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Abstract 
 
The timing of cell division is controlled by the coupled regulation of growth and division. The 

TOR signalling network synchronises these processes with the environmental setting. Here 

we describe a novel interaction of the fission yeast TOR Complex 2 (TORC2) with the 

Cytokinetic Actomyosin Ring (CAR), and a novel role for TORC2 in regulating the timing 

and fidelity of cytokinesis. Disruption of TORC2 or its localisation results in defects in CAR 

morphology and constriction. We provide evidence that a myosin II, Myp2, and myosin V, 

Myo51, play roles in recruiting TORC2 to the CAR. We show that Myp2 and TORC2 are co-

dependent upon each other for their normal localisation to the cytokinetic machinery. We 

go on to show that TORC2 dependent phosphorylation of Acp1 (Actin Capping Protein, a 

known regulator of cytokinesis) controls CAR stability and the modulation of CAPZA/BAcp1/2 

heterodimer formation and is essential for survival upon stress. Thus TORC2 localisation to 

the CAR and TORC2 dependent CAPZAAcp1 phosphorylation contributes to timely control 

and fidelity of cytokinesis and cell division. 
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Introduction  

TOR signaling plays a key role in modulating the spatial and temporal control of cell growth 

in response to different environmental conditions. The mTOR kinase forms two functionally 

distinct protein complexes TOR complex 1 (TORC1) and TORC2 (Laplante and Sabatini, 

2012). TORC1 and TORC2 are defined by unique components that are highly conserved 

across species. TORC1 contains RAPTOR (regulatory associated protein of mTOR) and 

TORC2 contains Sin1 and RICTOR (rapamycin-insensitive companion of mTOR) 

(Wullschleger et al., 2006). It is rapamycin-sensitive TORC1 that is the major nutrient 

sensor, which integrates environmental cues with cell growth. TORC2 is regulated by 

different cues and exerts distinct functions (Laplante and Sabatini, 2012). Both TORC1 and 

TORC2 have been implicated in the control of cell migration and F-actin organisation (Liu 

and Parent, 2011). Inhibition of TORC1 with rapamycin prevents lamellipodia formation 

through the reduced expression of the small GTPase RhoA in mammalian cells (Liu et al., 

2010). Similarly TORC2 has been shown to play a key role in regulating the organisation 

and polarity of the actin cytoskeleton in Saccharomyces cerevisiae, Dictyostelium 

discoideum and mammalian cells (Jacinto et al., 2004; Lee et al., 2005; Schmidt et al., 

1996).  

The fission yeast, Schizosaccharomyces pombe, contains two TOR protein kinases: 

Tor1 and Tor2. The majority of TORC2 contains the non-essential catalytic component Tor1 

kinase (Alvarez and Moreno, 2006; Hayashi et al., 2007; Matsuo et al., 2007). Importantly, 

all the functional specificities of TORC1 and TORC2 are conserved in yeasts. Cells lacking 

TORC2 components, such as Tor1, Sin1 or the fission yeast RICTOR homolog, Ste20 

(which is not a homolog of the budding yeast PAK-like kinase of the same name) are larger 

than wild type and are sensitive to heat, osmotic and oxidative stress. In addition these 

mutants are sterile as they are unable to undergo the G1 arrest that is an essential pre-

requisite for mating in fission yeast (Kawai et al., 2001; Weisman and Choder, 2001). In 

fission yeast, F-actin cables are thicker than wild type and the cortical actin is atypically 

asymmetric in tor1 deficient mutants (Ikai et al., 2011; Matsuo et al., 2007). These 

distinctions prompted us to explore mechanisms by which TORC2 may impact actin 

cytoskeletal functions in fission yeast.  

Here we report a novel localisation of TORC2 to the Cytokinetic Actomyosin Ring 

(CAR) and a role in moderating the successful completion of cytokinesis. We describe a 

mechanism by which TORC2 controls CAPZA/BAcp1/2 heterodimer formation to regulate the 

actin cytoskeleton, and thereby the timely control of cytokinesis and ensure survival upon 

changes to the extracellular environment.  
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Results  

TORC2 controls the integrity of the Cytokinetic Actomyosin Ring. 

In order to examine potential roles TORC2 may have during actin dependent cell growth 

and division (Lancaster and Baum, 2014) we undertook a phenotypic analysis of cells 

lacking Rictor, the core TORC2 specific component. The main catalytic component of 

TORC2 is the Tor1 protein kinase (Alvarez and Moreno, 2006; Hayashi et al., 2007; Matsuo 

et al., 2007), however cells lacking Tor1 are capable of incorporating Tor2 into the TORC2 

complex (Matsuo et al., 2007; Hartmuth and Petersen, 2009). In contrast, deleting the 

fission yeast Rictor homologue, Rictorste20, from the genome specifically ablates TORC2 

function within the cell. Cells lacking, Rictorste20 are elongated and display an altered cell 

morphology, with a cell diameter significantly greater than otherwise isogenic wild type 

controls (Matsuo et al., 2007; Hartmuth and Petersen, 2009) (Fig. 1A, B & S1A). Increased 

cell diameter and cell length is normally associated with cells in the diploid lifecycle. FACS 

analysis of TORC2 deficient mutants or acute Torin1 (Tor inhibitor 1) (Atkin et al., 2014) 

treated wild type cells revealed, the major 2N peak that is normally associated with wild 

type haploid fission yeast cells (Fig 1C), along with an additional minor 4N peak (Fig. 1C). 

Cells in the diploid lifecycle have significantly larger nuclei than haploid cells (Neumann and 

Nurse, 2007). The nuclei diameter were equivalent in wild type and Rictorste20 cells (Fig. 

1D) indicating that the TORC2 deficient mutants are haploid cells with altered cell size. The 

minor 4N peak observed by FACS may be brought about by a small population of diploid 

cells. Alternatively this small peak could represent cells in the haploid life cycle delayed in 

cell division but which have completed the next S-phase. Division septa were often 

aberrant and misplaced, with the septum located away from the cell equator in 55% of 

Rictorste20∆ cells (these included septa positioned more than 5%, of the distance spanning 

the cell end to the cell equator, away from the cell equator). In contrast, none of the septa 

were misplaced in all observed wild type cells. Finally, elevated levels of new cell wall 

material was observed at the cell equator in the absence of TORC2 function (Fig. 1A, S1A). 

Together these data indicate TORC2 deficient haploid cells display defects in cytokinesis 

and cell fission. 

Visualisation of septal material in Rictorste20 cells revealed that a large proportion of 

cells had misplaced or aberrant septa (Fig. 1A, S1A). myo2-mCherry cells were used to 

follow Cytokinetic Actomyosin Ring (CAR) localisation and dynamics. myo2-mCherry cells 

containing functional TORC2 displayed growth characteristics and genetic interactions 

equivalent to the wt myo2+ allele (Fig. 1E, movie 1). In contrast time-lapse imaging of 
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myo2-mCherry Rictorste20 cells revealed TORC2 deficient cells remained in the phase of 

the cell cycle dedicated to cytokinesis for a prolonged period. As well as displaying delayed 

constriction, the CAR was seen to either split or collapse (39% of cells) (Fig. 1F, movie 2) 

or slide along the cortex (11% of cells) (Figure 1G). This is consistent with our observation 

that a significant proportion of septa in Rictorste20 cells formed septum that were more 

than 5% of the cell length away from the centre of the cell (Fig. S1A). In a small proportion 

(~ 2%) of these Rictorste20 cells the spindle was seen to from and extend on one side of 

the misplaced CAR (Fig. S1B), these cells are likely to contribute to the 4N peak observed 

by FACS (Fig. 1C). In addition Rictorste20 cells often failed to integrate medial Myo2 foci 

into stable CAR over an extended period of several hours without inhibiting cell growth 

(<5% of cells) (movie 3), and were also seen to complete CAR constriction, and then 

reform form at the division site before dividing in two (7% of cells) (movie 4). Consistent 

with this observation, anti-tropomyosin immunofluorescence staining of actin filaments in 

Rictorste20 cells revealed defects in actin ring function during cytokinesis, with divided 

cells possessing an unconstructed CAR structure at the cell end at which cell division had 

just occurred (Fig. S1C). Thus TORC2 function is not only required to maintain normal cell 

size, but also plays a critical role in regulating the timing of CAR formation and maintaining 

its subsequent integrity during cell division. 

 

TORC2 interacts with and localises to the Cytokinetic Actomyosin Ring during ring 

constriction. 

In order to explore how TORC2 affects the integrity of the CAR, we undertook a proteomic-

based analysis to identify proteins that co-purified with the main TORC2 catalytic 

component, Tor1. Mass spectrometry of Tor1 immuno-precipitates from 20 litres of early-

log phase culture identified 3 known core TORC2 components (RictorSte20, Sin1 and Pop3) 

as well as the TORC2 substrate Gad8 (Fig. 2A). Intriguingly, as well as co-purifying with 

Cdc12, a formin required for nucleation of Tropomyosin-stablised actin filaments within the 

CAR, in three independent experiments Tor1 co-purified with the class II and V myosin 

heavy chains, Myp2 & Myo51, both of which are core components of the actomyosin 

cytoskeleton and cytokinetic division machinery (Fig. 2A). 

 These links between TORC2 and control of cytokinesis prompted us to re-visit the 

localisation studies reporting RICTORSte20-3GFP recruitment to the plasma membrane 

(Tatebe et al., 2010). Live cell imaging of myo2-mCherry RICTORSte20-3GFP and myo51-

mCherry RICTORSte20-3GFP cells revealed TORC2 co-localised with each myosin heavy 
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chain at the CAR (Fig. 2B). To correlate the timing of TORC2 reorganisation and 

recruitment to the contractile apparatus with spindle dynamics and CAR formation, 

RICTORSte20-3GFP dynamics were examined in cells expressing an mCherry labelled allele 

of the essential class II myosin, myo2, and tdTomato labelled version of the essential 

spindle pole body (SPB) component Sid4 (myo2-mCherry sid4-tdTomato cells) (Fig. 2C, 

Movie 5). Upon entry into mitosis, Myo2 is recruited to foci at the cell equator and the two 

SPBs separate juxtaposed the elongating mitotic spindle until metaphase (Fig. 2C-E – 

phase I, Fig. S1D). At the onset of anaphase, the spindle elongates and Myo2 foci coalesce 

to form the CAR (phase II) (Mulvihill and Hyams, 2002; Wu et al., 2003). It is at this time 

that foci of RICTORSte20-3GFP localised to the CAR, where it remains through its 

subsequent constriction (phase III), and disassembly (phase IV), when it recruits to the 

ensuing new cell end (Fig. 2C & F, Movie 5). Thus TORC2 localises to the CAR during 

mitosis where it interacts with Cdc12, Myp2 and Myo51, key regulatory components of CAR 

formation and function.  

 

Myosin V and myosin II regulate RICTORSte20 recruitment at the CAR. 

We next decided to investigate the physical interaction between RICTORSte20 and the 

myosins, Myp2 and Myo51, to explore whether these actin-associated motor proteins play a 

role in recruiting TORC2 to the cell equator during cytokinesis. The class V myosin, Myo51, 

play key roles in regulating CAR function and dynamics (Bezanilla et al., 1997; Win et al., 

2001). Fission yeast contains two myosin Vs, Myo51 and Myo52.  The minor myosin V 

isoform, Myo51, localizes to the CAR (Motegi et al., 2001; Win et al., 2001) and is required 

for correct CAR formation (Fig. S1E). Small-scale immunoprecipitation confirmed the 

physical association between TORC2 and the cargo-binding domain of Myo51, as Tor1 co-

purified with the Myo51 tail fused to GFP (Doyle et al, 2009) (Fig. 3A). This confirmation 

combined with our observation that Myo51-mCherry colocalised with RICTORSte20-3GFP 

during cytokinesis (Fig. 2B) provides strong evidence that Myo51 interacts with TORC2 

during cytokinesis. Consistent with this finding, RICTORSte20-3GFP failed to localize to the 

ring in the absence of Myo51 (Fig. 3B,C), and localised instead to the septum as it forms 

around the outside edge of the constricting CAR (Fig. 3C).  Removal of the second myosin 

V homologue through deletion of the myo52+ gene had no discernable impact upon 

RICTORSte20-3GFP distribution (data not shown). In contrast RICTORSte20 function was not 

required for myosin VMyo51 recruitment to the CAR (Fig. 3D). Thus the recruitment of 

TORC2 to the CAR is dependent upon the myosin V motor, Myo51, with which it physically 

associates.  
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Like Myo51, the class II myosin Myp2, which physically interacts with Tor1 (Fig, 2A) 

and plays a role in maintaining the integrity of the CAR during cytokinesis. Cells lacking 

myp2 display cytokinesis defects (Bezanilla et al., 1997; Mulvihill et al., 2000) similar to 

those observed here for RICTORSte20∆ cells. For example, the CAR sometimes split in two, 

and each half constrict independently of each other (Figure 3E, asterisk) (Mulvihill and 

Hyams, 2003). Interestingly, in the majority (> 60%) of cells lacking Myp2, RICTORSte20 did 

not localise to the cell equator (Fig. 3E & F). Intriguingly Myp2 was also required for 

RICTORSte20-3GFP localisation to cell poles (Fig. 3E – compare lack of cell pole localisation 

with that observed in myp2+ cells, highlighted by arrow-heads in Fig. 2 & 3). Why this CAR 

component should affect the cortical TORC2 localisation is currently unclear, however 

western blot analysis confirmed persistence of RICTORSte20 protein in the myp2∆ cells 

(data not shown). To further investigate and confirm TORC2’s dependence upon Myp2 for 

localisation and interaction with the CAR we used timelapse imaging to characterise the 

relative timing of spindle dynamics, CAR formation and TORC2 localisation to the cell 

equator. Time-lapse imaging of more than 30 prototroph wt cells revealed CAR constriction 

(phase III) lasted 25 min (Fig. 3F). In contrast this event took twice as long in cells lacking 

Myp2 (50 min), confirming the role of this protein in modulating CAR constriction (Bezanilla 

et al., 1997; Mulvihill et al., 2000; Huang et al., 2012). RICTORSte20-3GFP failed to localise 

to the cell equator in the majority (~ 60%) of myp2∆ cells, and took almost twice as long as 

equivalent myp2+ cells to complete CAR constriction (phase III) (Fig. 3F, S1D). However, 

RICTORSte20 localised correctly in the remaining ~40% of myp2∆ cells, and phase III took 

~50% longer to complete than wild type (Fig. 3F & S1D). Together our observations are 

consistent with both class II and V myosins co-purifying with TORC2 and playing a role in 

regulating TORC2 localisation to the CAR. 

 

TORC2 regulate Myp2 CAR localisation and the timing of CAR constriction. 

We next explored the link between TORC2 and the timing of cytokinesis further by 

visualising cytokinetic ring dynamics using the myosin II motor proteins, Myo2 and Myp2, in 

Rictorste20 cells. Time-lapse imaging of more than 30 Rictorste20 cells revealed that of 

those cells which formed a CAR, constriction and disassembly (Fig. 4A phase III & IV) took 

on average more than three times longer than in wt cells (Fig. 4A, S1A). Rictorste20 only 

localised to the CAR in 40% of myp2∆ cells (Fig. 4), likewise Myp2 recruitment to the CAR 

was frequently aberrant in Rictorste20∆ cells (Fig. 4B,D) indicating a co-dependency. While 

Myp2 recruited to the CAR 10.3 min after its formation (phase II) in wild type cells and 
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remained there throughout CAR constriction (Fig. 4A,C, Movie 6), Myp2 CAR recruitment 

was extremely transient in the majority of mitotic cells lacking TORC2 RICTORSte20∆ 

function (Fig. 4D). Critically, in RICTORSte20∆ cells in which Myp2 localised to the CAR, the 

ring remained un-constricted for a long period (Fig. 4D & E), and the contractile apparatus 

was often observed sliding along the length of the cell (Figure 4D & E). Therefore TORC2 

not only co-purifies with regulators of cytokinesis, ablating TORC2 function leads to defects 

in CAR formation and severe delays in its constriction (Fig. 4A, 1SA). 

 

TOR dependent phosphorylation on CAPZAAcp1 serines 172 and 189. 

To determine whether the TORC2 interacting CAR components (Fig. 2A) are substrates of 

the complex we examined data from a SILAC (Stable isotope labelling by amino acids in 

cell culture) mass spectrometric screen for phospho-peptides that showed differential 

phosphorylation upon Torin1 inhibition of TOR function (Atkin et al., 2014). With the 

exception of Ppk32 and Myo51, phosphorylation sites were identified in all co-purifying 

proteins. Critically, none of these sites were regulated by TOR signalling, as they remained 

unchanged following TOR inhibition by Torin1 (Fig S1F).  

Importantly, cytokinesis and the dynamics of actin polymers are regulated, in part, by 

a heterodimeric complex consisting of the actin capping proteins Acp1 and Acp2 

(homologues of human CAPZA and B), which binds to and stabilises the barbed end of 

actin structures (Yamashita et al., 2003). Interestingly, the TOR phosphorylation dependent 

SILAC screen revealed that CAPZAAcp1 displayed differentiation phosphorylation on serines 

172 and 189 (Fig. 5A, S2A, S2B) in Torin1 treated cells. However, the sequence that 

serines 172 and 189 lies within does not conform to the mTOR consensus phosphorylation 

site (Hsu et al., 2011), suggesting that phosphorylation of CAPZAAcp1 is TOR dependent 

rather than being a direct target. The Psk1 and Gad8 kinases are 2 known TORC1 and 

TORC2 substrates and effector kinases (Pearson and Kemp, 1991). Both Gad8 and Psk1 

are members of the AGC family of kinases. However, the CAPZAAcp1 phosphorylation sites 

do not conform to the AGC kinase consensus site either. It is therefore possible that the 

TOR dependent CAPZAAcp1 phosphorylation is regulated through an as yet unidentified 

signalling pathway. Interestingly, serine 189 is conserved in the mammalian homologue, 

CAPZA (serine 208) (Fig. 5A), suggesting that TOR dependent phosphorylation of CAPZA 

may be conserved in metazoan systems.  
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TORC2 dependent phosphorylation alters CAPZA/BAcp1/2 heterodimer formation. 

The crystal structure of the human CAPZA/B heterodimer (Yamashita et al., 2003) reveals 

the CAPZAAcp1-S189 equivalent within human CAPZA maps to the CAPZA/B interface (Fig. 

5A) and therefore its phosphorylation is likely to have an impact upon heterodimer 

formation and function. In order to assess the impact TOR dependent CAPZAacp1 

phosphorylation had upon CAPZA/BAcp1/2 heterodimer formation we undertook equivalent 

co-immunoprecipation assays in wild type cells treated with either Torin1, to inhibit TOR 

signalling (Atkin et al., 2014), or DMSO. While CAPZAAcp1-HA was seen to co-purify with 

CAPZBAcp2-GFP in wild type cells, this interaction was significantly enhanced by treatment 

with Torin1 (Fig. 5B). A conserved mutation within the ATP-binding pocket of genes 

encoding for either of the two fission yeast Tor kinases specifically confers TORC1 

(tor2.G2040D - TORC1R) or TORC2 (tor1.G2037D- TORC2R) dependent resistance to 

Torin1 induced inhibition (Atkin et al., 2014). These mutants can be used to establish 

whether Torin1 induced effects are brought about by off-target effects. Torin1 enhanced 

CAPZA/BAcp1/2 heterodimer formation in wt and the TORC1R mutant (Fig. 5C). In contrast, 

heterodimer formation was not enhanced in the TORC2R mutant upon Torin1 treatment. 

Therefore as TORC2 activity in the TORC2R mutant is resistant to the effects of Torin1, this 

result indicates that it is the specific inhibition of TORC2 that enhances the affinity between 

CAPZAAcp1 and CAPZBAcp2. 

To establish whether TORC2 dependent CAPZAAcp1 phosphorylation alters the 

stability of the CAPZA/BAcp1/2 heterodimer we generated strains in which the endogenous 

CAPZAacp1+ locus was mutated to encode for CAPZAAcp1 protein in which serine 172 and 

189 had been replaced with alanine to mimic an unphosphorylated serine (CAPZAacp1-AA). 

CAPZA/BAcp1/2 co-immunoprecipitations were repeated using extracts from CAPZAacp1-AA 

cells and the CAPZAacp1-AA mutant protein was seen to have an increased affinity for 

CAPZBAcp2 compared to wild type (Fig. 5D). Critically the Torin1 induced stabilisation of the 

CAPZA/BAcp1/2 heterodimer was abolished in the CAPZAacp1-AA allele (Fig. 5E). Thus these 

data indicate that TORC2 dependent phosphorylated of CAPZAAcp1 serines 172 and 189 

regulates CAPZA/BAcp1/2 heterodimer formation. 

 

The CAPZAacp1-AA/ CAPZBacp2 complex stabilised cortical actin polymers 

The fission yeast CAPZA/BAcp1/2 complex regulates actin dynamics and cytokinesis (Kovar 

et al., 2005; Nakano and Mabuchi, 2006), and recruits to the cell equator during cell 

division. (Movie 7). CAPZAAcp1-GFP remained localised at the cell equator at the end of 

cytokinesis for significantly longer in Rictorste20 and myp2 cells than wild type (Fig 6A). In 
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contrast, the timing of RICTORSte20-3GFP CAR recruitment was unaffected in cells lacking 

the CAPZAacp1 gene (Fig 6A). 

We next used Lifeact (Huang et al., 2012; Riedl et al., 2008) to compare actin 

dynamics in CAPZAacp1+ and CAPZAacp1-AA mutant cells. Interestingly, the CAPZAacp1-AA 

allele, which stabilises the CAPZA/B complex (Fig. 5D), had a significant impact upon the 

stability of cortical filamentous actin patches (Fig. 6B-D). Actin patches were depolarised, 

had a longer lifetime, and increased polymerisation rates in CAPZAacp1-AA cells when 

compared to wild type (growth rates: wt: 220.1 AUsec-1; CAPZAacp1-AA: 573.8 AUsec-1; 

shrinkage rates: wt: -167.5AUsec-1; CAPZAacp1-AA: -543.9 AUsec-1) (Fig. S3C). Cells 

possessing the CAPZAacp1-AA allele had 5 times more Lifeact signal associated with 

cortical actin patches compared to wild type (Figure 6B-D; S3C). In contrast there was no 

significant difference in the number of cortical actin patches, patch associated CAPZAAcp1 

protein localised, or total CAPZAAcp1 protein within wild type and mutant cells (Figure S3C). 

This indicates the CAPZAacp1-AA allele does not affect actin nucleation or stability of the 

CAPZAAcp1 protein, but remains associated with actin polymers longer than wild type which 

continue to accumulate actin at the uncapped end. 

 

CAPZAacp1-AA has aberrant CAR morphology 

It has been suggested that cells possess a finite pool of actin monomers, for which different 

actin nucleators (Arp2/3 and formins) compete (Burke et al., 2014; Suarez et al., 2015). 

Thus increasing the proportion of the actin pool incorporated within Arp2/3 nucleated 

cortical actin patches would result in a reduction in the actin available for incorporation into 

formin nucleated actin cables, which are essential for cytokinesis to occur. CAR associated 

TropomyosinCdc8 provides a specific measure of formin nucleated actin cables (Skoumpla et 

al, 2007; Skau and Kovar, 2010). Consistent with this “finite pool of actin monomers” model 

quantification of the CAR associated TropomyosinCdc8 revealed a reduction in the amount 

of actin incorporated into ForminCdc12 nucleated actin-cables within the CAR in CAPZAacp1-

AA cells (Fig. 6E). Therefore, while cortical actin patches are more stable and persist for 

longer in the CAPZAacp1-AA cells, there are fewer TropomyosinCdc8 associated actin cables 

in the CAR. This may provide an explanation for the CAR instability in CAPZAacp1-AA cells 

(Fig. 7A). Thus the aberrant CAR morphology phenotype observed in CAPZAacp1-AA 

mutant cells emulates that seen in TORC2  Finally, in contrast to wild type 

cells (Huang et al., 2012), and similar to CAPZAacp1-AA the actin cytoskeleton was 

depolarised in Rictorste20 cells (Fig. 7B). This finding is consistent with the observed 

increased cell diameter of cells lacking TORC2 function (Fig. 1B), as cell growth may no 
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longer be exclusively restricted to cell ends.  

Finally, stress of wild type cells at 37°C transiently disrupts actin organisation and 

dynamics, before a normal distribution is re-established and growth resumes within 90 

minutes (Petersen and Hagan, 2005). TORC2 has a critical role in responding to induced 

heat stress as TORC2 deficient cells are hypersensitive to transient increases in heat 

(Kawai et al., 2001; Weisman and Choder, 2001). Intriguingly, CAPZAacp1-AA cells also 

failed to recover from the stress imposed by a shift from 28°C to 37°C (Fig. 7C). CAPZAAcp1 

protein levels did not change following heat stress of either wild type or CAPZAacp1-AA cells 

(Fig S3A). Hence the mutations did not affect CAPZAAcp1 stability, and the alteration in actin 

dynamics may cause the observed increased sensitivity to heat stress in CAPZAacp1-AA 

cells.  

In summary, we conclude that TORC2 dependent phosphorylation of CAPZAAcp1 

reduces the stability of the CAPZA/BAcp1/2 heterodimer. This in turn modulates the stability 

of cortical actin patches and alters the concentration of free monomeric-actin within the cell, 

to affect the timing and fidelity of cytokinesis.  
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Discussion 

Here we describe a novel TORC2 recruitment to the Cytokinetic Actomyosin Ring (CAR) 

that plays a role in maintaining the fidelity of cytokinesis in fission yeast. We describe a 

mechanism by which a myosin V and myosin II co-purify with TORC2 and play a role in its 

localisation to the CAR during cytokinesis. Each myosin appears to play a discrete role in 

affecting TORC2 CAR localisation. Myo51 ensures TORC2 recruits to the CAR in the early 

stages of anaphase, while Myp2 maintains TORC2 at the CAR. While TORC2 is required to 

maintain the CAR at the cell equator and prevent it from drifting along the cell cortex, both 

TORC2 and Myp2 maintain the integrity of a single CAR structure and prevent it from 

splitting in two during its constriction. It is currently unclear why RICTORste20 only 

associates with the CAR in a subset of myp2∆ cells, however this may explain why a 

cytokinesis defects is only observed in a subset of cells lacking this myosin II. 

In the absence of TORC2 signalling the stability and activity of the actomyosin ring 

and therefore cytokinesis are altered. These changes in actin dynamics arise in part from 

TORC2 dependent phosphorylation of the actin capping protein CAPZAAcp1. Perturbation of 

CAPZAAcp1 phosphorylation increases the stability of the CAPZA/BAcp1/2 heterodimer (Fig. 

5), it significantly alters the cellular organisation of the actin cytoskeleton (Fig. 6), and it 

disrupt CAR function (Fig. 7A). The increased severity in growth and cytokinesis 

phenotypes of RICTORste20 cells compared to the CAPZAacp1-AA and myp2 mutants 

(Fig. 1, 3 & 7) suggest that CAPZAacp1 is very unlikely to be the sole protein with a key role 

in cytokinesis that is regulated in a TORC2 dependent manner. Consistent with this view an 

increase in myosin II Myo2 levels was seen in the RICTORste20∆ cells but not in acp1or 

myp2(data not shown), thus TORC2 regulate Myo2 in an yet unidentified manner. 

Multiple potential TORC2 regulated proteins involved in coordinating cell division, co-

purified with TORC2 (Fig. 2A). However, our SILAC analysis to date has not identified 

phospho-peptides that showed differential phosphorylation upon Torin1 inhibition of TOR 

function in any of the co-purifying proteins. Critically, we recently demonstrated that the co-

purifying SCYL family pseudo-kinase Ppk32 is a novel regulator of TOR signalling; and 

intriguingly Ppk32 concentrates at the cell equator during cell division in more than 60% of 

cells (Kowalczyk and Petersen, 2016). Thus, the TORC2 dependent regulation of 

CAPZA/BAcp1/2 that we describe here is likely to be one of multiple TORC2 dependent 

mechanisms regulating the fidelity and timing of cytokinesis and cell division.  

The TORC2 control of CAPZA/BAcp1/2 heterodimer stabilisation enables cells to 

couple actin stability with changes in cell growth and division, which can be implemented in 
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response to environmental stress. Crucially, this TORC2 dependent change in 

CAPZA/BAcp1/2 affinity and actin stability provides an explanation for the enhanced F-actin 

cable stability observed in TORC2 deficient cells (Ikai et al., 2011; Matsuo et al., 2007), 

which appears to be key in ensuring cell survival following environmental stress. Similar 

controls are likely to underlie TORC2 control of actin dynamics and cytokinesis in 

mammalian cells, as knockout of TORC2 components in HeLa cells leads to similar 

increases in the abundance of actin fibres and increased cytoplasmic paxilin association 

(Sarbassov et al., 2004). Furthermore, serine 2481 auto-phosphorylated mTOR localises to 

the cleavage furrow at the onset of cytokinesis (Vazquez-Martin et al., 2009) suggesting 

that active mTOR plays a conserved role in cytokinesis and cell division. 
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Material and Methods 

Strains and cell cultures. 

Strains used in this study are listed in Supplementary Table S1. Unless otherwise specified, 

cells were cultured at 28oC in Edinburgh minimal media (EMM2) (Fantes, 1977) using 20 

mM L-Glutamic acid as a nitrogen source (EMMG). Cells were grown exponentially for 48hr 

before being harvested or examined microscopically at early exponential phase of 1.5 x 106 

cells/ml. Rictorste20 cells frozen immediately after spore germination. Cells were tested for 

sensitivity to stress and sterility to insure no suppressors had accumulated. All Rictorste20 

cells cultures were maintained in exponential growth and never exposed to starvation. 

 

FACS analysis. 

S. pombe DNA content were measured by flow cytometry as previously described (Costello 

et al, 1986). 

Large scale Tor1 immunoprecipitation (IP). 

Wild type cells (JP350) were grown in EMMG to 2.5×106 cells/ml (5 litres per IP condition) 

harvested and disrupted using a freezer mill (SPEX 6870) in liquid nitrogen. The cell powder 

was thawed with IP buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 0.1% CHAPS, 50mM L-

arginine, 50mM L-glutamic acid, 0.05% Tween 20, 120 mM β-glycerophosphate di-sodium 

salt, 4mM Na3VO4, 100 mM NaF, 2 mM PMSF, 10mM N-ethylmaleimide, 2mM dithiothreitol 

and 2 x Roche EDTA free protease inhibitor cocktail). The cleared supernatant was 

incubated with Invitrogen protein G Dynabeads, pre-incubated with anti-tor1 antibodies or 

PK (V5) (AdB Serotec) antibody for control, for 60 min at 4°C. Beads were then washed 

twice with IP buffer plus 50mM NaCl (200mM final concentration) proteins were eluted by 

heating at 80°C for 10 min. The samples were loaded on a NUPAGE Bis-Tris 4–12% gel 

(Life Technologies). The gel was fixed with 7% acetic acid and 25% methanol and stained 

by Brilliant blue. The entire lane was cut into small bands, before being sent for protein 

identification. Mass spectrometry data were analysed by ScaffoldTM 3 software. 

 

Immunoprecipitation of Myo51 cargo binding domain 

Immunoprecipitation and cell lysis was performed in the following buffer – 50mM HEPES 

pH7.5, 150mM NaCl, 0.1% CHAPS, 50mM L-arginine, 50mM L-glutamic acid, 0.05% 

Tween, 50mM NaF, 2mM Na3VO4, 60mM β-glycerophosphate di-sodium salt, 5mM N-

ethylmaleimide, 1mM PMSF, 10μM Z-LLF 1mM DTT and 1x protease inhibitor without 

EDTA (Complete, Mini - Roche), with the addition of 150mM NaCl (300mM final 
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concentration) and 100mM KCl for washes. 6 x108 cells, harvested at a density of 2x106/ml, 

were used per IP. Protein A dynal beads (Life Technologies) were used and the cell lysis 

solution was pre-cleared for 10 mins with a bead only slurry. Cleared extracts were  

incubated with GFP monoclonal antibody (clones 7.1 and 13.1 - Roche) pre-coated dynal A 

beads for 30min at 4°C and washed 5 times prior to elution from beads in loading buffer at 

70°C for 15mins.  

 

SILAC cell culture. 

car2::NAT lys1-131 arg3-d4 cells were inoculated in YES media overnight and then washed  

into EMM-G containing 75mg/L of either light (l-arginine monohydrochloride (Sigma) and l-

lysine monohydrochloride (Sigma)) or medium ((LYSINE-L, 2HCl 4.4.5.5-D4 (Cat code 

DLM-2640, Euroisotop), ARGININE-L, HCl, U-13C6 99%13C (Cat code CLM-2265, 

Eurisotop,)) amino acids. Cells were cultured in log phase for 48 hours to ensure complete 

incorporation of labelled amino acids into the proteome. Light labelled cultures were treated 

with DMSO and medium labelled cultures were treated with a final concentration of 25 µM 

Torin1 at a density of 2.04 x 106 cells/ml. Approximately 4.8 x 109 cells were harvested for 

each sample. After 30 minutes cultures were harvested by centrifugation, washed in 20ml 

of STOP buffer (10 mM EDTA, 1 mM sodium azide, 50 mM sodium fluoride (NaF), 0.9% 

NaCl), followed by washing with 10ml of ice cold ddH20. The final pellets were then 

resuspended in an appropriate volume of  ice cold ddH20 and dropped directly into liquid 

nitrogen to produce frozen cell droplets. 

 

SILAC Protein extraction. 

Samples were processed using a SPEX Sample Prep LLC 6850 Freezer Mill in presence of 

liquid nitrogen. The resulting cell powder was resuspended in denaturation buffer (6M urea, 

2M thiourea, 1% n-octyl glucoside) at a ratio of 500mg powder to 500µl denaturation buffer. 

Insoluble material was removed by centrifugation (13,000 g, 10 minutes at 4°C) and the 

supernatant was designated supernatant I (soluble fraction). The pellet was then 

resuspended in 500µl denaturation buffer, 500µl glass beads were added and then 

subjected to 20 seconds shaking in a FastPrep machine (FP120, Qbiogene). The resulting 

suspension was again centrifuged (13,000 g, 10 minutes at 4°C) and the supernatant 

retained (supernatant II). The pellet was then discarded. Protein concentrations were 

determined by Bradford assay according to manufacturers instructions. 
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Mass spectrometry for SILAC. 

Respective supernatants I and II derived from the “light” and “medium” labelled cell cultures 

were combined and proteins were precipitated at -20°C using ice-cold acetone/methanol 

left on ice overnight. The proteins were pelleted by centrifugation (2200 x g, 20 min, 4°C) 

and washed with 80% ice-cold acetone. Dried proteins were resolved in digestion buffer (6 

M urea, 2 M thiourea, 10 mM Tris, pH 8.0) and mixed in 1:1 ratio according to measured 

protein amounts.  The mixtures were digested in solution with trypsin as described 

previously (Borchert et al., 2010). For proteome analyses 100µg of the mixtures were 

fractionated by isoelectric focusing on an OffGel 3100 Fractionator (Agilent) according to 

the manufacturer’s instructions. Focusing was performed using with 13 cm (12 well) 

Immobiline DryStrips pH 3–10 (Bio-Rad) at a maximum current of 50 µA for 24 kVh. 

Peptide fractions were collected and desalted separately using C18 StageTips (Rappsilber 

et al., 2007). 

For phosphoproteome analyses eight milligrams of each peptide mixture was 

subjected to phosphopeptide enrichment as described previously (Olsen et al., 2005) with 

minor modifications: Peptides were separated by strong  cation-exchange (SCX) 

chromatography with a gradient of 0 to 35% SCX solvent B resulting in seven fractions that 

were subjected to phosphopeptide enrichment by TiO2 beads. Elution from the beads was 

performed three times with 100 µl of 40% ammonia hydroxide solution in 60% acetonitrile 

(pH > 10.5). Fractions rich in peptides were subjected to multiple TiO2 enrichment. 

Enrichment of phosphopeptides from the SCX flow-through was completed in five cycles. 

LC-MS/MS analyses were performed on an EasyLC nano-HPLC (Proxeon Biosystems) 

coupled to an LTQ Orbitrap XL (Thermo Scientific) for phosphopeptide analyses, or an LTQ 

Orbitrap Elite mass spectrometer (Thermo Scientific) for proteome analyses as described 

previously (Koch et al., 2011). The peptide mixtures were injected onto the column in HPLC 

solvent A (0.5% acetic acid) at a flow rate of 500 nl/min and subsequently eluted with a 87-

min (proteome) or a 127-min (phosphoproteome) segmented gradient of 5–33-90% HPLC 

solvent B (80% ACN in 0.5% acetic acid). During peptide elution the flow rate was kept 

constant at 200 nl/min. For proteome analysis the twenty most intense precursor ions were 

sequentially fragmented in each scan cycle. For the phosphoproteome analysis the five 

most intense precursor ions were fragmented by multistage activation of neutral loss ions at 

-98, -49, and -32.6 Th relative to the precursor ion (Schroeder et al., 2004). In all 

measurements, sequenced precursor masses were excluded from further selection for 90 

s. Full scans were acquired at resolution of 60,000 (Orbitrap XL), or 120,000 (Orbitrap 
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Elite). The target values were set to 5000 charges for the LTQ (MS/MS) and 106 charges 

for the Orbitrap (MS), respectively; maximum allowed fill times were 150ms (LTQ) and 1000 

ms (Orbitrap). The lock mass option was used for real time recalibration of MS spectra 

(Olsen et al., 2005). 

The MS data of all SILAC experiments were processed using default parameters of the 

MaxQuant software (v1.2.2.9) (Cox and Mann, 2008). Extracted peak lists were submitted 

to database search using the Andromeda search engine (Cox et al., 2011) to query a 

target-decoy (Elias and Gygi, 2007) database of S. pombe proteome 

(http://www.pombase.org/, Protein Dataset in FASTA format, downloaded on the 6th of April 

2011), containing 5076 protein entries and  248 commonly observed contaminants.  

 

Molecular manipulations and generation of single point mutations. 

The CAPZAacp1 base strain: A DNA cassette for acp1 deletion was prepared by PCR 

amplification. This construct was used to replace the acp1+ gene at the native locus with 

the nat+. To generate the acp1-S172A-S189A point mutations, standard site directed 

mutagenesis. The mutant acp1 was then used to replace the nat1 rpl42+ gene in JP2222 

(Fennessy et al., 2014). The resulting strains were back-crossed and prototroph progeny 

was selected. The presence of the acp1 S/A allele was verified by PCR. Thus all acp1 

single point mutations used in this study are integrated into the acp1 locus, and are all 

prototroph strains. C-terminal tagging method as previously (Bahler et al., 1998) using acp1 

C-terminal specific primers 

 

Acp1-HA immunoprecipitations 

Immunoprecipiation of Acp1-HA was carried out under non-denaturing conditions allowing 

for pull down of any bound Acp2-GFP. Cell lysis buffer consisted of 50mM HEPES pH7.5, 

100mM KCl, 50mM NaCl, 0.2% Tween, 0.1mM EDTA, 1x protease inhibitors (Complete, 

Mini - Roche), 25mM NaF, 2mM Na3VO4, 25mM β-glycerophosphate di-sodium salt, 5mM 

N-ethylmaleimide, 0.5mM PMSF, with the addition of a further 25mM NaCl and 0.25% 

CHAPS in wash buffer. Briefly, HA antibody (F7 clone - Santa Cruz Biotechnology) was 

dimethyl pimelimidate cross-linked to Dynal beads protein A (Life Technologies) and 

incubated with lysed S. pombe cells (3x108 cells per IP, harvested at 1.5x106cells/ml) for 

one hour at 4°C, followed by 5 x washes with wash buffer. Bound proteins were eluted in 

loading buffer (100mM TrisHCl pH6.8, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 

100mM DTT) at 70°C for 15 mins then loaded onto 12% tris-glycine PAGE, transferred to 
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PVDF membrane and the membrane cut at approximately 45kDa enabling detection of both 

CAPZAAcp1-HA and CAPZBAcp2-GFP on the same gel. 

 

Western blotting. 

TCA precipitation protocol was followed for total protein extracts (Caspari et al., 2000). The 

following dilutions of antibodies were used in this study. 1/1000 anti-Myo2 (Coulton et al., 

2010) (1/100 anti-GFP (Source), anti-HA (F7). Alkaline phosphatase coupled secondary 

antibodies were used for all blots followed by direct detection with NBT/BCIP (VWR) 

substrates on PVDF membranes.  

 

Microscopy: Samples were visualised using an Olympus IX71 microscope with PlanApo 

100x OTIRFM-SP 1.45 NA lens mounted on a PIFOC z-axis focus drive (Physik 

Instrumente, Karlsruhe, Germany), and illuminated using LED light sources (Cairn 

Research Ltd, Faversham, UK) with appropriate filters (Chroma, Bellows Falls, VT). An 

Optosplit device (Cairn Research Ltd) was used to allow simultaneous acquisition of signals 

from two fluorophores that emitted light of different wavelengths. Samples were visualised 

using either a QuantEM (Photometrics) or ProEM 1024B (Princeton Instruments) EMCCD 

camera, and the system was controlled with Metamorph software (Molecular Devices). 

Each 3D-maximum projection of volume data was calculated from 21 z-plane images, each 

0.2 µm apart, and analysed using Metamorph and Autoquant X software. During live-cell 

imaging, cells were cultured in Edinburgh minimal media using 20 mM L-Glutamic acid as a 

nitrogen source (EMMG). Cells were grown exponentially at 25ºC for 48hr before being 

mounted (without centrifugation) onto lectin (Sigma L2380; 1 mg/ml) coated coverslips with 

an a Bioptechs FCS2 (Bioptechs, Butler, PA), fitted onto an ASI motorised stage (ASI, 

Eugene, OR) on the above system, with the sample holder, objective lens and 

environmental chamber held at the required temperature. Cdc8 immunofluorescence was 

undertaken using conditions described previously (Skoumpla et al., 2007). Mean cell width, 

septa positioning, and nuclear diameter was determined from measurements of ~300 cells 

for each strain. In the determining the timing of CAR formation and constriction, and protein 

recruitment in wild type and mutant strains, time-lapse imaging and subsequently analysis 

was undertaken on >20 cells for each individual strain.  



Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 A

dv
an

ce
 a

rt
ic

le

 

Figures 
 

 

 

 

Figure 1: TORC2 deficient mutants display defects in cytokinesis and cell fission. 

(A) Early exponential prototroph cells were stained with calcofluor to visualise the division 

septa (Scale – 10 µm), and (C) processed for flow cytometry analysis to measure DNA 

content. Mean cell width (B) and nuclear diameter (D) were each determined from counting 

300 wt and ste20∆ cells in mid log culture. (E) A montage of timelapse images showing red 

fluorescence from myo2-mCherry sid4-tsTomato cells undergoing cell division. Cells 

illustrating timing of CAR formation and constriction in relation to SPB segregation in wild 
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type cells. (F & G) Equivalent montages of time-lapse images of mCherry (magenta) and 

GFP (green) fluorescene from myo2-mCherry cut12-gfp ste20∆ cells. In a large proportions 

of anaphase ste20∆ cells the CAR was seen to either collapse (F) or drift along the cortex 

toward one end of the cell (G). Scale – 5 µm. 
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Figure 2: TORC2 interacts with and localises to the Cytokinetic Actomyosin Ring 

during ring constriction. 
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(A) Summary of mass spec analysis of 3 independent experiments of control (Ctrl – no anti-

Tor1 antibodies added) and Tor1 immunoprecipitations (Exp), each purified from 20 litre 

cell cultures. (B) Micrographs of RictorSte20 (green) and Myo2 or Myo51 (magenta) signal 

from mitotic Rictorste20-GFP myo2-mCherry cells or Rictorste20-GFP myo51-mCherry cells. (C 

& D) Maximum projections of 21 slice z-stacks from a time course of mitotic myo2-mCherry 

sid4-tdTomato ste20-3gfp cells reveals Ste20 foci (green) recruits to the cell equator after 

SPB (magenta) separation and Myo2 ring (magenta) formation has occurred (frame 1-4 

with non-separated SPBs represent interphase cells) (C) and coalesce to form a ring during 

CAR constriction (D). Micrograph of mCherry and GFP signal from Rictorste20-3GFP myo2-

mCherry and Rictorste20-3GFP myo51-mCherry cells illustrate TORC2 association with the 

CAR. (E) The timing of key events during CAR formation and constriction:  (I) Myo2 foci 

(empty circles) recruit to the cell equator; (II) Myo2 foci coalesce to form a CAR (filled 

circles); (III) The CAR constricts until, (IV) reaching a diameter of 0.5 µm or less) were 

determined in relation to nuclear division (cross: distance between SPBs) in wild type. (B - 

C) Arrowheads highlight RICTORSte20localisation at cell tips. (F) The timing of Myp2 ring 

(red bars) and Ste20 medial foci (light blue bars) or Ste20 ring recruitment (dark blue) were 

determined in wild type strains in relation to the events determined in (E). Scales – 10 µm. 
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Figure 3: Myosin II & V interact with and regulate RICTORSte20 localisation at the CAR. 

(A) Extract and subsequent anti-GFP and anti-HA (control) immunoprecipitates from S. 

pombe cells expressing a GFP-tagged Myo51 Cargo-binding-tail domain fusion protein 

were subject to anti-Tor1 (upper panels) and anti-GFP (lower panels) western blot analysis. 

* denotes background bands. (B-E) Micrographs of mCherry and GFP signals in cells with 

the indicated genotype. Asterisk highlights rings split in two. Arrowheads highlight 

RICTORSte20localisation at cell tips. (F) The timing of and Ste20 medial foci (light blue bars) 

or Ste20 ring recruitment (dark blue) were determined in wild type and myp2∆ strains in 

relation to the events determined in (2E). Scales - 5 µm. 
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Figure 4: Myp2 and TORC2 localisation to the actomyosin ring is co-dependent. 

(A) The timing of and Myp2 ring recruitment (red bars) were determined in wild type and 

Rictorste20∆ strains in relation to the events determined in (2E). (B) Composite micrographs 

of YFP and phase signal in yfp-myp2 Rictorste20+ and yfp-myp2 Rictorste20∆ cells. (C-E) 

Kymographs generated from 30 maximum projections of timelapse images (3 min/frame) of 

(C) myo2-mCherry YFP-myp2 and (D) myo2-mCherry YFP-myp2 Rictorste20∆ cells illustrate 

TORC2 is required for Myp2 to remain at the CAR. (E) Timelapse kymographs of the 

perpendicular (upper panels) and longitudinal (lower panels) axes of yfp-myp2 Rictorste20∆ 

cell in which Myp2 signal is lost from the cell equator, and the Myo2 containing CAR slides 

along the cell cortex before constricting. (C-E) Cartoons illustrate orientation and origin of 

kymograph axes.. Scales – 5 (B) or 1 (C-E) µm. 
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Figure 5: TORC2 regulates CAPZA/BAcp1/2 heterodimer formation 
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 (A) Alignment of phosphorylated region of S. pombe Acp1 and human homologue, 

CAPZA. Conserved residues are highlighted in bold and the two TOR dependent 

phosphorylation sites are shown in red. The position of the conserved phosphorylated 

serine 208 (in yellow) is shown on the crystal structure of CAPZA and CAPZB (Yamashita 

et al., 2003). (B-D) Anti-GFP (upper panels) and anti-HA (lower panels) western blots of 

CAPZAAcp1-HA immune-precipitations from indicated strains in the absence or presence of 

the TOR inhibitor Torin1 (25µM) (TORC1R = tor2.G2037D  TORC2R = tor1.G2040D). 
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Figure 6: CAPZAAcp1-AA mutants disrupt actin dynamics and cytokinesis. 
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(A) The timing of Myp2 ring (red bars), Ste20 foci (light blue bars) , Acp1 (yellow bars) 

medial recruitment and Ste20 ring recruitment (dark blue) were determined in wild type, 

myp2∆, ste20∆ and acp1∆ strains in relation to the events determined in (Fig. 2E). * - 

Recruitment of these proteins to the CAR were observed in less than 50% of the deletion 

strains. CAR dynamics and composition were followed in >20 cells for each strain. Early 

exponential prototrophs were used in each experiment. (B) mCherry kymographs 

generated from 100 timeframe maximum projections from 13 z-plane images of CAPZAacp1+ 

Lifeact-mCherry (left panels) and CAPZAacp1-AA Lifeact-mCherry (right panels) cells (0.6 

sec/frame). (C) Graph showing lifetime kinetics of Lifeact signal from individual (faint lines) 

actin patches and overall averages (thick lines) of CAPZAacp1+ Lifeact-mCherry (black lines) 

and CAPZAacp1-AA Lifeact-mCherry (red lines) cells. (D) Maximum projections of a mixture 

of CAPZAacp1-GFP Lifeact-mCherry and CAPZAacp1-AA Lifeact-mCherry cells. Overlaying 

the GFP (green) and mCherry (magenta) signals demonstrate the increase in actin signal at 

cortical actin patches in the CAPZAacp1-AA mutant compared to GFP labelled wild type 

(arrows) cells. (E) Histograms illustrating mean relative TropomyosinCdc8 at the CAR in 

wtand CAPZAacp1-AA cells (n>30 / strain).  
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Figure 7: TORC2 and CAPZAAcp1-AA mutants disrupt CAR and actin localisation. 

(A) Micrographs of Myo2 (magenta) and YFP (green) signal from CAPZAacp1-AA-HA myo2-

mCherry YFP-myp2 cells. (B) Micrograph of mCherry signal from Rictorste20∆ Lifeact-

mCherry cells illustrate cytokinesis defect and lack of polarised actin signal. (C) The 

CAPZAacp1 phosphorylation site mutant CAPZAacp1-AA is sensitive to heat stress at 

37°C.Model: TORC2 localises to the actomyosin ring during cytokinesis. The affinity of 

actin capping protein CAPZAAcp1 to CAPZBAcp2 is regulated in a TOR dependent way and it 

is critical for regulating actin and CAR dynamics. Scales - 10 μm. 
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