Composite fermion dynamics in half-filled Landau levels of graphene

ARKADIUSZ WÓJS1,2, GUNNAR MÖLLER1, NIGEL R. COOPER1
1TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, UK
2Institute of Physics, Wrocław University of Technology, Wrocław, Poland

(Received ...)
two-body Coulomb matrix elements of graphene \(\langle \ldots | V | \ldots \rangle\) are expressed as the averages over the corresponding two-body matrix elements of GaAs \(\langle \ldots | V | \ldots \rangle\), taken at the same \(N\):

\[
4\langle \{n,m_i;n,m_j\}|n,m_i;n,m_j\rangle = \langle n-1,m_i;n,m_j\rangle \langle n,m_i;n-1,m_j\rangle + \langle n,m_i;n-1,m_j\rangle \langle n-1,m_i;n,m_j\rangle
\]

(1)

The pseudopotentials (describing graphene in the spherical geometry and correctly linked to the Coulomb potential \(\sim 1/r\)) shown in Fig. 1 are then obtained from the above matrix elements by diagonalization of the two-electron problem.

3. CF Fermi sea in polarized systems

Using matrix elements appropriate for the spherical geometry, we have first looked at the correlated \(N\)-electron states at \(N_0=N/v-\sigma\) with the “filling factor” \(v=1/2\) (corresponding to the half-filled LL) and various “shifts” \(\sigma\). By analogy with a number of known cases, any extended incompressible liquid state is expected to be represented on a sphere by a series of uniform (i.e., having zero total angular momentum, \(L=0\)) finite-size states \((N,N_0)\) with constant \(v\) and \(\sigma\) (the latter also deduced from the particular form of the extended many-body wave function, albeit in a less obvious way than \(v\)). Understandably, the correlation energy, pair correlation function, and all other features of the state should depend smoothly on \(N\) along the series, and extrapolate to those describing an extended state on a plane.

We found that the nonabelian Pfaffian wave functions have only moderate overlaps with the corresponding \((\sigma=3)\) exact \(N\)-electron Coulomb ground states in any LL of graphene. Moreover, their dependence on the system size \(N\) reveals the emergence of a shell (CF-LL) structure of the (essentially) non-interacting CFs at \(B^*\sim 0\) rather than the formation of a uniform phase which could be adiabatically connected to the Pfaffian state, representing a paired CF liquid. This is illustrated in Fig. 2, showing also a comparison of the Coulomb energies with the Pfaffian states.

The emergence of a shell structure is most evident in Fig. 3 showing the size dependence of the ground state correlation energy \(E\) (counted per particle, including the charge compensating background, and found separately for each shift \(\sigma\)). The dominant tendency is the CF shell filling, with low values of \(E\) coincident with exact filling of an indicated number of the CF-LLs.

Let us illustrate this tendency on a couple of examples. At \(v=1/2\), the \((N,N_0)=(N/2N-\sigma)\) states of strongly interacting electrons map onto the non-interacting CF states at \(N_0^*\)=\(N_0/2(1-N/2)\) scaling being consistent with \(B^*=0\). For \(\sigma=3\), this gives \(N_0^*-1\). Negative sign means that the direction of an effective magnetic flux \(2Q^*\), producing effective degeneracy \(|N_0^*|+1=2\) of the lowest CF LL, is oriented opposite to the original magnetic flux \(2Q\) [11]. The degeneracy of the \(n^*\)th CF-LL is \(|N_0^*|+1+2n^*\). For \(N=20\), four lowest CF-LLs are completely filled, and this finite-size \(v=1/2\) state is “aliased” with the incompressible \(v^*=4\) CF state, corresponding to the electron filling factor \(v=4/7\) [11]. Hence, a relatively low correlation energy of this \((L=0, i.e., nondegenerate)\) state is observed in both frames of Fig. 3. Similarly, three lowest CF-LLs are full for \(\sigma=3\) and \(N=12\), this state being aliased with \(v^*=-3\) (corresponding to \(v=3/5\)) and thus also having low energy in Fig. 3. For \(\sigma=4\) (yielding \(N_0^*-2\)) and \(N=16\), there are three full CF-LLs and an additional single CF in the \(n^*=3\) level with the single-particle angular momentum equal to \(|N_0^*|/2+n^*=4\), yielding an L=4 state (aliased with the single CF-quasiparticle in an incompressible \(v^*=-3\) state) with a somewhat higher correlation energy than in the case of complete CF-LL filling. Finally, for \(\sigma=3\) and \(N=16\), there are four CFs in a half-filled \(n^*=3\) CF-LL with angular momentum illustrated in Fig. 2.
also hosting a Fermi sea of nearly free CFs rather protected by a single-particle splitting. Low-energy dynamics in graphene is of crucial inclusion of the pseudospin in an analysis of the associated with the valley degeneracy. In fact, an additional "pseudospin" degree of freedom in principle be enforced by a Zeeman splitting. However, in graphene one must also consider in principle be enforced by a Zeeman splitting (in higher LLs a striped order is most likely, but discussion of this issue has not been included). We also found that the half-filled ground states in both lowest two LLs undergo spontaneous depolarization of the pseudospin, which cannot be protected by a single-electron splitting (analogous to the Zeeman effect for spin). Together, our results point to the absence of a nonabelian Pfaffian phase in graphene.

Fig. 3 Correlation energies per particle in N-electron ground states corresponding to the half-filling of the lowest (a) and second (b) LL in graphene. Shift σ and the number of filled CF-LLs are explained in the text.

\[|N^*|/2 + n^* = 7/2. \] The lowest state of this four-CF configuration depends on the particular form of the residual CF-CF interaction in the degenerate \(n^* = 3 \) CF-LL. It occurs at \(L = 8 \) and has a relatively high correlation energy in Fig. 3. These findings are consistent with an earlier study [9]. The second LL (\(n = 1 \)) behaves similarly to the lowest, also hosting a Fermi sea of nearly free CFs rather than an incompressible liquid of paired CFs.

4. Pseudospin depolarization

Spin polarization at \(\nu = 1/2 \) (or in any other quantum Hall state in a high magnetic field) can in principle be enforced by a Zeeman splitting. However, in graphene one must also consider an additional "pseudospin" degree of freedom associated with the valley degeneracy. In fact, inclusion of the pseudospin in an analysis of the low-energy dynamics in graphene is of crucial importance, as its depolarization cannot be protected by a single-particle splitting.

Hence, we have included the single-electron pseudospin \((p_x = \pm 1/2) \) in our diagonalization and classified the \(N \)-electron eigenstates by the total pseudospin \(P \) and its projection \(P_z \). Dependence of the correlation energy \(E \) on size \(N \), analogous to Fig. 3 but for the unpolarized states \((P = 0) \), is shown in Fig. 4. Especially for \(n = 0 \) it is evident that a half-filled state undergoes a spontaneous pseudospin depolarization (e.g., the unpolarized series with \(\sigma = 1, 3, \) and \(4 \) clearly extrapolate to a lower energy than any polarized series).

5. Conclusion

Using exact numerical diagonalization we have studied the correlated many-electron states in different half-filled LLs of graphene, including pseudospin (valley) degeneracy. We have found that even assuming the full spin and pseudospin polarization, the nonabelian Pfaffian state is not realized in graphene (at a half-filling of any LL).

![Fig. 4 Similar to Fig. 2, but for the spin-unpolarized N-electron ground states at the half-filling in the lowest two LLs of graphene (for comparison, the polarized \(\sigma = 3 \) series is also shown with grey symbols).](image)

Instead, the essentially free CFs would form a Fermi sea in both lowest LLs if full polarization could be enforced (in higher LLs a striped order is most likely, but discussion of this issue has not been included). We also found that the half-filled ground states in both lowest two LLs undergo spontaneous depolarization of the pseudospin, which cannot be protected by a single-electron splitting (analogous to the Zeeman effect for spin). Together, our results point to the absence of a nonabelian Pfaffian phase in graphene.

The authors thank N. Regnault for insightful discussions. AW was supported by Marie Curie Intra-European Grant PIEF-GA-2008-221701.

References