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Abstract 

 
Training is a complex, multi-factorial process, which involves the manipulation of the 

duration, frequency and intensity of exercise. When quantifying the physiological and 

performance responses to training a large inter-individual variability in training responses 

is frequently observed. To date, the majority of research has examined the relationship 

between genetics and trainability. Another hypothesis, which has not been fully explored, 

is that the variability is also due to an inappropriate standardisation of exercise intensity 

or duration. This thesis, therefore, presents a series of studies that investigate the effects 

of individualised methods of prescribing exercise intensity and duration on performance 

and physiological responses in cycling. 

 

Study 1 compared time-to-exhaustion (TTE) to time-trial (TT) performances when the 

duration of the trials were matched and participants were blinded to feedback. A higher 

mean power output was found for TTE compared to TT at 80% (294 ± 44 W vs. 282 ± 

43 W respectively, P<0.05), but not at 100% (353 ± 62 W vs. 359 ± 74 W) and 105% 

(373 ± 63 W vs. 374 ± 61 W) of maximum aerobic power (MAP). Critical power (CP) 

calculated from the TTE trials was also higher, whereas, anaerobic work capacity (W′) 

was lower (P<0.05). The findings favour TTE over TT performances for a higher mean 

power output and calculated CP.  

 

Study 2 compared the effects of three training intensities: moderate intensity (MOD), 

high intensity (HIT) and a combination of the two (MIX) when the duration of exercise 

was individualised. Participants were randomly assigned to one training group and trained 

4 times per week for 4-weeks. Training duration was individualised to each participant’s 

maximum performance. All training groups increased maximal oxygen uptake (V̇O2max), 

MAP, TTE and gross efficiency (GE) after training (P<0.05), but no differences were 

observed between groups (P>0.05). Therefore, when the duration of training is 

individualised, similar improvements in performance and physiological responses are 

found, despite differences in exercise intensity.  

 

The CP and power law models propose power-duration relationships that describe 

maximum endurance capacity. Study 3 compared the predictive ability of these two 

models for TTE performances. It was hypothesised that the CP and power law models 

would reliably predict actual TTE for intensities between 80-110% MAP, but a power 
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law model would better predict TTE for intensities outside of this range. No significant 

differences for parameter estimates were found between models (CP and power law) and 

actual TTE for intensities ranging from 80-110% MAP. Outside of this range however, 

the CP model over predicted actual performance at 60% and 150% MAP (P<0.05), while 

there was no significant difference between the power law model and actual performance 

at these intensities (P>0.05). Both models were different from actual performance at 

200% MAP (P<0.05). Therefore, a power law model can accurately predict cycling TTE 

for intensities ranging from 60-150% MAP.  

 

Study 4 tested the hypothesis that the inter-individual variability for TTE performances 

is due to the methods used to standardise exercise intensity. A %V̇O2max prescription was 

compared with an alternative based on an individual power-duration relationship (using 

a power law model). A power law model predicted the intensity for TTE lasting exactly 

20-min and 3-min. A corresponding intensity for TTE as a %V̇O2max was 88% and 109%. 

On two separate occasions participants completed two TTE trials using the power law 

and %V̇O2max prescriptions, with 30-min rest between trials. There was a significant 

reduction in the inter-individual variability for TTE when exercise was prescribed using 

a 20-min power law versus 88% V̇O2max prescription method (coefficient of variation = 

29.7 vs. 59.9% respectively; P<0.05). However, there was no significant difference in 

the inter-individual variability for TTE using a 3-min power law versus 109% V̇O2max 

prescription method (P>0.05).  

 

Two main conclusions can be drawn from this thesis. Firstly, a power law model can 

accurately predict and describe cycling endurance performance across a wide range of 

intensities. Secondly, prescribing exercise intensity using a power law model reduces the 

variability in TTE by 50% when compared to a %V̇O2max prescription method. Therefore, 

the methods used to standardise exercise intensity appear to be related to the variability 

in TTE performances. Future research should examine whether training prescribed using 

a power law model reduces the variability in subsequent training responses.  

 

Key Words: Power law, %V̇O2max, Variability, Time-to-exhaustion, Training 
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1.1 Background. 

 

Over the last two decades our understanding of the physiological demands of endurance 

performance, and the adaptations that occur with training has greatly improved (Coyle et 

al., 1988; Coyle et al., 1991; Bassett and Howley, 2000; Bassett, 2002; Joyner and Coyle, 

2008; Jacobs et al., 2011; Lundby and Robach, 2015). Joyner and Coyle (2008) presented 

a comprehensive model to suggest the determinants of endurance performance success 

(Figure 1.1). According to this model performance is dependent upon three key variables: 

maximal oxygen uptake (V̇O2max), gross efficiency (GE), and lactate threshold (LT) 

(Joyner and Coyle, 2008). These variables have been extensively studied in exercise 

physiology to determine an individual’s fitness level, as well as the magnitude of training 

adaptations (e.g. Bouchard et al., 1999; Midgley et al., 2007; Vollaard et al., 2009).  

 

Figure 1.1: Joyner and Coyle’s (2008) model explaining the physiological determinants of 

endurance performance. Taken from Joyner and Coyle (2008) p.371. 

 

                                                        
1 Reprinted from Journal of Physiology. Vol. 586. Joyner and Coyle (2008). Endurance exercise performance: the 

physiology of champions, page 37, with permission from John Wiley and Sons.  
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An alternative way of examining endurance performance is to study the relationship 

between exercise intensity and time-to-exhaustion (TTE) using mathematical models. 

This relationship is often referred to as a ‘power-duration’ relationship for cycling, 

‘speed-duration’ for running, or ‘velocity-duration’ for swimming. Therefore, for clarity 

and consistency in the terminology used in this thesis, power-duration will be referred to 

throughout, even when discussing other sports. A critical power (CP) model is the most 

common mathematical model used by researchers and applied practitioners, to explain a 

wide range of sports (Moritoni et al., 1981; Hill, 1993; Jones et al., 2010). The CP model 

proposes two parameters: critical power (CP) and anaerobic work capacity (W′) (Hill, 

1993). CP represents the maximum power output that an individual can sustain for a 

prolonged period of time (Hill, 1993; Pringle and Jones, 2002). Whereas, W′ represents 

the total work that can be performed, utilising only stored energy within the muscle 

(Monod and Scherrer, 1965; Moritoni et al., 1981; Hill, 1993). The CP model proposes 

that a hyperbolic relationship exists between power output and TTE, and that below CP 

one can theoretically sustain exercise for an infinite amount of time (Hill, 1993; 

Vanhatalo et al., 2011). Lundby and Robach (2015) recently added CP to Joyner and 

Coyle’s (2008) model of endurance performance. CP correlates well with other 

physiological measurements such as V̇O2max and LT and is also sensitive to training 

adaptations (Moritoni et al., 1981; Jones, 2006; Jones et al., 2010). However, the CP 

model does not describe or predict endurance performance as closely outside the 2 to 20-

min range (Hill, 1993; Jones et al., 2010). This may, therefore, limit the practical 

application of this model.  

 

A power law is another way of modeling the power-duration relationship (Kennelly, 

1906; Francis, 1943; Lietzke, 1954; Grubb, 1997; García et al., 2012). This model 

assumes a progressive decline in performances, with an increase in intensity or distance 

(Kennelly, 1906; Grubb, 1997). The power-duration relationship can be fitted to either a 

power curve or plotted on a logarithmic scale as a linear relationship (Kennelly, 1906; 

Francis, 1943; Katz and Katz, 1999). A power law model has previously demonstrated a 

strong fit for data taken from athletic events that ranged from 100 m to a marathon 

distance (Kennelly, 1906; Francis, 1943; Lietzke, 1954; Grubb, 1997; García-Manso et 

al., 2012). Therefore, this model has the potential to describe and predict endurance 

performance over a much wider range of performances than the CP model (i.e. > 20-min 

< 2-min). Previous research has found the power law model to accurately predict 

performances in swimming and running for a narrow range of distances/durations e.g. 
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200-400 m and 1-10 min respectively (Osiecki et al., 2014; Hinckson and Hopkins, 2005). 

However, whether a power law model can accurately predict a wide range of cycling 

endurance performances has not yet been investigated.  

 

Significant performance gains, as well as physiological adaptations can occur as a result 

of the manipulation of the three major training components: duration, intensity and 

frequency (Hickson et al., 1977; Rodas et al., 2000; Hawley, 2008; Bacon et al., 2013). 

In particular, research has focused on the effects of the manipulation of exercise intensity 

on training adaptations in untrained or recreationally active individuals (Hickson et al., 

1977; Bouchard et al, 1999; Rodas et al, 2000; Gibala et al., 2006; Helgerud et al., 2007; 

Burgomaster et al, 2008; Vollaard et al., 2009; Bacon et al., 2013). Standardised training 

interventions for such individuals, often favour high intensity (HIT) over moderate 

intensity (MOD) training for greater improvements in V̇O2max and performance (Tabata 

et al, 1996; Rodas et al., 2000; Helgerud et al., 2007; Gormley et al., 2008). However, 

these findings are not always consistent (Gibala et al., 2006; Burgomaster et al., 2008). 

Additionally, the majority of these observations are based on the ‘mean’ response such 

that individual responses to training are not well understood (Mann, 2011; Timmons, 

2011; Bacon et al., 2013).  

 

Large inter-individual differences have been reported in response to training (Bouchard 

et al., 1999; Vollaard et al., 2009), with some studies demonstrating changes in V̇O2max 

to range from no change up to ~ 50% in untrained individuals (Lortie et al., 1984; Kohrt 

et al., 1991; Bouchard et al., 1999). Approximately half of this variability can be 

explained by an individual’s genetic background (Bouchard et al., 1999; Bouchard and 

Rankinen, 2001). Another hypothesis that has not been fully explored, is that the methods 

used to prescribe exercise also contribute to this variability (Mann et al., 2013). Evidence 

for this stems from studies that have demonstrated a large inter-individual variability in 

TTE and training responses, when exercise is standardised at the same percentage (%) of 

V̇O2max (Coyle et al., 1988; Bouchard et al., 1999; Vollaard et al., 2009; Scharhag-

Rosenberger et al., 2010). The large variability in blood lactate responses observed in 

these studies, suggest that the metabolic stress responses are not the same for all 

individuals, despite attempts to standardise the exercise intensity (Coyle et al., 1988; 

Scharhag-Rosenberger et al., 2010). Therefore, at the same %V̇O2max, individuals can 

endure exercise for different amounts of time and at different levels of metabolic stress 

(Coyle et al., 1988; Scharhag-Rosenberger et al., 2010). This has led researchers to 
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question the appropriateness of the methods used to prescribe exercise, in particular when 

the aim is to reduce the inter-individual variability in TTE and training responses (Mann 

et al., 2013; Hopker and Passfield, 2014). 
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2.1 Physiological determinants of endurance performance. 

 

Endurance performance can be defined as the ‘capacity to sustain a given velocity or 

power output for the longest time possible' (Jones and Carter, 2000, p.373). Coyle’s 

performance model provides us with a useful framework to understand the range of 

physiological variables that determine endurance performance success (Coyle, 1995; 

Coyle, 1999; Joyner and Coyle, 2008; Figure 1.1). According to this model, V̇O2max, GE 

and LT are key determinants of endurance performance (Coyle, 1999; Joyner and Coyle, 

2008). Lundby and Robach (2015) recently discussed the potential of enhancing any of 

these variables (V̇O2max, GE or LT) with training in healthy individuals as well as 

Olympic athletes. Additionally, critical power (CP) was added as an important 

determinant of endurance performance, representing the upper and lower boundary of the 

heavy exercise intensity domain (Jones et al., 2010). Lundby and Robach (2015) 

concluded in their review that while V̇O2max remains stable in world-class athletes, GE, 

LT and CP can be improved with specific training interventions.  

 

2.1.1 V̇O2max.  

 
V̇O2max is the maximum rate of oxygen that can be taken in and utilised during high 

intensity exercise (Bassett and Howley, 2000). An individual’s V̇O2max level provides us 

with information regarding the integrated capacity of the cardiovascular, pulmonary and 

neuromuscular system to performance exercise (Jones and Poole, 2005). V̇O2max is one 

of the most widely measured variables in exercise physiology, and is often used to 

prescribe training intensity (Howley et al., 1995; Bouchard et al., 1999; Midgley et al., 

2006; Vollaard et al., 2009; Bacon et al., 2013). In 1923, Hill and Lupton observed a 

linear relationship between running speed and oxygen uptake (V̇O2) and proposed that 

beyond a certain work rate V̇O2 reaches a plateau and cannot be increased any further. 

This led researchers to investigate different mechanisms that may limit V̇O2max (Hill and 

Lupton, 1923; Di Prampero, 1985; Di Prampero and Ferretti, 1990; Wagner, 1992; 

Wagner, 1993; Noakes, 1997, Bassett and Howley, 2000). While there is no single 

limiting factor for V̇O2max, a predominant contributing factor is the cardiorespiratory 

system, with maximal stroke volume and maximal cardiac output explaining a large 

proportion of the variability in V̇O2max (Ekblom and Hermansen, 1968). Other peripheral 

and central V̇O2max limitations include the diffusion capacity of the pulmonary system, 
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the oxygen carrying capacity of the blood, and the skeletal muscle characteristics (Bassett 

and Howley, 2000) 

 

V̇O2max is traditionally measured from an incremental exercise test to exhaustion, in which 

the intensity increases over time until volitional exhaustion is reached. Additionally, 

V̇O2max can be reliably measured from a closed-loop self-paced test, in which the intensity 

is fixed at an RPE between 6-20 and lasts 10-min in total (Mauger and Schulthorpe, 2012; 

Hogg et al., 2015). Elite endurance athletes have high V̇O2max levels, ranging from 70-85 

ml.kg.min-1 for males, and 60-75 ml.kg.min-1 for females (Coyle et al., 1991; Lucia et al., 

1998; Lucia et al., 2001; Jones, 2006; Lundby and Robach, 2015). The ability to sustain 

a high level of O2 uptake during exercise is essential for endurance performance success 

(Joyner and Coyle, 2008). In addition, a strong correlation exists between V̇O2max and 

aerobic performance in athletes of varying fitness levels (Coyle et al., 1988; Vollaard et 

al., 2009). But when the range of V̇O2max is narrowed between athletes (i.e. highly trained 

athletes), the correlation between V̇O2max and performance can be poor (Lucia et al., 1998; 

Jones, 1998; Lucia et al. 2001; Jones, 2006). For instance, two athletes with the same 

V̇O2max can have very different performance capabilities (Coyle et al., 1988; Lucia et al., 

1998; Vollaard et al., 2009). In addition, more recent research findings have found that 

the changes that occur in performance following training are not necessarily correlated 

with the training-induced change in V̇O2max (R2=0.05) (Vollaard et al., 2009). 

Nevertheless, as V̇O2max is a notable physiological capacity and benchmark test used by 

most, a %V̇O2max is commonly used to prescribe and quantify exercise intensity 

(Bouchard et al., 1999; Gormley et al., 2008; Ingham et al., 2012; Burgomaster et al., 

2008).  

 

2.1.2 Lactate threshold.  

 
LT can be defined as the exercise intensity that corresponds to the first increase in blood 

lactate, or a 1 mmol.L-1 rise in blood lactate above resting level (Coyle et al., 1983; 

Yoshida et al., 1987; Coyle et al., 1988; Jones and Carter, 2000). An individual’s ability 

to sustain a high %V̇O2max at LT is considered a stronger predictor of endurance 

performance than V̇O2max alone, in particular for trained athletes (Coyle et al., 1988). For 

instance, when cyclists completed TTE performances at 88% V̇O2max, the results showed 

that those with a high LT (~ 82% V̇O2max) were able to sustain the exercise intensity for 

more than twice as long as those with a low LT (~ 66% V̇O2max) (~ 60-min vs. 29-min). 
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The mitochondrial aerobic enzyme activity is considered a major determinant of LT 

intensity (Ivy et al., 1980; Holloszy and Coyle, 1984; Coyle et al., 1985; Coyle, 1999). 

Physiological explanations for improvements in LT following training include an 

increase in the size, number, and enzyme levels of the mitochondria (Holloszy and Coyle, 

1984).  

 

LT is determined by examining the relationship between blood lactate concentration and 

exercise intensity using an incremental exercise test. A rightward shift in the blood lactate 

curve is often associated with an improvement in endurance capacity, whereas a leftward 

shift is more often associated with a reduction in endurance capacity (Bosquet et al., 

2002). Other threshold concepts include: maximal lactate steady state, onset of blood 

lactate (OBLA), gas exchange threshold (GET) and ventilatory threshold (Faude et al., 

2009). However, the wide range of terminologies, as well as calculations used to date to 

identify an individual’s threshold, can at times be confusing and often result in 

misinterpretation (Faude et al., 2009; Mann et al., 2013). 

 

2.1.3 CP 

 

CP is found to correlate well with other physiological laboratory test measurements 

(Poole et al., 1985; Housh et al., 1989; McLellan and Cheung, 1992; Pringle and Jones, 

2002; Whipp et al., 2009). It is derived from the hyperbolic relationship between exercise 

intensity and TTE using a CP model (Moritoni et al., 1981; Hill, 1993). Pringle and Jones 

(2002) reported a strong correlation between maximal lactate steady state and CP 

(r=0.95) despite the power output at CP being significantly higher. In addition, CP is 

considered a better predictor of exercise tolerance when compared to traditional V̇O2max 

and gas exchange threshold (GET) laboratory test measurements (Jones et al., 2010). This 

has led researchers to propose that CP is an important determinant of aerobic function, 

representing the upper and the lower boundary of the ‘heavy’ and ‘severe’ exercise 

intensity domains (Jones et al., 2010; Lundby and Robach, 2015). The CP model, as well 

as other proposed mathematical models, are important for their ability to describe and 

predict endurance performance as well as their potential for setting training intensities. 

The CP model is discussed in more detail in section 2.3.  
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2.1.4 GE 

 
GE is expressed as ‘the ratio of work accomplished to energy expended’ (Gaesser and 

Brooks, 1975, p.1132). Professional cyclists require a high GE to be able to sustain an 

extremely high power output for extended durations (Faria et al., 2005). Subsequently, a 

decrease in efficiency is often associated with a reduction in performance (Passfield and 

Doust, 2000). Jobson et al. (2012) re-analysed studies that measured GE during 

performance trials, to determine if there was a relationship between GE and endurance 

performance. They reported a correlation between GE and long (40 k and 1 h; r=0.58) 

and short (5-min; r=0.48) time-trial (TT) cycling power output (Jobson et al., 2012). GE 

explained 34% and 26% of the variation in power output for long and short TTs 

respectively (Jobson et al., 2012). Prior MOD exercise can also affect GE (Passfield and 

Doust, 2000). For instance, Passfield and Doust (2000) demonstrated that prior MOD 

exercise significantly reduced 5-min cycling performance, as well as peak and mean 

power output during 30 s all out sprints (Passfield and Doust, 2000). Furthermore, the 

change in GE was highly correlated with the change in 5-min performance, but not the 

change in mean or peak 30 s power output (Passfield and Doust, 2000). Hopker et al. 

(2010) also found GE to be sensitive to training, with a significant increase in GE 

observed following HIT training.  

 

The factors associated with differences in GE for trained and untrained individuals remain 

unclear, but evidence suggest genetics, fibre type distribution, and training play a key role 

(Holloszy et al., 1977; Jones, 2006; Hopker et al., 2013). Endurance athletes have a higher 

% of slow twitch (type I) fibers compared to untrained individuals (Joyner and Coyle, 

2008). Type I muscle fibers exhibit a relatively high blood flow capacity and consume 

less O2 for a given amount of work (Joyner and Coyle, 2008). Horowitz et al. (1994) 

demonstrated that individuals who possessed a ‘high’ % type I muscle fibers were able 

to maintain a 9% higher power output when compared to those with an ‘average’ % type 

I muscle fibers. This finding was observed despite both groups (high vs. average % type 

I fiber distribution) maintaining a similar VO2 and energy expenditure throughout the TT 

(Horowitz et al., 1994). Therefore, the researchers concluded that the 9% greater power 

output was due to a greater GE during cycling (Horowitz et al., 1994). However, more 

recently, Hopker et al. (2013) found that muscle fiber type does not predict GE in cycling 

or endurance performance, and that training status played a more important role in 

predicting these variables.  
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2.2. Assessment of endurance performance  

 
TTE and TT protocols are commonly used to monitor and detect changes in endurance 

performance in the laboratory (Coyle et al., 1988; Jeukendrup et al., 1996; Currell and 

Jeukendrup, 2008) and field setting (Galbraith et al., 2011; Karsten et al., 2015). TTE 

requires individuals to maintain a constant workload until volitional exhaustion is reached 

(Hopkins et al., 1999; Paton and Hopkins, 2001). On the other hand, TTs involve 

completing a fixed amount of work or covering a set distance as fast as possible 

(Jeukendrup et al., 1996; Coyle et al., 1999). The advantages and disadvantages of using 

both protocols to assess endurance performance have been discussed previously (Currell 

and Jeukendrup, 2008). For instance, while TTE protocols are often criticised for their 

lack of ecological validity (Jeukendrup et al., 1996), they have a similar sensitivity to TTs 

for detecting changes in performance (Amann et al., 2008). Additionally, while a strong 

correlation exists between laboratory TT and actual performance (Smith et al., 2001), TT 

performances are highly sensitive to fluctuations in pacing strategies (De Koning et al., 

1999; Hettinga et al., 2006; Aisbett et al., 2009), Consequently, researchers have 

suggested that the type of test protocol used, should be largely dependent on the research 

question (Currell and Jeukendrup, 2008).  

 

2.2.1 Reliability, validity and sensitivity of performance tests. 

 
Performance measurements play a key role in research and sports science support (Currell 

and Jeukendrup, 2008). It is therefore important that we understand the reliability, 

sensitivity, and validity of such test protocols in their ability to detect changes in 

performance (Atkinson and Nevill, 1998; Hopkins et al., 2001; Hopkins, 2000). 

Jeukendrup et al. (1996) demonstrated that TTE trials are more variable and less reliable 

when compared to TTs. This study involved cyclists repeating a TTE, TT or a preloaded 

TT on six separate occasions (Jeukendrup et al., 1996). A poor within participant (also 

referred to as intra-individual) test-retest reliability for TTE was observed when 

compared to a TT or pre-loaded TT, with coefficients of variation (CV) of 26.6%, 3.5% 

and 3.4% respectively (Jeukendrup et al., 1996). Furthermore, when Currell and 

Jeukendrup (2008) reviewed previous research they noted that when TTE trials were set 

at intensities below V̇O2max, the CV was typically greater than 10% (Gleser and Vogel, 

1971; Billat et al., 1994; McLellan et al., 1995; Jeukendrup et al., 1996; Laursen et al., 

2007) compared to less than 5% CV for TTs (Hickey et al., 1992; Jensen and Johansen, 
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1998; Palmer et al., 1999; Smith et al., 2001; Laursen et al., 2007). However, when the 

intensities were set above the intensity at V̇O2max, the CV for TTE trials was markedly 

reduced (Currell et al., 2006; Lindsay et al., 1996; Coggan and Costill, 1984). 

 

While some researchers favour TTs for measurements of endurance performance 

(Jeukendrup et al., 1996; Jeukendrup and Currell, 2005), TTE performance tests should 

not be disregarded as a useful measurement in the laboratory (Amann et al., 2008). The 

sensitivity of these measurements should also be considered when deciding on an 

appropriate performance test (Amann et al., 2008). Amann et al. (2008) compared the 

sensitivity of TTE and TT performance trials when participants were exposed to three 

different experimental conditions: room air, humidified hypoxic gas mixture, or 

humidified pure oxygen and hyperoxia. A similar sensitivity in detecting changes in 

performance was found between TTE and TT protocols, when participants were exposed 

to the hypoxia and hyperoxia environments (Amann et al., 2008). In addition, much 

greater effects were observed in the TTE performances when exposed to the different 

environmental conditions, demonstrating a 23-60% versus 1.8-4.6% change in 

performance for TTE and TTs respectively. Therefore, the researchers concluded that the 

poor reliability associated with TTE tests, should not discourage researchers from using 

these tests to monitor changes in endurance performance, where a higher sensitivity is 

required (Amann et al., 2008).  

 

Traditionally, TTE protocols are used to assess endurance performance in the laboratory 

(Currell and Jeukendrup, 2008), as well as model the power-duration relationship for a 

wide range of sports (Hill, 1993). More recently, researchers have measured performance 

in the field using TT type performances (Galbraith et al., 2014; Karsten et al., 2015). 

Some argue that TTs are more logically valid as they more closely simulate a race event, 

allowing the exercise intensity to vary throughout (Hopkins et al., 2001; Jeukendrup et 

al., 1996). Others propose that TTE trials are still of practical use, in particular when the 

aim is to assess exercise capacity at a steady state (Laursen et al., 2007). Additionally, a 

good reliability is reported when TTE trials are used to predict subsequent TT running 

performances using a power law model (Laursen et al., 2007). This was demonstrated by 

Laursen et al. (2007), who reported a standard error of measurement of 0.67% when 

predicting an individual’s TT speed from TTE protocols. Nevertheless, direct 

comparisons between TTE and TT performances are limited (Ham and Knez, 2009; 

Thomas et al., 2012).   
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2.2.2 TTE vs. TT. 

 

The majority of studies directly comparing TTE to TT performances have focused on the 

effects of pacing on physiological (Lander et al., 2009; Billat et al., 2006; Thomas et al., 

2012), and performance responses (Billat et al., 2001; Ham and Knez, 2009). Researchers 

often refer to these test protocols as even pace and variable pace performances (Billat et 

al., 2001; Billat et al., 2006; Ham and Knez, 2009; Thomas et al., 2012). Comparisons 

between such test protocols have been made for a range of sports including, rowing, 

running, and cycling (Billat et al., 2001; Billat et al., 2006; Ham and Knez, 2009; Thomas 

et al., 2012). The findings are inconsistent between studies. However, as suggested by 

Thomas et al. (2012), this is probably due to the differences in sports examined as well 

as the methods used to set the intensity. For example, Lander et al. (2009) reported a 

higher core body temperature and blood lactate response for even paced performances, 

compared to self-paced performances. In addition, this pacing strategy was associated 

with an increased perception of effort in seven out of nine novice rowers (Lander et al., 

2009). These findings led the researchers to conclude that even paced performances are 

more physiologically and psychological demanding, compared to variable pace 

performances (Lander et al., 2009). In contrast, Thomas et al. (2012) reported a reduction 

in physiological strain and perception of effort during even-paced cycling performances, 

compared to time and work matched self-paced and variable paced cycling. The 

researchers therefore proposed that an even paced strategy reduces the magnitude, as well 

as rate of homeostatic disturbance, and thus subsequently leads to a reduction in 

perception of effort (Thomas et al., 2012). 

 

Researchers have also examined the effects of even and variable pace strategies on the 

overall performance outcomes when the protocols were matched (Thomas et al., 2013; 

Billat et al., 2001; Ham and Knez, 2009). Performance in these instances was measured 

either by the successful completion of the task or the average intensity sustained (Billat 

et al., 2001; Ham and Knez, 2009; Thomas et al., 2013). Thomas et al. (2013) compared 

self-paced 20 km TT performance to even paced TTE performances when the power 

output was matched to that sustained during the self-paced trial. The results demonstrated 

that nine out of fifteen cyclists were unable to complete the same distance as their self-

paced trial, when the mean intensity was fixed (Thomas et al., 2013). Thomas et al. (2013) 

therefore concluded that a higher mean power output could be achieved during self-paced, 
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compared to matched even paced protocols. Ham and Knez (2009) reported similar 

findings to Thomas et al. (2013), with four out of seven cyclists terminating the even 

paced exercise before completing the same amount of work as that of the self-paced trial. 

In contrast, Billat et al. (2001) reported no differences between even and variable pace 

performances for running at 90, 95, 100 and 105% velocity at V̇O2max. The even and 

variable pace protocols were also matched, but this time the distance covered in the even 

paced trial was used to set the distance needed to be covered for the variable pace trial. 

Performance which was defined as the time taken to cover a set distance was not 

significantly different between participants, nor were there any differences in oxygen 

kinetics, or blood lactate responses (Billat et al., 2001). Despite these findings, it is 

evident that in actual sporting events, athletes competing against each other rarely sustain 

a constant exercise intensity (Ansley et al., 2004; Tucker et al., 2006) and often racing is 

characterised by changes in pace (Wilberg and Pratt, 1988; Tucker et al., 2006; Mauger 

et al., 2012). This type of pacing strategy is referred to as parabolic (Tucker et al., 2006; 

Mauger et al., 2012). Additionally, the effects of TTE and TT performances on calculated 

CP and W′ parameters are not well understood.  

 

2.3 Models to describe and predict endurance performance. 

 
Our understanding of the relationship between exercise intensity and TTE dates back as 

early as 1906 (Kennelly, 1906; Hill, 1925). Since 1906, numerous mathematical models 

have been proposed to describe the power-duration relationship, predict world record 

performances, and identify optimal pacing strategies (for full review of the different 

mathematical models see Hill, 1993; Grubb, 1997; Bull et al., 2000). These models form 

hyperbolic, linear, non-linear, power law, and exponential curves and have been used for 

a wide range of sports including cycling (Moritoni et al., 1981; Pringle and Jones, 2002; 

Hill, 2004), running (Kennelly, 1906; Hughson et al., 1984; Fukuba and Whipp, 1999; 

Hinckson and Hopkins, 2005; Hill et al., 2011), swimming (Wakayoshi et al., 1992; 

Oscieki et al., 2014) and rowing (Hill et al., 2002).  

 

In 1925, Hill’s work focused on identifying the determinants of fatigue that might explain 

the relationship between performance velocity and time, by plotting a velocity-distance 

curve from world record data (Figure 2.1). From his analysis, he proposed that there is a 

maximal velocity that each individual can sustain, and that the decline in speed as race 

distance increases is related to muscle fatigue (Hill, 1925). Hill’s earlier work contributed 
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greatly to our understanding of endurance performance, and formed the basis for the 

development of future mathematical models describing the power-time relationship e.g. 

a CP model (Monod and Scherrer, 1965). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The relationship between performance times and speeds for world record speed 

skating, walking and running performances. Presented by Hill (1925) and taken from Joyner and 

Coyle (2008) p.262. 

 

2.3.1 A CP model 

 
Researchers regularly use a CP model to describe and predict endurance performance 

(Monod and Scherrer, 1965; Moritoni et al., 1981; Pringle and Jones, 2002; Morton, 2006; 

Jones et al., 2010). This model is often described as a physiological model to explain 

endurance performance, as it calculates the aerobic and anaerobic parameters of 

performance, which are referred to as CP and W′ (Monod and Scherrer, 1965; Moritoni 

et al., 1981; Pringle and Jones, 2002; Morton, 2006; Jones et al., 2010). The CP model 

                                                        
2  Reprinted from Journal of Physiology. Vol. 586. Joyner and Coyle (2008). Endurance exercise performance: the 

physiology of champions, page 26, with permission from John Wiley and Sons. 
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assumes a hyperbolic relationship exists between exercise intensity and TTE, and from 

this the upper limit of sustained tolerable work can be determined (Poole et al, 1985). A 

series of TTE performances (typically 3-6) are required at different intensities to examine 

this relationship (Moritoni et al., 1981; Hill, 1993). These TTE performances can be 

completed in one visit, with 30-min rest between trials (Housh et al., 1989; Galbraith et 

al., 2014; Karsten et al., 2015) or on separate occasions (Gaesser and Wilson, 1988; Poole 

et al., 1990) At least five different CP models have been derived to calculate CP and W′ 

in cycling (see Bull et al, 2000 for review of all five models). These include; a linear-

work versus time model [Linear-TW], a second-linear model [Linear-P], a 2-parameter 

non-linear model [non-linear 2], a 3-parameter non-linear model [non-linear-3], and an 

exponential model [EXP] (Bull et al., 2000). When analysed for their goodness of fit, all 

models have been shown to fit the data closely (Bull et al., 2000; Gaesser et al., 1995).   

 

The Linear-TW and Linear-P models can easily be derived from a linear relationship 

between total work (or power output) and TTE (Pettitt, 2012). Therefore, these two 

models are great practical tools for coaches and applied practitioners to describe and 

predict endurance performance. As a result, the Linear-TW and Linear-P models will be 

discussed in more detail throughout this thesis, and used for analysis in subsequent 

experimental chapters. A detailed discussion of all the CP models is beyond the scope of 

this thesis and can be found elsewhere (Gaesser et al., 1995; Bull et al., 2000).  

 

2.3.2. Comparisons between Linear-TW and Linear-P CP models 

 

A Linear-TW and Linear-P model are considered mathematically equivalent models, but 

CP and W′ are derived in different ways (Bull et al., 2000; Bergstrom et al., 2014). For 

instance, the Linear-P model calculates CP from the y-intercept and W′ from the slope of 

the linear relationship between power output and TTE (Hill, 1993). In contrast, the 

Linear-TW model calculates CP from the slope and W′ from the y-intercept of the linear 

relationship between total work and TTE (Hill, 1993).  

 

For both CP linear models, there is evidence to suggest that two TTE trials are sufficient 

to accurately estimate CP and W´ (Hill, 1993). Nevertheless, researchers typically use 

between two to seven TTE trials to reduce the errors associated with the parameter 

estimates (Hill, 1993). The Linear-TW model is based on the linear regression of total 
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work, measured in kilojoules (kJ) and TTE is seconds (s). The following equation is used 

to examine this relationship and calculate CP and W′: 

 

     y = a + b * x                          {equation 1} 

 

From this equation CP and W′ are calculated as follows, where t = TTE and TW = total 

work: 

                                                      TW = W′ + CP * t                                {equation 2} 

 

CP is calculated from the slope and W′ is calculated from the y-intercept of the 

relationship between total work (kJ) and TTE (s) (Monod and Scherrer, 1995; Moritoni 

et al., 1981). 

 

The Linear-P model on the other hand is based on the linear regression of power output, 

measured in watts, and the inverse of TTE in seconds. There are two equations used to 

examine this relationship and calculate CP and W′ (Gaesser et al., 1995). Firstly, total 

work must be calculated, where P = power output: 

 

TW = P x t                         {equation 3} 

 

Then  

                                  TW = W´+ CP * t                       {equation 4} 

 

From these equations CP and W′ are calculated as follows: 

       

                      P x t = W′ + CP*t                                    {equation 5} 

 

To calculate for P we divide by t, which yields: 

 

             P = W′ * 1/t + CP               {equation 6} 

Where 1/t = inverse of time. 

 

CP is therefore calculated from the y-intercept of this relationship, and W′ is calculated 

from the slope of the relationship between power output and the inverse of TTE.  
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When examining the goodness of fit of the Linear-TW and Linear-P models, both models 

fit the data closely (R2 = 0.99 and 0.96 respectively) (Gaesser et al., 1995). Additionally, 

the Linear-P model calculates a higher CP parameter estimate (237 ± 24 vs. 224 ± 24 W), 

but a lower W′ estimate (18 ± 5 vs. 22 ± 6 kJ), when compared to the Linear-TW model 

respectively (Gaesser et al., 1995). 

 

2.3.3 Practical applications and limitations of the CP models 

 

 

The CP model has two main practical applications, which have been extensively reviewed 

by Vanhatalo et al. (2011). Firstly, the CP model represents the boundary between the 

heavy and severe exercise intensity domains, CP and W′ (Vanhatalo et al., 2011). 

Consequently, this offers athletes useful information to help set appropriate pacing 

strategies for races, in particular longer duration events (Jones et al., 2010). For instance, 

an athlete is aware that as long as they maintain an intensity below their CP, they will be 

able to sustain exercise for a long time, at a ‘steady state’ (Vanhatalo et al., 2011). 

However, once they go above their CP intensity this is considered a ‘non-steady’ state, 

which will result in fatigue occurring soon after (Vanhatalo et al., 2011). Additionally, 

CP parameters correlate well with other physiological laboratory test measurements, 

allowing researchers and applied practitioners to monitor and detect changes in exercise 

tolerance (Poole et al., 1988; Housh et al., 1989; McLellan and Cheung, 1992; Pringle 

and Jones, 2002; Whipp et al., 2009).  

 

The second main practical application of the CP model is that it can reliably describe the 

relationship between power output and TTE within the severe-intensity domain 

(Vanhatalo et al., 2011; Jones et al., 2010). Furthermore, CP is reliably determined from 

TTE or TT performances in the laboratory and field setting (Galbraith et al., 2014; 

Karsten et al., 2015). Therefore, the CP model is a useful tool in applied sport that offers 

applied practitioners and researchers a testing method that not only measures endurance 

performance, but also calculates the aerobic and anaerobic parameters that can be used to 

explain performance. As a result, a CP model has a number of added advantages over 

other ‘traditional’ laboratory test procedures such as a V̇O2max test. 

 

The CP model does not describe and predict the power-duration relationship over a wide 

range of durations (Hill, 1993) and is restricted to performances between 2 to 20-min 

(Hill, 1993; Derkele et al., 2008). Outside of these durations the power-duration 
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relationship is not truly hyperbolic (Hill, 1993; Jones et al., 2010). Additionally, the CP 

model assumes that there is an infinite amount of power that can be produced as time 

approaches zero (Hill, 1993). This therefore, limits the practical application of the model 

as CP can only be predicted when TTE is performed within specific time points (Hill, 

1993).  

 

2.3.4. Power law model  

 
An alternative way of modeling endurance performance is to use an approximate law of 

fatigue, commonly referred to as a power law model or a log-log model (Kennelly, 1906; 

Grubb, 1997). Kennelly (1906) used this model when examining the relationship between 

velocity and distance for various athletic (walking, running, rowing, skating, swimming) 

and horse racing (trotting, pacing, running) events. A power law model assumes a 

progressive decline in performance with an increase in intensity or distance (Kennelly, 

1906; Grubb, 1997). The relationship between intensity (or distance) and TTE is fitted to 

either a power law curve, or plotted on a logarithmic scale as a linear relationship 

(Kennelly, 1906; Francis, 1943; Lietzke, 1954; Grubb, 1997; Katz and Katz, 1999; 

García-Manso et al., 2012) (Figure 2.2). When modeled in this way, researchers have 

demonstrated a strong fit for data describing an extremely wide range of athletic events 

and horse races (Kennelly, 1906; Francis, 1943; Grubb, 1997; Katz and Katz, 1999). The 

slope of the log-log curve is the exponent of the power law model (Kennelly, 1906) 

(Figure 2.2). 
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Figure 2.2: The power law relationship derived from the mean speed for world records events: 

60, 100, 150, 300, 400, 800, 1000, 1500, 3000, 5000 and 10,000, half-marathon and 24 h race. 

The relationship is plotted both as a power law curve and a linear relationship on a logarithmic 

scale. Taken from García-Manso et al. (2012) p. 3263. 

 

The relationship between intensity (or velocity) and TTE (or distance) can be modeled 

using a power law curve, such that the equation is: 

 

                                                     Y = cXb        {equation 7}

  

Where X = distance (or TTE), Y = velocity (or power output), c = normalization 

constant and b = scaling exponent (García-Manso et al., 2012).  

 

Or it can be plotted on a logarithmic scale as a linear relationship (Kennelly, 1906; García-

Manso et al., 2012). The equation for this is the equation of a line but both sides of the 

relationship are logged.   

                                                        
3 Reprinted from Journal of Theoretical Biology. Vol. 300. García-Manso et al. (2012). The limitations of scaling 

laws in the prediction of performance in endurance events, page 326, with permission from Elsevier.  
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                                         Log (Y) = log (c) + blog(X)         {equation 8} 

 

2.3.5 Practical applications and limitations of a power law model 

 

A power law model has been most commonly used to estimate and predict world record 

performances, in particular for athletics (Kennelly, 1906; Katz and Katz, 1999; Savaglio 

and Carbone, 2000). Additionally, previous studies have found a power law model to 

accurately predict running and swimming performances, over a narrow range of durations 

or distances (Hinckson and Hopkins, 2005; Oscieki et al., 2014). However, its ability to 

accurately predict cycling performances has not yet been explored. 

 

The physiological basis of a power law model is unclear. Carbone and Savaglio (2001) 

identified a break in a power law curve when examining running world records. They 

found this to occur at approximately 1000 m and proposed that this reflects the athletes’ 

transition from aerobic to anaerobic energy expenditure. However, this finding warrants 

further investigation. One of the main limitations of a power law model is that it does not 

fit the data as closely for sprint and ultra-marathon endurance performances (García-

Manso et al., 2012). This is evident from Figure 2.2, presented by García-Manso et al. 

(2012) who demonstrated that the mean running speed does not change for the shorter 

distances (e.g. 100 and 200 m) and tends to deviate from the curve for the ultra-endurance, 

24 h distance events. 

 

2.3.6 Which model better describes and predicts endurance performance? 

 
Previous studies have compared the CP model to a power law model for goodness of fit 

(R2) and predictive ability of actual performances (Hinckson and Hopkins, 2005; Osiecki 

et al., 2014). Hinckson and Hopkins (2005) and Osiecki et al. (2014) limited their 

examinations to a narrow range of durations or distances e.g. 1-10 min for running and 

200-400 m for swimming respectively. Hinckson and Hopkins (2005) reported no 

differences between the CP and power law models when predicting actual TT 

performances between 1-10 min. Therefore, across a narrow range of exercise durations 

both the CP and power law models describe endurance performance well (Hinckson and 

Hopkins, 2005). Nevertheless, the results did demonstrate a lower variation of ~ 1% when 

a power law model was used in comparison to CP for predicting performances (Hinckson 

and Hopkins, 2005). Furthermore, when Osiecki et al. (2014) examined the reliability of 
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these two models in predicting swimming performances over 200 m and 400 m events, 

they found the power law to more accurately predict actual performance times. The CP 

model overestimated the swimmers times for 200 m and 400 m events. On the other hand, 

while the power law underestimated the times for 200 m and 400 m, this was not 

significantly different from actual performance times (Osiecki et al., 2014). Nevertheless, 

more research is warranted to investigate the predictive ability of the power law model 

over longer and shorter durations (Hinckson and Hopkins, 2005).  

 

2.4. Variability in TTE.  

 
When assessing endurance performance, a notable observation is the large ‘inter-

individual’ and ‘intra-individual’ variability in TTE performances when exercise is fixed 

to a % of maximum (e.g. %V̇O2max, %HRmax, %MAP) (Coyle et al., 1988; Currell and 

Jeukendrup, 2008). Inter-individual variability refers to the variability across different 

individuals responses for one measurement. On the other hand, intra-individual 

variability refers to the day-to-day variability of same individual when measurements are 

repeated. 

 

2.4.1 Intra-individual variability  

 

Currell and Jeukendrup (2008) reviewed the intra-individual variability for measurements 

of cycling TTE performances (Table 2.1). According to their review the CV for TTE 

performances can vary between 1.7-55.9% depending on the intensity of the trial (Table 

2.1.) TTE trials performed at intensities above an individual’s V̇O2max tend to have a lower 

intra-individual variability (Coggan and Costill, 1984; Graham and McLellan, 1989; 

Lindsay et al., 1996) compared with trials set below V̇O2max (Gleser and Vogal, 1971; 

Maughan et al., 1989; McLellan et al., 1995; Jeukendrup et al., 1996; Laursen et al., 

2007). In addition, Hopkins et al. (2001) found that TTE trials lasting approximately 60 

s demonstrated the lowest CV. These research findings contribute greatly to our 

understanding of the reproducibility of TTE, and are particularly useful when determining 

if a meaningful change has occurred following an intervention e.g. identifying responders 

and non-responders to training (Scharhag-Rosenberger et al., 2010).  
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Table 2.1: Previous studies reporting the intra-individual variability for TTE performances when prescribed at different intensities. Taken from Currell and 

Jeukendrup. (2008). p.3044.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
4 Reprinted from Sports Medicine. Vol. 38. Currell and Jeukendrup. (2008). Validity, reliability and sensitivity of measures of sporting performance, page 304, with permission from Springer.  
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2.4.2 Inter-individual variability 

 

A large inter-individual variability in TTE performances has also been reported (Coyle et 

al., 1988; Orok et al., 1989; Brickley et al., 2002). For instance, Coyle et al. (1988) 

demonstrated a mean TTE of 46-min when well trained cyclists completed TTE exercise 

at 88% V̇O2max. However, these times ranged largely from 12 to 75-min when examining 

the individual performances, with a CV of 43.7% (Coyle et al., 1988). Brickley et al. 

(2002) also reported a large variability in TTE performances when individuals exercised 

to exhaustion at the intensity corresponding to CP (Brickley et al., 2002). Average TTE 

at CP was reported as 29-min 34 s; however, researchers noted that these times varied 

largely from approximately 20-min to 40-min. It has been proposed that the methods used 

to standardise exercise intensity might explain some of this variability (Scharhag-

Rosenberger et al., 2012; Mann et al., 2013; Hopker and Passfield, 2014).  

 

2.5 Endurance training strategies. 

 
Training is a complex, creative, multi-factorial process, of which its major components 

are duration, intensity and frequency of exercise (Fry et al., 1992; Busso et al., 2003; 

Hawley, 2008; Esteve-Lanao et al., 2005). One aim of a training intervention might be  to 

improve endurance performance, and this can be achieved through the manipulation of 

these three components. It is widely understood that exercise intensity plays an important 

role in training adaptations, and that an increase in V̇O2max is one of the most common 

measures used to demonstrate a training effect (e.g. Wenger and Bell, 1986; Midgley et 

al., 2006; Bacon et al., 2013). As a result, the majority of studies to date have examined 

the effects of different training intensity distributions on changes in V̇O2max (e.g. Rodas 

et al., 2000; Tabata et al., 1996; Helgerud et al., 2007; Gormley et al., 2008; Neal et al., 

2011). 

 

Training intensity can be characterised under four different headings: low-moderate 

intensity, LT intensity, polarised intensity, and HIT intervals (Stòggl and Sperlich, 2014). 

A systematic review of over 50 published studies concluded that the greatest training 

related improvements in cardiorespiratory fitness  were observed when exercise was 

performed at higher intensities, between 90 and 100% V̇O2max (Wenger and Bell, 1986). 

A more recent meta-analysis conducted by Bacon et al. (2013), reinforces this finding 

concluding that HIT training results in ‘slightly’ greater improvements in V̇O2max when 
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compared to continuous MOD training. Nevertheless, the findings are inconsistent 

between training studies (Tabata et al., 1996; Helgerud et al., 2007; Burgomaster et al., 

2008; Gormley et al., 2008; Gibala et al., 2006). For example, some studies report a 

greater improvement with HIT training (Helgerud et al., 2007; Gormley et al., 2008), 

while others report a similar improvement when compared to MOD training 

(Burgomaster et al., 2008; Gibala et al., 2006). 

 

2.5.1. HIT training. 

 
HIT involves exercising at or near an individual’s V̇O2max for repeated bouts ranging from 

30 s to 5-min, interspersed with periods of passive rest or active recovery (e.g. 

Burgomaster et al., 2005; Tabata et al., 1996). This type of training can significantly 

improve the aerobic capacity of both trained (Laursen and Jenkins, 2002) and untrained 

individuals (Hickson et al., 1977; Rodas et al., 2000; Gormley et al., 2008). Short-term 

HIT training programmes ranging from 2-6 weeks can significantly increase V̇O2max 

(Cunningham et al., 1979; Poole and Gesser, 1985; Tabata et al., 1996; Rodas et al., 2000; 

Edge et al., 2005; Daussin et al., 2007; Driller et al., 2009). Tabata et al. (1996) was one 

of the first to compare MOD to HIT training in physically active participants on changes 

in aerobic and anaerobic capacity in cycling. Experiment one, investigated the effects of 

6-weeks of MOD training (70% V̇O2max), whereas, experiment two investigated the 

effects of 6-weeks of HIT training (170% V̇O2max). The results of these experiments 

demonstrated increases in V̇O2max of 10% and 14% for MOD and HIT training 

respectively (Tabata et al., 1996). However, a significantly greater increase in anaerobic 

capacity of 28% was reported following HIT, but not MOD training (Tabata et al., 1996). 

Since then, numerous studies have reported findings that favour HIT over MOD training 

(Gormley et al., 2008; Helgerud et al., 2007; Cunningham et al., 1979; Poole and Gesser, 

1985; Tabata et al., 1996; Rodas et al., 2000; Burgomaster et al., 2005; Edge et al., 2005; 

Daussin et al., 2007; Driller et al., 2009).  

 

2.5.2. MOD vs. HIT training. 

 
Milanović et al. (2015) in a recent meta-analysis of 28 studies examined the effects of 

endurance training and HIT on changes in V̇O2max. The researchers noted that when 

compared to the no-exercise control group, both HIT and endurance training models 

demonstrated large improvements in V̇O2max. In addition, when direct comparisons were 
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made between HIT and endurance training, there was a slightly greater benefit with HIT 

training (Milanović et al., 2015). Bacon et al. (2013) reported a similar finding in their 

meta-analysis. However, upon examination of the individual research studies, it is evident 

that these findings are equivocal, with some studies favouring HIT over MOD for greater 

training adaptations (Gormley et al., 2008; Helgerud et al., 2007), while others reporting 

no differences between training intensities (Overend et al., 1992; Burgomaster et al., 

2005; Berger et al., 2006; Gibala et al., 2006; Tanisho and Hirakawa, 2009). One 

explanation for this might be the way in which some researchers have controlled for total 

volume of exercise (or energy expenditure) when comparing different exercise intensities 

(Helgerud et al., 2007; Gormley et al., 2008). For example, Helgerud et al. (2007) and 

Gormley et al. (2008) reported greater increases in V̇O2max following HIT training when 

total volume of exercise was matched to the MOD group. While this method standardises 

the comparisons between intensities, it is not reflective of how athletes train in the applied 

setting. For instance it is common for an athlete to exercise for much longer durations at 

MOD compared to HIT (Burgomaster et al., 2008; Nimmerichter et al., 2011). Some 

studies have addressed this issue by setting the training volume ~ 90% lower for the HIT 

compared to the MOD training groups (Burgomaster et al., 2005; Gibala et al., 2006). 

When designed in this manner, the results demonstrated similar physiological 

improvements in V̇O2max and performance, irrespective of the training intensity employed 

(Burgomaster et al., 2005; Gibala et al., 2006). Therefore, no noticeable differences in 

physiological adaptations were observed between training intensities when the training 

volume was set significantly higher for endurance training compared to HIT 

(Burgomaster et al., 2005; Gibala et al., 2006). This has led researchers to propose that 

HIT is a time-efficient training strategy that has benefits for both trained and untrained 

individuals (Gibala et al., 2007).  

 

2.5.3. Polarised training. 

 
Subsequent research studies have investigated the physiological benefits of combining 

two different exercise intensities (Neal et al., 2011; Stòggl and Sperlich, 2014; Munoz et 

al., 2014). This type of training distribution is often referred to as a polarised training 

distribution (Stòggl and Sperlich, 2014). Polarised training consists of ~75-80% of 

training at low intensity, ~5-10% at LT intensity and ~15-20% at HIT (Neal et al., 2011). 

When polarised training was compared to threshold training in runners (Esteve-Laneo et 

al., 2007) and cyclists (Neal et al., 2011), greater improvements in performance occurred 
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following polarised training. In addition, 6-weeks of polarised training in well-trained 

cyclists resulted in significantly greater improvements in LT power output and peak 

power output compared to threshold training (Neal et al., 2011). Research therefore 

favours this intensity distribution over a threshold type training as it allows athletes 

enough time to recover during the ‘easy’ training sessions, while still exposing them to a 

maximal training stimulus during the ‘hard’ training sessions (Esteve-Laneo et al., 2007; 

Munoz et al., 2014). This may in turn prevent overtraining or staleness occurring in the 

long-term (Esteve-Laneo et al., 2007). 

 

The training benefits following polarised training are well recognised (Esteve-Laneo et 

al., 2007; Laursen, 2010; Stòggl and Sperlich, 2014; Neal et al., 2011). However, whether 

this is a result of a ‘polarised’ training distribution or simply the combination of two 

different training intensities remains unclear. For instance, Hickson et al. (1977) reported 

a large increase in V̇O2max of 44% after 10-weeks of training when HIT and endurance 

training were combined. Participants exercised for 40-min per session, 6 days per week. 

The training consisted of 3 days of HIT cycling (5-min repetitions at V̇O2max) and 3 days 

of running as fast as possible for 30-min on alternative days. Therefore, it is evident from 

the training programme that this did not follow the typical polarised training distribution. 

Despite this, a significant increase in V̇O2max throughout the 10-weeks was observed, with 

no sign of V̇O2max leveling off at the end of the study, despite participants reaching near 

elite levels in their aerobic fitness (Hickson et al., 1977). One explanation for this might 

be as a result of differences in functional adaptations achieved from endurance and 

interval training via two different pathways (Laursen, 2010) (Figure 2.3). According to 

this model (Figure 2.3), HIT training adaptations occur as a result of signaling the 

adenosine monophosphate kinase (AMPK) pathway, while high volume training 

adaptations are more likely to occur through signaling of the calcium-calmodulin kinase 

(CaMK) pathway (Laursen, 2010). Therefore, by stressing the physiological system with 

one type of exercise intensity, it is assumed that this will optimise one pathway only, and 

as a result, no further adaptations can occur unless another pathway is targeted (Laursen, 

2010).  
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Figure 2.3: Model of AMPK and CaMK signaling pathways and how HIT and high volume 

training can signal two different pathways for training adaptations. Taken from Laursen (2010), 

p.75.  

 

Training frequency is another key feature of endurance training, with evidence that it 

plays an important role in improving V̇O2max (Pollock et al., 1975; Gettman et al., 1976; 

Hatle et al., 2014). However, studies that have compared the effects of training frequency 

on changes in V̇O2max are limited (Pollock et al., 1975; Gettman et al., 1976; Hatle et al., 

2014). Therefore, to understand the relationship between the frequency of training and 

the magnitude of change (∆) in V̇O2max, results were analysed from 40 previously 

published training studies (Table 2.2). A Pearson’s correlation analysis was conducted to 

identify if there was a relationship between the number of training sessions completed 

and the %∆ change in V̇O2max. The results of this analysis are presented in Figure 2.4. 

Figure 2.4 (A), demonstrates a strong positive relationship between the total % ∆V̇O2max 

and the total number of training sessions completed (r=0.58; P<0.01). The results show 

that the greater the total number of training sessions completed for a training intervention, 

the greater %∆V̇O2max. Figure 2.4 (B) demonstrates a strong positive relationship between 

                                                        
5 Reprinted from Scandinavian Journal of Medicine and Science in Sports. Vol. 20, Laursen (2010). Training for 

intense exercise performance: high-intensity or high volume training? Page. 7, with permission from John Wiley and 

Sons.  
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the %∆V̇O2max per week and the number of training sessions completed per week (r=0.52; 

P<0.01). Again the results show that the more training sessions completed per week the 

greater the increases in V̇O2max observed.  

 

In contrast, Hatle et al. (2014) found that a high frequency (8 sessions per week) approach 

to the number of training sessions completed per week can have a detrimental effect on 

V̇O2max and also potentially lead to over training. Whereas, a moderate frequency (3 

sessions per week) approach to the number of training sessions completed per week can 

result in immediate improvements following just 8 training sessions in untrained 

individuals (Hatle et al., 2014). This was a similar finding to Pollock et al. (1975) which 

investigated the effects of 30-40 min of running training at frequencies of 2, 3 and 4 days 

per week over a total of 20-weeks on changes in V̇O2max. The results demonstrated a 

significant increase in V̇O2max for all training frequencies, however, they found 4 days a 

week to produce the greatest increase in V̇O2max (Pollock et al., 1975). As a result, more 

research is needed to determine the influence of training frequency in trained and 

untrained individuals. 
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Figure 2.4: Comparisons of the relationship between %∆V̇O2max versus number of training sessions completed based on a review of 40 published training 

studies. A = Total %∆V̇O2max after training versus the total number of training sessions completed. B = %∆V̇O2max per week versus the number of training 

sessions completed per week.  
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   Table 2.2: Analysis of 40 published training studies, demonstrating the %∆V̇O2max with different frequencies of training.  

 

Authors  Training status 
Training 

intensity 

No. of weeks 

training 

No. training 

sessions per week 

Total no. 

sessions 

%∆V̇O2max 

per week 

Total 

%∆V̇O2max 

Astorino and Schubert. (2014) Recreational SIT 2 6 12 3.2 6.3 

Bayati et al. (2011) Recreational HIT 4 3 12 2.4 9.6 

 Recreational HIT 4 3 12 2.4 9.7 

Burgomaster et al. (2005) Recreational HIT 2 3 6 0 0 

Burgomaster et al. (2008) Recreational ET 6 5 30 1.6 9.8 

 Recreational SIT 6 3 18 1.2 7.3 

Burke et al. (1994) Recreational HIT 7 4 28 0.7 5.0 

 Recreational HIT 7 4 28 0.9 6.0 

Casaburi et al. (1987) Recreational ET 8 5 40 1.9 15.0 

Cochron et al. (2014) Recreational ET 6 3 18 0.9 5.7 

Cunningham et al. (1979) Sedentary HIT 12 4 48 1.9 23.2 

 Sedentary ET 12 4 48 1.7 20.5 

Daussin et al. (2007) Sedentary HIT 8 3 24 4.2 33.8 

 Sedentary ET 8 3 24 1.1 8.6 

Edge et al. (2005) Recreational HIT 5 3 15 2.4 12.0 

 Recreational ET 5 3 15 2.0 10.0 

Edge et al. (2013) Recreational HIT 5 3 6 1.9 9.7 

 Recreational HIT 5 3 6 1.8 8.8 

Esfarjani and Laursen. (2007) Trained HIT 10 4 40 0.9 9.1 

 Trained HIT 10 4 40 0.6 6.2 

Etxebarria et al. (2014) Trained HIT 3 2 6 2.5 7.5 

 Trained HIT 3 2 6 2.4 7.3 
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Franch et al. (1998) Recreational ET 6 3 18 1.0 5.9 

 Recreational HIT 6 3 18 1.0 6.0 

 Recreational HIT 6 3 18 0.6 3.6 

Glaister et al. (2007) Trained ET 6 3 18 1.6 9.8 

Goodman et al. (2005) Recreational ET 1 6 6 7.5 7.5 

Gormley et al. (2008) Recreational ET 6 4 24 3.4 20.6 

 Recreational HIT 6 4 24 2.4 14.3 

 Recreational HIT 6 3 18 1.7 10.0 

Gorostiaga et al. (1991) Sedentary/Recreational ET 8 3 24 0.9 7.4 

 Sedentary/Recreational IT 8 3 24 1.4 11.1 

Gross et al. (2007) Trained HIT 3 3 9 1.9 5.7 

Gunnarsson and Bangsbo. (2012) Trained HIT 7 3 21 0.6 4.5 

Hautala et al. (2006) Sedentary ET 2 5 10 4.0 8.0 

Hazell et al. (2010) Recreational HIT 2 3 6 4.7 9.3 

 Recreational HIT 2 3 6 4.6 9.2 

 Recreational HIT 2 3 6 1.9 3.8 

Helgerud et al. (2007) Trained ET 8 3 24 -0.1 -0.6 

 Trained LT 8 3 24 0.2 2.0 

 Trained HIT 8 3 24 0.7 5.5 

 Trained HIT 8 3 24 0.9 7.2 

Hickson et al. (1977) Sedentary POL 10 6 60 4.4 44.0 

Hottenrott et al. (2012) Recreational ET 12 2 24 0.6 7.0 

 Recreational HIT 10 4 40 1.9 18.5 

Jacobs et al. (2013) Untrained HIT 2 3 6 4.0 7.9 

Laursen et al. (2002a) Trained HIT 4 2 8 1.3 5.2 

 Trained HIT 4 2 8 2.0 8.0 

 Trained HIT 4 2 8 0.8 3.1 
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Laursen et al. (2002b) Trained HIT 2 2 4 1.0 2.0 

Ma et al. (2013) Recreational HIT 4 4 16 4.1 16.5 

MacDougall et al. (1998) Recreational HIT 7 3 21 1.1 7.5 

McKay et al. (2009) Recreational HIT 3 3 8 1.7 4.5 

 Recreational ET 3 3 8 2.6 7.0 

Rodas et al. (2000) Recreational HIT 2 7 14 5.5 11.0 

Skinner et al. (2000) Sedentary ET 20 3 60 0.9 17.1 

Smith et al. (2003) Trained HIT 4 2 8 1.5 6.0 

 Trained HIT 4 2 8 1.0 4.2 

Tabata et al. (1996) Recreational ET 6 5 30 1.6 9.4 

 Recreational HIT 6 5 30 2.4 14.5 

Tanisho and Hirakawa. (2009) Trained ET 15 3 45 0.8 11.7 

 Trained HIT 15 3 45 0.7 9.9 

Vollaard et al. (2009) Sedentary ET 6 4 24 2.2 13.0 

Weber and Schneider. (2002) Recreational HIT 8 3 24 1.0 7.9 

Wilmore et al. (2001) Sedentary ET 20 3 60 0.9 17.4 

Ziemann et al. (2011) Recreational HIT 6 3 18 1.6 9.8 

 
 
Where; SIT = sprint interval training, ET = endurance training, HIT = high intensity training, POL = polarised training. 
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2.6. Inter-individual variability in training adaptations. 

 

When quantifying the relationship between training, physiological adaptations and 

improvements in performance, the vast majority of researchers do not take into account 

the individual responses (Borresen and Lambert, 2009; Timmons, 2011; Mann et al., 

2014). Instead, researchers tend to focus solely on the ‘mean’ response to training when 

presenting their findings (e.g. Tabata et al., 1996; Burgomaster et al., 2005; Helgerud et 

al., 2007; Gormley et al., 2008). This often results in misleading and over simplistic 

conclusions (Timmons, 2011; Mann, 2011; Mann et al., 2014). The ‘mean’ response to 

training does not tell us whether some individuals respond particularly well, or 

particularly poorly to an intervention and therefore limits the overall outcomes of a 

study’s findings (Mann, 2011). Table 2.3 presents an overview of previous studies that 

have reported a large inter-individual variability in V̇O2max after standardised training 

interventions. This table further highlights the importance of taking into account the 

individual responses as opposed to just focusing on the mean.     

 

The individual variability in training responses has gained increasing interest over the last 

decade (Hautala et al., 2006; Kivinemi et al., 2007; Manzi et al., 2009; Vollaard et al., 

2009; McPhee et al., 2010; Scharhag-Rosenberger et al., 2012; Capostagno et al., 2014). 

The health risk factors, exercise training and genetics (HERITAGE) family studies have 

contributed greatly to our understanding of individual trainability (Bouchard et al., 1986; 

Bouchard et al., 1999; Skinner et al., 2000; Bouchard and Rankinen, 2001; Gaskill et al., 

2001; Rankinen et al., 2001). Such studies have investigated the role that genetics and 

other factors have on cardiovascular, metabolic and hormonal responses to standardised 

endurance training (Bouchard et al., 1986; Bouchard et al., 1999; Skinner et al., 2000; 

Gaskill et al., 2001; Rankinen et al., 2001). For example, Bouchard et al (1999) 

investigated the effects of a standardised cycling training programme on physiological 

and performance responses, with a cohort of 481 sedentary participants training 3 times 

per week for 20-weeks. While the results demonstrated a large mean increase in V̇O2max 

of 400 ml.min-1, it was found that the individual responses ranged largely from no 

improvement to an increase as high as 1 L.min-1 (Bouchard et al., 1999). It is evident 

therefore, that the trainability of some individuals can be very poor or in some cases non-

existent (Bouchard et al., 1999; Vollaard et al., 2009; Borresen and Lambert, 2009). 

Researchers continue to investigate the factors linked to the variability in training 

responses. It is recognised that up to 50% of the variability can be explained by an 
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individual’s genetic background (Bouchard et al., 1999; Bouchard and Rankinen, 2001). 

A number of other factors such sex, training history; initial training status, training mode, 

duration, intensity and frequency may also contribute to the large variability in training 

responses (Bouchard and Rankinen, 2001; Borresen and Lambert, 2009). 
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     Table 2.3: Previous research demonstrating a large inter-individual variability following a standardised training interventions. 

Study Fitness level; 

sample size (n) 

Duration 

(wks.) 

Total no. 

sessions Intensity Training protocol 

Mean ∆V̇O2max 

(%) 

 

Range 

 Lowest Highest 

Astorino and Schubert. (2014) Recreational; n=20 2 6 HIT 4-6 x 30 s all out, 5-min recovery 6 0 20 

         

Bouchard et al. (1999) Sedentary; n=481 20 60 MOD 30-50 min at 55-75% V̇O2max 16 0 42 

         

Hautala et al. (2006) Recreational; n=73 2 10 MOD 30-min, 70-80% HRmax 8 -5 22 

    Resistance 15 exercises x 1 set 8-12 reps 4 -8 16 

         

McPhee et al. (2010) Recreational; n=53 6 18 MIX 45-min – 4-5 reps of 6-min at 75% HRmax 10 -3 28 

     with 2-3 min reps 90% HRmax    

         

Skinner et al. (2000) Sedentary; n=614 20 60 MOD 30-min at 50% V̇O2max 17 12 22 

         

Vollaard et al. (2009) Sedentary; n=24 6 24 MOD 45-min at 70% V̇O2max 13 -10 50 

         

Hickson et al. (1977) Sedentary; n=8 10 60 MIX 3 x running: 30-40 min – all out 44 18 58 

     

3 x cycling: 6 x 5-min at V̇O2max , 2-min 

recovery    

         

     Mean 14.8 0.5 32.3 

     SD 12.7 9.7 15.7 
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2.6.1 Gender, age, training history, baseline V̇O2max.  

 

Bouchard and Rankinen (2001) investigated the contribution of age, sex, race and 

baseline fitness level on the trainability of V̇O2max across a large sample size of 720 

participants. The results demonstrated that the largest predictor of V̇O2max trainability was 

gender (5.4%), followed by age (4%), baseline V̇O2max (1.1%) and finally race accounting 

for less than 1% (Bouchard and Rankinen, 2001). As a result, age, gender, race and 

baseline fitness contribute to approximately 11% of the overall variance reported in the 

HERITAGE family studies (Bouchard and Rankinen, 2001). The link between baseline 

fitness and V̇O2max trainability has been previously investigated (Wilmore et al., 2001; 

Sisson et al., 2009; Cunningham et al., 1979). These studies have reported significantly 

greater increases in V̇O2max following training in participants who have initially lower 

levels of V̇O2max (Cunningham et al., 1979). Skinner et al. (2000) on the other hand found 

that low, medium and high responders to training could be identified across all fitness 

levels, proposing that initial fitness has little effect on changes in V̇O2max.  

 

2.6.2 Genetics. 

 

It is widely understood that two individuals with different genotypes can be exposed to 

the exact same training stimulus and demonstrate very different adaptive responses 

(Bouchard et al., 1986; Bouchard et al., 1999; Gaskill et al., 2001; Rankinen et al., 2001; 

Lortie et al., 1984). Evidence that genetics plays a role in trainability dates back to the 

initial studies on identical twins (Prud’homme et al., 1984; Hamel et al., 1986; Bouchard 

et al., 1986) and genetically modified rats (Troxell et al., 2003). Prud’homme et al. (1984) 

recruited 10 pairs of identical twins who completed 20-weeks of supervised cycling 

training, 4-5 times per week. While the researchers were able to identify high and low 

responders following the completion of the training programme, they also reported an 

almost eight times greater variance between pairs than within pairs for changes in V̇O2max 

(Prud’homme et al., 1984). The findings provide evidence that twins tend to demonstrate 

similar responses to training, a pattern also found in genetically modified rats (Troxell et 

al., 2003). For instance, Troxell et al. (2003) identified high and low responders to 

treadmill training based on the rats mean running distances. They then paired the lowest 

to training and mated them and did the same for the highest responders. The offspring 

from the low responders did not differ in terms of trainability, whereas, those from the 
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high responder category showed significant improvements in running distances by more 

than 60% (Troxell et al., 2003).  

 

There is considerable interest among researchers to identify specific genes that are 

associated with performance (Montgomery et al., 1998; North et al., 1999). Animal and 

human research studies have contributed greatly to our understanding of the relationship 

between genetics and physical performance (Troxell et al., 2003; Bouchard et al., 1999; 

Gaskill et al., 2001; Rankinen et al., 2001; Lortie et al., 1984; Prud’homme et al., 1984; 

Hamel et al., 1986). For instance, researchers have identified two candidate genes that are 

linked to performance: angiotensin I-converting enzyme (ACE) (Montgomery et al., 

1998) and alpha-actinin-3 (ACTN3) gene (North et al., 1999). These candidate genes 

have been widely researched and are linked to improvements in sprint and endurance 

performance (Rankinen et al., 2002), as well as the variability in training responses 

(Bouchard et al., 2000; Bouchard, 2012).  

 

The link between an individual’s genotype and training response has been extensively 

reviewed elsewhere (Bouchard, 2012) and is beyond the scope of this thesis. However, 

other factors such as the methods used to standardise training mode, duration and intensity 

have not been fully explored and might also contribute to this variability in training 

responses (Mann et al., 2013).  

 

2.6.3 Training mode, duration and intensity. 

  

Training mode, duration, and intensity, can also contribute to the individual variability in 

training responses (Hautala et al., 2006; Scharhag-Rosenberger et al., 2012; Wolpern et 

al., 2015). Hautala et al. (2006) investigated the effects of training mode on changes in 

V̇O2max. The study tested the hypothesis that when participants demonstrate a poor 

response to endurance training, they would benefit from resistance training instead in 

order to improve V̇O2max (Hautala et al., 2006). The study randomly assigned sedentary 

males to a 2-week endurance training or resistance training programme, in a crossover 

design and participants completed a 2-month detraining period between interventions 

(Hautala et al., 2006). The results demonstrated that cardiorespiratory fitness could be 

improved more effectively by resistance training if the V̇O2max response was low 

following endurance training and vice versa (Hautala et al., 2006). This led researchers 

to conclude that an individual’s V̇O2max responsiveness to exercise training could be 



 39 

related to the mode of exercise and that training modes need to be tailored individually in 

order to optimise performance improvements (Hautala et al., 2006). An alternative 

hypothesis might be that some individuals were provided with an inappropriate pattern of 

stimulus for their genotype (Timmons, 2011). However, this warrants further 

investigation.  

 

As well as the link between exercise intensity and training responses, the methods used 

to prescribe and standardise exercise intensity might also explain some of this variability 

(Vollaard et al., 2009; Scharhag-Rosenberger et al., 2010; Lansley et al., 2011; Mann et 

al., 2014; Wolpern et al., 2015). Exercise intensity is most commonly prescribed as a % 

of maximum e.g. %HRmax, %V̇O2max, % MAP (Esfarjani and Laursen, 2007). Other 

methods of exercise prescription include taking into account an individual’s heart rate 

reserve (HRR) (da Cunha et al., 2011) and aerobic and anaerobic thresholds. Prescribing 

exercise intensity as a fixed %V̇O2max can result in a large individual variation in the 

metabolic stress stimulus (Scharhag-Rosenberger et al, 2010) For instance, as the 

intensity of exercise decreases below V̇O2max (e.g. 50-70%), the physiological responses 

become much more varied (Scharhag-Rosenberger et al., 2010). Scharhag-Rosenberger 

et al. (2010) demonstrated that at 75% V̇O2max the metabolic strain was significantly less 

homogenous than at 60% V̇O2max and this is evidenced by a higher variation in blood 

lactate responses when related back to each individual’s LT. Furthermore, Meyer et al. 

(1999) demonstrated that when exercise intensity was fixed at 75% V̇O2max, differences 

in the intensities associated with an individual’s anaerobic threshold can range from 86-

118% and blood lactate responses from 1.4-4.6mmol.L-1.  

 

It is also evident that when exercise is prescribed as a %V̇O2max that individuals leg 

muscles could be working at very different relative intensities (McPhee et al., 2009; 

McPhee et al., 2010). This is evident when comparing an individual’s single-leg V̇O2peak 

expressed as a ratio of their double-leg V̇O2max (Ratio1:2) (McPhee et al., 2009; McPhee 

et al., 2010). McPhee et al. (2010) investigated the effects of an endurance-training 

programme on single and double leg V̇O2max. The study trained 54 untrained women, 3 

times per week for 6-weeks at both MOD and HIT, prescribed based on a %V̇O2max. The 

results demonstrated a large inter-individual variability in the adaptive responses of the 

leg muscles following the endurance-training programme. The researchers also reported 

a significant association between the Ratio1:2 and an individual’s muscle volume and 

training response (McPhee et al., 2010). For instance those with a low Ratio1:2 
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demonstrated the greatest gains in training responses for single-leg V̇O2max and 

quadriceps muscle volume (McPhee et al., 2010). The researchers therefore concluded 

that this variability was associated with the aerobic capacity of the leg muscles, which is 

not accounted for when exercise is prescribed as a %V̇O2max (McPhee et al., 2010). It is 

important therefore, that the metabolic stimulus is accounted for when prescribing 

exercise intensity, particularly, if the aim is to reduce the inter-individual variability 

(Mann et al., 2014).   

 

Alternative methods of prescribing exercise include: % threshold (e.g. gas exchange 

threshold (GET), LT, ventilatory threshold), %HRR, or based on the CP intensity derived 

from an individuals’ power-duration relationship. Mann et al. (2013) and da Cunha et al. 

(2011) discussed the limitations associated with the different methods used to prescribe 

exercise. Mann et al. (2013) also recommended that more researchers use a % of threshold 

as opposed to a % maximum to prescribe exercise intensity. Some studies have 

investigated the benefits of prescribing exercise as a % of threshold, with evidence 

suggesting it provides a more consistent exercise stimulus across individuals (Lansley et 

al., 2011; Wolpern et al., 2015). For instance, Lansley et al. (2011) compared two 

methods of prescribing exercise; %V̇O2max versus %GET on submaximal exercise 

responses. While this study was limited by a small sample size (n=9), they reported a 

significantly lower inter-individual variability for V̇O2, V̇CO2 and V̇E responses during a 

performance trial set at 60% GET compared to a performance trial set at 50% V̇O2max 

(Lansley et al., 2011). This was also associated with less inter-individual variability in 

blood lactate accumulation, exercise HR, and RPE when compared to the performance 

trial at 50% V̇O2max. The researchers also reported a lower inter-individual variability in 

TTE when exercise was fixed at % delta. For example, 80% delta was calculated as GET 

plus 80% of the interval between GET and V̇O2max (Lansley et al., 2011). Furthermore, 

Wolpern et al. (2015) reported a more consistent training response when exercise was 

prescribed based on ventilatory threshold compared to %HRR. Therefore, how exercise 

intensity is prescribed is linked to some of the variability observed in TTE (Lansley et al., 

2011; Mann et al., 2014) and training responses (Vollaard et al., 2009; Scharhag-

Rosenberger et al., 2010). This has led researchers to conclude that a %V̇O2max 

prescription method should not be used in research if the goal is to induce a similar 

metabolic strain (Vollaard et al., 2009; Scharhag-Rosenberger et al., 2010; Mann et al., 

2014).  
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The time (and therefore energy expenditure) that an individual can sustain exercise at the 

same relative intensity is highly variable (Coyle et al., 1988; Vollaard et al., 2009; 

Scharhag-Rosenberger et al., 2010; Jacobs et al., 2011). An understanding of this 

variability is important in particular for researchers aiming to standardise the duration of 

exercise across all participants. To date, researchers have fixed the duration of exercise 

for all participants and prescribed exercise intensity at the same relative intensity (e.g. % 

V̇O2max) (Gibala et al., 2006; Helgerud et al., 2007; Burgomaster et al., 2008). However, 

by doing this, researchers are ignoring the individual differences in exercise tolerance 

(Coyle et al., 1988; Scharhag-Rosenberger et al., 2010). Coyle et al. (1988) reports a large 

individual difference in TTE responses when exercise is prescribed as a %V̇O2max (Figure 

2.5). Figure 2.5, shows the TTE performances for each individual, ranging from 29 to 60-

min. This large variability in the times individuals can sustain the same relative intensity 

to exhaustion for might therefore explain differences in training responses due to a 

variability in the training stimulus experienced by each individual. For example, if the 

same cohort of participants (Figure 2.5) were recruited for a subsequent training study in 

which the training sessions lasted 35-min at 88% V̇O2max, one would expect that for some 

participants (e.g. participants 9-14) this training duration would lead to overtraining or an 

inability to complete the target session. Alternatively, for other participants (e.g. 

participants 1-7) this might result in an inappropriate pattern of stimulus, leading to 

undertraining and in some cases a non-response to training. As a result, it is important 

that researchers also take into account the variability in exercise tolerance when designing 

a training intervention. This might be achieved through individualised methods of 

prescribing exercise (Kivinemi et al., 2007; Manzi et al., 2009; Capostagno et al., 2014). 
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Figure 2.5: Coyle et al. (1988) TTE performance data presented to re-emphasis the variability in 

TTE performances when exercise is prescribed as a %V̇O2max.  

 

2.7 Individualised training methods. 

 

The concept of ‘individualised’ tailored training has gained some interest over the last 

decade (Kivinemi et al., 2007; Manzi et al., 2009; Capostagno et al., 2014). Researchers 

have attempted to account for individual differences in exercise stress by for example 

using resting heart rate variability (HRV) (Kivinemi et al., 2007) or the Lamberts and 

Lambert sub-maximal cycling test (Capostagno et al., 2014) to individualise the training 

sessions. The findings of these studies suggest that an individualised placement of MOD 

and HIT training results in a greater improvements in maximal running velocity, but not 

V̇Opeak, when compared to a more standardised training approach (Kivinemi et al., 2007). 

Nevertheless, researchers still report a large inter-individual variability in the training 

responses despite tailoring the intensity of the sessions for each individual (Kivinemi et 

al., 2007; Capostagno et al., 2014). Therefore, while an individualised training intensity 

prescription does demonstrate some benefits to changes in performance, no research to 
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date has investigated the effects of individualising training durations in particular when 

comparing different training intensities.  

 

2.8 Thesis aims and hypotheses. 

 
The overall aim of this thesis was to investigate the effects of individualised methods of 

prescribing exercise on TTE and training responses in cycling. Research studies 

examining the effects of an individualised approach to exercise prescription are scarce 

and warrant further investigation. In addition, the hypothesis that the variability in 

response to physical exercise is due to an inappropriate standardisation of exercise has 

not been fully explored. This thesis therefore presents a series of studies that contribute 

to the overall research aim.  

 

The specific aims and hypotheses of each of the experimental chapters are as follows: 

 

1) Cycling performance is superior for time-to-exhaustion versus time-trial in endurance 

laboratory tests 

 

 Aim: To compare TTE and TT performance when trials are performed over the 

same duration. Calculated CP and W′ were also compared when derived from 

TTE and TT performances.  

 Hypothesis: In comparison to the TTE trials the suggested difference in ecological 

validity of the TT tests will alter the power output cyclists are able to sustain and 

in turn change calculated CP.  

 

2) Individualised training at different intensities results in similar physiological and 

performance benefits. 

 

 Aim: To compare the effects of three exercise intensities; MOD, HIT and a 

combination of the two (MIX) on physiological and performance adaptations 

when the training duration was individualised. 

 Hypothesis: There will be no significant difference between exercise intensities 

for performance and physiological adaptations when the duration of exercise is 

individualised. 
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3) A power law describes cycling endurance performance better than a critical power 

model. 

 

 Aims: Firstly, to determine if the CP and power law models accurately predicted 

and described cycling TTE for intensities within the typical CP range (80-110% 

MAP). Secondly, whether a power law model accurately predicted cycling TTE 

outside the typical CP range (60-200% MAP). 

 Hypothesis: A power law model will predict actual TTE better than a CP model 

across a wide range of durations (i.e. <2-min to >20-min).  

 

4) A power law model reduces variability in time-to-exhaustion. 

 

 Aim: To compare the inter-individual variability in cycling TTE when exercise 

intensity was prescribed using two different methods; as %V̇O2max, or when 

derived from a power law model. 

 Hypothesis: Prescribing exercise using a power law model will significantly 

reduce the variability in TTE when compared to a %V̇O2max prescription.  
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Chapter 3: Cycling performance is different for time-to-

exhaustion versus time-trial in endurance laboratory tests. 
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3.1 Abstract. 

 

TTE trials are used in a laboratory setting to measure endurance performance. However, 

the ecological validity of TTE when compared to TT performances has been questioned. 

Purpose: This study compared the mean power output for TTE trials to matched duration 

TTs. CP calculated from the TTE and TTs were also compared. Methods: Seventeen 

male cyclists completed three TTE trials at 80%, 100% and 105% of MAP. On a 

subsequent visit they performed three TTs over the same duration as the corresponding 

TTE trials. Mean power output, cadence, HR and RPE were recorded but cyclists were 

not provided with feedback on these measurements or their elapsed time. Results: Mean 

duration of exercise was 865 ± 345 s, 165 ± 98 s and 117 ± 45 s for the 80%, 100% and 

105% trials respectively. Mean power output was higher for TTE vs. TT at 80% (294 ± 

44 W vs. 282 ± 43 W; P<0.01), but not at 100% (353 ± 62 W vs. 359 ± 74 W; P>0.05) 

and 105% (373 ± 63 W vs. 374 ± 61 W; P>0.05) respectively. There was no difference 

in cadence, HR or RPE for any trial (P>0.05). CP was higher when derived from TTE 

compared to TT (P<0.05) while W´ was lower (P<0.05). Conclusion: TTE results in a 

higher mean power output at 80%, and a significant difference in calculated CP and W′ 

when compared to TTs. Differences in pacing strategy may be responsible for these 

findings. When determining CP, TTE rather than TT protocols appear superior. 

 

Key Words: Pacing, Critical power, Power output, Endurance performance. 
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3.2 Introduction. 

 

Constant power output TTE trials and self-paced TTs are well-established cycling 

performance tests (Jeukendrup et al., 1996; Schabort et al., 1998; Paton and Hopkins, 

2001). TTE and TTs are commonly used to monitor progression and detect changes 

following experimental interventions. The ecological validity of using TTE to assess 

endurance performance has been questioned (Jeukendrup and Currell, 2005). For 

instance, it is suggested that cyclists rarely maintain a constant power output to volitional 

exhaustion in competition or training (Marino, 2012; Tucker et al., 2006; Jones et al., 

2013). In contrast, a TT attempts to replicate a competitive situation in the laboratory, 

allowing athletes to self-regulate their pace in response to physiological demands (Tucker 

et al., 2006; Palmer et al., 1994). Furthermore, it has also been established that the 

variability of TTs are much lower and its repeatability superior to the TTE performances 

(Laursen et al., 2007; Jeukendrup et al., 1996). Consequently, it is unclear whether power 

output for maximal TTE and TT performances under standardised conditions are directly 

comparable.  

 

One of the more common uses of a TTE trial is to determine CP from a series of 

exhaustive performance trials (Monod and Scherrer, 1965; Hill, 1993; Derkele et al., 

2008). These trials are recommended to last between 2 to 15-min (Hill, 1993; Derkele et 

al., 2008). Additionally, the maximum work done in a specified time period (i.e. highest 

mean power output/velocity in a TT format) has been used (Galbraith et al., 2011; 

Galbraith et al., 2014; Karsten et al., 2015). The interchangeable use of these test 

protocols presumes that TTE and TT tests are equivalent for determining CP. However, 

the possible influence of using a specified duration TT, rather than TTE, on the 

subsequent CP calculation has not been assessed in trained cyclists.  

 

The aim of this study was to compare mean power output for TTE and TT performances 

when the trials were performed over the same duration. CP calculated from TTE, and TT 

performances were also compared. It was hypothesised that in comparison to the TTE 

trials, the suggested difference in ecological validity of the TTs would alter the cyclists 

mean power output, and in turn change calculated CP.  
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3.3 Methods. 

 

3.3.1 Participants. 

 
Seventeen trained male road cyclists were recruited as participants for this study (mean ± 

SD; age = 31 ± 9 y, mass = 70.7 ± 9.9 kg, MAP = 366 ± 52 W and V̇O2max = 60.4 ± 8.4 

ml.kg-1 min-1). All participants had been involved in a minimum of 250 km or 10 h of 

cycling per week. Participants were excluded if they were taking any medication, reported 

heart problems, exercise induced asthma or any injury that would interfere with testing. 

All participants gave their written informed consent to participate in this study that had 

been approved by the University of Kent’s ethics committee.  

 

3.3.2 Study design. 

 
Each participant completed three laboratory tests on a cycle ergometer (Computrainer 

Pro, Racer Mate Inc, Seattle, WA, USA) on separate days with at least 48 h between each 

test. Prior to all tests participants were instructed to be well hydrated and to avoid food, 

strenuous exercise, and alcohol for 3 h, 24 h and 48 h respectively. Three laboratory tests 

consisted of (1) V̇O2max test (2) 3 x TTE, (3) 3 x TT. Participants used their own bicycles 

for testing, equipped with a bicycle power meter to measure and record power output and 

a magnet to measure cadence (PowerTap Elite Wheel, CycleOps, Madison, USA). The 

same bicycle and power meter was used for all tests. Prior to testing the power meter’s 

zero offset was calibrated according to the manufacturer’s guidelines.  

 

3.3.3 Procedures.  

 
V̇O2max test: Participants completed a maximal incremental exercise test to determine their 

V̇O2max and associated MAP. The test started at 150 W and increased by 20 W every min 

until volitional exhaustion was reached, or the participant was no longer able to maintain 

the required work rate. The volume of oxygen (V̇O2), carbon dioxide (V̇O2) and minute 

ventilation (V̇E) were monitored throughout the tests using an online gas analysis system 

(Cortex Biophysik, Leipzig, Germany). HR was recorded continuously using the cortex 

system. A capillary blood sample was collected from the fingertip 1-min after testing and 

analysed for lactate concentration using a lactate analyser (Biosen C-line, EKF 
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diagnostic, Barbleben, Germany). The participant’s MAP and V̇O2max were calculated as 

the highest mean 30 s achieved during the test. 

 

Performance trials: Participants returned to the laboratory on two further occasions to 

complete 3 x TTE and 3 x TTs. The TTs were always performed on the final laboratory 

visit as the duration was based upon performances in the preceding TTE. The TTE 

protocol was the same as that described by Karsten et al. (2015). Participants performed 

the TTE trials at power outputs equivalent to 80%, 100% and 105% of MAP with 30-min 

rest between trials. The trials were performed in this fixed order and each trial was 

preceded by a 5-min warm up at 150 W. Galbraith et al. (2011) has previously established 

that a 30-min rest allows sufficient rest between trials. The intensities for the trials were 

set using the cycle ergometer, but actual power values recorded from the power meter 

were used for analysis. Participants were instructed to adopt their preferred cadence and 

maintain the target power for as long as possible. Verbal encouragement was provided, 

however, participants were not given feedback on their elapsed time, HR, power output 

and cadence. The participant’s TTE was reached when despite encouragement their 

cadence fell 10 rev.min-1 below their preferred cadence for 10 s or more. TTE was 

recorded to the nearest second.  

 

For their final visit participants completed 3 x TT efforts of the same duration as 

previously recorded for the TTE trials at 80%, 100% and 105% MAP. Testing was 

performed as described for the TTE in the same fixed order with 30-min rest between 

trials. Each trial was preceded by a 5-min warm up at 150 W. Prior to each TT participants 

were informed of the duration they had achieved in the corresponding TTE and asked to 

complete the maximum work possible in this same time. During the TT, participants were 

free to change their cadence and ergometer resistance in order to complete as much work 

as possible. As with the TTE trials, verbal encouragement was provided but they were 

not given feedback on their elapsed time, HR, power output, and cadence.  

 

Capillary blood samples were collected 1-min after each TTE and TT. RPE was recorded 

using Borg’s (1970) 6-20 RPE scale at 1 and 5-min of exercise for the TTE and TT at 

80% MAP. In addition, at 1 and 5-min of the TTE at 80%, the participants’ estimated 

time limit (ETL) was recorded as described by Garcin et al. (2011) and previously 

validated by Coquart et al. (2012). Participants were asked ‘how long would you be able 
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to perform an exercise at this intensity to exhaustion’ and they estimated this using a 1 – 

20 scale (1 = more than 16 h; 20 = to less than 2-min) (Garcin et al., 2011).  

 

3.3.4 Statistical analysis. 

 
A two-way repeated measures ANOVA was conducted to assess differences between 

TTE and TTs for mean power output, HR, cadence and RPE. This analysis was also used 

to compare CP and W′ parameters derived from TTE and TT performances using two 

linear CP models (Linear-TW and Linear-P). Where a significant main effect between 

trials was indicated, a paired samples t-test, with a Bonferroni correction was conducted 

to evaluate differences between trials. The CP and W′ parameters were estimated from 

the slope and the y-intercept of the relationship between power output and TTE. The 

Linear-TW model was generated by linear regression of total work, measured in kJ and 

TTE (equation 2). The Linear-P model was generated by linear regression of power output 

and the inverse of TTE (equation 6). Pearson’s correlation was used to examine the 

relationship between TTE, and the measures of RPE and ETL gathered after 1 and 5-min 

in the 80% trial. Analysis was conducted using the SPSS statistical software package 

(IBM SPSS Statistics, Rel. 22.0, SPSS, Inc, Chicago, USA). R (R Core Team 2014) was 

used to analyse the mean power output for each decile (10%) for both TTE and TT. 

Statistical significance was accepted at P<0.05. Values are reported as the mean ± 

standard deviation (SD) unless stated otherwise.  

 

3.4 Results. 

 
Technical issues resulted in incomplete data for two participants for the 80% TT, one 

participant for the 100% TT, and one participant for the 105% TTE trial. These 

participants were excluded from subsequent analysis, and data is presented for the 

remaining 13 participants (Mean ± SD; age = 33 ± 9 y, mass = 72.1 ± 10.1 kg, MAP = 

366 ± 57 W, V̇O2max = 60.1 ± 9.6 ml.kg.min-1). 

 

3.4.1 Comparison between performance trials. 

 
The mean TTE was 865 ± 345 s, 165 ± 98 s, 117 ± 45 s, for the 80%, 100% and 105% 

MAP trials respectively. As shown in Figure 3.1, mean power output was higher for TTE 

compared with TT at 80% (294 ± 44 W vs. 282 ± 43 W respectively; P<0.01). There 
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were no significant differences in mean power output for TTE and TT performances at 

100% (353 ± 62 W vs. 359 ± 74 W) and 105% (373 ± 63 W vs. 374 ± 61 W) respectively 

(P>0.05) (Figure 3.1).   

 

 

Figure 3.1: Mean (± SD) power output for TTE and TT at 80, 100 and 105% MAP.  

* Significant difference between trials; P<0.05. 

 

CP calculated from TTE was significantly higher than when calculated from TT 

performances using the two CP models (P<0.05) (Table 3.1). Whereas, calculated W′ 

was significantly lower when derived  from the TTE trials compared to TT performances 

(P<0.05) (Table 3.1). 
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Table 3.1: CP and W′ parameter estimates from the Linear-TW and Linear-P models when 

comparing TTE to TT protocols (n=13). * Significant difference between trials; P<0.05. 

 

 

 

 

 

 

 

 

3.4.2 Physiological and perceptual measures. 

 

No difference was found between trials for HR and cadence at 80%, 100%, and 105% 

MAP (P>0.05). There also was no significant difference between trials for RPE at 80% 

MAP (P>0.05). However, blood lactate was significantly higher after 80% MAP for the 

TTE (10.79 ± 3.10 mmol.L-1) compared to the TT (8.10 ± 2.20 mmol.L-1) respectively, 

P<0.01), but not after trials at 100% and 105% MAP (P>0.05). The relationship between 

TTE and measures taken of RPE and ETL after 1-min and 5-min at 80% MAP were not 

significant (P>0.05). There was no correlation between RPE and ETL at 1-min and 5-

min of the TTE trial (P>0.05; Table 3.2).  

 

3.4.3 Pacing strategies 

 

Figure 3.2 compares the mean power outputs for each 10% segment of the TTE and TT 

performances at 80%, 100% and 105% MAP. As evident from Figure 3.2 and 3.3 

participants starting pacing strategy was significantly higher for the TT compared to TTE 

for each of the three intensities (P<0.05).  

 

  CP (W)     W′ (kJ)   

TTE     

 Linear-TW 280 ± 46 *    10.73 ± 3.85 *  

     

 Linear-P 283 ± 44 *   10.09 ± 3.96 *  

TT      

 Linear-TW    265 ± 45 12.64 ± 2.91  

     

 Linear-P    267 ± 45 12.25 ± 3.61  
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 Table 3.2: Mean (± SD): Blood lactate, HR, cadence, RPE and ETL for TTE and TT performance trials at 80%, 100% and 105% MAP. * Significant difference     

 between trials; P<0.05.

 80% 100%                      105% 

 TTE TT TTE TT TTE TT 

Blood lactate (mmol.L-1) 10.79 ± 3.10    8.10 ± 2.20 * 8.76 ± 3.18 8.42 ± 3.13 7.89 ± 2.63 7.60 ± 2.07 

       

Mean HR (bpm) 167 ± 13 166 ± 11 163 ± 15 164 ± 11 163 ± 15 161 ± 14 

       

Mean Cadence (rpm) 96 ± 10 96 ± 7 87 ± 12 97 ± 10 93 ± 13 96 ± 13 

       

RPE 1-min 13 ± 2 13 ± 2 − − − − 

RPE 5-min 16 ± 2 16 ± 2 − − − − 

       

ETL 1-min 13 ± 3 − − − - − 

ETL 5-min 13 ± 4 − − − - − 
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Figure 3.2: Mean power outputs for each 10% segment of TTE and TT at 80% MAP. Values are mean and 95% confidence intervals for a within 

participant design. 
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Figure 3.3: Mean power output for each 10% segment of TTE and TT at 100% (A) and 105% (B) MAP. Values are mean and 95% confidence intervals 

for a within participant design.

A B 
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3.5 Discussion. 

 
The main finding from this study was that mean power output for TTE was higher when 

compared to the TT at 80%, but not at 100% and 105% MAP. This in turn meant that 

calculated CP was higher when derived from TTE compared to TT. Although it was 

hypothesised that there would be a difference between TTE and TT, it was anticipated 

that TTE would result in a lower mean power output than TT due to its suggested lack of 

ecological validity. The higher average power output and CP found for TTE challenges 

the notion that this type of performance test lacks useful ecological validity (Jeukendrup 

and Currell, 2005; Marino, 2012). Criticism of TTE trials has also focused on their 

inherent variability, and has resulted in a shift towards the use of TT instead (Jeukendrup 

and Currell, 2005). The findings of this study indicate that TTE should not be disregarded 

as a measure of endurance performance in the laboratory. 

 

Comparative data on TTE and TT performances are limited (Ham and Knez, 2009; 

Amann et al., 2008; Thomas et al., 2013). Moreover, previous studies were not designed 

to compare performances in TTE and TT directly, but rather to evaluate the effects of 

pacing (Ham and Knez, 2009; Thomas et al., 2012) or of changing the inspired oxygen 

concentration (Amann et al., 2008) on performance. Ham and Knez (2009) report 

performances for TTE and TT to be similar. In addition, Amann et al. (2008) found a 

similar sensitivity for both test protocols when detecting changes in performance, with 

differences in inspired oxygen concentration. In contrast to the present study, Thomas et 

al. (2013) reported a higher mean power output during self-paced compared to even-

paced cycling trials. However, this was only found for some participants, with nine out 

of fifteen cyclists unable to complete the same distance as their self-paced trial when the 

mean intensity was fixed. It is also important to note that the higher mean power output 

for TTE in the present study was only found for the longest trial at 80% MAP, where the 

mean duration was 865 ± 345 s. No difference was found in the higher intensity trials ≥ 

100% MAP that lasted ≤ 165 ± 98 s. Amann et al. (2008) compared TTE and TT 

performances with a trial that lasted approximately half the length of the 80% trial in the 

present study (458 s). Thus, their findings of comparable TTE and TT performances are 

consistent with the results of the present study for the shorter duration trials. However, 

the performance trials of Ham and Knez (2009) and Thomas et al. (2013) were notably 

longer than the present study (2880 s and 1920 s, respectively). As a result, other factors, 
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such as pacing, and feedback, may have influenced the comparisons between previous 

studies and the present study.  

 

The divergent performance between TTE and TT at 80% MAP in the present study may 

be due to differences in pacing strategy. For events lasting longer than 2-min, an even 

paced strategy such as that enforced in the TTE is often found to result in greater 

performances (Foster et al., 1993; Atkinson et al., 2003; de Koning et al., 1999; Ham and 

Knez, 2009). These studies suggest that a high variation in pace, only possible in a TT, is 

associated with a reduction in performance. For example, Ham and Knez (2009) found 

that participants whose relative starting strategy was > 105% of their mean speed 

performed worse overall. Cangley et al. (2011) noted in their field study that cyclists 

found it difficult to adopt a specified pacing strategy even when it is known to be superior. 

Therefore, to evaluate the participants’ pacing strategy in the present study we calculated 

the mean power output sustained for each decile (10%) of both TTE and TT trials at 80%, 

100%, and 105% MAP. This power output distribution is presented showing 95% 

confidence intervals for a within participant design (Morey, 2008) in Figure 3.2 and 

Figure 3.3 (A) and (B). Figure 3.2 clearly suggests participants misjudged their pacing 

strategy for the TT at 80%. In comparison with the TTE trial, participants can be seen to 

adopt a higher mean power output initially in the TT. This fast start appears to result in a 

progressive decline in power output throughout the TT, leading to a lower mean power 

output when compared to the TTE trial. This pattern of pacing has also been seen in 

previous research and was associated with a poorer TT performance (Foster et al., 1993; 

Mattern et al., 2001). 

 

During TTE trials it is normal practice not to provide feedback on elapsed time or power 

output (e.g. Galloway and Maughan, 1997; Jones et al., 2013). Therefore, to standardise 

comparisons in the present study, no feedback was provided during either the TTE or TT 

performances. Previous studies that have blinded participants to any external feedback 

are inconsistent (Micklewright et al., 2010; Faulkner et al., 2011; Mauger et al., 2009; 

Wilson et al., 2012; Jones et al., 2013). For instance Wilson et al. (2012) investigated the 

effects of no feedback, accurate feedback, false feedback, and false negative feedback on 

10-mile TT cycling performances. Their results showed no significant differences in 

completion times and mean power outputs when the four different feedback conditions 

were compared. In contrast, Faulkner et al. (2011) found that completion time as well as 
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pacing strategies were significantly slower when participants were blinded to feedback, 

compared to accurate or delayed feedback conditions. Nevertheless, it is common for 

participants in TTs to be provided with their elapsed and remaining time, or distance, and 

sometimes power output too. According to Marcora et al’s (2008) psychobiological 

model, the absence of any of these key variables can have a negative impact on 

performance and subsequently reduce the ecological validity of TT performances. As a 

result, the lack of feedback in the present study may explain the reduction in mean power 

output, as well as the absence of a notable end spurt that is often observed in previous TT 

performances (e.g. Thomas et al., 2012). However, the difference in total work completed 

for the TTE and TT for the 80% MAP trial was 11 kJ (by multiplying trial duration by 

mean power output and converting to kJ). Therefore, it is improbable that the end spurt 

accounted for the 11 kJ difference in work done observed between the TTE and TT in the 

80% MAP trials. Future research is therefore needed to determine the effect of feedback 

on pacing strategy, and how this influences TTE and TT comparisons. In addition, Jones 

et al. (2015) proposed that other factors, such as emotion regulation or motivation, could 

also influence performance when no feedback is provided. However, the mechanisms 

responsible for these factors are unknown (Jones et al., 2015).  

 

The exact reason for the higher mean power output in TTE at 80% remains to be 

explained. It seems that early in exercise even the well-trained cyclists found it difficult 

to gauge their perception of effort and its implications of how long it can be sustained. In 

the present study we measured RPE at 1-min and 5-min for both the TTE and TT at 80%, 

and ETL at the same points for TTE only. There were no differences in RPE between 

TTE, and TT, indicating that participants did not perceive that they were starting faster in 

the TT. This conclusion is reinforced by the observation that neither measures of RPE, or 

ETL, correlated with the duration of the 80% TTE trial. These findings are consistent 

with previous studies demonstrating a fast start to result in a decrease in speed and overall 

performance (Ham and Knez, 2009). The findings also highlight the related limitation of 

perceptual scales as previously identified in a recent review (Coquart et al., 2012). 

Interestingly, HR, and RPE were not different when comparing TTE and TT at any of the 

three intensities. But blood lactate after TTE at 80% MAP was higher than for TT. This 

data suggests that the participants perceived the effort to be similar in both trials, but were 

able to sustain a greater power output and induce a greater metabolic stress in the 80% 

MAP TTE trial. Previous research has found TTE type even paced strategies to be more 
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physiologically demanding, evidenced by an increase in core body temperature and blood 

lactate responses (Lander et al., 2009). A TT allows athletes to self-regulate and vary their 

pace, whereas, TTE trials do not, and often result in a premature termination of exercise 

(Lander et al., 2009; Marino, 2012).  

 

We specified TTE and TT performance trials that are typical of those used to determine 

CP. Dekerle et al. (2008) suggest that the determination of CP should be made from trials 

ranging between 2 to 15-min. In their comprehensive review, Jones et al. (2010) suggest 

that CP can be used to enable athletes to set appropriate pacing strategies and predict 

performance. Consequently, it is important that CP is determined accurately from the 

highest achievable performances to ensure optimal pacing strategies are set. The findings 

from our study demonstrate that a ~ 16 W higher value (P<0.05) for CP is obtained when 

TTE rather than TT performances are used. However, W′ was significantly lower for TTE 

(~ 2 kJ) compared to TT. Therefore, the results may suggest that CP and W′ are inversely 

related to each other, depending on the type of performance test performed. This inverse 

relationship has been previously found following training (Vanhatalo et al., 2008; Jenkins 

and Quigley, 1992), as well as differences in pacing strategy, (Bailey et al., 2011; Jones 

et al., 2008) and prior warm up (Jones et al., 2003). Nevertheless, Vanhatalo et al. (2011) 

note that an increase in CP, and reduction in W′, is related to an improvement in overall 

endurance performance. Whereas, an increase in W′, and reduction in CP, will only 

enhance high intensity, short duration performances (Vanhatalo et al., 2011). Therefore, 

future studies of CP should ensure that the most appropriate protocol is used for its 

determination. 

 

3.6 Conclusion. 

 
In conclusion, mean power output in TTE was greater than for TT at 80% MAP. There 

was no significant difference in mean power output for shorter high intensity TTE and 

TT performances at 100% and 105% MAP. The reason for the lower TT performance at 

80% appears to be related to competitive cyclists pacing strategy by starting too fast. 

Early in exercise, it appears that even competitive cyclists are not sensitive to the 

perceptual cues that inform their effort and ability to estimate how long it can be 

sustained. The higher mean power output achieved during TTE performance also results 
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in a higher calculated CP from those trials compared with TT. Therefore, researchers are 

advised to adopt a test protocol that maximises mean power output when determining CP. 
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Chapter 4: Individualised training at different intensities 

results in similar physiological and performance benefits. 
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4.1 Abstract.  

 

Training responses can be highly variable between individuals when standardised to the 

same %V̇O2max. This inter-individual variability is also observed in TTE performances. 

The impact of individualising training duration on performance and physiological 

adaptations has not been previously explored, in particular when comparing different 

training intensities. Purpose: This study compared the effects of training at MOD, HIT, 

or a combination of the two (MIX) on performance and physiological responses when 

training durations were individualised. Methods: Thirty-four untrained participants were 

randomly assigned to a MOD, HIT, or MIX training group. V̇O2max, MAP, TTE and GE 

were recorded before and after 4-weeks of supervised cycling training (4 times per week). 

The MOD group cycled at 60% MAP in blocks of 5-min with 1-min recovery. Training 

duration for the MOD group was individualised to 100% of pre-training TTE. The HIT 

group cycled at 100% MAP for 2-min with 3-min recovery between repetitions. Training 

duration for the HIT group was set as the maximum number of repetitions completed in 

the first training session. The MIX group completed two MOD and two HIT sessions each 

week, on alternative days. Results: Total training time for the MOD, HIT, and MIX 

groups were ~16, 3 and 8 h respectively. All intensity groups increased V̇O2max, MAP, 

TTE and GE after training (P<0.05), but there was no difference between groups for these 

measurements (P>0.05). Conclusion: When training durations are individualised similar 

improvements in performance and physiological responses are found despite differences 

in exercise intensity.  

 

Key Words: Gross efficiency; MIX training; V̇O2max; Time-to-exhaustion. 
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4.2 Introduction. 

 

A large inter-individual variability in the response to physical exercise is frequently 

observed, particularly when exercise is standardised to a %V̇O2max (Bouchard et al., 1999; 

Vollaard et al., 2009; McPhee et al., 2010). Bouchard et al. (1999) was one of the first to 

highlight this variability following a standardised training intervention. The findings from 

this study demonstrated a large variability in V̇O2max responses, ranging from no change 

to ~ 42% increase after 10-weeks of training in sedentary individuals (Bouchard et al., 

1999). Typically, these individual differences have been disregarded when setting 

training interventions (e.g. Burgomaster et al., 2008; Gormley et al., 2008). However, 

more recently, researchers have attempted to account for this by using individualised 

methods to prescribe training (Kivinemi et al., 2007; Capostagno et al., 2014). For 

example, Kiviniemi et al. (2007) monitored individual changes in daily resting heart rate 

variability (HRV), and used this information to prescribe MOD or HIT training sessions. 

An increase or no change in HRV resulted in a HIT session completed on that day, 

whereas a decrease in HRV resulted in a MOD session (Kivinemi et al., 2007). The 

findings from this study demonstrated that individualised training based on HRV resulted 

in a greater improvement in maximal running velocity, but not VO2peak, when compared 

to a standardised training approach (Kiviniemi et al., 2007). Nevertheless, researchers 

have still reported a large variability in training responses despite tailoring the intensity 

of the sessions for each individual (Kiviniemi et al., 2007; Capostagno et al., 2014).  

 

To evaluate the effects of training intensity on performance and physiological responses, 

researchers frequently standardise the intensity of the training to a % of maximum (e.g. 

%HRmax, %V̇O2max) (Gibala et al., 2006; Helgerud et al., 2007; Gormley et al., 2008; 

Burgomaster et al., 2008). In addition, the duration of training is often fixed (e.g. Gormley 

et al., 2008). When standardised in this manner, HIT is often favoured over MOD training 

for greater or similar physiological and performance adaptations (Gibala et al., 2006; 

Helgerud et al., 2007; Gormley et al., 2008; Burgomaster et al., 2008). But these results 

may vary depending on whether the total volume of training between intensity groups is 

matched. For example, Gormley et al. (2008) and Helgerud et al. (2007) reported greater 

increases in V̇O2max with HIT, compared to MOD training, when total work and training 

frequency were matched. But when researchers have set the volume of MOD training ~ 

90% higher than HIT, no significant differences were found between groups (Gibala et 
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al., 2006; Tanisho and Hirakawa, 2009; Burgomaster et al., 2008). It is common practice 

for cyclists to spend a significantly greater amount of time training at MOD compared to 

HIT (Nimmerichter et al., 2011). For instance, a longitudinal study of trained cyclists 

demonstrated a training distribution to be 73%, 22% and 5% for low, MOD, and HIT 

training respectively (Nimmerichter et al., 2011). Therefore, the greater increases in 

V̇O2max reported in previous studies following HIT, might simply be due to an insufficient 

duration of training prescribed to the MOD groups (e.g. Gormley et al., 2008; Helgured 

et al., 2007).  

 

A notable observation is the large inter-individual variability often observed in TTE 

performances (Coyle et al., 1988). Coyle et al. (1988) found that the times cyclists could 

sustain exercise to exhaustion at 88% V̇O2max was highly variable, ranging from 12-75 

min. Thus, at the same relative intensity, individuals can endure exercise for very different 

amounts of time. The impact of this variability on subsequent training adaptations is not 

well understood, in particular when comparing different training intensities. Therefore, 

this study examined the effects of training at MOD, HIT, or a combination of the two 

(MIX), on performance and physiological responses, when training durations were 

individualised to each individuals’ maximum performance time. It was hypothesised that 

by maximising the duration of training for each individual no differences would be found 

between training intensities for performance and physiological adaptations. 

 

4.3 Methods. 

4.3.1 Participants. 

 
Thirty-four healthy men and women (n=25 males, n=9 females) volunteered to 

participant in this study (Table 4.1). All participants were untrained, and had engaged in 

no more than 3 h of exercise per week for the 3 months prior to commencing the study. 

All participants gave their written informed consent to participate in this study that had 

been approved by the University of Kent’s ethics committee.  
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4.3.2 Study design. 

 
Participants were randomly assigned to one of three training groups; MOD, HIT, or MIX 

and completed 4-weeks of supervised cycling training 4 times per week. Before and after 

the training programme, participants completed laboratory tests that measured V̇O2max, 

MAP, GE, and TTE. The order of the testing procedures was as described below. All tests 

were performed on a stationary cycle ergometer (Lode Excalibur Sport, Lode, 

Grogningen, The Netherlands). Participants were given at least 48 h between tests, except 

for the GE and confirmation V̇O2max test which were completed on the same day.  

 

 

Table 4.1: Mean (± SD): Age, body mass, V̇O2max and MAP for the MOD, HIT and MIX training 

groups before training. There were no significant differences between groups at baseline 

(P>0.05). 

 

4.3.3 Testing procedure. 

 
V̇O2max test: Ergometer seat and handlebar height were recorded in order for the same 

position to be used for all trials. The test started at 30 W, and increased by 20 W every 

min until volitional exhaustion, or the participant was no longer able to maintain the 

required work rate. The V̇O2 and V̇CO2 were recorded using the Douglas bag method. 

That is expired gases were collected into airtight plastic Douglas bags (Plysu Industrial 

Ltd, Milton Keynes, UK). Each participant was fitted with a Hans Rudolph breathing 

valve (2700; Hans Rudolph, Inc., Kansas City, MO), which was connected to the Douglas 

bags via a plastic tube. When a participant indicated that he or she was near exhaustion 

 

MOD 

(n=11) 

HIT 

(n=12) 

MIX 

(n=11) 

Age (yrs.) 31 ± 12 28 ± 9 26 ± 5 

 

Body mass (kg) 76.4 ± 13.4 73.9 ± 11.2 77.2 ± 13.2 

 

V̇O2max (L.min-1) 3.4 ± 0.8 3.1 ± 0.6 3.7 ± 0.7 

 

MAP (W) 241 ± 55 232 ± 42 259 ± 50 
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(e.g. at least 1-min of exercise remaining), gas collection was started (Hopker et al., 

2012). The duration that the bags collected expired gases were recorded to the nearest 

second using a stopwatch. The procedure for analysing the Douglas bags was similar to 

that outlined by Hopker et al. (2012), and described in more detail in section 4.3.4 below. 

MAP was recorded as the 1-min mean cycling power output attained during the 

incremental test protocol to voluntary exhaustion. HR was recorded continuously using a 

wireless HR monitor (Polar Electro, Kempele, Finland). A capillary blood sample was 

collected from the fingertip 1-min after testing and analysed for lactate concentration 

using a lactate analyser (Biosen C-line, EKF diagnostic, Barbleben, Germany). 

 

GE: Following a 10-min warm up at 50 W, participants cycled at two constant pre-

determined workloads: 50 W for females or 75 W for males and 50% MAP. Participants 

were instructed to cycle for 7-min at each of the two workloads. Expired air was collected 

into two Douglas bags during the last 2-min of each workload, with a total of 1-min 

collected into each bag. GE was calculated as the ratio of power output to power input 

and was expressed as a % (Passfield and Doust, 2000; Hopker et al., 2012). Power input 

was defined as the rate of energy expenditure (V̇O2 and respiratory exchange ratio (RER)) 

and was calculated using the same formula as Passfield and Doust (2000). Power output 

was determined as the average power output sustained during the test. During collection 

of expired air participants were asked to maintain a normal breathing pattern, completing 

a ‘natural’ inhalation prior to opening and closing the Douglas bags. Participants were 

given a 5 s countdown prior to performing the inhalation phase (Hopker et al., 2012). The 

bags were opened at the start and at the end of the inspiration phase to record a full 

breathing cycle. The methods used to analyse the Douglas bags were the same as Hopker 

et al. (2012) and are outlined below. The mean GE analysed from the two Douglas bags 

was recorded. RPE (Borg, 1970) and a blood lactate sample were recorded at the end of 

each workload.    

 

Confirmation V̇O2max test: Following the GE test and 20-min passive recovery 

participants completed a confirmation V̇O2max test as described by Bouchard et al. (1999). 

The test started at 50 W for 5-min. Power output then increased to 50% MAP for 5-min, 

70% MAP for 3-min and after this the resistance increased to the MAP attained in the 

first V̇O2max test for 2-min. If participants were able to continue after 2-min at MAP, the 

power output increased by 20 W every 2-min until volitional exhaustion was reached. 
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Expired air was collected using Douglas bags as described previously. The mean V̇O2max 

value attained from both tests was recorded as each participants V̇O2max, and if values 

differed by >5%, the higher V̇O2max value was used (Bouchard et al., 1999).  

 

TTE performance: Following a 5-min warm up at 50 W participants cycled at 60% MAP 

for as long as possible until volitional exhaustion was reached. Participants were 

instructed to maintain a target cadence based on the mean cadence of their V̇O2max test for 

as long as possible, and were provided with verbal encouragement throughout. 

Exhaustion was determined when participants were unable to sustain the target power 

output or reached volitional exhaustion. Participants were not informed of the elapsed 

time during the trials, or their final time, which was recorded to the nearest second (s). 

Blood lactate samples were recorded at 5-min and at the end of the test. At 1-min, and 5-

min of the trial, RPE was recorded. 

 

4.3.4. The Douglas bag method 

 
The Douglas bags were emptied using a vacuum pump prior to each test. Participants 

were fitted with a mouthpiece (2700 Hans Rudolph, Inc, Kancas City, MO), and a nose 

clip 30 s prior to collection. Plastic tubing connected the mouthpiece to the Douglas bags. 

A three way Hans Rudolph valve enabled ambient air to be inhaled during an inspiration 

phase, with only exhaled air diverted into the Douglas bags (Hopker et al., 2012). The O2 

and CO2 concentration of the expired air collected in the Douglas bags were analysed 

using an offline gas analyser (Servomex East Sussex, UK). A calibrated dry gas meter 

(Harvard Apparatus Ltd, Edenbridge, UK) was used to determine the expired volume of 

air in the bags. A digital thermometer (810-080 Electric Temperature Instruments, West 

Sussex, UK) was also used to determine the temperature of the gas sample in the Douglas 

bags. Calibration of the gas analyser was performed prior to each test according to the 

manufacturer’s guidelines. Each bag was analysed immediately after the test.  

 

Training: All training sessions were supervised in the laboratory and performed on a 

stationary cycle ergometer. The MOD group trained at 60% MAP for the duration 

completed in the pre-training TTE test. The MOD training session was divided into 5-

min blocks separated by 1-min rest until the target training duration was reached. The 

HIT group completed 2-min repetitions at 100% MAP, followed by 2-min active rest at 
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25% MAP, and 1-min passive rest. Participants in the HIT group were instructed to 

complete as many repetitions as possible in their first training session, which set the 

baseline for subsequent training sessions. The MIX group completed two days at HIT, 

and two days at MOD each week, alternating between intensities for each session. 

Training progression was implemented for all three training groups by encouraging the 

participants to complete one extra repetition or 5-min block after every two training 

sessions. A halfway V̇O2max test replaced one training session in week 3 and training 

power outputs were adjusted as necessary.  

 

4.3.4 Statistical analysis. 

 

The main effects of training on the physiological and performance measurements were 

analysed using a two-way repeated measures ANOVA. Bonferroni post hoc analysis was 

conducted when significant interactions were found. Data were checked for normal 

distribution using Sharpiro-Wilk W test, and a one-way ANOVA showed no significant 

differences between groups for baseline measurements prior to training. All data was 

checked for normality prior to conducting parameter statistics. Effect sizes were also 

calculated for physiological and performance training adaptions, as partial eta-squared 

(ηp
2) and values of 0.10, 0.25 and above 0.40 were considered small, medium and large 

effect sizes respectively (Cohen, 1988). Effect sizes were included to highlight the size 

of the training adaptations. Pearson’s correlation was conducted to examine the 

relationship between the pre-post % ∆V̇O2max or %∆ TTE and the %∆ for the other 

laboratory test measurements (e.g. V̇O2max/TTE, MAP, GE at 50% MAP, GE at 50/75 

W). Analysis was conducted using the SPSS statistical software package (IBM SPSS 

Statistics, Rel. 22.0, SPSS, Inc, Chicago, USA) and the level of significance was set at 

P<0.05.  

 

To analyse for individual differences in the training responses, the intra-individual 

coefficient of variation (CV) was identified for the physiological and performance 

laboratory test measurements based on previous research. These included: V̇O2max (CV = 

5.6%; Katch et al., 1982; Scharhag-Rosenberger et al., 2012; Wolpern et al., 2015), GE 

(CV= 1.5%; Hopker et al., 2012) and TTE (CV = 5.6%; Maughan et al., 1989). The CV’s 

for these measurements were used to identify if participants were responders or non-
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responders to the training. This is the same method as used previously by other 

researchers (Scharhag-Rosenberger et al., 2012; Katch et al., 1982). A non-responder was 

defined as one who demonstrated negative changes, or improved no greater than the CV 

of the laboratory test measurement. A responder was one who demonstrated positive 

changes greater than the CV of the laboratory test measurement. The above criteria are 

the same as those set by Scharhag-Rosenberger et al. (2012). All values are reported as 

the mean (± SD).  

 

4.5 Results. 

4.5.1 Training duration.  

 
The mean total training time for the MOD, HIT, and MIX groups was ~16 h, 3 h and 8 h 

respectively. There was a large inter-individual variability in the durations each 

individual trained for at the three different intensities (Figure 4.1). For example, total 

training duration ranged from ~ 8 - 24 h for the MOD group, ~ 2 – 6 h for the HIT group 

and ~ 6 - 13 h for the MIX group. The total training duration for each individual are 

presented in Figure 4.1.  
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Figure 4.1. Total duration of training for each individual following 4-weeks of training at MOD, HIT or MIX.  
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4.5.2 Physiological and performance adaptations following training. 

 

Significant changes in V̇O2max (ηp
2=0.55), MAP (ηp

2=0.76), TTE (ηp
2=0.81), and GE at 

50% MAP (ηp
2=0.15) were found in all three training groups following 4 weeks of 

training (Table 4.2; P<0.05). No significant differences between groups were found for 

V̇O2max (ηp
2=0.08); MAP (ηp

2=0.03), TTE (ηp
2=0.03), GE at 50/75 W (ηp

2=0.10) or GE 

at 50% MAP (ηp
2=0.22) (P>0.05). There was an interaction effect for GE at 50% MAP 

(P = 0.02) (Figure 4.2), but differences between groups were not detected following 

Bonferroni post hoc analysis (P>0.05; n = 34).  

 

 

Figure 4.2: A significant interaction between training groups for GE at 50% MAP following 

training. Post hoc analysis did not detect differences between groups (P>0.05). 
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lower for GE at 50% MAP (P<0.05), but not GE at 50/75 W (P>0.05) after training. But 

these changes were not different between groups (P>0.05) (Table 4.3).  

 

4.5.3 Variability in training responses 

 

Despite significant improvements in the mean physiological and performance 

measurements for all training groups, large inter-individual variability in training 

responses were observed (Tables 4.2 and 4.4). For changes in V̇O2max, 54% (6/11), 83% 

(10/12) and 54% (6/11) of participants in the MOD, HIT, and MIX training groups 

respectively, experienced a desirable change after training, and were categorised as a 

responders. Alternatively, 46% (5/11), 17% (2/12), and 46% (5/11) of participants in the 

MOD, HIT, and MIX training groups respectively, experienced an undesirable change in 

V̇O2max, and were categorised as a non-responders (Table 4.4).  

 

When examining the individual participants presented in each column in Table 4.4, it is 

evident that 2 participants in the MOD group (18%), 5 participants in the HIT group 

(42%), and 5 participants in the MIX group (46%), demonstrated an improvement for all 

four measurements. Each participant demonstrated improvements in at least one 

measurement across all training groups. All participants demonstrated improvements in 

performance following MOD and MIX training, with only one participant (8%) 

demonstrating a non-response to changes in performance following HIT training.  
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Table 4.2: Mean (± SD): absolute ∆V̇O2max, ∆TTE, ∆GE at 50/75 W and 50% MAP for MOD, HIT and MIX groups. Minimum and maximum absolute ∆ are 

also presented (n=34).

  

  

 MOD 

  

HIT 

  

MIX 

  Mean ± SD Min - Max Mean ± SD Min - Max Mean ± SD Min - Max 

V̇O2max (L.min-1) 0.23 ± 0.19 -0.04 to 0.49 0.37  ± 0.19 0.08 to 0.69 0.21  ± 0.35 -0.30 to 0.79 

TTE (s) 1553  ± 721  443 to 2692 1257  ± 675 10 to 2646 1335  ± 688 258 to 2813 

GE at 50/75 W (%) 0.32  ± 1.11 -1.95 to 1.95 0.28  ± 1.22 1.60 to 2.40 1.06  ± 1.17 0.75 to 2.75 

GE at 50% MAP (%) 0.23  ± 1.04 -1.90 to 1.70 0.15  ± 1.06 1.75 to 1.55 1.09  ± 0.93 0.30 to 2.75 
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Table 4.3: Submaximal physiological and perceptual responses before and after 4-weeks of MOD, 

HIT and MIX training. * Significant change after training P<0.05.  

 

 

    MOD   HIT   MIX 

Efficiency at 50% MAP       

       

Lactate (mmol.L-1)  Pre 4.30 ± 1.57  4.15 ± 1.10  3.28 ± 0.74 

 Post    2.00 ± 0.77*     2.70 ± 0.94*   2.01 ± 0.86* 

       

HR (bpm) Pre 138 ± 17  142 ± 18  142 ± 12 

 Post    128 ± 15*     132 ± 15*   130 ± 16* 

       

RPE (6-20) Pre 13 ± 2  13 ± 2   13 ±1 

 Post    11 ± 1*   11 ± 2*   11 ± 1* 

       

V̇O2  (L.min-1)  Pre 2.11 ± 0.42  2.03 ± 0.32  2.27 ± 0.36 

  Post   2.09 ± 0.41*    2.04 ± 0.28*     2.13 ± 0.32* 

Efficiency 50/75 W       

 

Lactate (mmol.L-1) 
Pre 2.41 ± 1.24 

 
2.13 ± 0.88 

 
1.73 ± 0.60 

 Post  1.38 ± 0.38*   1.56 ± 0.53*  1.25 ± 0.38* 

       

HR (bpm)  Pre 116 ± 19  121 ± 15  117 ± 6 

 Post  111 ± 17*   113 ± 14*     107 ± 10* 

       

RPE (6-20) Pre 10 ± 2  10 ± 2  10 ± 1 

 Post 10 ± 1  9 ± 2  10 ± 1 

       

V̇O2 (L.min-1) Pre 1.50 ± 0.25  1.49 ± 0.25   1.59 ± 0.25 

  Post   1.47 ± 0.26*      1.45 ± 0.16*     1.46 ± 0.17* 
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Table 4.4: Individual responders and non-responders for changes in V̇O2max, TTE, GE at 50/75 W and 50% MAP following 4-weeks of training. Black = non-

responder; white = responder, when CV’s (from previously published studies) for V̇O2max, TTE, and GE are subtracted from the %∆ for each individual (n=34). 

 

 

 

 

 

 

 

 

 

 

MIX 

             

Participant no. 1 2 3 4 5 6 7 8 9 10 11 ∑ 

V̇O2max (L.min-1)                       n=5 (46%) 

TTE (s)                        n=0 (0%) 

Efficiency 50/75W (%)                       n=2 (18%) 

Efficiency 50% MAP (%)                       n=2 (18%) 

MOD             

Participant no. 1 2 3 4 5 6 7 8 9 10 11 ∑ 

V̇O2max  (L.min-1)                       n=5 (46%) 

TTE (s)                        n=0 (0%) 

Efficiency 50/75W (%)                       n=4(36%) 

Efficiency 50% MAP (%)                       n=4 (36%) 

HIT 

              

Participant no. 1 2 3 4 5 6 7 8 9 10 11 12 ∑ 

V̇O2max  (L.min-1)                         n=2 (17%) 

TTE (s)                          n=1 (8%) 

Efficiency 50/75W (%)                         n=5 (42%) 

Efficiency 50% MAP (%)                         n=6 (50%) 
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4.5.4. Correlations between physiological measurements and TTE  

 

There was also a positive correlation between the %∆TTE and %∆GE at 50% MAP 

(r=0.35; P<0.05; Figure 4.3). In addition, there was a positive correlation between the 

%∆TTE and %∆MAP (r=0.50; P<0.05). There was no relationship between %∆TTE and 

%∆GE at 50/75 W (P>0.05), or %∆TTE and %∆V̇O2max (P>0.05). There was no 

correlation between %∆V̇O2max and %∆GE at 50% MAP or 50/75 W (P>0.05). There was 

a positive correlation between %∆V̇O2max and %∆MAP (r=0.34; P<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. A positive relationship between %∆GE at 50% MAP and %∆TTE.  
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4.6 Discussion. 

 

The main finding of this study was that 4-weeks of individualised training at either MOD, 

HIT, or MIX resulted in significant improvements in V̇O2max, MAP, TTE and GE at 50% 

MAP. However, no differences were observed between groups. The interaction effect for 

GE at 50% MAP suggests that the MIX training results in greater improvements 

compared to MOD and HIT training. No differences in GE at 50/75 W were observed 

after training or between groups. A large heterogeneity in training responses for V̇O2max, 

GE at 50/75 W and 50% MAP were also observed, despite individualising the training 

duration. Furthermore, all participants demonstrated improvements in TTE after MOD, 

and MIX training, with only one participant (8%) categorised as a non-responder after 

HIT training.  

 

The similar physiological training adaptations observed in this study for all training 

intensities is consistent with the work of Burgomaster et al. (2008) and Gibala et al. 

(2006). These studies fixed the duration of training, and did not account for the variability 

seen in the times individuals could sustain exercise for at the same relative intensity 

(Coyle et al., 1988). The present study aimed to address this by tailoring the duration of 

training to each individual’s maximum performance time. This resulted in a wide range 

of the durations that participants trained for at the same relative intensity (Figure 4.1). 

The mean total time spent training was ~ 80% lower for the HIT compared to the MOD 

group and ~ 63% lower for the HIT compared to the MIX group. Therefore, despite a 

substantially greater time spent training at MOD, no differences between training 

intensities were observed for performance, and physiological adaptations.  

 

According to Laursen (2010), HIT and endurance training adaptations occur via two 

different pathways: the AMPK and the CaMK pathway. Laursen (2010) proposes that 

training at one exercise intensity will optimise the training adaptations that occur via one 

pathway only. Therefore, for other adaptations to occur, an individual needs to be exposed 

to another exercise intensity (Laursen, 2010). This has led researchers to investigate the 

physiological benefits of combining two different training intensities (e.g. Neal et al., 

2011; Munoz et al., 2014). The findings from the present study demonstrate that when 

two different training intensities were combined (MIX group), significant increases in 

physiological and performance responses occurred. However, these training adaptations 

were not significantly different when compared to the MOD, and HIT training groups. 
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There was an interaction effect for GE at 50% MAP after training, but no differences 

were detected between groups following post hoc analysis. One explanation for this is 

that the ANOVA and post hoc test control for different levels of type I and type II error 

rates. Therefore, while the ANOVA detected a difference between the group means for 

GE at 50% MAP after training, the post hoc analysis did not detect this difference, and as 

a result it is inconclusive as to where the differences lie. Nevertheless, it is evident from 

Figure 4.2, that the MIX group improved their GE at 50% MAP more so than the other 

two training intensity groups. It should also be noted that the MOD and HIT groups, 

demonstrated approximately equal changes in GE at 50% MAP after training, despite a 

substantially longer time spent training at MOD.  

 

The present study is one of few to take into account individual differences in performance 

capability when designing a training intervention (Kiviniemi et al., 2007; Capostagno et 

al., 2014). Despite attempts to tailor each individual’s training duration, large inter-

individual variability in training responses were still apparent for all physiological 

adaptations, but not for performance adaptations. Responders and non-responders to 

training were determined using the same methods as Scharhag-Rosenberger et al. (2012). 

A responder was categorised as an individual who demonstrated positive changes greater 

than the CV of the laboratory test measurement (Scharhag-Rosenberger et al., 2012). 

Whereas, a non-responder, was an individual who demonstrated negative changes, or 

improved no greater than the CV of the laboratory test measurement (Scharhag-

Rosenberger et al., 2012). Upon examination of the individual responses presented in 

Table 4.4, it is evident that a non-responder for one measurement was not necessarily a 

non-responder for other variables. This is similar to the findings of Vollaard et al. (2009) 

following a 6-week standardised training intervention. In addition, it is evident from 

Table 4.4 that all participants demonstrated improvements in at least one physiological 

and performance measurement. The MIX group demonstrated the greatest number of 

responders (46%) to all laboratory test measurements, followed by HIT (42%) and MOD 

(18%) training groups. Additionally, the HIT group demonstrated the greatest number of 

responders to V̇O2max changes (83%), followed by MIX (54%) and MOD (54%) training 

groups. This supports previous research that suggests the inclusion of some HIT sessions 

in a training intervention can reduce the number of non-responders (Bacon et al., 2013). 

It should also be noted that from a cohort of 34 participants, only one participant 

demonstrated a negative change in TTE performance following training. This participant 

was in the HIT training group. This is an interesting finding, which warrants further 
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investigation. It could be speculated that by repeatedly exposing participants to their 

maximum duration of exercise in training, that this increased their ability to tolerate 

exercise to exhaustion. This could particularly be the case for the MOD and HIT groups 

who trained at the intensity set for the TTE performance test (60% MAP).  

 

A significant relationship between TTE performances and GE at 50% MAP before and 

after training was observed. Furthermore, the training adaptations for TTE and GE were 

also positively correlated, with ~ 12% of the improvements in TTE following training 

related to changes in GE at 50% MAP. Previous research has demonstrated that a high 

GE is associated with a higher power output sustained during a 1 h cycling TT (Horowitz 

et al., 1994). In addition, others have reported differences between trained and untrained 

individuals for GE (Hopker et al., 2010), as well as changes in GE over the course of a 

competitive training season (Hopker et al., 2010). However, the correlation between the 

%∆GE and the %∆TTE performance following a training intervention has not been 

examined previously. From the results in Figure 4.3 it is evident that individuals who 

demonstrated the greatest increases in GE following training, also demonstrated the 

greatest improvements in TTE performance.  

 

A positive correlation was also observed between %∆TTE and %∆MAP, but there was 

no relationship between %∆TTE and %∆V̇O2max. Our findings are consistent with 

Vollaard et al. (2009), who previously demonstrated no relationship between the training 

induced %∆ V̇O2max and the %∆ TT performance following a standardised training 

intervention. Vollaard et al. (2009) concluded that the aerobic capacity and aerobic 

performance adaptations do not occur in proportion to each other, and therefore there is 

a poor link between these two measures. More research is therefore needed to gain a 

greater understanding of the relationship between physiological variables and TTE or TT 

performances in both trained and untrained individuals.  

 

In conclusion, similar improvements are found in V̇O2max, MAP, GE, and TTE despite 

substantially greater time spent training at MOD intensity compared to HIT or MIX, in 

untrained participants.  These findings support the contention that individualised HIT and 

MIX training intensities are time-efficient trainings strategies. In addition, MIX training 

appears to provide the greatest benefit to GE at 50% MAP and results in a greater number 

of responders to training when compared to MOD and HIT groups. The untrained status 

of the participants recruited in this study is a limiting factor. Future research should aim 
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to also study the effect of individualised training duration at different intensities in trained 

and elite athletes. 
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Chapter 5: A power law describes cycling endurance 

performance better than a critical power model.  
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5.1 Abstract. 

 

CP and power law models both propose exercise-intensity relationships that describe 

maximum endurance work capacity. Purpose: The aims of this study were twofold. 

Firstly, to determine if the CP and power law models accurately predicted cycling TTE 

for intensities within the typical CP range (80-110% MAP). Secondly, whether a power 

law model accurately predicted cycling TTE outside the typical CP range (60-200% 

MAP). Methods: Fifteen physically active males completed nine TTE trials, each 

separated by at least 48 h. Five trials were within the typical range of intensities for CP 

determination (80-110% MAP), and four trials were outside (60, 70, 150 and 200% 

MAP). Four models (Linear-TW, Linear-P, power law and semi-log) were generated 

from the five TTE trials within the typical CP range. The model fit and their prediction 

of actual performance were compared to the four trials performed outside the typical CP 

range. Results: There was no difference between the CP and power law models for 

parameter estimates when predicting actual TTE for intensities between 80-110% MAP 

(P>0.05). Outside of this range the power law model predicted actual TTE at 60% (95% 

confidence intervals (CI): 167 to 192 W; 156 to 183 W; actual vs. power law respectively, 

P>0.05) and 150% (95% CI: 378 to 431 W; 347 to 406 W; actual vs. power law 

respectively, P>0.05). Parameter estimates were similar to actual TTE for both CP 

models and the power law model at 70% MAP (P>0.05). The semi-log model over-

predicted TTE at all intensities (P<0.05). All models were different from actual 

performance for the 200% MAP trial (P<0.05). Conclusion: The power law is better than 

the CP model for predicting cycling endurance performance across a wider range of 

exercise intensities.  

 

Key Words: Time-to-exhaustion, Power-duration relationship, Mathematical models. 
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5.2 Introduction. 

 

Maximal endurance performance is known to decrease as exercise intensity increases. 

The curve that describes this relationship is therefore important both in modelling 

expected performance, and for its potential in setting training intensities. This power-

duration relationship has been a subject of extensive research, dating back as early as 

1906 (Kennelly, 1906; Hill, 1925; Francis, 1943; Henry, 1955; Monod and Scherrer, 

1965; Moritoni et al., 1981; Riegal, 1981; Blest, 1996; Katz and Katz, 1999; Gaesser et 

al., 1995; Bull et al., 2000; Vincenzo and Sandra, 2010). Physiologists have used a 

number of different mathematical models to describe this relationship, and predict world 

record performances (for review see Hill, 1993; Bull et al., 2000; Grubb, 1997). From 

this literature, it can be seen that two distinct curves, both exponential in nature, have 

been used to describe endurance performance. These two power-duration relationship 

curves are the power law and CP. 

 

Kennelly (1906) was probably the first to use a power law model for relating velocity to 

distance for various athletic and horse racing events. He found a linear relationship 

between time and speed when it was plotted on a logarithmic scale (i.e. it follows a power 

law as the slope of the log-log curve forms the scaling exponent of the power law). The 

model demonstrated a strong fit for data, describing an extremely wide range of athletic 

events and horse races (Kennelly, 1906). Subsequently, further studies have found that a 

simple power law relationship exists between exercise duration and intensity (Francis, 

1943; Grubb, 1997; Lietzke, 1954).  

 

In recent years it has become popular to adopt a hyperbolic, rather than a power law curve, 

to model the power-duration relationship (Moritoni et al., 1981; Hill, 1993; Jones et al., 

2010). From this hyperbolic curve two distinct model parameters are typically reported: 

CP and W´, or their speed/distance equivalents: critical speed and anaerobic distance. The 

term CP has been proposed to denote the maximum power output an individual can 

sustain for a prolonged period of time. It is typically calculated by conducting repeated 

TTE at different exercise intensities that result in trials lasting from between 2 and 15-

min (Dekerle et al., 2008). When total work done during each trial is regressed against 

TTE, the slope of the resulting relationship is taken as CP (Hill, 1993). The y-intercept of 

this regression is interpreted as W′. It has been suggested that the amount of work that 
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can be accomplished from fixed energy reserves within the muscle can be inferred from 

this parameter (Hill, 1993).  

 

Outside of the laboratory, the CP model has been applied to a wide range of sports to 

evaluate pacing strategies, and predict endurance performance (Hill, 1993; Jones et al., 

2010). Furthermore, CP is found to correlate with other physiological laboratory test 

measurements (Poole et al., 1988; Housh et al., 1989; McLellan and Cheung, 1992; 

Pringle and Jones 2002). For instance, Pringle and Jones (2002) report a strong correlation 

between maximal lactate steady state and CP. However, others have questioned the 

validity of using CP in this manner, and for its accuracy in predicting TTE (McLellan et 

al., 1992; Pepper et al., 1992). As a result, previous research has compared a CP to a 

power law model in predicting 1 to 10-min TT running performances (Hinckson and 

Hopkins, 2005). The power law model demonstrated a lower variation ~ 1% in 

comparison to CP for predicting performance (Hinckson and Hopkins, 2005). However, 

this constitutes a short and narrow range of performances, and is not representative of 

most common endurance activities. Furthermore, despite the narrow range, the metabolic 

determinants of performances outside of this range are likely to be markedly different 

(Whipp and Wasserman, 1972; Jones et al., 2005). Consequently, Hinckson and Hopkins 

(2005) concluded that further research is necessary to determine how well a power law 

model predicts different performance durations.  

 

The purpose of this study was to compare the predictive ability and goodness of fit of the 

CP and power law models when used to model a wide range of endurance performances 

(i.e. from <2-min to >20-min). As the power law model is derived from a log-log 

transformation, the intermediate semi-log model was also evaluated. It was hypothesised 

that a power law model would describe actual TTE performance better than the CP model 

for performance intensities outside those typically used to determine CP (i.e. <2-min to 

>20-min).  
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5.3 Methods. 

5.3.1 Participants. 

 

Fifteen recreationally active males were recruited to participate in this study (mean ± SD; 

28 ± 9 y; 82.9 ± 9 kg; 283 ± 28 W MAP; V̇O2max 49.5 ± 7 ml.kg1.min-1). Participants were 

excluded if they were on any medication, reported heart problems, exercise-induced 

asthma, or an injury that could interfere with testing. All participants gave their written 

informed consent to participate in this study that had been approved by the University of 

Kent’s ethics committee.   

 

5.3.2 Study design. 

 
Each participant completed 11 visits to the laboratory. The first two visits were for pre-

testing and familiarisation. The remaining nine visits were for the experimental TTE trials 

and were separated by at least 48 h. All testing was performed on a cycle ergometer 

(Schoberer Rad Messtechnik, Germany). These nine visits consisted of five trials to 

exhaustion at intensities recommended by McLellan and Cheung (1992) for the 

determination of CP (80%, 85%, 90%, 100% and 110% MAP), and four trials above and 

below these intensities (60%, 70%, 150% and 200% MAP). The latter intensities were 

chosen to ensure TTE occurs outside the 2 to 20-min range. Note that for 9 participants 

where TTE at 60% MAP was expected to exceed 45-min, they were instead tested at 65% 

MAP. For clarity, all 60% and 65% trials are referred to as 60%. Prior to each laboratory 

visit participants were instructed to ensure they were well hydrated, not to eat within 3 h, 

not to exercise within 24 h, nor consume alcohol within 48 h prior to exercise. During 

visit 1 each participant completed an incremental exercise test to determine V̇O2max and 

MAP. After a 30-min rest, participants completed two performance trials to exhaustion 

as part of their familiarisation. This familiarisation procedure was repeated between 2–7 

days later. The familiarisation trials were conducted at 110% and 80% MAP, with a 30-

min rest between each trial. Participants completed these two trials to minimise the 

influence of any learning effect on the experimental trial (Capriotti et al., 1999). The 

remaining nine visits consisted of separate trials to exhaustion organised in a random 

order. Only one trial to exhaustion was completed at each visit with at least 48 h between 

trials. Participants completed all trials within a 6-week period.  
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5.3.3 Procedures. 

 
V̇O2max test: Prior to the test, ergometer seat and handlebar height were adjusted and 

recorded in order that the same position was used for all subsequent trials. The test started 

at 100 W, and increased by 20 W every min until volitional exhaustion or the participant 

was no longer able to maintain the required work rate. V̇O2, V̇CO2, and V̇E were measured 

throughout exercise using an online gas analysis system (Cortex Metalyser 3B, Leipzig, 

Germany). HR was recorded continuously using a wireless HR monitor (Polar Electro, 

Kempele, Finland).  

 

5.3.4 TTE trials.  

 
Prior to each trial the participants completed a 5-min warm up at 50 W. Participants were 

instructed to maintain a consistent cadence based on their mean cadence in the V̇O2max 

test for as long as possible. Participants were given verbal encouragement to maintain 

their target cadence during all trials. Exhaustion was determined when participants were 

unable to sustain the target power output or reached volitional exhaustion. Participants 

were not informed of the elapsed time during the trials, or their final time, which was 

recorded to the nearest second. Capillary blood samples were collected 1 and 5-min after 

the trial ended. At 1 and 5-min of every trial RPE was also recorded (Capriotti et al., 

1999). 

 

5.3.5 CP, power law and semi-log models. 

 
CP, power law, and semi-log models of TTE across the different intensities were derived 

using the data from the five trials performed within the typical CP range of 80 to 110% 

MAP. Two linear CP models were used to examine this relationship: Linear-TW and 

Linear-P. The Linear-TW model was generated by linear regression of total work, 

measured in kJ and TTE (equation 2). The Linear-P CP model was generated by linear 

regression of power output and the inverse of TTE (equation 6). A power law model was 

generated by linear regression of the log-log relationship between exercise intensity and 

TTE (equation 8). The semi-log model was constructed by regressing the log of exercise 

intensity on TTE. All four models were then used to predict by extrapolation of the model, 

the actual TTE for all trials within and outside the typical range for CP. These predictions 

from the four models were compared with each other and the actual performance power 
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output. Exercise intensities ranging from 80–110% MAP, and 60–200% MAP, are 

referred to as ‘within’ and ‘outside’ respectively.  

 

5.3.6 Statistical analysis. 

 
A two-way (model; intensity) repeated measures ANOVA was used to compare the actual 

power output for the trials with those predicted from the CP, power law, and semi-log 

models. Parameter estimates between models were analysed and differences were 

identified using 95% confidence intervals (CI). The goodness of fit of the three models 

was evaluated by calculating the coefficient of determination (R2) for all data modelled 

within and outside the intensity range. Bland Altman plots and the 95% confidence limits 

of agreement (Bland and Altman, 1986) were also calculated for the 60 and 150% MAP 

trials. Analysis was conducted using the SPSS statistical software package (IBM SPSS 

Statistics, Rel. 22.0, SPSS, Inc, Chicago, USA). The level of significance was set at 

P<0.05. All values are reported as the mean (± SD). 

 

5.4 Results. 

 
One participant did not complete the 60% TTE trial, but completed the other nine TTE 

trials and therefore was not excluded from the analysis. When TTE trials for intensities 

between 70-110% MAP were predicted, there was no significant difference between the 

CP or power law models and actual TTE performance (P>0.05) (Table 5.1). These trials 

ranged in duration between approximately 2 and 27-min. Outside of this range however, 

both CP models over-predicted the TTE for exercise intensities at 60%, 150% and 200% 

MAP (P<0.05). The power law model more closely predicted actual TTE performances 

at 60% (180 ± 21 W vs. 169 ± 23 W; actual vs. power law respectively) and 150% MAP 

(405 W ± 44 W vs. 375 ± 50 W; actual vs. power law respectively) (P>0.05) but not at 

200% MAP (P<0.05). The semi-log model over-predicted the power outputs for all 

exercise intensities (P<0.05) (Table 5.1; Figure 5.1). 
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Table 5.1: 95% CI for actual TTE and predicted power output derived from the Linear-TW, Linear-P CP models, power law and semi-log model for 

intensities between 60-200% MAP. 

 

 

 

 

 

 

 

 

 

                                         Actual                             Linear-TW                            Linear-P                             Power Law                        Semi-log 

% MAP 
TTE (s) 

Lower CI 

(W) 

Upper CI 

(W) 

Lower CI 

(W) 

Upper CI 

(W) 

Lower CI 

(W) 

Upper CI 

(W) 

Lower CI 

(W) 

Upper CI 

(W) 

Lower CI 

(W) 

Upper CI 

(W) 

60   2467 ± 1248 167 192 195 219 196 224 156 183 303 353 

70 1652 ± 72 187 211 198 224 200 228 171 200 303 353 

80  610 ± 208 212 239 225 253 217 248 214 244 303 354 

85  484 ± 106 223 253 222 252 223 253 223 254 303 354 

90 370 ± 86 237 267 235 262 235 263 239 266 303 354 

100 224 ± 42 264 298 262 295 262 293 264 297 304 354 

110 165 ± 27 285 322 262 295 285 324 281 321 304 354 

150 62 ± 16 378 431 448 558 437 537 347 406 304 354 

200 31 ± 5 490 568 695 914 677 855 398 485 304  355  
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Figure 5.1: Mean ± SD; Actual and predicted power outputs (Linear-TW, Linear-P, power law 

and semi-log model) for trials at 60, 70, 150 and 200% of MAP. * Significant difference between 

actual and predicted power output; P < 0.05.  

 

R2 for the Linear-TW, Linear-P, power law and semi-log model, ‘within’ and ‘outside’ 

the typical CP model range are presented in Table 5.2. The power-duration relationship 

for one participant derived from the CP and power law models is presented in Figure 5.2. 

In addition, Bland-Altman plots and 95% limits of agreement are presented for the two 

intensities, which the power law model more closely predicts power output (60% and 

150% MAP), when compared to the other models (Figure 5.3 and 5.4). 

 

Table 5.2. R2 values for the Linear-P, Linear-TW, power law, semi-log model, ‘within’ and 

‘outside’ the typical CP model. 

 Within Outside 

 R2 R2 

Linear-TW 1.00 0.99 

Linear-P  0.95 0.95 

Power-law 0.95 0.96 

Semi-log  0.91 0.58 
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Figure 5.2: Power-duration relationship for one participant derived from a CP (Linear-TW and Linear-P) and power law model. Black circles represent ‘within’ the 

typical CP range (80-110% MAP). White circles represent ‘outside’ the typical CP range (60-200% MAP).  
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Figure 5.3 Bland-Altman plot and 95% limits of agreement between actual power output and predicted power output for the Linear-TW, Linear-P and power law 

models when participants completed a TTE trial at 60% MAP. Solid horizontal line represents the mean difference between predicted and actual power output. The 

dashed lines represent 95% limits of agreement. 
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Figure 5.4: Bland-Altman plot of the relationship between actual and predicted power output for the Linear-TW, Linear P and power law models when participants 

completed a TTE trial at 150% MAP. Solid horizontal line represents the mean difference between predicted and actual power output. The dashed lines represent 

95% limits of agreement.  
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5.5 Discussion. 

 

The main finding from this study was that there was no difference between the CP 

(Linear-TW and Linear-P), and power law models when predicting TTE for intensities 

between 70-110% MAP. Outside these intensities, the power law model better predicted 

TTE compared with the CP or semi-log models at 60% and 150% MAP, while the CP 

models overestimated performances at these intensities. None of the models accurately 

predicted TTE performance at 200% MAP. The semi-log model overestimated TTE 

performance for all exercise intensities.  

 

Our findings are consistent with those of Hinckson and Hopkins (2005), who reported no 

difference between models (CP versus power law) for TT between 1 and 10-min. 

Therefore, across a narrow range of exercise durations from ~ 2 to 20-min, it is evident 

that both the CP and power law model can be used to explain performance. A new finding 

from our study is that the power law model can reliably predict shorter and longer 

duration performances better than both CP models, which do not describe the power-

duration relationship well for intensities < 70% and > 110% MAP. 

 

The CP model has been extensively studied and found to reflect the power-time 

relationship, but its use has been criticised for only explaining performance within the 

narrow 2 to 20-min range of durations or equivalent distances (McLellan and Cheung, 

1992; Pepper et al., 1992). In contrast, the present study finds that the power law model 

provides a more realistic representation of endurance performance that extends well 

beyond the range of the CP model. One explanation for the ability of the power law model 

to explain the large variation in TTE is that it assumes a progressive decline in 

performance with increases in intensities or distances (Grubb, 1997). In contrast, the CP 

model assumes that a hyperbolic relationship exists between power and time and that 

below CP one can sustain exercise for an infinite time (Hill, 1993; Vanhatalo et al., 2011). 

This notion, implicit in the CP model, does not provide as accurate a representation of 

endurance performance.  

 

A CP model is often described as a physiological model to explain endurance 

performance (Monod and Scherrer, 1965; Hill, 1993; Pringle and Jones, 2002; Jones et 

al., 2010). It is proposed to represent the boundaries between the ‘heavy’ and ‘severe’ 

intensity domains of exercise tolerance (Jones et al., 2010) and is used by some to monitor 



 94 

changes following training (Gaesser and Wilson, 1988; Vanhatalo et al., 2011). However, 

CP can be highly sensitive to changes in cadence (~ 6% difference between 60 rpm vs. 

100 rpm) as well as the type of CP model used (Gaesser et al., 1995; Bull et al., 2000). 

On the other hand, the physiological basis for the power law model is unclear, but this 

model shows potential for predicting a much wider range of performances >40-min. The 

semi-log model was included in this study to explain the large variations in times, but it 

over predicted performances at all intensities. 

 

We note that our study is limited to demonstrations that only performances of up to ~ 40-

min can be accurately predicted using a power law model. Future research should 

determine if a power law model can accurately predict performances of much longer 

durations i.e. >40-min. Previous research has demonstrated a strong fit to data of world 

record performance times, when a power law model is used for athletic distances between 

100 m to a marathon (Grubb, 1997). Therefore, it is anticipated that the power law model 

would be able to predict actual TTE performances within these durations or distances.  

 

A large variation in the TTE was observed for trials at the same relative intensity. For 

example, at 70% and 80% MAP, CV for TTE performances was 44% and 34% 

respectively. This is consistent with research by Coyle et al. (1988) who reported a large 

variability in TTE performances at 88% V̇O2max. Differences in metabolic stress might 

explain some of this variability, as exercise based on a percentage of maximum (i.e. 

%V̇O2max, HRmax, MAP) does not take into account each individual’s physiological 

profile (e.g. power at lactate threshold) (Lansley et al., 2011; Mann et al., 2013; Scharhag-

Rosenberger et al., 2010). Future research could examine whether using a power law 

model reduces the variability in TTE. This method would specify exercise intensity by 

each individual’s power-duration relationship and model a more consistent exercise stress 

across participants.  

 

5.6 Conclusion. 

 
In conclusion, a power law model more accurately predicts cycling TTE for intensities 

ranging from 60-150% MAP. For TTE performances predicted between 70-110% MAP 

there was no difference between the predictive ability of the CP and power law models. 

The power law model therefore offers an alternative and more reliable model to predict 

and describe cycling performance over a wide range of intensities.  
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Chapter 6: A power law model reduces variability in time-

to-exhaustion 
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6.1 Abstract. 

 

A large inter-individual variability in TTE occurs when exercising at a fixed %V̇O2max. 

This may be because exercise intensity prescribed in this manner does not account for 

individual differences in metabolic stress. Purpose: This study aimed to compare a 

%V̇O2max prescription with an alternative based on an individual power-duration 

relationship (using a power law model). Methods: Sixteen trained male cyclists 

completed five visits to the laboratory separated by at least 48 h. The first three visits 

measured participants’ double-leg V̇O2max, LT, single-leg V̇O2peak, and power-duration 

relationship. A power-duration relationship was derived from three TTE trials at 85%, 

95% and 105% MAP, with 30-min rest between each trial, and was modeled using a 

power law model. A power law model predicted the intensity for TTE lasting exactly 20-

min, and 3-min. A corresponding intensity for TTE at %V̇O2max was 88%, and 109%. The 

final two experimental visits involved participants completing two TTE trials upon each 

visit, with 30-min rest between trials. The TTE trials were set as a %V̇O2max, or power 

law prescription, and were administered in a randomised order. Results: The inter-

individual variability for TTE performance duration was significantly reduced for TTE 

when prescribed using a 20-min power law versus 88% V̇O2max (CV = 29.7% vs. 59.9% 

respectively; P<0.05), but not for a 3-min power law versus 109% V̇O2max (CV = 26.5% 

vs. 27.4% respectively; P>0.05). Conclusion: Prescribing exercise intensity using a 

power law model reduces the variability in TTE by 50% when compared to the %V̇O2max 

method. Therefore, the power law is a more consistent method for standardising exercise 

intensity.  

 

Key Words: %V̇O2max, Inter-individual variability, Cycling, Exercise prescription, 

Relative intensity. 
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6.2 Introduction. 

 
V̇O2max is one of the most widely measured parameters in exercise physiology and is often 

used to prescribe training (Bacon et al., 2013; Midgley et al., 2006; Howley et al., 1995; 

Bouchard et al., 1999; Vollaard et al., 2009). However, when training is standardised to 

a %V̇O2max, a large inter-individual variability in training responses is frequently 

observed (Bouchard et al., 1999; Vollaard et al., 2009; Scharhag-Rosenberger et al., 

2012). Evidence suggests that some of this variability might be due to differences in the 

exercise stimulus experienced by each individual (Scharhag-Rosenberger et al., 2010; 

Lansley et al., 2011; McPhee et al., 2010). For instance, when an acute bout of exercise 

(e.g. TTE) is standardised to a %V̇O2max, there is a large variability in individual 

metabolic stress responses (Coyle et al., 1988; Scharhag-Rosenberger et al., 2010; 

Lansley et al., 2011). Additionally, it has been found that the training stimulus 

experienced by each individual’s leg muscles can also be highly variable when exercising 

at a %V̇O2max (McPhee et al., 2009; McPhee et al., 2010). This was highlighted by 

McPhee et al. (2010), who demonstrated an inverse relationship between training induced 

changes and single-leg V̇Opeak, when expressed as a ratio of double-leg V̇O2max (Ratio1:2). 

It was found that individuals with a low Ratio1:2 demonstrated greater training adaptations 

compared to those with a high Ratio1:2, when exercise was prescribed as a %V̇O2max 

(McPhee et al., 2009). As a result, researchers have questioned the methods used to 

standardise exercise intensity, and whether a %V̇O2max prescription is the most 

appropriate method to use (Mann et al., 2013; Hopker and Passfield, 2014).  

 

Alternative methods of standardising exercise intensity include using a ‘threshold based 

model’ (e.g. % of LT, GET, or ventilatory threshold) (Katch et al., 1978; Meyer et al., 

1999; Lansley et al., 2011; Wolpern et al., 2015). A recent review by Mann et al. (2013) 

discussed the practical and physiological implications of these methods. LT or GET 

methods have advantages in that they take into account an individual’s full physiological 

profile as opposed to just a % of maximum (Lansley et al., 2011). Additionally, 

prescribing exercise as a % GET results in a more consistent physiological response 

during sub-maximal exercise when compared to a %V̇O2max (Lansley et al., 2011). 

Nevertheless, there are a number of limitations to these prescription methods. For 

instance, the methods used to identify LT and GET are inconsistent and blood lactate 
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responses are sensitive to factors such as changes in diet and previous exercise (Mann et 

al., 2013).  

 

A different approach to using a %V̇O2max or % threshold method might be to prescribe 

exercise based on each individual’s performance profile e.g. the power-duration 

relationship. Previous research has found power-duration relationship models accurately 

predict endurance performance for a variety of sports (Hinckson and Hopkins, 2005; 

Oscieki et al., 2014). Evidence suggests that a relationship exists between exercise 

duration and intensity, and that this relationship can be described using a power law 

model (Kennelly, 1906; Blest, 1996; Riegal, 1981; Katz and Katz, 1999). The power law 

model assumes a linear relationship between exercise intensity and time when both are 

plotted on a logarithmic scale (Kennelly, 1906). This model has been validated for its fit 

over a very wide range of athletic events (Kennelly, 1906). Therefore, the main aim of 

this study was to compare the inter-individual variability in TTE performances when 

exercise intensity was prescribed using a %V̇O2max, versus an individual power-duration 

relationship (using a power law model). It was hypothesised, that the use of a power law 

model to prescribe exercise would reduce the inter-individual variability in TTE when 

compared to prescribing exercise based on a %V̇O2max method. A secondary aim was to 

determine whether the inter-individual variability in TTE performances was related to an 

individual’s Ratio1:2. It was hypothesised that there would be a relationship between TTE 

performances and the Ratio1:2, with individuals who had a high Ratio1:2 able to sustain 

exercise for longer than individuals with a low Ratio1:2.  

 

6.3 Methods. 

6.3.1 Participants. 

 
Sixteen trained male cyclists volunteered to take part in this study (mean ± SD: age = 35 

± 11 y, body mass = 76 ± 9 kg; Table 6.1) All participants were involved in a minimum 

of 6 h of cycle training per week, and were excluded if they reported any heart problems, 

exercise-induced asthma, or injuries that would interfere with testing. All participants 

gave their written informed consent to participate in this study that was approved by the 

University of Kent’s ethics committee.  
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6.3.2 Study design. 

 
Participants visited the laboratory on five occasions, each separated by at least 48 h. All 

tests were conducted on a cycle ergometer (Schoberer Rad Messtechnik, Germany). 

Participants were instructed to be fully hydrated and to avoid food, strenuous exercise, 

and alcohol for 3 h, 24 h and 48 h respectively prior to each visit. The first three visits 

were aimed at gathering data on each individual’s physiological profile, which was then 

used to prescribe the exercise intensities for the final two experimental visits. During the 

first visit, participants completed a sub maximal LT test and a double-leg V̇O2max test. 

The ergometer seat and handlebar height was adjusted for each participant and recorded 

to ensure the same position was used for subsequent trials. For visit two, participants 

completed a single-leg V̇O2peak test, and for visit three they completed three TTE trials at 

different power outputs equivalent to 85%, 95% and 105% MAP, with 30-min rest 

between trials. The information from these TTE trials was used to determine each 

individual’s power-duration relationship, which was needed to calculate the intensities 

for the power law prescription method. For the final two visits participants complete two 

TTE trials for each visit, separated by 30-min rest. The two methods of prescription for 

these trials were set using a fixed %V̇O2max or a power law model. Participants either 

completed two TTE trials as a %V̇O2max or two TTE trials at the intensity predicted from 

a power law model. The lower intensity trials (88% V̇O2max or a 20-min power law) were 

completed first followed by the higher intensity trial (109% V̇O2max or a 3-min power 

law), after 30-min rest. These prescription methods were administered in a randomised 

order in a crossover design.  
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Table 6.1: Descriptive data for each participant: MAP, double-leg V̇O2max, %V̇O2max, at LT, 

single-leg V̇O2peak and Ratio1:2.  

 

 

 

6.3.3 Preliminary trials.  

 
 LT: Participants completed a submaximal exercise test to determine the intensity 

corresponding to their LT. Participants cycled at different submaximal work rates 

increasing by 25 W every 5-min in a continuous manner. Participants were instructed to 

maintain a preferred cadence, but to keep this consistent throughout the test. V̇O2, V̇CO2, 

V̇E, and HR were recorded throughout the tests using an online gas analysis system 

(Cortex Biophysik, Leipzig, Germany). Earlobe blood lactate samples were collected 

within the last 30 s of each stage and analysed for blood lactate concentration using a 

lactate analyser (Biosen C-line, EKF diagnostic, Barleben, Germany). Once the 

participant’s blood lactate reached a target value of 4 mmol.L-1 the test was terminated, 

and following a 20-min rest, participants commenced the V̇O2max test. LT was determined 

using lactate e software (Newell et al., 2007), which calculated the intensity associated 

with a 1 mmol. L-1 increase in blood lactate concentration above baseline.   

 

Participant no.  

 

MAP  

(W) 

Double-leg V̇O2max 

(L.min-1) 

% V̇O2max,  

at LT 

Single-leg V̇O2max   

(L.min-1) 

Ratio1:2  

(%) 

1 353 3.74 63 3.16 85 

2 363 5.15 69 3.89 76 

3 319 3.93 65 3.51 89 

4 329 4.04 68 3.27 81 

5 341 4.15 79 3.60 87 

6 277 3.49 67 2.55 73 

7 390 4.98 67 4.11 83 

8 350 4.54 64 3.87 85 

9 395 5.09 62 4.21 83 

10 345 4.73 63 4.04 85 

11 307 3.66 69 2.91 80 

12 308 4.07 74 3.15 77 

13 357 4.47 63 3.13 70 

14 407 4.68 78 3.95 84 

15 395 4.83 63 3.55 74 

16 384 4.54 58 3.74 82 

Mean 351 4.38 67 3.54 81 

±SD 37 0.52 6 0.47 6 
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Double-leg V̇O2max: Participants completed a 5-min warm up at 150 W. The V̇O2max test 

started at 120 W and increased by 20 W every min until volitional exhaustion was 

reached, or the participant was no longer able to maintain the required work rate. V̇O2, 

V̇CO2, V̇E were recorded throughout. A blood lactate sample was measured 1-min after 

the test. The participants’ MAP and V̇O2max were calculated as the highest 60 s mean 

achieved during the test. Approximately 10-min after completing this test, participants 

were familiarised to the single-leg V̇O2peak test protocol by completing 6-min of cycling 

at 20, 40 and 60 W respectively. This is a similar protocol to that used by McPhee et al. 

(2010).  

 

Single-leg VO2peak: Participants completed a single-leg V̇O2peak test on the right leg only. 

Prior to commencing the test participants completed a double-leg warm up at 150 W for 

5-min. The single-leg VO2peak test was performed on the same ergometer as the V̇O2max 

test, but the left pedal removed and replaced with a 10 kg counter-weight. Participants 

rested their left foot on a step, while their right foot was securely strapped to the pedal. 

The test started at 40 W and increased by 10 W every min until volitional exhaustion was 

reached, or a cadence of 60 rev.min-1 could not be maintained (McPhee et al., 2010). V̇O2, 

V̇CO2, V̇E, and HR were recorded throughout as described above. The ratio of V̇O2peak 

attained from the single-leg V̇O2peak test was compared to the V̇O2max attained from the 

double-leg V̇O2max test for each participant (Ratio1:2) (McPhee et al., 2010).  

 

After a 30-min rest, participants completed two TTE trials as part of a familiarisation to 

the power-duration relationship test protocol (as described below). The familiarisation 

trials were set at 85% and 105% MAP, which were the upper and lower intensities used 

to determine the power-duration relationship. As this was for familiarisation only, 

subjects were allowed as much time to recover between trials as needed. The 

familisarisation trials were included to minimise the influence of any learning effect on 

the experimental trials (Capriotti et al., 1999).  

 

Power-duration relationship: The TTE protocol was similar to Karsten et al. (2015).  

Participants performed the TTE trials at power outputs equivalent to 85%, 95% and 105% 

of MAP with 30-min rest between trials. The trials were performed in this fixed order and 

each trial was preceded by a 5-min warm up at 150 W. Galbraith et al. (2011) has 

previously established that a 30-min rest allows sufficient rest between trials. Participants 

were instructed to maintain their mean cadence from the V̇O2max test and sustain the target 
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power output for as long as possible. They were not provided with any verbal 

encouragement or feedback on elapsed time and power output. Feedback on cadence was 

only provided when it fell 10 rev.min-1 below their target, and participants were given a 

10 s countdown before the test was terminated. TTE was recorded to the nearest second 

(s). 

 

6.3.4 Experimental trials.   

 

The final two experimental visits required participants to complete two TTE trials for 

each visit, separated by 30-min between trials. The test protocol criteria were the same as 

described above for the power-duration relationship visit, but the intensities were 

prescribed as a power law model versus a % V̇O2max. Figure 6.1 presents a flow chart of 

the steps performed to calculate the intensities for the power law and %V̇O2max 

prescription methods.  

 

Power law prescription method: The power law model was derived from the three TTE 

trials at 85%, 95% and 105% MAP. Exercise intensity (mean power output) and TTE for 

each of these trials was log transformed. A power law was generated from a linear 

regression of the log-log relationship between power output and TTE. The slope and the 

y-intercept of this relationship were calculated, and a power law model was used to 

predict by extrapolation the intensity for TTE trials lasting exactly 20-min and 3-min. 

 

%V̇O2max prescription method: The V̇O2 responses from the submaximal LT test were 

used to determine the VO2-power regression relationship for each individual. This 

relationship was then used to calculate the %V̇O2max corresponding to the power outputs 

prescribed for the 20-min and 3-min power law method. The mean %V̇O2max for the group 

was then used as the intensity for the subsequent %V̇O2max TTE trials. This resulted in 

exercise intensities equivalent to 88% V̇O2max and 109% V̇O2max.  

 

6.3.5 Physiological and perceptual responses to exercise. 

 
Muscle oxygenation: Vastus lateralis muscle oxygenation was continuously measured 

during all trials (except for the 3-min power law and 109% V̇O2max trial), using a near-

infrared spectroscopy device (Protamon, Artinis, Zatton, The Netherlands). The NIRS 
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probe was wrapped in cling film before positioning it to the right vastus lateralis to 

prevent sweat interfering with the signal. The probe was positioned longitudinally on the 

distal section of the right vastus lateralis, approximately 10-12 cm above the knee joint 

(Wang et al., 2012), and secured to the leg with kinesiology tape. Muscle oxygenation 

was measured by emitting continuous wavelengths of 780 and 850 nm light on the 

exercising leg. These wavelengths allow for the detection and differentiation in 

concentration changes of the two major forms of chormophores haemoglobin (Hb) and 

myoglobin (Mb) (i.e. HbO2 - oxy Hb + Mb and HHb – deoxy Hb + Mb). It is generally 

considered that the myoglobin contribution is the more minor component, and is difficult 

to differentiate from Hb using a tw-wavelength NIRS device; therefore, in line with 

previous researchers this will be ignored for the sake of clarity. 

 

Data were recorded at 25 Hz, and for the purposes of further analysis, a 30 s moving 

average was applied. NIRS data were first expressed relative to a baseline taken from the 

final 30 s of the standardised warm-up conducted prior to each trial. The amplitude of 

oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HHb) responses was 

calculated as the difference between the baseline and the average of each min of the TTE 

test. Using similar methods to Bonne et al. (2015), these values were then expressed as a 

% of the end test value to identify the % of maximal HbO2 and HHb at which each 

individual was exercising.  

 

RPE: Participants were asked to self-rate their RPE throughout the TTE trials. 

Participants were asked to rate their RPE after the first minute of exercise for the 20-min 

power law or 88% V̇O2max trial, or after 30 s of exercise for the 3-min power-law or 109% 

V̇O2max trial. Following this, they were instructed to report whenever their perception 

increased. The RPE value and time point at which RPE increased were recorded 

throughout the TTE trials. The testing procedure was similar to that used by McKumura 

et al. (2010). RPE values were plotted against time (s), and the slope of the linear 

relationship between RPE and time was calculated for each individual.  

 

6.3.6 Statistical analysis. 

 
The coefficients of variation (CV) were determined for the TTE trials and the associated 

physiological and perceptual responses. CVs were calculated as the ratio of the SD around 

the mean, expressed as a percentage. Inter-individual variability was defined as the 
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differences between participants for the same trial and is referred to as variability 

throughout. Comparisons between the variances in TTE, physiological and perceptual 

responses for the %V̇O2max, and power law methods were made using the F-distribution 

test (Bland, 2000), calculated using MedCalc Software (MedCalc vs. 11.3, Mairckerke, 

Belgium). Pearson’s correlation was used to examine the relationship between TTE 

(%V̇O2max and power law prescription) and the Ratio1:2, %V̇O2max at LT, RPE slope, 

%HHb and %HO2b. Bland Altman plots and the 95% confidence limits of agreement 

(Bland and Altman, 1986) were also calculated for the relationship between actual and 

predicted TTE when prescribed as a %V̇O2max. Analysis was conducted using the SPSS 

statistical software package (IBM SPSS Statistics, Rel. 22.0, SPSS, Inc, Chicago, USA). 

Data are presented as the means (± SD). The level of significance was set at P<0.05. 
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Figure 6.1. Flow chart of the procedures for setting exercise intensity as a %V̇O2max and power law model. 
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6.4 Results. 

6.4.1 Variability in TTE. 

 
The inter-individual variability for TTE performances was significantly lower when 

prescribed based on a 20-min power law versus 88% V̇O2max (P<0.05; CV = 29.7% and 

59.9% respectively; Figure 6.2, A). However, there were no significant differences in 

mean power output (275 ± 39 W vs. 278 ± 37 W) or the duration of exercise (1113 ± 330 

vs. 1130 ± 677 s) for the 20-min power law and 88% V̇O2max trials respectively (P>0.05) 

(Figure 6.2, B).  

 

 

Figure 6.2: TTE performances when exercise was prescribed as a 20-min power law versus 88% 

V̇O2max prescription.  A = CV for TTE performances B = mean (± SD) TTE performances * 

Significantly greater inter-individual variability for TTE performances; P<0.05. 

 

 

The inter-individual variability for TTE performances was not different when prescribed 

as a 3-min power law versus 109% V̇O2max (P>0.05; CV 26.5% and 27.4% respectively). 

There was no significant difference for mean power output (343 ± 37 vs. 347 ± 42 W) or 

the duration of exercise (153 ± 41 vs. 138 ± 38 s) for the 3-min power law and 109% 

V̇O2max trials respectively (P>0.05).  
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A power law model was used to predict TTE when exercise was prescribed at 88% and 

109% V̇O2max. Comparisons were made between predicted TTE and actual TTE. There 

was a strong correlation between predicted and actual TTE performances at 88% V̇O2max 

(r=0.95; P<0.05) (Figure 6.3). There was no correlation between predicted and actual 

TTE performances when a power law model predicted TTE at 109% V̇O2max (r=0.38; 

P>0.05). 
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Figure 6.3: Demonstrates a relationship between predicted (using a power law model) and actual TTE when exercise is prescribed as a %V̇O2max. A = a strong positive 

correlation between actual and predicted TTE. B = Bland Altman plot of the relationship and limits of agreement between predicted TTE (using the power law model) 

and actual TTE when exercise was prescribed as a %V̇O2max. The solid horizontal line represents the mean difference between predicted and actual TTE. The dashed 

line represents the 95% limits of agreement.
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6.4.2 Physiological and perceptual responses to exercise. 

 
There were no significant differences in the inter-individual variability for physiological 

responses (end blood lactate, HRmax, muscle oxygenation) during the TTE performances 

when prescribed as a power law versus %V̇O2max (P>0.05). There was no correlation 

between muscle oxygenation (HbO2 and HHb) and TTE for both the 20-min power law 

and 88% V̇O2max trials (P>0.05).  

 

There was a significant positive correlation between %V̇O2max at LT and TTE when 

exercise was set at 88% V̇O2max (r=0.54; P<0.05; Figure 6.4, A). There was no 

correlation between %V̇O2max at LT and TTE when prescribed using a 20-min power law 

method (P>0.05). A significant positive correlation was found between Ratio1:2 and TTE 

for the 20-min power law trial (r=0.57; P<0.05; Figure 6.4, B), but not the 88% V̇O2max, 

3-min power law or 109% V̇O2max trials (P>0.05).  
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Figure 6.4. A = a positive correlation between participants %V̇O2max at LT and TTE when exercise was prescribed at 88% V̇O2max. B = a positive correlation between 

participants Ratio1:2 and TTE when exercise was prescribed using the 20-min power law prescription method.  
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Figure 6.5 provides an example of how the slope of the RPE and time relationship was 

plotted for one participant. There was no difference in the variability for the slope of the 

RPE for the 20-min power law compared to the 88% V̇O2max trial (CV = 41% vs. 45% 

respectively; P>0.05). There was also no difference in the variability for the slope of the 

RPE for the 3-min power law compared to the 109% V̇O2max trial (CV = 46% vs. 36% 

respectively; P>0.05; n=10). Due to six participants forgetting to self-rate RPE for the 

higher intensity trials (3-min power law vs. 109% V̇O2max) these data were recorded from 

10 participants. A significant negative correlation was observed between the slope of the 

increase in RPE and TTE for the 20-min power law (r=-0.68; P<0.05), but not for the 

88% V̇O2max method (r=-0.19; P>0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Figure 6.5: Slope of the relationship between RPE and time for one participant.  
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is a mathematical model that has been used by physiologists to describe the power-

duration relationship, and accurately predict world record performances for distances 

from 100 m up to a marathon (Kennelly, 1906; Francis, 1943; Grubb, 1997; Blest, 1996; 

Katz and Katz, 1999). The power law model assumes a progressive decline in 

performance with an increase in intensity or distance (Grubb, 1997). It takes into account 

an individual’s power-duration relationship when prescribing exercise, which follows an 

exponential curve or can be described as a linear relationship when plotted on a 

logarithmic scale (Kennelly, 1906). In order to directly compare prescription methods 

(power law vs. %V̇O2max) the present study matched the intensity derived from the power 

law model to a %V̇O2max. This in turn meant that there were no significant differences in 

the mean TTE duration or power output sustained between methods. As a result, direct 

comparisons can be made between the two prescription methods (power law vs. 

%V̇O2max). Therefore, the findings of this study demonstrate that a power law model is a 

significantly more consistent method for prescribing exercise intensity lasting 20-min. 

This is evident from the 50% reduction in CV for the times individuals could sustain 

exercise to exhaustion for, when using a 20-min power law compared to an 88% V̇O2max 

prescription method.  

 

In agreement with the findings of the present study, Coyle et al. (1988) reported a large 

variability in TTE despite all subjects exercising at the same relative exercise intensity. 

The findings of Coyle et al. (1988) demonstrated that TTE performances ranged from 12-

75 min (with a CV of 43.7%), when trained cyclists exercised to exhaustion at 88% 

V̇O2max. Moreover, Coyle et al. (1988) suggested that the %V̇O2max at LT was a strong 

predictor of endurance performance, with individuals who had a high LT able to sustain 

the target intensity for more than twice as long as those with a low LT (Coyle et al., 1988). 

The present study supports these findings. A similar variability in TTE performances was 

observed in this study, ranging from 10-52 min with a CV of 59.9% when exercise was 

prescribed at 88% V̇O2max. Additionally, a positive correlation was found between 

participant’s %V̇O2max at LT and TTE when prescribed at 88% V̇O2max. In contrast, there 

was no correlation between participants’ %V̇O2max at LT and TTE when prescribed using 

a 20-min power law. This suggests that a power law model accounts for differences in 

metabolic stress when prescribing exercise intensity. 

 

A positive correlation between an individuals’ Ratio1:2 and TTE for the 20-min power law 

prescription method was also observed. This relationship suggests that participants who 
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had a high Ratio1:2 were able to sustain exercise for longer than those with a low Ratio1:2. 

This was an interesting finding and adds to the work of McPhee et al. (2010) who 

demonstrated a relationship between the variability in training induced adaptations and 

an individuals’ Ratio1:2. However, surprisingly, there was no correlation between an 

individual’s Ratio1:2 and TTE for the 88% V̇O2max prescription method. This was an 

unexpected finding considering the relationship between %V̇O2max at LT and TTE when 

prescribed as 88% V̇O2max. Upon further examination of the data however, there is no 

correlation between an individual’s Ratio1:2 and %V̇O2max at LT(r=0.14; P>0.05) and 

therefore, they appear to be determined by two different mechanisms. 

 

Similar to this study’s findings, recently published research has demonstrated a reduction 

in the variability of physiological, perceptual and training responses, when a ‘threshold 

model’ was used instead of a %V̇O2max method (Lansley et al., 2011; Wolpern et al., 

2015). While a threshold model offers a useful alternative to the %V̇O2max prescription, 

there are a number of limitations to the calculations of this measure. For instance, the 

methods and terminology used to determine LT and ventilatory threshold are inconsistent 

and can be confusing (Mann et al., 2013). Moreover, a highly controlled testing 

environment is required to accurately determine an individual’s threshold, and therefore 

limits the practical application of these measurements (Mann et al., 2013). The power law 

model might prove a more favourable option for applied sports practitioners and athletes, 

as reliable performance measurements can be collected both in the laboratory and the 

field (Karsten et al., 2015). Additionally, a strong correlation exists between predicted 

TTE (using the power law model) and actual TTE when exercise is prescribed as a 

%V̇O2max (Figure 6.3). The power law model was able to explain 90% of the variability 

in TTE when exercise was prescribed as a %V̇O2max. This offers further support for the 

practical application of a power law model. As well as a method to prescribe exercise 

intensity a power law can also accurately predict TTE performance. Future research is 

needed to compare the power law to other prescription methods (e.g. LT, GET or 

ventilatory threshold) and determine the variability of TTE using each of these methods. 

In addition, research should investigate whether a power law prescription method reduces 

the variability observed in training responses. 

 

In conclusion, using a power law model to prescribe exercise reduces the variability in 

TTE by 50%. However, some variability in TTE performances still exist and therefore 

warrants further investigation. For instance, factors such as intra-individual variability 
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were not accounted for in this study, and are reported to have a CV as high as 17.3% 

based on previous research of a similar intensity (McLellan et al., 1995). Nevertheless, it 

does appear to be the case that the methods used to standardise exercise intensity explain 

some of the variability in TTE. Future research should examine whether training 

standardised using the power law model can reduce the known variability in training 

responses.  
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Chapter 7: General discussion 
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7.1 Summary. 

 

A large inter-individual variability in the observed response to physical exercise is 

consistently reported (Bouchard et al., 1999; Coyle et al., 1988; Vollaard et al., 2009; 

Scharhag-Rosenberger et al., 2010; Scharhag-Rosenberger et al., 2012). To date, the 

majority of research has focused on the hypothesis that genetic factors contribute to this 

variability (e.g. Gaskill et al., 2001; Bouchard and Rankinen, 2001; Bouchard et al., 1999; 

Bray et al., 2009; Ehlert et al., 2013). Another, less investigated hypothesis is that this 

variability is also due to an inappropriate standardisation of exercise intensity or duration 

(Mann et al., 2013; Hopker and Passfield, 2014). Evidence to support this hypothesis 

stems largely from the individual variation often seen in training responses, as well as the 

individual differences in metabolic stress during an acute bout of exercise (Bouchard et 

al., 1999; Vollaard et al., 2009; Coyle et al., 1988; Scharhag-Rosenberger et al., 2010; 

Scharhag-Rosenberger et al., 2012). Such studies standardise exercise intensity as a 

%V̇O2max despite the fact that this method fails to take into account an individual’s full 

physiological profile (e.g. power at threshold) (Mann et al., 2013). Subsequently, 

alternative methods of prescribing exercise need to be examined in an attempt to elicit a 

more consistent stimulus across all individuals during exercise. Therefore, the overall aim 

of this thesis was to explore the basis, and investigate the effects of individualised 

methods of standardising exercise intensity and duration on TTE and training responses 

in cycling.  

 

The first experimental chapter (Chapter 3) of this thesis compared the two most common 

methods used to measure endurance performance: TTE and TT. The findings demonstrate 

that when TTE and TTs are matched for duration and no feedback is provided, mean 

power output is higher for the TTE trial at 80%, but not 100% and 105% MAP. This in 

turn meant that CP calculated from the TTE trials was higher than that from the TT. The 

second experimental chapter (Chapter 4) investigated the effects of three training 

intensities (MOD, HIT, and MIX) on performance and physiological adaptations when 

the duration of training was individualised. Four weeks of MOD, HIT or MIX training 

improved V̇O2max, MAP, GE at 50% MAP (for MOD and MIX) and TTE, but there were 

no differences between groups. GE at 50% MAP demonstrated the greatest increase after 

MIX training, though this was not statistically different from the MOD and HIT groups. 

Furthermore, there was a large inter-individual variability in physiological training 

responses (V̇O2max and GE), but a consistent improvement in performance across all 
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intensity groups when the duration of training was tailored to each individual (97% 

responders; 3% non-responders). The final two experimental chapters (Chapters 5 and 6) 

examined the hypothesis that a power law mathematical model would predict TTE across 

a wide range of exercise intensities and reduce the variability in TTE. A power law was 

able to accurately describe and predict TTE for intensities between 60-150% MAP. In 

addition, when exercise intensity was prescribed based on an individual’s power-duration 

relationship (using a power law model) a 50% reduction in the variability of TTE 

performances was observed when compared to the %V̇O2max prescription method. 

 

7.2 TTE trials to assess endurance performance. 

 

Researchers and sport scientists commonly use information gathered from TTE trials to 

monitor and detect changes in endurance performance (Currell and Jeukendrup, 2008). In 

addition, TTE trials are used to determine an individual’s power-duration relationship, 

and subsequently calculate CP and W′ parameters, as well as predict future performances 

(Derkele et al., 2008; Hill, 1993). While the measurement error is considerably higher for 

TTE compared to TT, the ‘signal-to-noise’ ratio (change in performance divided by the 

error of measurement) is found to be similar (Amann et al., 2008). Chapter 4 is one of 

few studies to directly compare TTE and TT performances (Ham and Knez, 2009; 

Thomas et al., 2012). In addition, the absence of feedback in an attempt to standardise the 

comparisons between TTE and TT has not been examined previously. The main finding 

from this study was that the mean power output was higher in the TTE compared to TT 

at 80%, but not at 100% and 105% MAP. Consequently, calculated CP was higher when 

derived from the TTE trials compared to the TT, whereas, W′ was lower. Upon 

examination of the individual performances for both the TTE and TT, it is evident that 

the participants consistently sustained a higher mean power output for the TTE compared 

to TT at 80% MAP (Figure 7.1). Only one participant was found to sustain a 1 W lower 

mean power output for the TTE compared to the TT. The higher mean power output 

consistently observed for TTE at 80% provides further evidence that TTE should not be 

disregarded as a measure of endurance performance in the laboratory (Laursen et al., 

2007; Amann et al., 2008).  
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Figure 7.1. Individual mean power output sustained for TTE versus TT performances at 80% 

MAP. * Significant difference between trials; P<0.05. 

 

It should not be overlooked that factors such as pacing (Foster et al., 1993; Atkinson et 

al., 2003) and the absence of feedback (Marcora et al., 2010; Jones et al., 2013) may have 

influenced the findings of this comparison. Figure 3.2 in Chapter 3 presents the mean 

power output sustained for each decile (10%) for both TTE and TT performances. From 

figure 3.2 it is evident that participants may have misjudged their pacing strategy for the 

TT at 80% MAP. In comparison, for the TTE at 80% MAP, participants are seen to adopt 

a higher mean power output initially in the TT. This fast start appears to result in a 

progressive decline in power output throughout the TT, leading to a decrease in overall 

average power sustained. It is unclear whether the absence of feedback led to this 

reduction in power output. Nevertheless, taking into account the important role feedback 

has on performance outcomes (Marcora et al., 2010; Faulkner et al., 2011), this suggestion 

seems valid. These factors therefore need to be considered when deciding on the most 

appropriate performance test to use. Although it should be noted that pacing and the 

absence of feedback does not appear to have influenced performances for intensities at or 

above 100% MAP (Figure 3.3, A and B in Chapter 3).  

 

TTE trials are traditionally used to examine the power-duration relationship in cycling 

(Hill, 1993; Derkele et al., 2008; Jones et al., 2010). Although, more recently, TT type 

performance tests have also been used in the field (Karsten et al., 2015; Quod et al., 2010). 
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Some argue that TTs are more ecologically valid as they more closely simulating a race 

event or a training session allowing individuals to vary their exercise intensity throughout 

(Hopkins et al., 2001; Jeukendrup et al., 1996). However, others argue that TTE are still 

of practical use, particularly when investigating physiological responses where a fixed 

power output is important (Laursen et al., 2007; Amann et al., 2008). Mean calculated CP 

was higher when derived from TTE compared to TT performances. Whereas, mean 

calculated W′ was lower for TTE compared to TT performances. Figure 7.2 presents the 

individual calculated CP and W′ parameters derived from the TTE and TT performances 

using the Linear-P CP model. As evident from the figure a consistently higher CP and a 

lower W′ is evident for most participants (Figure 7.2). Therefore, it appears to be the case 

that CP and W’ are inversely related and highly sensitive to the test protocol employed. 

These findings add to previous research that has found CP to be sensitive to changes in 

cadence (~ 6% difference between 60 rpm vs. 100 rpm) as well as the type of CP model 

used (Bull et al., 2000). CP is considered a useful parameter to help athletes to set 

appropriate pacing strategies and predict performances (Jones et al., 2010). Additionally, 

W′ is considered a mechanical measure of the finite work capacity that an individual can 

perform above their calculated CP (Jones et al., 2010), and has been used to prescribe 

HIT sessions alongside CP (Pettitt et al., 2015). Nevertheless, Vanhatalo et al. (2011) 

propose that an increase in CP and reduction in W′ will result in an improvement in 

endurance performance. Whereas, an increase in W′ is only related to an improvement in 

high-intensity, short duration performances (Vanhatalo et al., 2011). Consequently, it is 

important that researchers adopt a test protocol that maximises mean power output when 

determining CP.  
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Figure 7.2. Individual calculated CP (A) and W′ (B) parameters for the Linear-P CP model 

derived from TTE and TT performances.  

 

7.2.1 Inter-individual variability at different exercise intensities 

 

A consistent observation and theme throughout this thesis, is the large inter-individual 

variability in TTE performances when exercise intensity is standardised as a %MAP or 

%V̇O2max. This was particularly noticeable in Chapter 6 where participants completed 

nine TTE trials on separate occasions at intensities that ranged from 60-200% MAP 

(Table 7.1). Table 7.1 presents the mean inter-individual variability for TTE 

performances. It is evident from the results that the CV for TTE is much lower at the 

upper intensities compared to the lower intensities. Coyle et al. (1988) previously 

highlighted this variability in TTE when exercise intensity was set at 88% V̇O2max (Coyle 

et al., 1988). However, the magnitude of this variability when examining a range of 

different exercise intensities has not been previously reported. Instead the majority of 

research has focused on the intra-individual variability for TTE (for review see Currell 

and Jeukendrup, 2008). Nevertheless, it is not surprising that the findings from these 

studies demonstrate a similar pattern of variability to that observed in Chapter 6 and 

presented in Table 7.1. For example, previous research has reported that for intensities at 

or above V̇O2max, the intra-individual variability is much lower (typically 1.7-17% CV), 

than for intensities below V̇O2max (typically 5.6-55.9% CV) (Gleser and Vogal, 1971; 
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Maughan et al., 1989; McLellan et al., 1995; Jeukendrup et al., 1996; Laursen et al., 2007; 

Coggan and Costill, 1984; Graham and McLellan, 1989; Lindsay et al., 1996). An 

understanding of the intra-individual variability of TTE performances has allowed 

researchers to determine if a meaningful change has occurred following an intervention 

(Currell and Jeukendrup, 2008). On the other hand, the impact of the inter-individual 

variability of TTE performances on training responses is less well understood, and may 

contribute greatly to the variability in training responses frequently observed (Bouchard 

et al., 1999; Vollaard et al., 2009; Scharhag-Rosenberger et al., 2012). It is important 

therefore, that researchers not only account for the intra-individual variability in TTE, but 

also recognise the magnitude of the inter-individual variability. This is particularly 

important when prescribing training at lower exercise intensities. Furthermore, the CVs 

reported in Table 7.1 provide further support that exercise should not be standardised as 

a % of maximum if the overall aim is to produce a consistent exercise stimulus for all 

participants.  

 

Table 7.1: Mean (± SD and CV) TTE performances when set at intensities between 60-200% 

MAP. The minimum and maximum performances for the group are also reported (n=15). Data 

are presented from findings in Chapter 6. n=15 except for the 60% and 65% intensities, which 

have n=6 and n=9 participants respectively. 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 
 

% MAP Mean ± SD Min (s) Max (s) CV (%) 

60 1575 ± 626 852 2470 40 

65 2963 ± 1248 1529 4821 42 

70 1652 ± 721 612 2866 44 

80 610 ± 208 348 1081 34 

85 484 ± 106 325 765 22 

90 370 ± 86 245 498 23 

100 224 ± 42 147 299 19 

110 165 ± 27 110 211 17 

150 62 ± 16 32 83 26 

200 31 ± 5 20 38 18 
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7.3 Methodological and practical benefits of using a power law model 

 

7.3.1 A power law describes and predicts endurance performance. 

 

An understanding of the power-duration relationship provides coaches and sport 

scientists with an informative, practical tool to predict and monitor endurance 

performance. Since 1906, physiologists have used a number of mathematical models to 

describe this relationship (Kennelly, 1906; Monod and Scherrer, 1965; Moritoni et al., 

1981; Jones et al., 2010). Nevertheless, the CP model is the most common mathematical 

model used to date in cycling (Monod and Scherrer, 1965; Jones et al., 2010). Previous 

research has demonstrated the practical benefits of using this model across a wide range 

of sports (Hill, 1993; Jones et al., 2010). In particular a CP model is used for setting 

appropriate pacing strategies and calculating aerobic and anaerobic parameters of 

endurance performance (Hill, 1993; Pringle and Jones, 2002). Research has also reported 

a good reliability for the calculation of CP in both laboratory and field settings (Karsten 

et al., 2015) and is correlated with an individual’s maximal lactate steady state (Pringle 

and Jones, 2002). However, there are a number of limitations to this model, such as the 

model’s inability to extrapolate outside the 2 to 20-min range and its assumption that 

below CP one can sustain exercise intensity for an infinite amount of time (Vanhatalo et 

al., 2011). Chapter 6 investigated the hypothesis that an alternative model (a power law) 

would more accurately predict and describe endurance performances outside the typical 

durations used to determine CP (>2-min to <20-min). This hypothesis was based on 

evidence demonstrating that a power law model has a strong fit for performance data 

across a wide range of durations in athletics (Kennelly, 1906; Francis, 1943; Monod and 

Scherrer, 1965; Katz and Katz, 1999). Previous research has examined the predictive 

ability of a power law model, but only for a narrow range of durations or distances (e.g. 

200-400 m distance in swimming and 1-10 min range in running) (Osiecki et al., 2014; 

Hinckson and Hopkins, 2005). Additionally, the ability of a power law model to predict 

endurance performance for cycling has not previously been examined. The findings in 

Chapter 6 demonstrate that the power law model could reliably predict TTE for intensities 

ranging between 60-150% MAP (~ 1 to 41-min). While the CP model was able to 

accurately predict TTE for intensities between 70-110% MAP (~ 2 to 27-min), it 

overestimated TTE at 60%, 150% and 200% MAP. Therefore, it was concluded that the 

power law and CP model accurately describes and predicts endurance performance within 
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a narrow range of intensities (>70% to <150% MAP). Outside of this range, however, a 

power law model should be used for a more accurate prediction of longer and shorter 

endurance performances. More research is needed to determine if a power law model can 

predict performances >40-min and if it can be applied to other sports. We know from 

previous research that a power law model fits the data closely for world record athletic 

distances between 100 m to a marathon (Grubb, 1997). Therefore, it is expected that its 

ability to predict performances would be as good up to this distance. If this were the case, 

it would provide sport scientists and researchers a more reliable model to predict 

endurance performance across a much wider range of durations, compared to the CP 

model. A power law model may also be of use for predicting a sub 2 h marathon record 

(Joyner et al., 2011; Hunter et al., 2015).  

 

7.3.2 A power law reduces the variability in TTE.  

 

As well as accurately predicting TTE performances, Chapter 6 demonstrates that a power 

law model can reduce the inter-individual variability in TTE by up to 50% when 

compared to the traditional %V̇O2max prescription method. This provides evidence that 

the methods used to standardise exercise intensity contribute to the inter-individual 

variability in TTE performances. This is an important finding considering the large 

variability in metabolic and training responses frequently reported when exercise is 

standardised as a %V̇O2max (e.g. Vollaard et al., 2009; Scharhag-Rosenberger et al., 2010; 

McPhee et al., 2010). Thus, the power law model is a simple, non-invasive and practical 

alternative that researchers and applied practitioners can use to prescribe exercise 

intensity. More research is needed to determine if a power law prescription can reduce 

the variability in subsequent training responses that are frequently observed (Bouchard et 

al., 1999; Vollaard et al., 2009). Wolpern et al. (2015) recently demonstrated a reduction 

in training response variability when a threshold model (based on the first and second 

ventilatory threshold) was used to prescribe exercise compared to a %HRR method. They 

reported a more consistent increase in V̇O2max response when training was prescribed 

using a threshold method (100% responders) compared to a %HRR (41.7% responders; 

58.3% non-responders) (Wolpern et al., 2015). Therefore, it is anticipated that a power 

law prescription method would demonstrate a similar consistency in the training 

responses to that found when using a threshold method; this warrants further 

investigation.  
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A power law model also demonstrated a strong correlation between predicted TTE and 

actual TTE when prescribed as a %V̇O2max (r = 0.95). Therefore, from the raw data 

collected in Chapter 6, it is possible to predict participants TTE performances, if exercise 

was prescribed using other prescription methods e.g. %CP, % LT, %OBLA and %MAP 

(Table 7.2). To do this, the same methods as described in Chapter 6 (Figure 6.1) were 

used, but this time relating the power output predicted from the 20-min power law to a % 

of CP, LT, OBLA, MAP and single-leg V̇O2peak. A power law model was then used to 

predict by extrapolation, participants expected TTE for each of these methods (Table 7.2). 

Table 7.2 reports the mean predicted TTE for the 16 participants as well as the predicted 

SD and CV. An F-distribution test was used to determine if the predicted variances in 

TTE were significantly different from the actual variances in TTE when prescribed using 

a power law. The results suggest that no differences in the inter-individual variability for 

TTE would be observed if exercise was prescribed as a %CP, %OBLA or using a power 

law model. Alternatively, when prescribed as a %MAP or %LT, the inter-individual 

variability for TTE performances is expected to be significantly more variable when 

compared to a power law method. This variability is similar to that already found when 

exercise was prescribed as a %V̇O2max. Surprisingly, the %LT method demonstrated a 

high inter-individual variability for predicted TTE performances. Although the predicted 

mean TTE is much higher for this prescription method (1553 s) compared to the others, 

which may explain some of this variability. However, this warrants further investigation. 

Nevertheless, these predictions provide further evidence that the traditional %V̇O2max and 

%MAP methods should be avoided when prescribing exercise, in particular if the aim is 

to elicit a consistent exercise stimulus for all participants. Sport scientists and researchers 

should instead aim to provide a training stimulus that produces a defined metabolic strain 

across all athletes and thus produces predictable adaptive responses (Scharhag-

Rosenberger et al., 2010). Future research should compare the power law prescription 

method to a %CP or %OBLA to determine which method produces the most consistent 

exercise stress stimulus and training response.  
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Table 7.2: Predicted TTE, and CV if exercise was prescribed as a %CP, %OBLA or %MAP, in 

comparison to actual TTE performances when prescribed using a power law method. * 

Significantly greater CV when compared to the power law prescription method.  

 

7.4 Is there an optimal training intensity when training is individualised? 

 

Numerous studies have examined the physiological and performance benefits of MOD, 

HIT (Gormley et al., 2008; Helgerud et al., 2007; Burgomaster et al., 2008; Gibala et al., 

2006; Rodas et al, 2000; Bacon et al., 2013), and more recently polarised training 

intensities (Neal et al., 2011; Manzi et al., 2009; Laursen, 2010). Findings are inconsistent 

between studies, in particular when direct comparisons are made between MOD and HIT 

(Gormley et al., 2008; Helgerud et al., 2007; Burgomaster et al., 2008; Gibala et al., 

2006). It was hypothesised that this was due to the methods used to standardise training 

duration. For example, in some instances where MOD and HIT, training are matched for 

energy expenditure or training duration it might be the case that MOD group were not 

provided with a sufficient training stimulus (e.g. Gormley et al., 2008). Therefore, an 

individualised approach to training duration was expected to better identify if there were 

any differences in the physiological and performance adaptations that occur with different 

training intensities. Chapter 5 examined the effects of MOD, HIT, and MIX training on 

physiological and performance responses when the training duration was individualised. 

This was expected to induce a maximum training benefit for all participants regardless of 

the exercise intensity they were exposed to. The main finding from this study was that 

when training was distributed in this way similar physiological and performance benefits 

were found for all training intensity groups. These findings are consistent with that of 

Predicted performance Power output (W) TTE (s) TTE CV 

        

99% CP 276 ± 36  1250 ± 319 26 

128% LT 276 ± 34 1533 ± 1259    82 * 

111% OBLA 276 ± 36 1302 ± 458 35 

78% MAP 275 ± 29 1388 ± 673    48 * 

138% Single-leg MAP 276 ± 32 1595 ± 1357     85 * 

        

Actual performance Power output (W) TTE (s) TTE CV 

        

88% V̇O2max 278 ± 37 1130 ± 677   60 * 

20-min Power law 275 ± 39 1113 ± 330 30   
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Burgomaster et al. (2008) and Gibala et al. (2006) who compared MOD and HIT training, 

but fixed the duration of training. The considerably lower time spent exercising at HIT 

compared to MOD (~80%) or MIX (~63%) adds further support for the contention that 

HIT exercise is a time efficient training strategy (Gibala et al., 2006). In addition, the 

differences between the exercise intensities is lost when training is organised in this 

manner as individualised training ensures participants gain a maximum benefit from the 

training and are not just training for a specified amount of time.  

 

It is difficult to determine whether any additional benefits from training were a result of 

individualised training durations without the inclusion of a control group. However, based 

on a similar analysis previously used by other researchers (Scharhag-Rosenberger et al., 

2012; Wolpern et al., 2015) responders and non-responders for physiological and 

performance adaptations were identified (Table 4.4, Chapter 4). From Table 4.4 in 

Chapter 4 of this thesis it is evident that there was a large inter-individual variability in 

physiological responses e.g. V̇O2max and GE. In addition, two notable observations are 

apparent from the data. Firstly, there appears to be a reduction in the number of non-

responders observed for improvements in V̇O2max following individualised HIT training 

(17%), compared to individualised MOD (46%) and MIX (46%) training (Figure 7.3). 

The individual magnitudes of the V̇O2max training adaptations are presented in Figure 7.3. 

As evident from Figure 7.3 (B), the participants who completed the HIT training appear 

to show greater increases in V̇O2max and a greater number of responders. However, this 

was not statistically significant when compared to the other training groups. These 

findings are in agreement with Bacon et al (2013) who reported that HIT training 

demonstrates greater increases in V̇O2max compared to endurance type training. A second 

observation was the consistent improvement in TTE performances for all training groups, 

despite differences in training intensity. Figure 7.4 below presents the individual TTE 

performances before and after training for a cohort of 34 participants, with only one 

participant in the HIT group demonstrating a non-response to training (Table 4.4. and 

Figure 7.4). This is an interesting finding given that majority of research focuses on the 

individual changes in V̇O2max as a parameter to demonstrate a training effect (Bouchard 

et al., 1999). It also further highlights the importance of training studies measuring 

endurance performance as well as physiological adaptations, as an improvement in 

performance is the ultimate aim for athletes.  
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Figure 7.3. Individual %∆V̇O2max after MOD, HIT or MIX training. Responders (white bars) are categorised as an improvement greater than 5.6% and non-responders 

(black bars) are categorised as a decrease or improvement no greater than 5.6%. (n=34). The dashed line represents a 5.6% ∆V̇O2max.  
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Figure 7.4: TTE performances before and after training for the MOD, HIT, and MIX group (n=34).  
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In scientific literature, an increase in V̇O2max is frequently used to demonstrate a training 

effect (Bouchard et al., 1999; Hickson et al., 1977; Helgerud et al., 2007; Gormley et al., 

2008; Midgley et al., 2006). This has led researchers to examine the effects of different 

training strategies on the improvement in V̇O2max, with some demonstrating large 

increases following standardised training interventions (Hickson et al., 1977; Rodas et 

al., 2000). While the study in Chapter 5 of this thesis demonstrated significant increases 

in V̇O2max after 4-weeks of training, this was not different between intensity groups. In 

addition, the magnitude of the increase in V̇O2max was not as large as some other studies 

have reported (Hickson et al., 1977; Rodas et al., 2000). For example, Hickson et al. 

(1977) and Rodas et al. (2000) reported V̇O2max increases of approximately 4.4% and 5% 

per week following MIX and HIT training respectively. Data from the training study in 

Chapter 5 demonstrate an increase in V̇O2max corresponding to approximately 2.5%, 3% 

and 2% per week with MOD, HIT and MIX training respectively was observed. That this 

study did not demonstrate as large an increase in V̇O2max as previous studies (Hickson et 

al., 1977; Rodas et al., 2000) might be explained by the high number of training sessions 

(6-7 sessions per week) prescribed in previous studies. Comparisons of the relationship 

between %∆V̇O2max versus the number of training sessions were presented in Chapter 2 

of this thesis (Figure 2.4). This analysis of 40 published studies demonstrated a greater 

increase in V̇O2max with a greater number of training sessions. This finding warrants 

further investigation, in particular as it contradicts previous studies that were designed 

specifically to examine the influence of training frequency on training responses (Hatle 

et al., 2014; Pollock et al., 1975). Therefore, future research should examine the 

longitudinal training adaptations for V̇O2max (>10 weeks) following different exercise 

intensities with a greater number of sessions per week and an individualised training 

duration. 

 

7.5. Relationship between GE, single-leg VO2peak and endurance performance 

 

The findings in Chapter 4 demonstrate a strong positive correlation between the %∆ GE 

at 50% MAP and %∆ TTE after training in recreationally active participants. From the 

results presented in Figure 4.3 it is evident that those individuals who demonstrated the 

greatest increase in GE following training also had the greatest increase in TTE 

performances. This finding adds to previous research that has reported a high GE to be 

associated with a higher power output sustained during a 1 h cycling TT in trained cyclists 

(Horowitz et al., 1994; Jobson et al., 2012). It was also interesting to note that while there 



 130 

was a correlation between %∆GE and %∆TTE performance, there was no correlation 

between %∆V̇O2max and TTE performances. This finding is consistent with that of 

Vollaard et al. (2009). More research is needed to gain a greater understanding of the 

relationship between physiological parameters and endurance performances tests (TTE 

and TT) in both trained and untrained individuals. 

 

A relationship between the Ratio1:2 and TTE performances when prescribed using a 

power-law was also observed in Chapter 6. It appears to be the case that prescribing 

exercise intensity using a power law accounts for individual differences in metabolic 

stress, but not differences in the ratio of single to double leg V̇O2max. Furthermore, there 

was no relationship between %V̇O2max at LT and Ratio1:2, suggesting that different 

mechanisms are responsible for these two measurements. Additionally, Ratio1:2 explained 

33% of the variability in TTE performances when prescribed using a power law model.  

 

7.6. Practical messages and applications in the field 

 

 The type of performance test (TTE vs. TT) used to derive CP and W′ can 

significantly alter these parameter estimates. 

 

 When training is individualised to an individual’s maximum performance 

capability, it does not appear to matter what training intensity they are exposed to 

when the aim is to improve endurance performance. 

 

 An increase in GE appears to be more closely related to improvements in 

endurance performance than V̇O2max. Therefore, researchers and coaches should 

focus on training strategies that optimise GE as opposed to V̇O2max. The findings 

of this thesis suggest that GE results in greater improvements following MIX 

training as opposed to MOD or HIT.  

 

 Coaches and applied practitioners can use either a CP or power law model to 

accurately predict cycling TTE performances between 2 and 27-min. For 

durations outside of this range a power law model should be used. This model 

reliably predicts TTE performances for durations between 1 and 41-min, with the 

potential of predicting a much wider range of performances.  
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 A power law model can be used to prescribe exercise intensity. This model elicits 

a more consistent exercise stimulus across individuals, compared to a traditional 

%V̇O2max prescription method, when used to prescribe an acute bout of exercise. 

This model will help coaches optimise their training prescription methods.  

 

7.7. Future directions 

 

The findings of this study highlight a number of key areas that warrant further 

investigation. Firstly, it is evident from Chapter 5 that a power law model accurately 

predicts TTE performances for intensities between 60-150% MAP (~ 1-41-min). 

However, further investigation is needed to determine if it is possible to predict cycling 

TTE performances >40-min, and whether this model can be used in a field setting. 

Additionally, it is unclear whether any physiological parameters can be derived from this 

model, similar to that of a CP model.  

 

Secondly, a power law prescription method reduces the inter-individual variability in 

TTE performances. Whether this finding translates to more consistent training responses 

is yet to be investigated. Future research should therefore use a power law model to 

prescribe exercise, comparing it to other methods such as the %CP, %OBLA. A more 

consistent exercise stimulus would enable athletes to enhance their performance with 

more focused training and perhaps produce a more predictable training response.  

 

8.4. Conclusions 

 

The results of this thesis provide evidence that the inter-individual variability in TTE 

performances are partly related to the methods used to standardise exercise intensity. By 

using a power law model the variability in TTE performances can be reduced when 

compared to a %V̇O2max method that is more commonly used by researchers to date. More 

research is needed to investigate whether a similar reduction in training response 

variability can be achieved when using a power law model to standardise exercise 

intensity. A more standardised exercise prescription method may help to further our 

understanding of the concept of responders and non-responders to training.  
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