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Abstract

Theoretical advances in the science of consciousness have proposed that it is concomitant with balanced cortical
integration and differentiation, enabled by efficient networks of information transfer across multiple scales. Here, we apply
graph theory to compare key signatures of such networks in high-density electroencephalographic data from 32 patients
with chronic disorders of consciousness, against normative data from healthy controls. Based on connectivity within
canonical frequency bands, we found that patient networks had reduced local and global efficiency, and fewer hubs in the
alpha band. We devised a novel topographical metric, termed modular span, which showed that the alpha network
modules in patients were also spatially circumscribed, lacking the structured long-distance interactions commonly observed
in the healthy controls. Importantly however, these differences between graph-theoretic metrics were partially reversed in
delta and theta band networks, which were also significantly more similar to each other in patients than controls. Going
further, we found that metrics of alpha network efficiency also correlated with the degree of behavioural awareness.
Intriguingly, some patients in behaviourally unresponsive vegetative states who demonstrated evidence of covert
awareness with functional neuroimaging stood out from this trend: they had alpha networks that were remarkably well
preserved and similar to those observed in the controls. Taken together, our findings inform current understanding of
disorders of consciousness by highlighting the distinctive brain networks that characterise them. In the significant minority
of vegetative patients who follow commands in neuroimaging tests, they point to putative network mechanisms that could
support cognitive function and consciousness despite profound behavioural impairment.

Citation: Chennu S, Finoia P, Kamau E, Allanson J, Williams GB, et al. (2014) Spectral Signatures of Reorganised Brain Networks in Disorders of Consciousness. PLoS
Comput Biol 10(10): e1003887. doi:10.1371/journal.pcbi.1003887

Editor: Bard Ermentrout, University of Pittsburgh, United States of America

Received April 4, 2014; Accepted August 26, 2014; Published October 16, 2014

Copyright: � 2014 Chennu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. Data cannot be made
available publicly as they are subject to UK/EU confidentiality and ethical consent regulations applicable to sensitive clinical information. However, data are
available by request to either the study authors or the Wolfson Brain Imaging Centre’s data protection officer (enquiries@wbic.cam.ac.uk) for researchers who can
meet the requisite ethical criteria for access to confidential UK National Health Service patient data. All requests will be subject to case-by-case review by the
WBIC’s data access committee.

Funding: This work was supported by grants from the Wellcome Trust [WT093811MA to TB]; the James S. McDonnell Foundation [to AMO and JDP]; the UK
Medical Research Council [U.1055.01.002.00001.01 to AMO and JDP]; the Canada Excellence Research Chairs program [to AMO]; the Evelyn Trust, Cambridge [to
JA], the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and Senior Investigator Award [to JDP], and the British Oxygen
Professorship of the Royal College of Anaesthetists [to DKM]. The research was also supported by the NIHR Brain Injury Healthcare Technology Co-operative based
at Cambridge University Hospitals NHS Foundation Trust and University of Cambridge. The views expressed are those of the authors and not necessarily those of
the UK National Health Service, the NIHR or the UK Department of Health. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: sc672@cam.ac.uk

Introduction

There has been considerable recent interest in the view that

consciousness is a phenomenon emerging from the dynamic

equilibrium between differentiated and integrated information

processing in the brain [1–4]. This view has inspired research into

ways of quantifying the characteristics of information exchange in

the brain at rest, and how this modulated in natural sleep,

pharmacological sedation, and pathological coma and disorders of

consciousness (DoC; including the vegetative and minimally

conscious states, VS and MCS). In this latter case, such theoretical

questions about the neural bases of consciousness take on a clinical

and societal significance, as they could inform diagnosis, prognosis

and treatment of DoC, which are often brought on by severe

injury to the brain. Recent advances in the use of neuroimaging to

better ascertain brain function in DoC have yielded some

surprises, and indicated that a significant minority of patients are

able to volitionally modulate brain activity in ways that would
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normally require high-level cognition and even covert awareness

despite no behaviourally evident signs thereof [5–14].

Such findings have motivated parallel research into the study of

brain connectivity in patients at rest, using MRI [15,16], EEG

[17–19] and TMS [20,21] to derive surrogate measure of

information integration and differentiation. Modern neuroimaging

methods for assaying such connectivity, including Magnetic

Resonance Imaging (MRI) and high-density electroencephalogra-

phy (EEG), provide a surfeit of data that need to be reduced in

dimensionality and coalesced into patterns to provide an

overarching understanding of connectivity networks in the brain.

Graph-theoretical analysis of such networks [22–24] has provided

an elegant way to achieve this synthesis using resting state

connectivity data [23–27] in sleep [28–31], sedation [32] and

coma [33].

Here, we apply graph theory to extract patterns of information

integration in brain networks derived from bedside measurement

of high-density EEG in DoC patients, alongside normative

networks observed in healthy controls. From 10 minutes of high-

density EEG data, we calculate networks of sustained, coherent

oscillatory activity within canonical frequency bands, which are

prominent and commonly clinically evaluated in DoC. We will

show that graph-theoretical metrics highlight contrasting signa-
tures of connectivity in healthy and pathological brains across

different frequency bands. These signatures, encompassing mea-

sures of topology as well as topography, will allow us to address a

set of inter-related questions of fundamental neuroscientific

importance: for example, what is distinctive about network

dysfunction in pathological states of low awareness? To what

extent are these network signatures consistent across patients?

How do they correlate with the complexity of preserved

behavioural responses? And perhaps most intriguingly, what

network signatures can we observe in patients who seem

behaviourally vegetative, but nevertheless demonstrate signs of

covert awareness.

Results

The findings described in this section are an exposition of the

prominent changes to the spectral characteristics of resting state

EEG in 32 DoC patients and 26 healthy controls. We begin with a

description of changes in spectral power accompanying DoC,

reiterating some well-established findings in the literature. These

power-related changes are driven by fundamental alterations in

the relative amplitude of ambient cortical oscillations commonly

observed in the resting brain. We then move to novel analyses of

changes in the structure of brain networks functionally unified by

these oscillations. These changes are measured by spectral

connectivity, which is derived from ongoing phase relationships

between cortical oscillations.

Spectral Power
Figure 1A plots the log spectrum of each channel, averaged

across 26 healthy controls. It generally conforms to the 1/f ‘pink

noise’ decay that characterises human EEG, and is punctuated by

prominent peaks in the canonical delta (0–4 Hz) and alpha (8–

13 Hz) frequency bands. The topographic contributions of

spectral power within these bands (see supplementary figure S1)

shows that the power of the delta band peak is relatively more

concentrated in frontal electrodes whereas the alpha peak is

prominent in bilateral occipital electrodes. Across the spectra in

the 3 groups in figures 1A–C, there was a prominent drop-off in

alpha power in both MCS and VS patients, with a corresponding

increase in delta power. This overall ‘slowing-down’ of resting

state EEG, or slow-wave activity after severe brain injury has been

documented [34]. To quantify this, we measured the channel-wise

contribution to the average power across all channels within 0–

40 Hz, from each frequency band. As expected, there were

statistically significant differences in the relative power contribu-

tions from the delta, alpha and beta bands: as shown in figure 1D,

patients together generated significantly more power in the delta

band than healthy controls (Unequal variances t(55.7) = 9.97, p,

0.001). In fact, 80% of overall spectral power in VS patients was

concentrated within the delta band. The reverse was true in the

alpha and beta bands: patients had significantly smaller power

contributions from the alpha band (t(32.3) = 10.0, p,0.001).

There was no significant difference in the power contribution

from the theta band across the two groups. Visually, patient

spectra in figures 1B and C suggested broadband increases in

power in the higher i.e., beta and gamma frequency bands, due to

elevated levels of electromyographic (EMG) noise introduced by

involuntary muscle movements, especially in MCS patients.

Hence, to avoid the consequent potential confounds in compar-

isons of activity in these bands between patients and healthy

controls, we restricted ourselves to further analysis of data only

within the alpha, theta and delta bands, where there were primary

effects of interest and the influence of EMG noise was negligible.

While increased delta and theta power can sometimes be

attributed to sleep-onset related EEG activity, we conventionally

followed a protocol to ensure that our patients were arousable at

the beginning of data acquisition (see Materials and Methods for

details), which made it unlikely that they were consistently asleep

during the following 10-minute period. We confirmed this by

calculating the amount of temporal variability in power contribu-

tions within each frequency band in controls and patients. If

patients were indeed falling asleep during the data acquisition, we

would expect to see relatively higher variation in their delta band,

alongside a progressive reduction in eye-movement related

behaviour over the duration of the 10-minute recording. However,

as can be seen in supplementary figure S2, there was no evidence

Author Summary

What are the neural signatures of consciousness? This is an
elusive yet fascinating challenge to current cognitive
neuroscience, but it takes on an immediate clinical and
societal significance in patients diagnosed as vegetative
and minimally conscious. In these patients, it leads us to
ask whether we can test for the presence of these
signatures in the absence of any external signs of
awareness. Recent conceptual advances suggest that
consciousness requires a dynamic balance between
integrated and differentiated networks of information
exchange between brain regions. Here we apply this
insight to study such networks in patients and compare
them to healthy adults. Using the science of graph theory,
we show that the rich and diversely connected networks
that support awareness are characteristically impaired in
patients, lacking the ability to efficiently integrate infor-
mation across disparate regions via well-connected hubs.
We find that the quality of patients’ networks also
correlates well with their degree of behavioural respon-
siveness, and some vegetative patients who show signs of
hidden awareness have remarkably well-preserved net-
works similar to healthy adults. Overall, our research
highlights distinctive network signatures of pathological
unconsciousness, which could improve clinical assessment
and help identify patients who are aware despite being
uncommunicative.

Reorganised Networks in Disorders of Consciousness
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of such higher variability: we found that healthy controls had

higher temporal variations in delta (t(42.4) = 3.16, p = 0.003) and

alpha (t(36.0) = 12.69, p,0.001) power. Further, we observed no

consistently progressive decline in eye-movement related behav-

iour in patients, as recorded by derived electrooculographic (EOG)

channels. As supplementary figure S3 depicts, though there was

considerable variability in EOG activity between patients and over

time, average activity in the first half of the recording session was

statistically indistinguishable from the second half across patients

(t(31) = 1.17, p = 0.25). This lack of a systematic decline suggested

the absence of an unequivocal indication of sleep onset in the

patient group.

While oscillatory power in the lower frequency bands derives

from the predominance of so-called slow wave activity, alpha

oscillations have been linked to arousal, attention and alertness

[35]. Having observed significant group-level differences in power

between patients and controls in these bands, we investigated the

link between delta and alpha oscillations and clinically evidenced

arousal in our patient group by quantifying the extent to which

alpha power contributions could explain scores on the Coma

Recovery Scale-Revised (CRS-R). The results of robust multi-

linear regression of delta and alpha power contributions as

predictors of CRS-R scores are shown in figures 1E and F. As the

regression lines plotted therein depict, there was a statistically

significant link between a decrease in delta power, and a

complementary increase in alpha power, with increase in CRS-

R scores. This finding replicates the pattern recently reported by

Lechinger et al. [36], who demonstrated a similar link between

alpha power (and peak frequency) and CRS-R scores. In our data

this trend was particularly visible in the MCS patient group

(indicated in blue in figures 1E and F). These findings, taken

together with previous evidence, are convergent with the notion

that the presence of fast cortical oscillations is correlated with

behavioural function in DoC.

Spectral Connectivity
We assessed connectivity between EEG electrodes to investigate

the structure of brain networks in the delta, theta and alpha bands.

The extent of spectral coherence between every pair of electrodes

was calculated using the debiased weighted Phase Lag Index
(dwPLI) metric [37]. dwPLI is a sensitive measure of true

connectivity between cortical regions that has been shown to be

robust against the influence of volume conduction, uncorrelated

noise, and inter-subject variations in sample size. An earlier

incarnation of this measure, the Phase Lag Index [PLI, see 38],

has been applied to low-density EEG acquired from DoC patients

at rest, to show that those in VS elicit lower PLI values than MCS

[18]. Here we calculated dwPLI for 91 channels in a high-density

mesh (see Materials and Methods for details), to investigate the

latent structure of connectivity networks that emerged within and

across these groups.

Figures 2A–C depicts topographic maps of dwPLI-derived

connectivity for each group of subjects in each of the frequency

bands of interest, visualising the opposing patterns of structure

observed therein. To plot these maps, 91691 dwPLI connectivity

matrices were averaged within each group and plotted as

topographs with electrodes as nodes and dwPLI values as edges,

and graph-theoretical algorithms were employed to automatically

identify modular structure therein. The topological structure of

networks of alpha band connectivity in controls (see figure 2C, left)

highlighted the presence of prominent modules (differentiated by

colour) consisting of dense long-range synchrony that linked

occipital, parietal and frontal electrodes. This structure was

distinct from the bilateral, occipitally centered, distribution of

Figure 1. Band-wise power contributions in healthy controls and patients. Panels A–C depict mean channel-wise power spectra in controls,
MCS and VS patients. Dashed lines indicated the boundaries of the canonical frequency bands: delta, theta, alpha, beta and gamma. Panel D plots the
% contribution of power in each band to the total power in each channel, averaged across channels within each group. Panels E and F depict the
opposite trends in power contributions from the delta and alpha bands of patients, as functions of their CRS-R scores. Patients P1, P2 and P3 are
highlighted for comparison to plots in figure 6.
doi:10.1371/journal.pcbi.1003887.g001

Reorganised Networks in Disorders of Consciousness
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alpha power of the scalp (see supplementary figure S1C, left),

reinforcing the notion that dwPLI was measuring connectivity

distinct from the effects of local volume conduction. It was also

convergent with the notion that alpha networks observed over the

healthy brain reflect broadly synchronous ambient cortical

rhythms that are coeval with arousal and alertness. Such long-

range connectivity structure in alpha connectivity was clearly

lacking in patients, as is visually evident in figure 2C (middle and

right) where a predominance of spatially localised, short-range

synchrony was observed. Indeed, connectivity was generally

weaker in patients, with mean dwPLI over all channel pairs

significantly higher in controls (t(51.7) = 5.22, p,0.001).

Interestingly however, a contrasting pattern was evident in the

delta and theta network topologies of the 3 groups, plotted in

figures 3A and 3B: VS and MCS patients appeared to have

relatively robust connectivity in the delta and theta bands. In

particular, we observed the presence of prominent meso-scale

modules in both VS and MCS patients. This suggested that the

previously noted presence of higher power in the lower frequency

bands in patients was concomitant with structured patterns of

connectivity. Mean dwPLI of patients was also higher in the delta

(t(40.3) = 2.82, p = 0.007) and theta (t(43.0) = 2.93, p = 0.005)

bands. To quantify these structural differences in connectivity,

we calculated and compared graph-theoretical summary measures

of the topographs.

Graph-Theoretic Network Metrics
The subject-wise dwPLI connectivity matrices in each band

were thresholded at varying levels of connection density, to retain

between 50–10% (step size of 2.5%) of the strongest dwPLI values

in each matrix. At each value of this connection density threshold,

we calculated 4 commonly measured metrics derived from graph

Figure 2. Band-wise connectivity networks in healthy controls and patients. Panels depict weighted connectivity networks averaged by
group, for frequency bands of interest. In each network, the size of a node is proportional to its degree, and the thickness of an edge to its dwPLI
weight. Modules identified by the Louvain algorithm are indicated by colour. For visual clarity, of the strongest 30% of edges, only the intra-modular
edges are plotted. In the alpha band (panel C), healthy networks were characterised by a predominance of long-range frontoparietal modules. Patient
alpha networks consisted of weaker, spatially localised modules. In contrast, patients had stronger structured connectivity within broadly
synchronised modules in the delta and theta bands (panels A and B).
doi:10.1371/journal.pcbi.1003887.g002

Reorganised Networks in Disorders of Consciousness
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theory, which captured topological properties of the networks

observed in the thresholded connectivity matrices. Figure 3 plots

the clustering coefficient, characteristic path length, modularity,

and participation coefficient in each band and group, averaged

across all connection densities considered. Supplementary figure

S4 plots the trends in these metrics as a function of decreasing

connection density. These trends were generally consistent across

the range of densities considered.

Clustering coefficient. The clustering coefficient of a

network captures its micro-scale (local) efficiency [26,39]. In line

with the visual interpretation of figure 2C, we found significantly

higher levels of clustering in alpha band networks of healthy

controls compared to patients (figure 3A): t(52.0) = 4.86, p,0.001

(using an unpaired t-test with unequal variances; this p-value, and

others reported later, are corrected for multiple comparisons

across frequency bands using the Bonferroni-Holm correction

[40]). However, the reverse was true in the delta and theta bands,

with higher clustering, and hence local network efficiency, in

patients (delta: t(46.6) = 3.36, p = 0.003; theta: t(51.6) = 3.09,

p = 0.003).

Characteristic path length. In contrast to the clustering

coefficient, the macro-scale characteristic path length measures the

average topological distance between pairs of nodes in a graph

[39], providing an indication of global efficiency. As shown in

figure 3B, path lengths were much shorter in control alpha

networks (t(55.8) = 5.03, p,0.001). Complimentarily, direct mea-

surements of global efficiency (based on the average of inverse

shortest path lengths [41]) in alpha networks also generated much

higher values in controls than patients (t(54.8) = 4.86, p,0.001).

However, the reverse was not true in the delta or theta bands of

patients. In other words, despite the robust connectivity observed

in patient networks within these lower frequency bands, they did

not have the topological structure required to enable efficient

macro-scale interactions across the cortex. We will later link this

finding to topographical estimations of differences in scale using

the modular span metric.

Modularity and participation coefficient. Modularity is a

meso-scale network metric that encapsulates the degree to which

the nodes of a network can be parcellated into densely connected,

topologically distinct modules with relatively few inter-modular

connections [42]. Given a modular decomposition, the participa-

tion coefficient is a inter-modular measure of network centrality,

and flags up hub nodes that link many modules together in an

efficient network [43]. As figure 3C shows, there were no

significant differences in modularity between patients and controls.

However, the standard deviations (SD) of participation coefficients

of alpha network nodes were significantly higher (Figure 3D)

(t(52.3) = 4.44, p,0.001), suggesting that the modules identified in

healthy alpha networks were less segregated and more integrated,

via diversely connected nodes that served as inter-modular hubs.

Further, as is evident in figure 3D, this pattern was reversed in the

lower frequency bands: the SD of participation coefficients in delta

and theta band networks was significantly higher in patients (delta:

t(49.0) = 3.63, p = 0.001; theta: t(53.2) = 2.03, p = 0.04).

Mutual information. Previous research into resting state

networks involving patients in acute coma and chronic disorders of

consciousness has reported on the disruption of structural and

functional connectivity following brain injury [15,16]. Recently,

Achard et al. [33] employed graph-theoretic analysis of resting

state fMRI scans and found that there was significant restructuring

of network hubs in comatose patients. We investigated whether

similar patterns could be observed in EEG networks in our group

Figure 3. Graph-theoretic topology metrics of brain networks. Panels plot group-wise graph-theoretic metrics averaged over all connection
densities considered. Clustering of alpha band networks in controls was significantly higher in controls than patients (Panel A), while characteristic
path length was lower (Panel B). There were no significant differences in modularity between patients and controls in any frequency band (Panel C).
SD of participation coefficients in control networks in the alpha band was significantly greater than patients, indicating the presence of diversely
connected inter-modular hubs (Panel D). Differences in clustering and participation coefficient were markedly reversed in the delta and theta bands.
Error bars indicate SE of the mean. All p-values were corrected for multiple comparisons.
doi:10.1371/journal.pcbi.1003887.g003

Reorganised Networks in Disorders of Consciousness
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of DoC patients, using a normalised mutual information (NMI)

metric [44]. Given a pair of networks, a high NMI value indicates

that their modular decompositions are very similar, in that a node

that belongs to a particular module in one network is likely to

belong to the same module in the other. Achard et al. [33] used

NMI to show that the modular structure of networks were more

variable from one patient to the next, and also dissimilar to the

relatively similar structures observed in healthy controls. We

interrogated our data to examine this, and calculated the band-

wise NMI between the module affiliations of every healthy control

and patient. Figure 4C plots a colour map of these NMI values,

where within-group values are highlighted by red triangles. As is

evident by comparing them, there were much higher levels of

similarity between healthy controls in modular structure of alpha

band networks. As with fMRI networks in coma reported by

Achard et al. [33], the modular structure of alpha band networks

in DoC patients were neither consistently similar to healthy

controls, nor to each other. We confirmed this statistically by

comparing within-group alpha network NMI in healthy controls

and patients, encompassing the values within the red triangles in

figure 4C. As figure 4D shows, we found a statistically significant

reduction in within-group alpha NMI in patients (t(50.8) = 2.32,

p = 0.024). However, in contrast to previous findings indicating

that brain networks in patients are variably disrupted [33], we

found higher values of within-group NMI in their delta and theta

band networks (red triangles in figures 4A and B). As shown in

figure 4D, delta and theta band networks of patients had

statistically larger within-group NMI than healthy controls (delta:

t(44.3) = 3.28, p = 0.006; theta: t(45.1) = 2.96, p = 0.01). That is,

modular structures of delta and theta band networks in patients

were similar to each other, unlike in healthy controls.

Modular span. While clustering, path length, modularity and

participation coefficient quantify key topological characteristics of

networks, they are by definition unaware of the topographical
structure of the EEG networks considered here. To address this, we

employed a novel network metric, modular span, which measured

the average weighted topographical distance (over the scalp)

spanned by a module identified in a network (see Materials and

Methods section for details). Figures 5A–C plot band-wise dwPLI

values as functions of the topographical distance between nodes

(electrodes). They highlight the presence of stronger connectivity at

greater distances in controls, whereas patients generally had more

connectivity at short-to-medium topographical distances, as also

reported by King et al. [19]. This pattern was quantified by the

modular span metric: as figure 5D depicts, the modular span of the

largest module in healthy alpha networks was much higher than

patients (t(40.2) = 5.32, p,0.001), reflecting the presence of

comparatively strong long-range connections in healthy brains

(figure 2C, left). These were absent in patient alpha networks

(figure 2C, middle and right), and resulted in greater topographical

differentiation (i.e., spatial segregation) of modules, and conse-

quently lower values of modular span. Interestingly, patient

networks in the delta and theta bands did not elicit conversely

higher modular span than healthy networks. This was in contrast to

the topological measures considered above, which identified greater
local efficiency and inter-modular centrality in delta and theta band

networks in patients.

Taken together, the above comparisons of graph-theoretic

metrics of networks provide quantitative support to the visual

differences between the patterns of connectivity in patients and

controls (see figure 2). On the whole, alpha band networks were

more locally and globally efficient, less modularised and more

interconnected in healthy controls than patients. Healthy alpha

networks were also more similar to each other, and spanned

greater distances to link distant regions. These findings are

convergent with what we know about alpha band connectivity,

Figure 4. Normalised mutual information between brain networks. Panels A–C plot colour maps of individual NMI between networks of
patients and controls. Red triangles encompass NMI values indexing degree of similarity of structure within each group. Within-group NMI between
healthy alpha networks was significantly higher than that in patients (Panel D). This pattern was reversed in the delta and theta bands, where network
structure was more similar between patients than controls. Magenta boxes in Figure 4C encompass between-group NMI in patients and healthy
controls, correlated against their CRS-R scores in figure 6C.
doi:10.1371/journal.pcbi.1003887.g004

Reorganised Networks in Disorders of Consciousness
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and previous evidence showing disrupted alpha oscillations in

DoC patients. However, our data also suggested the presence of

significantly higher local efficiency, lower modularisation, and

higher centrality in patient networks in the delta and theta bands.

Further, compared to healthy networks, patient networks in these

bands were also more similar to each other. Crucially however, we

found a distinction between the opposing patterns uncovered by

these topological metrics of the graphs and our topographic

characterisation with modular span. As we elucidate further in the

Discussion section, this distinction provides key insights into the

nature of dysfunction in brain networks of patients.

Clinical Correlations
Having established that there were consistent differences between

EEG resting networks observed in patients and healthy controls, we

set out to assess the link between graph-theoretic metrics derived

from these networks and clinical evaluations of neurological and

cognitive function in individual patients. As figures 3, 4 and 5

suggest, there were no prominent statistically significant differences

between the metrics obtained in VS and MCS patients, potentially

attributable to the nature of our convenience sample (see Discussion

section). Focusing instead on the CRS-R scores of the patients, we

noted that Lechinger et al. [36] recently showed a correlation

between power ratios and peak frequency in the alpha band and

CRS-R scores, a finding similarly observed in our data (see

figure 1F). Following on from this, we first investigated whether

mean dwPLI values of patient connectivity matrices were correlated

with CRS-R scores. No significant correlation was found in any of

the frequency bands of interest. Going beyond assessment of mean

spectral power and connectivity, figures 6A–D plot the robust linear

regressions of key graph-theoretic metrics of patient alpha networks,

which significantly predicted CRS-R scores. Note that figure 6C

plots average NMI between the alpha networks of a patient and

each control (encompassing between-group values within the

magenta boxes in figure 4C), indexing the degree to which a

patient’s network structure was like that of healthy brains.

There was a common pattern in the variation of these metrics

that separated VS from MCS patients (plotted as red and blue

circles, respectively). VS patients in our dataset, who by definition

did not present much behavioural variation and were assigned

CRS-R scores of either 7 or 8, nevertheless had considerable

variation in the efficacy of their alpha band networks as measured

by graph theoretical analysis. We found that some of this variation

could be interpreted in light of independent evidence that some of

the VS patients considered performed tennis imagery detected by

fMRI (see Materials and Methods for details; also see Owen et al.

[5] and Monti et al. [9]). The 4 VS patients who performed tennis

imagery, indicated by filled circles in figures 6A–D, tended to be

outliers in terms of the characteristics of their alpha band

networks. As a representative example, the networks of three

patients P1, P2 and P3, all with CRS-R scores of 7 but of whom

only P3 performed tennis imagery, are shown in figures 6E, F and

G. As is evident, alpha band connectivity in P3 was comparatively

much better preserved, and was clearly distinct from the lack of

structure in P2 or P3. Specifically, P3’s alpha network, unlike P1’s

or P2’s, was remarkably similar to healthy controls, and consisted

of strong, long-range connections spanning occipital, parietal and

frontal regions (compare figures 6E, F and G with figure 2C, left).

In keeping with this visual interpretation, quantitative graph-

theoretic metrics of P3’s alpha band network, highlighted in

figures 6A–D, were also exceptional compared to P1 and P2, and

the rest of the VS patients. In particular, P3’s alpha network had

Figure 5. Topographical embedding of brain networks using modular span. Panels A–C plot group-wise averaged dwPLI values as a
function of the Euclidean distance between pairs of EEG channels. Inset in Panel C plots a histogram of these inter-channel distances. Controls had
stronger long-range connectivity in the alpha band, whereas patients had stronger local connectivity. Topographical distances spanned by alpha
network modules, as measured by modular span, were significantly greater in controls (panel D). No differences were observed in modular span in
other frequency bands.
doi:10.1371/journal.pcbi.1003887.g005
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much higher local connectivity (figure 6A), more inter-modular

hub nodes (figure 6B), and structurally similar modules to healthy

controls (as measured by relative-to-healthy NMI, see figure 6C)

that spanned greater topographical distances (as measured by

modular span, see figure 6D). In particular, though these

prominent differences between the brain networks of P1 and P3

could perhaps be attributed to aetiology, it could not explain away

the differences between P2 and P3, as both had suffered traumatic

brain injury. It is also interesting to note that though P3’s alpha

network properties were clearly very prominent outliers as

compared to P1 and P2, delta and alpha power in P3 were much

less exceptional (compare figures 6A–D to figures 1E and F).

Hence characterising network signatures of spectral connectivity

could considerably improve our understanding of residual brain

function in behaviourally uncommunicative patients who never-

theless demonstrate covert awareness.

Among MCS patients, in whom there was more meaningful

variability in CRS-R scores, we observed a clear trend toward

Figure 6. Graph-theoretic metrics as predictors of CRS-R scores. Panels A–D plot correlations between graph-theoretic metrics of alpha
networks and behavioural CRS-R scores of individual patients. Red and blue circles indicate VS and MCS patients respectively. Filled circles indicate
patients who followed command with fMRI tennis imagery. Robust linear regressions indicated by solid lines included all patients, whereas those
indicated by dashed lines only included MCS patients. All metrics improved alongside progressive increase in CRS-R scores of MCS patients. Panels E,
F and G plot alpha band networks of representative VS patients P1, P2 and P3, respectively. All 3 patients had the same CRS-R score, but only P3
showed evidence of command following. Compared to P1 and P2 (panels E and F), P3 also had remarkably well-preserved alpha network structure
(panel G). Highlighted circles in panels A–D demonstrate that graph-theoretic metrics of P3’s alpha network were exceptional outliers amongst the
patient group, much more so than P3’s delta/alpha power (see figures 1E and F).
doi:10.1371/journal.pcbi.1003887.g006

Reorganised Networks in Disorders of Consciousness

PLOS Computational Biology | www.ploscompbiol.org 8 October 2014 | Volume 10 | Issue 10 | e1003887



increasing clustering, network centrality and modular span of

alpha band networks as CRS-R scores improved (dashed

regression lines in figures 6A–D). In other words, as the alpha

networks of MCS patients approached levels of structured, long-

range, inter-modular connectivity seen in healthy controls, their

CRS-R scores got progressively higher. It is worth noting that the

same regressions when including all patients (indicated by the solid

lines) were much weaker due to the considerable variation of

network metrics within the VS group in the absence of matching

behavioural variation. We found that there were no significant

correlations between graph metrics calculated from delta and theta

band networks and CRS-R scores of patients, despite the

significantly higher levels of topological connectivity observed in

these networks (see figures 3 and 4). As we discuss next, this could

potentially be explained by the limited topographical extent of

connectivity in lower frequency bands. Overall, our results

suggested that it was the structure of connectivity in the alpha

band that generated the strongest link to behaviourally evidenced

neurological and cognitive function in patients.

Finally, we examined whether there were systematic differences

between graph-theoretic metrics of patients who evidenced covert

awareness as measured by tennis imagery, vs. patients who did not.

While none of the metrics of patients with positive imagery (filled

circles in Figure 6) significantly differed from those of patients

without such evidence, a key distinction was evident between the

VS and MCS subgroups: as pointed out earlier, amongst the VS

patients, those with evidence of positive imagery tended to have

remarkably higher alpha graph-theoretic metrics. This difference

could not be statistically verified due to the lack of power (only 4

out of 13 VS patients performed imagery). However, the pattern

was reversed in MCS patients, where those with positive imagery

tended to exhibit lower values of alpha metrics. In particular, inter-

modular centrality (as measured by the SD of participation

coefficients) was significantly lower in MCS patients who

performed tennis imagery (t(10.8) = 2.93, p = 0.014), though

modular spans (t(10.2) = 2.27, p = 0.046), clustering coefficients

(t(9.5) = 2.19, p = 0.054) and characteristic path lengths

(t(13.8) = 1.88, p = 0.081) were not. This somewhat paradoxical

finding could potentially be explained by the observation (see

figure 6) that MCS patients who did not perform tennis imagery

also tended to score higher on the CRS-R scale, though their

scores were not significantly higher. Hence it could be that these

patients had progressed into a post-traumatic confusional state

with potentially limited attention control, known to characterise

emergence from MCS [14,45].

Discussion

The exploration of resting state EEG described above adds to

convergent understanding of how structured connectivity in

human brain networks is disrupted in DoC. Generally speaking,

our graph-theoretical quantification showed that alpha networks

in the healthy brain were balanced between strong local
interactions (high clustering) and robust interconnectivity (more

intermodular hubs). Such configurations in the alpha band were

absent in patients, and provided a network-based account of the

role of structured alpha connectivity in subserving arousal and

awareness. This difference between patients and healthy controls is

consistent with evidence from fMRI resting networks described by

Vanhaudenhuyse et al. [15], who found reduced connectivity in

the default mode network in patients, which has previously been

linked to alpha power and synchrony [46–48]. Our findings with

regard to alpha band networks are also consistent with another

recent analysis of EEG networks in a large cohort of patients [19],

which found a reduction in long-range information sharing in

DoC. However, it should be noted that while we attempted to

ensure that the group differences and correlations observed in the

graph-theoretic measures cannot be explained away by systematic

sleep onset in patients, considerations of ongoing and rapid

fluctuations of arousal and vigilance in patients during the

recording warrant careful interpretation of the limitations and

generalisability of these measures, both within and across groups.

Despite observing robust differences between healthy controls

and patients, the graph-theoretic metrics did not find any

prominent statistically significant differences between our VS

and MCS patient groups. Speculatively, the nature of our

convenience sample could have contributed to this lack of a

difference: VS patients included in our study had CRS-R scores

between 7 and 8, close to the boundary between the VS and MCS

states (see Table 1). Further, many of our MCS patients included

had low to middle CRS-R scores in the 8–10 range. This CRS-R

overlap between the two groups, in combination with insufficient

statistical power due to the relatively limited number of patients in

each group, could have blurred any differences between them. In

comparison, King et al. [19] recently applied their novel weighted

Symbolic Mutual Information (wSMI) connectivity measure to

distinguish VS from MCS patients, albeit in a much larger group

of 181 patients. Further, the CRS-R scores of their patients

spanned a wider range, from 1–8 and 6–23 amongst VS and MCS

patients, respectively, thereby sampling greater variability in

connectivity networks. In this regard, a valuable future direction

for this research would be to comparatively evaluate graph-

theoretic network analytics based on potentially more sensitive

connectivity measures like wSMI alongside other EEG markers

[49].

However, despite the lack of group-level differences between

our patients, we have shown that there were correlations

between topological metrics of their alpha graphs and their

clinical behaviours as measured by CRS-R scores: i.e., as

patients’ behaviourally evidenced function improved, so did the

‘quality’ and ‘normalcy’ of the topological characteristics of

alpha networks. Our assessment of the topographical embedding

to of these networks, using modular span, established that

patient networks were also compromised in their ability to

enable long-range connectivity in the alpha band. However,

alongside the identification of damaged networks, our data

highlighted the remarkable robustness of alpha connectivity in

some behaviourally vegetative patients who also evinced high-

level cognitive function by performing tennis imagery detected

by fMRI. Hence, in such patients at least, we have found links

between covert task-relevant attention and awareness, and the

presence of brain networks that could support such advanced

cognitive function despite the apparent lack of any consistent

behavioural signs thereof. But as a group, more robust alpha

networks were not predictive of positive tennis imagery in

patients. While fundamental differences in the imaging modal-

ities used to make these assessments could play a role in

explaining such discrepancies, considerable arousal variation in

patients during the intervening hours and days between these

assessments also makes it difficult to unequivocally account for

them. Further, differences in graph-theoretic metrics between

patients with and without evidence of imagery were somewhat

reversed in the VS and MCS groups. In particular, as pointed

out earlier, MCS patients with relatively high CRS-R scores (in

potential ‘confusional states’) and correspondingly robust alpha

graph metrics tended not to show evidence of tennis imagery,

highlighting the complexities inherent in correlating behavioural

function with neuroimaging in DoC.
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Complementary to findings in the alpha band, we have also

highlighted the presence of higher levels of structured connectivity

in the theta band in patients relative to healthy controls, as

measured by the same topological measures. In the lower

frequency bands, patient networks were more clustered, inter-

connected and even similar to each other than were networks in

healthy brains. Such increased power and connectivity in theta

band has been reported in DoC [34], and attributed to layer V

pyramidal neurons in partially deafferentated cortex, and the

intrinsic tendency of such weakly interacting neuronal oscillators

to synchronise [50]. In this context, our topographical evaluation

of graph-theoretical network analysis identified a key distinction

between brain networks in patients and controls: while alpha

networks in controls were both topologically structured and
topographically expansive, the topologically more robust delta/

theta band networks in patients were not topographically

expansive. In other words, despite being better inter-connected,

patient networks in the delta and theta bands did not have

significantly larger modular spans than healthy controls. This was

in contrast to the reversed pattern in the alpha band, where the

robust networks in healthy controls also had significantly larger

modular spans. It is interesting to note here that administration of

zolpidem to DoC patients temporarily can shift their theta band

connectivity into the alpha and beta frequency bands [50], with

potentially enhanced modular structure and spatial extent. Our

analysis speak to this finding, providing insights into the

characteristics of brain networks in DoC and reinforcing the link

between observed network characteristics and underlying neuro-

logical dysfunction.

Finally, on a practical note, it is worth highlighting that short

EEG recordings as analysed here are commonly measured in DoC

patients in hospitals around the world, and clinically interpreted

by eye by electrophysiologists. These could potentially become

much more clinically informative if powerful analytical tools are

used to unveil the capacity of cortical integration and differenti-

ation, as captured by networks analyses such as those presented

here. Combining easy-to-administer and inexpensive EEG with

developments in network science could allow us to make inferences

about information transfer across multiple scales of brain

dynamics, and ultimately aid diagnosis and prognosis in this

challenging group of patients.

Conclusions
Our analysis of EEG connectivity in high-density networks at

rest found that DoC patients had comparatively reduced graph-

theoretic network efficiency in the alpha band as compared to

healthy controls. Using a novel metric termed modular span that

embedded topologically derived modules in topographical space,

we established that the alpha network modules in patients were

also spatially limited, with a prominent absence of the structured

long-distance connectivity commonly observed in healthy net-

works. Importantly however, the observed differences between

graph-theoretic metrics were partially reversed in the networks

within the delta and theta bands. Here we noted the presence of

robust connectivity patterns that were in fact commonly structured

across patients, suggesting that there could be some degree of

reorganisation, rather than just disorganisation, of brain networks

in DoC. However, network modules in these lower bands did not

have spatial spans that characterised healthy alpha modules. This

finding addresses the question of why these lower band networks

could not subserve balanced cortical integration and differentia-

tion thought to be concomitant with normal consciousness. Going

further, we found that alpha network metrics in patients clearly

correlated with their behavioural scores on the CRS-R. Interest-

ingly, we observed that some behaviourally vegetative patients

who demonstrated evidence of command following with fMRI

tennis imagery tended to deviate from this trend: their alpha

networks were remarkably well preserved and were similar to

those observed in healthy controls. On the whole, our findings

describe distinctive signatures of brain networks in chronic

disorders of consciousness. Further, in the significant minority of

vegetative patients who show signs of covert awareness, they point

to putative network mechanisms that could support high-level

cognitive function despite behavioural impairment.

Materials and Methods

Ethics Statement
All healthy controls gave written informed consent. Ethical

approval for testing healthy controls was provided by the

Cambridge Psychology Research Ethics Committee (CPREC

reference 2009.69) and the institutional ethics committee of the

Faculty of Psychology of Universidad Diego Portales. Written

informed consent was acquired from all patients’ families and

medical teams. Ethical approval for testing patients was provided

by the National Research Ethics Service (National Health Service,

UK; LREC reference 99/391). All clinical investigations were

conducted in accordance with the Declaration of Helsinki.

Participants
Healthy controls. A convenience sample of 26 neurological-

ly healthy adults (14 male; 12 female) (mean age = 24.7; SD = 4.7)

participated in the study.

Patients. A convenience sample of 34 VS or MCS patients,

assessed at Addenbrooke’s Hospital in Cambridge (UK) between

January 2011 and July 2013 were included in the study. EEG data

acquired from 2 patients were rejected due to excessive noise

artefact. Demographic details of remaining 32 patients from whom

data was analysed are listed in Table 1.

Patients were typically admitted for 4–5 days as part of a

comprehensive testing protocol that included the EEG task

described below, in addition to the fMRI tennis imagery task

described by Owen et al. [5]. Patients were repeatedly assessed

with the Coma Recovery Scale–Revised [CRS-R, 51] during their

admission. As listed in Table 1, the highest CRS-R score observed

across all assessments of each patient was used to assign a diagnosis

of VS or MCS. Breakdowns of these scores according to the CRS-

R subscales are listed in Table 2. Of the 32 patients, 13 were

diagnosed to be VS, with highest CRS-R scores between 7 and 8.

The 19 other patients diagnosed as MCS had a wider range of

scores between 8 and 19.

EEG Data Collection and Pre-processing
From each participant, we collected at least 10 minutes of 128-

channel high-density EEG data in microvolts (uV), sampled at

250 Hz and referenced to the vertex, using the Net Amps 300

amplifier (Electrical Geodesics Inc., Oregon, USA). Resting state

data from healthy controls were acquired in a state of relaxed eyes-
open wakefulness, while fixating on a central cross to minimise eye

movements. Eye-blink activity was visually evaluated to ensure

that the controls had their eyes open throughout the 10-minute

recording.

Data from patients was acquired with a consistent protocol that

was conventionally employed to ensure that the patient had eyes

open and was aroused at the beginning of data collection. In

addition, data was collected with most patients in a sitting position,

unless clinical circumstances necessitated otherwise, as previous

research has shown that the supine position adversely affects

Reorganised Networks in Disorders of Consciousness
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arousal and behavioural responsiveness [52]. To objectively assess

eyes-open/eyes-closed states, we measured eye-blink and eye-

movement related activity in our data. To this end we derived left

and right vertical bipolar electrooculographic (EOG) channels

from our raw EEG data, as subtractions of channels 25 vs. 127,

and 8 vs. 126, respectively. Similar to the approach employed by

Cologan et al. [53] we filtered these derived channels with 1–3 Hz

to focus on eye-movement related activity, and then calculated

their standard deviations (SD) within a 1-second non-overlapping

sliding window over time, normalised by the average SD over all

such windows. Supplementary figure S3 plots the time course of

this normalised SD for each patient, averaged over these two

bipolar channels.

Data from 91 channels over the scalp surface (at locations

shown in Figure 7, top left) were retained for further analysis.

Channels on the neck, cheeks and forehead, which mostly

contributed more movement-related noise than signal in patients,

were excluded. Exactly 10 minutes of continuous data were

retained, filtered between 0.5–45 Hz, and segmented into 60 10-

second long epochs. Each epoch thus generated was baseline-

corrected relative to the mean voltage over the entire epoch. Data

containing excessive eye movement or muscular artefact were

rejected by a quasi-automated procedure: abnormally noisy

channels and epochs were identified by calculating their normal-

ised variance and then manually rejected or retained by visual

inspection. Independent Components Analysis (ICA) based on the

Infomax ICA algorithm [54] was used to visually identify and

reject noisy components. After pre-processing, a mean (SD) of 54

(7), 53 (7), 55 (2) epochs were retained for further analysis in VS,

MCS patients and healthy controls, respectively. An ANOVA

revealed no statistically significant difference between the numbers

of epochs retained in the groups. Finally, previously rejected

channels were interpolated using spherical spline interpolation,

and data were re-referenced to the average of all channels. These

processing steps were implemented using custom MATLAB scripts

based on EEGLAB [55].

Table 2. CRS-R subscores of patients.

Patient Auditory Visual Motor Oromotor Communication Arousal

P1 1 1 2 1 0 2

P2 1 1 2 1 0 2

P3 1 1 2 1 0 2

P4 1 1 2 1 0 2

P5 1 1 2 2 0 2

P6 1 1 2 1 0 2

P7 1 1 2 2 0 2

P8 1 1 2 2 0 2

P9 1 1 2 1 0 2

P10 1 1 2 1 0 2

P11 1 1 2 1 0 2

P12 2 1 2 1 0 2

P13 1 1 2 1 0 2

P14 3 1 2 2 0 2

P15 1 2 2 1 0 2

P16 3 3 2 2 0 2

P17 2 3 1 1 0 2

P18 1 3 2 2 0 2

P19 2 3 2 2 0 2

P20 1 3 3 1 0 2

P21 3 2 2 1 0 2

P22 2 3 3 2 0 2

P23 2 2 2 1 0 2

P24 1 3 2 1 0 2

P25 2 3 3 2 0 2

P26 1 2 2 1 0 2

P27 3 3 3 2 0 3

P28 3 4 4 1 0 3

P29 4 3 5 1 1 3

P30 3 5 2 1 0 2

P31 4 5 6 1 0 3

P32 3 4 4 1 0 2

doi:10.1371/journal.pcbi.1003887.t002
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Spectral Power, Connectivity and Graph-Theoretic
Analysis

Figure 7 depicts the data processing pipeline employed to

calculate spectral power and connectivity measures from the clean

EEG datasets. Spectral power values within bins of 0.25 Hz were

calculated using Fourier decomposition of data epochs using the

pwelch method. At each channel, power values within five

canonical frequency bands, delta (0–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz) were convert-

ed to relative percentage contributions to the total power over all

five bands. Alongside, cross-spectrum between the time-frequency

decompositions (at frequency bins of 0.49 Hz and time bins of

0.04 s) of every pair of channels was used to calculate a debiased,

weighted Phase Lag Index (dwPLI) as introduced by Vinck et al.

[37]. Generally speaking, phase synchronisation, widely seen as an

EEG measure of information exchange between neuronal

populations, is often calculated from the phase or the imaginary

component of the complex cross-spectrum between the signals

measured at a pair of channels. For example, the well-known

Phase Locking Value (PLV; see Lachaux et al. [56]) is obtained by

averaging the exponential magnitude of the imaginary component

of the cross-spectrum. But many such phase coherence indices

derived from EEG data are affected by the problem of volume

conduction [57,58], as a result of which a single dipolar source,

rather than a pair of distinct interacting sources, can produce

spurious coherence between spatially disparate EEG channels.

The Phase Lag Index (PLI), first proposed by Stam et al. [38]

attempts to minimise the impact of volume conduction and

common sources inherent in EEG data, by averaging the signs of

phase differences, thereby ignoring average phase differences of 0

or 180 degrees. This is based on the rationale that such phase

differences are likely to be generated by volume conduction of

single dipolar sources. But despite being insensitive to volume

conduction, PLI has two important limitations: firstly, there is a

strong discontinuity in the measure, which causes it to be

maximally sensitive to noise; secondly, when calculated on small

samples, PLI is biased towards strong coherences (i.e., it has a

positive sample-size bias). The Weighted PLI measure (wPLI; see

Vinck et al. [37]) addresses the former problem by weighting the

signs of the imaginary components by their absolute magnitudes.

The Debiased Weighted PLI (dwPLI) additionally addresses the

latter problem by being minimally biased when the number of

epochs is small. Further, as the calculation of wPLI also normalises

the weighted sum of signs of the imaginary components by the

average of their absolute magnitudes, it represents a dimensionless

measure of connectivity that is not directly influenced by

differences in spectral or cross-spectral power. For these reasons,

we employed the dwPLI measure to estimate connectivity in our

data.

For a particular channel pair and frequency band, the peak

dwPLI across all time and frequency bins within that frequency

band was recorded as the ambient amount of connectivity between

those channels. Due to relatively higher levels of noise due to

muscular artefact observed in patient spectra (see figure 1), this

Figure 7. Data processing pipeline for graph-theoretical analysis. Cross-spectral density between pairs of channels was estimated using the
dwPLI measure. Resulting symmetric connectivity matrices were thresholded before the estimation of graph-theoretic metrics. In the connectivity
matrix shown (bottom left), the threshold has been set to plot top 30% of strongest connections. In the topograph (bottom middle), modules
heuristically identified by the Louvain algorithm are indicated by colour, and inter-modular edges are plotted in black.
doi:10.1371/journal.pcbi.1003887.g007
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calculation of dwPLI-derived connectivity was restricted to the

delta, alpha and theta bands, where the impact of such noise

relatively negligible, and prominent differences between the power

spectra were observed.

The 91691 subject-wise, band-wise dwPLI connectivity matri-

ces thus estimated were thresholded to retain between 50–10% of

the largest dwPLI values. They were then represented as graphs

with the electrodes as nodes and non-zero values as edges. The

lowest threshold of 10% ensured that the average degree was not

smaller than 2 � log(N), where N is the number of nodes in the

network (i.e., N = 91). This lower boundary guaranteed that the

resulting networks were estimable [39]. Similar ranges of graph

connection densities have been shown to be the most sensitive to

the estimation of ‘true’ topological structure therein [33,59]:

higher levels of connection density result in increasingly random

graphs, while lower levels result in increasingly fragmented graphs.

At each step of the connection density between 50% and 10% in

steps of 2.5%, the thresholded graphs were submitted to graph-

theoretical algorithms implemented in the Brain Connectivity

Toolbox [60]. These algorithms were employed to calculate

metrics that captured key topological characteristics of the graphs

at multiple scales. These included the micro-scale clustering

coefficient and macro-scale characteristic path length [39] and

global efficiency [41], alongside meso-scale measures like modu-

larity and community structure [using the Louvain algorithm, see

61], and participation coefficient [43]. Modularity and community

structure calculated by the heuristic Louvain algorithm, and all

measures derived therefrom, were averaged over 50 repetitions. In

addition, for each frequency band considered and at each

connection density threshold, the normalised amount of mutual

information [44] was calculated between the community structures

in the graphs of each pair of subjects. Unlike some previous

applications of graph theory to MRI data [33,62,63], we did not

binarise the thresholded weighted graphs, to be able to better

estimate path lengths and between-group differences therein

[32,64]. However, we verified that all the results described here,

except those relating to characteristic path length, remained

qualitatively unchanged when calculated with binarised matrices.

While the above graph-theoretic measures characterised the

topological structure of networks, they did not capture how these

networks were embedded in topographical space over scalp. To do

this, we calculated a novel measure, termed modular span, which

estimated the weighted topographical distance spanned by a

module. More formally, given a thresholded graph with a

previously identified community structure, the modular span S
of a non-degenerate module M (i.e., a module with more than one

member), was defined as:

S~
1

nM

X

(i,j[M)

dij � wij

where nM is the number of nodes in the module, and (i, j) are a

pair of member nodes therein. dij is the normalised Euclidean

distance between the pair of corresponding electrodes over the

scalp, and wij is the weight of the edge between nodes i and j. Note

that, as dij is the normalised distance (i.e., dij = 1 for the most

distant pair of electrodes), modular span is a dimensionless

quantity. Modular span as defined above can be interpreted as the

weighted sum of the topographic lengths of all the edges between

the nodes comprising a module, scaled by the size of the module.

By taking an algorithmically derived module of a graph and

embedding it in the physical space over the scalp, modular span

linked the topological construct with a topographical measure that

provided key insights into the spatial differences between the brain

networks of patients and controls.

We compared the graph metrics described above between

groups of patients and controls in frequency bands of interest using

unpaired t-tests, assuming unequal variances within the groups.

The ability of the metrics derived from individual patient graphs to

predict their CRS-R scores was tested using robust linear

regression, by calculating R2 and p-values to estimate statistical

significance.

Supporting Information

Figure S1 Group- and band-wise averaged topographic
distributions of spectral power contributions. Panels A,

B and C depict topographic colour maps of group-wise

power contributions to the delta, theta and alpha bands,

respectively. Alpha power was primarily focused in occipital

and parietal electrodes, whereas theta power was relatively

frontocentral.

(EPS)

Figure S2 Temporal variability in band-wise power
contributions. Bar graph depicts amount of variability in

channel-wise power contribution percentages across epochs,

band-wise averaged over all channels in each control and patient

dataset. Patients generally had significantly lower or statistically

indistinguishable amount of temporal variability in power

contributions over the recording session.

(EPS)

Figure S3 Temporal variability in EOG activity. Time

courses depict normalised standard deviations of derived electro-

oculographic (EOG) activity within 1–3 Hz, averaged over left and

right EOG derivations, for each patient listed in Table 1.

(EPS)

Figure S4 Graph-theoretic metrics as functions of
connection density. Panels A, B and C plot group-wise

averaged graph-theoretic metrics in the delta, theta and alpha

bands, respectively, as functions of decreasing connection density

(increasing network sparseness). Error bars indicate SE of the

mean. Differences between groups in these metrics were consistent

across the range of connection densities considered.

(EPS)
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