for

paths in BFsa(H) can be found in [CFP00]. Robbin and Salamon proved in [RS95] uniqueness

for BFsa(W,H) if W is compactly embedded in H .

Crossing Forms and Partial Signatures

Crossing forms and partial signatures are convenient tools to compute spectral flows. Crossing

forms were introduced by Robbin and Salamon in [RS95], and later adapted in [FPR99] and

[Wa15b]. For partial signatures we refer to [GPP04], and their application in [EP07].

Global Analysis

Beginning from Atiyah, Patodi and Singer’s article [APS76], probably most applications of the

spectral flow were obtained in global analysis and related fields. We are definitely unable to give

an exhaustive list of literature, and so we just want to mention [BW85], [Ge93], [Bu94], [JL09]

and that many applications deal with boundary value problems for Dirac operators, e.g. [Bu95],

[Ni95], [LW96], [BBB04], [KL04], [GPP04], [Pr13] and [GL15]. Some of these works equate the

spectral flow in this setting with Maslov indices for curves of Lagrangian subspaces in infinite

dimensional symplectic spaces (cf. [BZ13]). Let us finally mention the author’s contributions in

[Wa13] and with Bei in [BeW15].

Symplectic Analysis

Floer used the spectral flow in connection with his celebrated homology groups in [Fl88]. As in

global analysis, there are too many papers dealing with the spectral flow in symplectic analysis to

give an exhaustive bibliography. Let us just mention [Ta90], [Yo91], [RS95], [Se08], [SW08] and

[MP11]. Also Kronheimer and Mrowka’s monograph [KM07] contains a section on the spectral

flow, to which we refer for further literature.

Mathematical Physics

Vafa and Witten used the spectral flow in [VW84] to obtain bounds on eigenvalues of Dirac

operators (cf. also [At85]). More recent applications can be found, e.g., in [BEL07], [Pu08],

[GLM11], [KN12], [SB14] and [BS15], among many others.
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Higher Spectral Flows

The spectral flow was generalised to several-parameter families under additional assumptions by

Dai and Zhang in [DZ96] and [DZ98], where it is no longer an integer but a K-theory class of

the parameter space. A central element in this construction are spectral sections, which were

introduced by Melrose and Piazza in [MP97].

Spectral Flow and Operator Algebras

There is a vast literature on different extensions of the construction of the spectral flow to more

general settings. As we are hardly acquainted with these topics, we just want to quote without

further comments [Per95], [Ph97], [CP98] [LP03], [W07b], [W08b], [AW11] and [KL13].

Nonlinear Analysis

Fitzpatrick, Pejsachowicz and Recht discovered in [FPR99] that the spectral flow can also be used

in the bifurcation theory of critical points of strongly indefinite functionals on Hilbert spaces,

for which they introduced an alternative construction of the spectral flow. Their result was later

improved in [PeW13] by Pejsachowicz in a joint work with the author. Recently, Alexander and

Fitzpatrick revisited the spectral flow in bifurcation theory in [AF16].

2nd order Partial Differential Equations

Formulas for the spectral flow for paths of second order PDEs can be found, e.g., in the recent

work [GS16] by Goffeng and Schrohe, as well as the author’s papers [PW15] with Portaluri and

[Wa16].

Hamiltonian Systems

The bifurcation theory developed in [FPR99] was firstly applied to bifurcation of periodic orbits

of Hamiltonian systems in [FPR00]. Further applications of the spectral flow in case of periodic

orbits can be found in [RS95], [Iz99], [PeW13] and [Wa15a]. The spectral flow for homoclinic solu-

tions was considered in [CH07], [Pe08b] and [Wa15b]. Also the works [MPP05], [Zh06], [MPP07]

and [Wa12] on a generalisation of the Morse index theorem to geodesics in semi-Riemannian

manifolds may be considered as an application to Hamiltonian Systems.
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