
Altadmri, Amjad, Kölling, Michael and Brown, Neil C. C. (2016) The Cost
of Syntax and How To Avoid It: Text versus Frame-Based Editing. In: Computer
Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual.
. pp. 748-753. IEEE ISBN 978-1-4673-8846-7. E-ISBN 978-1-4673-8845-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/54776/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/COMPSAC.2016.204

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/54776/
https://doi.org/10.1109/COMPSAC.2016.204
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

The Cost of Syntax and How To Avoid It:
Text versus Frame-Based Editing

Amjad Altadmri
University of Kent

Canterbury, Kent, UK
aa803@kent.ac.uk

Michael Kölling
University of Kent

Canterbury, Kent, UK
mik@kent.ac.uk

Neil C. C. Brown
University of Kent

Canterbury, Kent, UK
nccb@kent.ac.uk

Abstract—Plain text has always been the predominant medium
for writing and editing programs for expert users. Text is
powerful and flexible, but requires more careful manipulation
than structural editors, such as those found in block-based
environments. In addition, in textual editors programmers are
responsible for managing detailed orthography and layout – when
beginners work with text, significant time is spent managing
syntax problems, indentation and spacing. Frame-based editing
is a new editing paradigm that combines the structural editing
of block-based systems with the flexibility and keyboard-focus
of text editing. In this paper, we empirically examine how much
time and effort is spent by beginners on managing syntax errors
and indentation, which can be automatically saved by switching
to frame-based editing. The data is obtained using the Blackbox
dataset; the results predict a clear advantage of frame-based
editing over traditional text editors.

I. INTRODUCTION

Programming is an act of problem-solving: formulating
and debugging algorithms. All too often, beginners spend
their time solving the incidental problems: syntax errors and
incorrect code layout. Educators want to teach universal un-
derlying concepts, yet are forced to spend time correcting use
of semicolons, brackets and indentation. Learning these latter
details is necessary for practical work, but carries no intrinsic
value. If the tools were different, the fundamental concepts
would remain, but these syntactic details would not. Having
to track down and fix simple syntactic problems typically
occupies a significant amount of learners’ time; we consider
this time and cognitive effort wasted.

Modern teaching tools (and tools for professionals) should
aim to reduce the time spent on accidental complexities, and
free the learner’s mind to think about the important aspects of
program development – those that cannot easily be handed to
a machine. One of the aspects that should be avoided is the
unnecessary struggle with syntax. The time spent managing
syntax and layout varies substantially depending on the ex-
pertise of the programmer, the programming language and the
editing tool. Previous work has explored which syntax errors
are problematic [2], [3], [4] and how to alleviate them via
additional tools [5]: it is clear that all text-based editing tools
suffer from variations of this issue due to the program structure
representation as raw text.

Block-based editors, such as Scratch [1], eliminate many of
these concerns, but instead introduce weaknesses in readability

and navigation, restricting such systems to smaller programs
and early learning. They also leave a significant conceptual gap
in semantics to full-text programming, which typically features
additional concepts. Thus, it is difficult to determine how much
of Scratch’s simplicity (compared to full text programming) is
due to syntax and how much is due to semantics.

In this paper, we aim to quantify time spent on dealing
with syntax errors and formatting code in a text-based system
and – more importantly – evaluate how much of this time
and effort can be saved by using frame-based editing. Frame-
based editing is a new editing paradigm that borrows the
structured editing of block-based systems but is much closer
to text-based programming [6]. We compare editing Java in
the BlueJ system [7] to editing Stride in Greenfoot, BlueJ’s
sister system [8]. Stride is a new frame-based language that
is semantically equivalent to Java. This makes the comparison
particularly interesting: the semantics are held constant be-
tween the two languages, but the editing paradigm is varied.
Thus the comparison provides an insight into the cost of
dealing with syntax, and to what extent it can be avoided with
a frame-based editor.

For this study, we use Blackbox [9], a large dataset that
records BlueJ usage data. We analyse edit and compile expe-
riences of all users who have opted in to data collection over
one year. This includes more than a quarter of a million users,
with 37 million separate compilation events and nearly 200
million edit interactions. The key contributions of this paper
are:

• Quantification of the time that novice (Java) programmers
spend fixing syntax errors and managing indentation; and

• An examination of how frame-based editing can prevent
some of the most common syntax errors by design.

In Section II, we provide background on block- and text-based
programming, and discuss prior work. Section III discusses
frame-based editing, including the aspects that result in the
reduction of errors. The core contributions are in Sections
IV and V, where we describe an analysis of errors novice
programmers make in a text editor. The paper concludes in
Section VI.

II. RELATED WORK

Previous studies have examined the cost of syntax. Stefik
and Siebert [10] compared accuracy rates among syntax styles

in different text-based languages. Denny et al. [11] found that
syntax errors in text languages occupied an unexpectedly high
amount of novice programmers’ time. Recently, studies have
examined blocks vs. text in more detail. Price and Barnes [12]
analysed block- vs. text-editing for students performing tasks
in textual/tiled Grace, finding that students were faster and
more accurate when writing code with blocks.

Other studies examined the relative ranking of syntax prob-
lems within Java, which is partly replicated in this study.
Most researchers in the past used compiler error messages
to classify mistakes. Jackson et al. [13] identified the most
frequent errors among their novice programming students.
McCall and Kölling [4] analysed errors based on semantic
categories. Going beyond analysis of frequency, Denny et
al. [3] evaluated how long students need to solve different
errors. Altadmri and Brown [2] provided more robust data
about student mistake frequencies and time-to-fix, using a
much larger number of students than other studies (hundreds
of thousands). Their study combined parsing detectors and
compiler error messages, which are based on a survey of
educators asking for the most common mistakes they saw
among their students.

Almost all of these previous studies have either tried to
understand and classify the errors observed, or aimed to make
the mistake (and potential correction) clearer to students; some
also alter the text-based syntax. Our study evaluates a different
approach, frame-based editing, which aims at preventing these
mistakes by design. Many low-level syntax errors are caused
by a lack of memorisation or simple typing errors, not a
misunderstanding of a fundamental concept. Letting students
make these mistakes and fix them does not aid their learning
of useful programming concepts. We use the analysis method
proposed by Altadmri and Brown [2] to study the expected
impact of frame-based editing on time spent fixing errors and
managing indentation.

III. FRAME-BASED EDITING

Figure 1 shows the interface of a frame-based editor for
a new, Java-derived language called Stride. We will use this
implementation as the prototype to discuss the concepts of
frame-based editing, focusing on the features of this editor
which alleviate dealing with syntax errors and code formatting.

Like block-based systems, frame-based editing has manipu-
latable graphical representations of program constructs (called
“frames”), but the visual appearance is more muted than in
most block systems: fewer colours are used, 3D-effects and
shadows are avoided, and frames blend into each other more,
resulting overall in a more text-like view of a program.

While some specific design decisions are influenced by the
concrete system context (novice users), most of the aspects
described are independent of this context, and the advantages
apply equally to frame editing in professional environments.

In block-based systems a syntactic construct, such as an if-
statement, is a block. It provides places to specify the condition
and the body. This block is pre-formed; the condition and body

Fig. 1. The interface of a frame-based editor

may be edited, but the construct itself is otherwise unmodifi-
able. However, in text-based editors, a language construct is
made up of smaller syntactic tokens: the i and f characters are
edited separately in the if keyword, the condition follows in
round brackets and the body in curly brackets. There is much
room for error here; mistyping the keyword, mismatching the
brackets, and so on.

In frame-based editing, an if-statement is a frame. Similar to
a block, the frame has places – slots – for condition and body,
and it is indivisible. Several frames can be seen in the interface
in Figure 1, representing methods, if-statements and method
calls. The structure of a frame is fixed and uneditable; no
syntax errors relating to the statements’ structure are possible.
In addition, since frames are intrinsically distinct entities, no
separators (e.g. semicolons) are needed to delimit them.

A. Slots

Frames provide two kinds of slots for entry of additional
code into frames: frame slots and text slots. An if-statement,
for example, has a frame slot for its body and a text slot
for its condition. Frame slots hold nested frames, while text
slots hold expressions or identifiers. Frame slots have the
intrinsic advantage of avoiding structural syntax errors, since
their content is assembled entirely from nested frames. For
text slots, the Stride editor allows structured text entry.

Expressions in block editors are assembled from blocks
dragged into place in the same manner used for statements.
This has been shown to impose an undesired level of viscos-
ity [15] and is perceived as tedious by many programmers. In
text editors, expressions can be entered freely via the keyboard,
providing fast entry and flexibility, but allowing more errors.
In our frame editor, expressions are typed into the slot in
a way similar to text editors, but structure is inferred from
the expression in real time. Paired symbol operators, such as
quotes and parentheses, are recognised as a single operator.
They are always entered and deleted as a pair; deleting one

Fig. 2. A disabled frame (left) and preview of a delete operation (right).

bracket automatically removes the other; unbalanced brackets
can never exist. Thus, for expression entry, frame editing
achieves the flexibility of raw text editing while avoiding some
specific potential errors.

Elements requiring further entry are always represented by
a slot. For example, an assignment frame has two slots: one
for the left-hand destination and one for the right-hand source.
Similarly, method declarations have two slots per parameter:
one for the type and one for the name. Method calls have one
slot per parameter, for the value. Since frames clearly present
this structure to the programmer, they aid in the entry of
novices’ programs. Some common mistakes, such as providing
a type and value in a method call, are avoided.

B. Scope

Scopes are represented as frames: graphical boxes, rather
than the customary pair of brackets, parentheses or keywords.
This is true for all scopes: classes, methods, and control struc-
tures. The frames, like the scopes, may be nested. There are no
curly brackets to mismatch, and indentation is automatically
determined by the position in the syntax tree.

Recognising the extent (beginning and end) of a scope is
much easier and quicker in this representation. Programmers
do not need to determine which closing bracket matches which
opening bracket, and no additional confusion can be created
by misleading indentation.

C. Inserting, deleting and disabling code

Statements are inserted by inserting an entire frame. Every
kind of statement has its corresponding frame, which can be
inserted using a single command key, or using the “cheat
sheet” sidebar (Figure 1) and the mouse. As with inserting,
deleting a frame deletes it in its entirety. Different delete
options may be available: An if-statement offers deletion while
leaving the body statements intact, or with the body included
in the deletion. While a function is selected in the menu, a
preview annotation in the source code hints at the effect of
the selected function (Figure 2).

Disabling a frame (Figure 2) temporarily treats it as deleted.
Traditional systems typically disable a block of text by “com-
menting out”. This is a misuse of the comment symbol, as the
purpose here is not a comment; a comment symbol is used
merely because of the absence of other mechanisms. However,
the richer frame editor interactions and ability to use interface
elements other than characters to convey program state open

Fig. 3. Dragging a frame, (left) invalid drop target, (right) valid drop target.

many presentation possibilities. In our implementation, the
editor presents disabled frames with blurred appearance.

Unlike in traditional editors it is not possible to comment out
part of a statement, for instance missing a closing bracket of
a scope, and thus invalidating program structure. The explicit
disable function in the frame editor is both visually clearer
and less prone to syntax errors.

D. Moving code

Mouse controlled drag-and-drop functionality for code seg-
ments is available in most traditional text editors. However,
because the atomic unit of manipulation is a single character,
many errors may be introduced by this operation.

In text editors, arbitrary spans of text can be selected and
dragged. These may include parts of statements, accidentally
selected, and thus the drag operation may invalidate program
structure. Avoiding this mistake often requires careful targeting
with the mouse to aim the selection at specific characters
(including whitespace and line break characters). In the frame
editor, only complete frames can be dragged, including simple
one-line statements. No fine targeting is required; the frame is
a large target, and does not require selecting before dragging.

In text editors, the majority of potential drop locations are
syntactically invalid. Yet, editors provide no help in identifying
the few valid targets. In the frame editor, frames may be
dropped only at locations where they maintain a syntactically
correct structure (Figure 3); placing statements outside of a
method body, for example, is not allowed.

E. Relation to Structured Editing

Frame-based editing relates to two independent bodies of
prior work. The more recent, and strongest influence, is block-
based editing, exemplified by Scratch [1]. The older body
of work, originating in the 1980s and early 1990s, is on
structure-editing. Inspired by the same observations about text
being an imperfect mechanism to edit programs with intrinsic
structure, structure editors typically attempted to completely
eliminate syntactical errors by preventing the creation of
invalid programs. When referencing a variable, for instance,
only already-declared variables would be available for entry.

Structure editors were mostly implemented on text-mode
terminal screens at a time when knowledge of human-
computer interaction and interface design was in its infancy.
Thus, many of them turned out to be too clunky and awkward
to use [16]. The work on structure editors largely ceased in the

1990s. A decade later, however, Scratch, Snap!, and similar
systems demonstrated that the ideas underpinning structure
editors can be successful in modern graphical systems with
modern, well-designed user interfaces.

IV. ANALYSIS OF SYNTAX COST

A. Method

To get an understanding of the cost of syntax, we analysed
programming efforts of a cohort of students using a traditional
text-based system. The system used was BlueJ, an educational
development environment for Java, and data was collected via
the Blackbox project [9]. To get a representative sample, we
included data for all BlueJ users for whom data was available,
for one [academic] year (1/9/2013 to 31/8/2014, inclusive).

Blackbox provides a comparatively large data set, offering
the basis for relatively robust analysis. In this study, inter-
actions from 265,979 unique users were analysed, generat-
ing 37,158,094 separate compilation events and 197,091,248
tracked edit interactions.

The compile events were analysed to evaluate and categorise
the kinds of errors users made, with the goal of identifying
the errors that are caused purely by syntactic problems. We
can then analyse how many (and which) of these errors would
be prevented by Stride’s frame-based editor.

We also analysed the time students took to fix the errors,
resulting in a quantification of the amount of time that could
be saved. In addition to error occurrence, we evaluated edit
actions to identify edits that deal purely with indentation or
syntactic decorations (such as semicolons or curly brackets).
These edits are not needed in frame editors, and again we can
quantify the amount of effort that may be saved by use of a
frame editor.

B. Student Mistakes

Altadmri and Brown [2] identified 18 mistakes that serve
as a basis for analysing the most frequent and relevant errors.
This does not include all errors students make, and thus
provides a lower bound in the resulting data. Their set was
in turn derived from Hristova et al. [14], who identified 20
mistakes by interviewing educators. For our analysis here, we
maintain Altadmri and Brown’s labelling of errors from A
through R, but exclude error N (ignoring the non-void result
of a method), as it is not always an error. This leaves us with
17 errors categorised into three groups:

• Semantic errors: ‘A’, Confusing the assignment operator
(=) with the comparison operator (==); ‘C’, Unbalanced
parentheses, curly or square brackets or quotation marks,
or using these different symbols interchangeably; ‘D’,
Confusing “short-circuit” evaluators (&& and ||) with
conventional logical operators (& and |); ‘E’, Incorrect
semicolon after an if-, for-, or while-condition before the
body of the construct; ‘F’, Wrong separators in for loops
(using commas instead of semicolons); ‘G’, Inserting
the condition of an if-statement within curly brackets
instead of parentheses; ‘H’, Using keywords as method
or variable names; ‘J’, Forgetting parentheses after a

method call; ‘K’, Incorrect semicolon at the end of a
method header; ‘L’, Incorrect spelling of greater-than-or-
equal operator or less-than-or-equal operator, i.e. using
=> instead of >= or =< instead of <=; ‘P’, Including the
types of parameters when invoking a method.

• Type errors: ‘I’, Invoking methods with a wrong type of
argument; ‘Q’, Incompatible types between method return
and type of variable that the value is assigned to.

• Other semantic errors: ‘B’, Use of == instead of
.equals to compare strings; ‘M’, Trying to invoke a
non-static method as if it was static; ‘O’, Control flow
can reach end of non-void method without returning a
result; ‘R’, Class claims to implement an interface, but
does not implement all the required methods.

These mistakes are detailed with examples in [2].

C. Error detection
We use the same methodology as Altadmri and Brown [2]

for detecting the mistakes: a mix of compiler error messages
and custom source analysis code to detect other errors.

We took each source file in the data set, and tracked it over
time. At each compilation, we checked for the 17 mistakes.
If a mistake was present, we then looked forward in time to
find the next compilation where the mistake was no longer
present (or until we had no further data for that source file).
When the mistake was no longer found, we counted this as
one instance of the mistake. Further occurrences in the same
source file were treated as further error instances.

The time to fix is calculated in seconds between the first
appearance of the mistake and the possible fix, and capped at
300 seconds (5 minutes) for any mistake that took longer than
300 seconds to fix, or is never fixed. The total time taken to
fix each mistake was then added up across all errors of all
users. The result is the total time this user cohort spent on
fixing that particular kind of error over one year.

D. Editing statistics
For the gathering of edit statistics we tracked each source

file over time, as for the error detection, but took snapshots
at each edit interaction rather than at compilation events.
Blackbox records an edit operation for each line that is
changed in the source code; individual character edits within
the same line are grouped into one edit interaction.

Time for edit interactions is recorded by calculating the
time between distinct edits, or between an edit and the most
recent prior user interface interaction. The time is measured
in seconds and capped at 60 seconds.

After recording edits and their interaction time, we identified
edit operations that concerned solely auxiliary text (whites-
pace, semicolons and curly brackets). These are the edits that
are not required (or even possible) in frame editors and would
thus be saved by switching to such a tool.

Again, the amount of time taken for these edits was added
up across all edits and all users, giving a measure of time (both
in absolute terms and as a percentage of work time) taken up
with unnecessary syntactic work.

Mistake Freq. Total Time Error Freq.
to Fix (hours) Type Frame

C 793232 11700.46 Syntax 0
I 464075 12448.11 Type =
O 342891 8093.39 Semantic =
A 173938 4790.77 Syntax =
B* 121172 4474.11 Semantic =
M 86625 2178.97 Semantic =
R 79462 2662.71 Semantic =
P 52862 902.91 Syntax 0
E* 49375 1775.27 Syntax 0
K 38001 915.11 Syntax 0
D* 29605 923.48 Syntax =
J 18955 388.39 Syntax <
Q 16996 432.07 Type =
L 4214 37.70 Syntax <
F 2719 50.55 Syntax 0
H 1097 18.54 Syntax =
G 118 1.70 Syntax 0

Total time: 56360.10
Time saved: 15734.40 (28%)

TABLE I
STATISTICS FOR MISTAKES COMMITTED BY BLACKBOX-TRACKED
STUDENTS - 1/9/2013 TO 31/8/2014 - IN DESCENDING ORDER OF

FREQUENCY. ‘*’ POINTS OUT NON COMPILER-ERROR MISTAKES. ‘0’
INDICATES THE MISTAKE IS NOT POSSIBLE IN THE FRAME EDITOR (AND
TIME IS BOLDED), WHILE ‘=’ MEANS IT IS STILL POSSIBLE. ‘<’ SHOWS

REDUCED BUT NOT AVOIDED ERRORS IN A FRAME EDITOR.

V. RESULTS

A. Mistakes

Our detector looks for the number of instances of mistakes
in the data set, as described in Section IV-C. The data set
featured 37,158,094 compilation events, of which 19,476,087
were successful and 17,682,007 resulted in error messages.

Each compilation event may include multiple source files
– the total number of source files input to compilation was
46,448,212, of which 24,264,603 were compiled successfully
and 22,183,609 contained errors.

1) Mistakes Overview: The frequencies and total time-to-
fix across all observed occurrences of each different type of
mistake are shown in Table I, along with our classification of
the error message (syntax, semantic, or type error).

The last column in Table I indicates the possible presence
of this error in a frame-based editor. If this type of error is
not possible in frame editing, it is marked as ‘0’. Those errors
marked with ‘<’ can occur in a frame editor, but their impact
or likelihood is reduced. For errors that are unaffected by the
change to frame editing, ‘=’ is used. We will examine errors
with the first two statuses.

The following errors are eliminated in frame editing:
C Mismatched brackets or quotations. This error is pre-

vented by ensuring that they are always paired in the
frame editor. In statements, such as method calls or if-
statements, brackets are part of the fixed decoration of the
frame and cannot be forgotten or removed. In expressions,
pairs of brackets, parentheses or quotations can only be
added or removed together, avoiding mismatches.

P Including a parameter type in a method call. It is avoided
by providing a single slot for each parameter; there

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Sep	 Oct	 Nov	 Dec	 Jan	 Feb	 Mar	 Apr	 May	 Jun	 Jul	 Aug	

Fr
eq

ue
nc
y	

Th
ou

sa
nd

s	

Months	

	 Syntax	 (Java)	

	 SemanBc	

	 Type	

Syntax	 (Stride)	

Fig. 4. Mistake frequencies over 12 months (raw numbers).

is no space where a type can be entered. In addition,
the formal parameter’s name is showed as a prompt,
indicating clearly what is expected.

E Incorrect placement of semicolons. Since frames do not
need statement delimiters, no semicolons are used.

K Incorrect semicolon in method header. Users are not
required to type any of the syntactic decoration of frames,
including semicolons.

F Wrong separators in for-loops. Again, because syntactic
decoration does not need to be typed by the user, this
mistake is not possible.

G Incorrect brackets for if-statements. This error is pre-
vented for the same reason as the two previous ones.

Two additional mistakes are alleviated, but not eliminated
entirely. We have not included them in the calculated time
saved, but note them here:

J Missing parentheses after a method call. It is lessened
because parentheses are automatically shown in a method
call statement frame, and thus cannot be initially forgot-
ten. However, they can be removed, and for method calls
used in expressions it is possible to forget to enter them.

L Using =< rather than <=. This mistake is alleviated
by the latter being recognised as a single compound
operator in an expression slot, but the former will be
shown as two separate operators with a space between
them. Thus, a visual indication exists highlighting the
difference, making it likely that users would notice and
avoid the mistake.

Overall, this cohort of BlueJ users spent a total of 56,360
hours (approx. six and a half years) on fixing compiler errors.
15,734 hours (28%) of this error-fixing time could have been
saved by using a frame-based editor.

2) Mistakes Over Time: The rate of syntax errors does
not remain constant over the learning progression of a stu-
dent. Novices make more errors at the beginning, and error
frequency reduces somewhat as time progresses and students

become more familiar with some of the syntax. To investigate
the effect of this change on the effort that may be saved
over time, we analysed the mistake frequency over the course
of the year, split into months. Figure 4 outlines the mistake
frequencies for the three categories (syntax, type and semantic)
over the course of 12 months, and also notes the rate of syntax
errors that would remain using Stride’s frame-based editor.

The results are not normalised; the graph instead shows raw
numbers of error events. The shape of the graph is therefore
affected by the number of compilations performed, and shows
peaks around the beginning of teaching terms. It is clear,
however, that the rate of syntax errors can be significantly
reduced by using a frame editor at any stage in this learning.
Interestingly, simple syntax errors would become the least
frequent error category, instead of the most frequent.

B. Edits

The edit interaction analysis, as described in Section IV-D,
identified 197,091,248 text editing events. For each of these
user edit events, the time taken for the edit was calculated as
outlined in Section IV-D.

The total editing time of all edits included in this analysis
was 625,128 hours (approximately 71 years). Formatting-
only edits were identified, that is: those edits affecting only
auxiliary text (whitespace, semicolons and positioning of curly
brackets). These edits took 152,606 hours – approximately
24% of the total editing time – and would be eliminated in
frame-based editing.

VI. CONCLUSION

Frame-based editing prevents many syntax errors by design
and avoids manual manipulation of formatting symbols. Our
exemplar frame-based editor uses the Stride language, which
is semantically equivalent to Java. Using the data collected via
the Blackbox project, we were able to quantify the amount of
possible saved time if a frame-based editor were used rather
than a text-based one. Our analysis does not include all errors,
and thus provides a conservative estimate.

The first part of our analysis evaluated mistakes in student
code. The most common mistake in the Blackbox data set is
mismatch of brackets and quotation marks, which is intrinsi-
cally prevented in frame-based editing. This is also true for
several other common syntax mistakes.

We measured time spent fixing errors by looking at the time
between the initial occurrence of the error in an attempted
compilation, and the next compilation attempt in which the
error did not occur. We calculated that in terms of total time
spent fixing errors, 28% of programmer’s time would be saved
in a frame-based editor.

The second part measured time spent adjusting white spaces
in the program code, or on edits only involving curly brackets
and semicolons – all of which is unnecessary in frame-based
editing. This time is calculated by looking at the time between
completing the given edit and the previous user action. These
edits made up 24% of total editing time – which would again
be saved in a frame-based editor.

Although we have focused on a straightforward measure of
saved time, the errors may have consequent effects on levels of
student motivation and progress. By saving time, students can
more easily progress on to serious issues, rather than dealing
with syntax issues which do not advance their understanding
of programming. Not being interrupted by syntax issues will
allow programmers to concentrate better on the semantics.
Perhaps more importantly, and more fundamental than the time
saved, the avoidance of syntax errors may improve motivation
and make programming more widely accessible.

A. Limitations

A limitation of this study is inherent in the method of
focussing on analysing which text-based mistakes will be
avoided in frame-based editing while not accounting for pos-
sible extra time that may be required in frame-based editing
do to particular aspects of that paradigm. However, initial
usability results [17] suggest that frame-editing is in fact faster
than text-editing. Therefore we expect time to be saved in
general editing, besides the error-fixing time saved described
in this paper. Whether frame-based editing leads to any errors
or confusions which are harder to fix than with text will be
the subject of future research.

REFERENCES

[1] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch programming language and environment,” Trans. Comput.
Educ., vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[2] A. Altadmri and N. C. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in SIGCSE
’15, 2015, pp. 522–527.

[3] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not
equal,” in ITiCSE ’12, 2012, pp. 75–80.

[4] D. McCall and M. Kölling, “Meaningful categorisation of novice pro-
grammer errors,” in Frontiers In Edu. Conference, 2014, pp. 2589–2596.

[5] J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just
aren’t natural: improving error reporting with language models,” in 11th
Working Conf. on Mining Software Repositories, 2014, pp. 252–261.

[6] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in WiP-
SCE ’15, 2015.

[7] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The bluej system
and its pedagogy,” Comp. Science Edu., vol. 13/4, pp. 249–268, 2003.

[8] M. Kölling, “The Greenfoot programming environment,” Trans. Comput.
Educ., vol. 10, no. 4, pp. 14:1–14:21, Nov. 2010.

[9] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A
large scale repository of novice programmers’ activity,” in SIGCSE ’14,
2014, pp. 223–228.

[10] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” Trans. Comp. Edu., vol. 13/4, pp. 19:1–19:40, 2013.

[11] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Understand-
ing the syntax barrier for novices,” in ITiCSE ’11, 2011, pp. 208–212.

[12] T. W. Price and T. Barnes, “Comparing textual and block interfaces in
a novice programming environment,” in ICER ’15, 2015, pp. 91–99.

[13] J. Jackson, M. Cobb, and C. Carver, “Identifying top Java errors for
novice programmers,” in FIE ’05, 2005.

[14] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and
correcting Java programming errors for introductory computer science
students,” in SIGCSE ’03, 2003, pp. 153–156.

[15] R. Koitz and W. Slany, “Empirical comparison of visual to hy-
brid formula manipulation in educational programming languages for
teenagers,” in PLATEAU ’14, 2014, pp. 21–30.

[16] L. R. Neal, “Cognition-sensitive design and user modeling for syntax-
directed editors,” SIGCHI Bull., vol. 18, no. 4, pp. 99–102, May 1986.

[17] F. McKay and M. Kölling, “Predictive modelling for hci problems in
novice program editors,” in BCS-HCI ’13, 2013, pp. 35:1–35:6.

