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Abstract

A classification of integrable two-component systems of non-evolutionary partial dif-
ferential equations that are analogous to the Camassa-Holm equation is carried out via the
perturbative symmetry approach. Independently, a classification of compatible pairs of
Hamiltonian operators of specific forms is carried out, in order to obtain bi-Hamiltonian
structures for the same systems of equations. Using reciprocal transformations, some
exact solutions and Lax pairs are also constructed for the systems considered.

1 Introduction

In recent years there has been a growing interest in integrable non-evolutionary partial differ-
ential equations of the form

(1-— Di)ut = F(u, Uy, Ugy, Uggy, - -.), u=u(z,t), Dp= %, (1)

where F' is some function of u and its derivatives with respect to x. The most celebrated
example of this type of equation is the Camassa—Holm equation [3]:

(1 — D?)uy = 3un, — 2Uplpy — Ullypg. (2)
Other examples of integrable equations of the form (1) include the Degasperis-Procesi equation
(1 — DHuy = dutty — 3plpe — Ullpae,
(see [7, 8]) as well as equations with cubic nonlinearity, such as

2 2 2
(1 =D)uy = U Uygy + 3UULUL, — U Uy,

(1—€D2uy = Dy (Uupy — Uty + uul — u)

(see [15, 23] and [11, 30], respectively). All of the latter equations of Camassa-Holm type
are integrable by the inverse scattering transform. They possess infinite hierarchies of local
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conservation laws and (quasi-)local higher symmetries, bi-Hamiltonian structures and other
remarkable attributes of integrable systems. Part of the fascination with these sorts of equations
is due to the fact that as well as having traditional (smooth) multi-soliton solutions, they admit
weak solutions of peakon (peaked soliton) type, and also display interesting blowup and wave-
breaking phenomena [17]. The complete classification of integrable equations of the form (1)
was carried out in [23] using the perturbative symmetry approach introduced in [20]. Various
approaches to generating multicomponent systems of Camassa-Holm type have been proposed
recently, based on energy-dependent spectral problems [13], or Novikov algebras [28].

In this paper we study integrable two-component systems of the form

(1 - Dm>ut - F(U,U, Uy, Vg Uz, Uzm)7
(1 + Daz)vt - G(u, UV, Uy Vg Ugg, Uzw)a

(3)

where F, G are polynomials over C in u, v and their z-derivatives. An example of an integrable
system of the form (3) is

(1 — Dy)uy = 2(u + v)ug — (U + v) gy — u2, (4)
(1+ D)y = 2(u + v)vg + (U + v)vgy + V2.

The above system is related to a system which (up to sending ¢ — —t and renaming variables)
was given as
{ my = pmg + 2mpz — 44z, (5)
¢ = (p9)., m=(1-D)p,

by Chen, Liu and Zhang [5], and related to an alternative system of the form (3) presented by
Falqui [9], namely

(1-D)U;, = V,+2UU,—-UU,, —U?, (6)
(1+ D)V, = 20,V 420V, +UV,, +U,V,

(again, up to renaming variables, and fixing the value of a parameter). To be precise, under
the transformation
p=u+w, q:(l_Dx)u+(1+Dx)va (7)

which is of Miura type, solutions of the system (4) are mapped to solutions of (5), while
2
p=U  ¢= ((1 - Dx)U> — 921+ D,)V

is a Miura map from (6) to (5).

The rest of the paper is concerned with classifying integrable systems of the form (3). In the
next section we outline the perturbative symmetry approach in the context of non-evolutionary
systems with two dependent variables, and explain how it leads to an integrability test for
such systems. Section 3 contains the result of applying this integrability test, in the form of
a list of systems with quadratic, cubic and mixed quadratic/cubic nonlinear terms; there are
six systems in total, presented in Theorems 2, 3 and 4 below. The fourth section is concerned
with a different problem, namely that of classifying pairs of compatible Hamiltonian operators
of specific forms in two dependent variables with the purpose of providing a bi-Hamiltonian
structure for the systems in the aforementioned list. In the fifth section we consider changes
of independent variables, specifically reciprocal transformations (sending conservation laws to
conservation laws); these are helpful for the construction of Lax pairs and exact solutions, which
we illustrate in some cases. The paper ends with conclusions and suggestions for future work.



2 Integrability test: perturbative symmetries

In this section we briefly recall the basic definitions and notations of the perturbative sym-
metry approach (for details see [20, 21]). We also present the integrability test which we will
subsequently apply to isolate integrable generalizations of the Camassa—Holm equation.

2.1 Quasi-local polynomials and definition of symmetries

Let u, v be functions in x, t. Polynomials in u, v and their z-derivatives over C form a differential
ring R with an x-derivation

> 0 0
D, = kz:%(ukﬂa—uk + Uk+18_21k)’

where uy, v denote k-th derivatives of u, v with respect to x. In particular, ug and vy denote
the functions v and v themselves. We often omit the zero index of ug and vy and simply write
u and v.

We will assume that 1 ¢ R. Elements of the ring R are finite sums of monomials in u,v and
their z-derivatives with complex coefficients. The degree of a monomial is defined as a total
power, i.e. the sum of all powers of variables that contribute to the monomial. Let R™ denote
the set of polynomials of degree n in u, v and their z-derivatives. Then ring R has a gradation

R=PR", R"R"CR"™.
n€Z+

Elements of R! are linear functions of the u,v and their derivatives, elements of R? are
quadratic, etc. It is convenient to define a “little-oh” order symbol o(R"™). We say that
f=0(R")if f € @,., R, ie. the degree of every monomial of f is bigger than n.

Since 1 ¢ R, the kernel of the linear map D, : R — Im D, C R is empty and therefore D is
defined uniquely on Im D,.

To an element g € R we associate differential operators g, , and g, , called Fréchet derivatives
with respect to u and v and defined as

T 9y
I, 3u v 9, c%k v

k>0 K k>0
Now we need to introduce a concept of quasi-local differential polynomials and the correspond-
ing extension of the ring R. The idea of this extension is similar to that in [18, 32, 20].

To rewrite the Camassa-Holm type system (3) in evolutionary form, we introduce a pair of
pseudo-differential operators

A =(1-D)7 A= (14D 0
System (3) then can be rewritten as

Uy = A_F(U,,U,Ul,vl,' o ,Un,Um) (9)
Uy = A+G(U,U,U1,U1, U ,Un,Um) .

Clearly, if F,G € R then the right hand side of the system (9) no longer consists of differential
polynomials and we need an extension of the original differential ring R.



Consider the following sequence of ring extensions:

Ro=R, Ri=Ro|JA+(Ro)|JA-(Ro), Rus1=Ra|JAL(R.)|JA-(RN).

where the set AL(R,) = {A+(a) : a € R, } and the horizontal line denotes the ring closure. The
index n indicates the “nesting depth” of operators A.. We then define quasi-local differential
polynomials as follows.

Definition 1. An element f is called a quasi-local differential polynomial if f € R, for suffi-
ciently large n.

The right-hand side of equations in (9) lies in R;. Its symmetries and densities of conservation
are also generally speaking all quasi-local and belong to Ry for some k& > 0 .

We now recall the definition of a symmetry.

Definition 2. A pair of quasi-local differential polynomials P and Q) is called a symmetry of
an evolutionary system u; = f,v; = g, where f, g are quasi-local polynomaials, if the system

UT:Pa 'UT:Q

18 compatible with u; = f,v; = g.

If a=(f,g)" and b = (P,Q)T then the above definition is equivalent to the vanishing of the

Lie bracket
o fieu e PN\ ([ Piu Py f
ari= (1) (o) - (e an)(0) @

We finally define a notion of formal pseudodifferential series (or just formal series) as an object
of the form

A= anyDY7F, (11)

k>0

with coefficients being quasi-local differential polynomials or constants. The order of the formal
series (11) is IV (we assume that the leading coefficient ay # 0). The formal series form a ring:
the sum of formal series is defined in the obvious way, while multiplication (composition) is
defined by

a, D! 0 by DI =Y ( Z ) 1 D (b)) DTHF (12)
k>0
For positive n the sum (12) is finite since the binomial coefficients

<Z>_n(n—1)(n—2k)!-~-(n—k+1)

vanish for k£ > n, and for negative n the composition is well-defined in the sense of formal series.

In the symmetry approach we admit the following definition of integrability:
Definition 3. System (9) is integrable if it possesses an infinite hierarchy of symmetries.
In the following subsections we present the necessary conditions for existence of a hierarchy of

symmetries. For this it is convenient to introduce the symbolic representation of the ring of
quasi-local polynomials and derive the necessary conditions in the symbolic representation.
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2.2 Symbolic representation

In this subsection we introduce the symbolic representation of the ring of differential polynomi-
als and its extensions. We first recall the symbolic representation R of the ring R. A symbolic
representation of a monomial

USLOU?{LI" nPUO Ul ../Umq, n0+n1+...+np:n,m0+m1+...+mq:m

is defined as:

o, ”p Mo ,,M1 . )My

AnAm(&lé—Q n() ng—i—l n0+n1 §p> <<1C2 mo mo-‘rl ’rln()—i-ml o an)( ’ (13)

where triangular brackets ()¢ and () denote the averaging over the group ¥, of permutations
of n elements &;,...,&,, and the group ,, of m elements (i,...,(, respectively. That is

<C(§1, s 7€na<17 ce 7Cm)>§ 18
(c(€ry o 6nCiyee i Cm ~ Z o 0(60),Cly e )

Uezn

and the similar definition holds for averaging with respect to ¢ arguments. Later we refer to
this as symmetrisation operation. For example, linear monomials u,, v, are represented by

Up — UEY, Uy — O (14)

and quadratic monomials ,u,,, U,Vm, Vv, have the following symbols

~2 ~2
Uty = (GG G, v = WEG) vvn > FEG GG (15)

To the sum of two elements of the ring corresponds the sum of their symbols. To the
product of two elements f,g € R with symbols f — a"0™a(&,..., 60, Cly-- -, Gn) and
g — wP0b(&y, ..., &, (- .., () corresponds

fg — ﬁn+p6m+q<<a(£1, s 75”7 Cl? s 7Cm)b(€n+1> s 7§n+pa Cm+17 s aCm+q)>§><7 (16)

where the symmetrisation operation is taken with respect to permutations of all arguments &
and (. It is easy to see that the symbolic representations of quadratic (15) and general (13)
monomials immediately follow from (14) and (16).

If f € R has a symbol f — @"0™a(&, ..., &, Chy- - -5 Cm), then the symbolic representation for
its Nth derivative DY (f) is

D:]v\f(f) AnA (£1+£2+ +£n+<l+C2+"'Cm)Na(€17-~w£n7<la-~a§m)'

We will assign a symbol 7 to the operator D, in the symbolic representation, with the action

N A" a(Cr, .y Gl Gn) = WO (Gt e GGt Gn) V&, n Gl Gn)

If feRand f— "0 anm(&, - &, Qs - - -, () then for the symbol of its Fréchet derivatives
fen and f., we have

m—1

an,m(gla s 7671’ gla s 7Cm—1’n)'

f*,u — nan—l@mamm(gl’ s 7€n—17 7, gla s 7Cm)7 f*,v — mu"o

Thus we have described the symbolic representation R of the differential ring R.



To construct the symbolic representation of the quasi-local rings Ry, kK = 1,2,... it is enough
to note that the symbolic representation of operator Ay = (1+ D,)~! is

Ap — (14n)™

Now if f € R and f — u"0™a(&y, ..., &, 1y - -+, Gn), then

An A a(&,---yfn,Q,---»Cm)
A G T G G

Using the addition and multiplication operations where necessary, we thus construct the sym-
bolic representation of Ry, k =1,2,....

Finally, we define the symbolic representation for pseudo-differential formal series. For any two
terms fDE, gD? of formal series (p,q € Z and f, g € Ry) with symbols

f — an@ma(fla cee 7£n7 <17 cee 7Cm)7 g — usvrb(éla cee 7587 <17 cee 7C7")

the composition rule in the symbolic representation reads

fD?ogD? — a"0™a(&y, .. &, Cly ey GNP 0 WOTB(Ery e €y Cry e GO
:an+8Am+r<< (517'-->€n7<1a'-->Cm)(§n+1+"'+€n+s+gm+1+"'+Cm+7“+77)pX
X b(fn-i—l; cee agn-l—S) Cm-i-l’ s 7Cm+7‘)nq>§>C7 (]‘7)

where the symmetrisation is taken with respect to permutations of arguments ¢ and arguments
¢, but not the argument 7.

More generally we consider formal series of the form

A = ago(n) + Gaio(&r,n) + 9an (€1, 1) + @Pago (&1, E2,m) + Wdarn (€1, G, n) + 0%aoa(Cry Goym) + -+

(18)
where the coefficients a,,, (&1, ..., &0, C1y - -+, Gn, 1) are formal series in 7, i.e.
o0
anm(§17"-7€n7C11-'-7Cm7 Z CL 517"'7§n7<-17"'7<..m)77_k7
k:knm
with a® (&1,...,&,, ¢, .., Gn) being symmetric functions with respect to permutations of ar-

guments & and arguments ;. Similar to the rule (17), the composition of two monomials is
defined as

nAm (517 cee 75n7§17 cee 7Cm777) O&p@qb(gla cee 76p7<17 e va,U)
= An+pAm+q<< (ély N TS IR TN Y SR R +£n+p + Gmy1 + -+ <m+q +77)X
Xb<§n+17 s 7€n+p7 Cm+17 s 7CTYL+q7n)>§>C'

Definition 4. We shall call a function anm (&1, ..., &0, Cly- -, Cm,n) quasi-local if all the coef-
ficients of its expansion

anm(gb"'7£n7C1>"‘7<m777>:Zaﬁm(gh“'7€n7<-17"'>cm)777k7 n— oo (19)
k

are the symbolic representations of some elements from R, for some p > 0.



In particular, if all the coefficients in (19) are symmetric polynomials in each of the two sets
of variables &,...,&,, and (1,...,(n, we say that the function apm, (&1, ..., &n, Gy ooy Gny 1) 18
local.

The set of formal series (18) has the structure of an associative noncommutative ring Ra (7).
It inherits the natural gradation from R, namely

n) =P RAM)

where 7@2(77) with n = 0,1,2,3,... are constant (i.e. independent of u,v ), linear in u or v,
quadratic, cubic, etc. We say that a formal series A = o(RA(n)) if A € B,.,, Ri(n).

2.3 Formal recursion operator and necessary conditions for integra-
bility

In this subsection we formulate the necessary conditions for integrability of a system of the
form

Ut :A_f(u,v,ul,vl,--- ,Un,?Jm) (20)
Uy = A+g(U,U, Uy, U1yt Up, Um)
Let f , g be the symbolic representations of the differential polynomials f, g, so that
f=tw (&) + dwa(Gr) + tPazo (&1, &) + tbar 1 (&1, G1) + 0%a0a(Cr, G) + -+ 21)
g = w3 (&) + 0wa(C1) 4+ @2bao(&1, §a) + Wby 1 (€1, 1) + 0%bo2(Cry Co) + -+
Define A .
P ( Fou Fuw >
Jxu  Gxw
and let o 1@
LY L
= ( L(S) L(4) ) ) (22)
where L i =1,..., 4 are formal series,

L9 = ¢ () +aely (&1, 1)+ 065 (o m) +02 05 (€1, 2, 1)) + 8061 (61, G ) +02050 (G, Co ) +

Definition 5. A formal series A (22) is called a formal recursion operator for system (20) if
all the coefficients qﬁglk) are quasi-local and it satisfies the equation

AN=FoA—-AoF (23)
In the above deﬁnltlon A, stands for a formal series obtained from A by differentiating all the
coefficients qb . by t and replacing u; and v; according to the system (20).
Theorem 1. Assume that the system (20) is such that
wa(() =0=ws3(§) =0 (24)

and w1(§) # 1€, wa(C) # c4C (for constants c1,c4). Suppose that the system (20) possesses
an infinite hierarchy of quasi-local higher symmetries. Then the system possesses a formal
recursion operator (22) with ¢ (n) = ¢ (n) =0 and ¢V (n) = ¢W(n) = n.
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The assumption (24) implies that the linear part of the system (20) is diagonal; in principle, this
condition may be removed. (Note that Falqui’s system (6) is excluded by this assumption.) In
the diagonal case the proof of the theorem is essentially the same as the proof of the analogous
Theorem 2 from [20] and therefore we omit it here. The theorem can be extended to a non-
diagonal case via a formal diagonalisation procedure (see e.g. [22]), however this is beyond
the scope of this paper. In what follows we shall consider two-component Camassa-Holm type
systems with diagonal linear terms leaving the non-diagonal case for future studies.

Theorem 1 provides the necessary integrability conditions for the system (20). These can be
obtained as follows:

e For a given system (20) one solves the equation (23) with respect to A and finds

¢§2(fb cee 7£j7<17<kun)'

e One then verifies the quasi-locality conditions of gbglk) (&1,...,&, G, Ceym) and obtains the
obstructions to integrability (if any) for the system (20).

To classify integrable systems of the Camassa-Holm type (see the next section) we only need
to verify quasi-locality of gzﬁgzk), 1=1,...,4with 5+ k < 3.

3 Classification theorems

In this section we present the classification of integrable Camassa-Holm type systems of the
form

{(1—DQWZAWy+&w+f (25)

(14 Dy)vy = vy + pova + g

where f, g are polynomials containing terms of degree two or above in w,v,uy, vy, us,ve. We
will also assume that \s % —\; and us # ;1 as otherwise the linear part of each equation of
the system will be Ay (1 — D,)uy and py (1 4 D,)vy, and individually these terms are removable
by a Galilean transformation.

We will restrict the classification to non-linearisable systems and therefore require the existence
of non-trivial conservation laws. This allows us to further restrict the admissible linear terms
in (25).

Proposition 1. If the system (25) possesses a conservation law with nonlinear density p then

pe = —A2 and gy = Ap.

Proof: Rewriting the system (25) in evolutionary form and transforming the system to the
symbolic representation we obtain

= tw (&) + f
. . S 26
{ 0 = twa(C1) + g (26)
where
. /\1k+/\2]{32 . M1k+M2]€2

) =" el =Ty

and f , g are the symbolic representations of the A_ f and A, g. Clearly, the condition Ay # —\;
and fio # p1q implies that wy o(k) # ¢ 2k for constants ¢; o. Assume first that p is a density of a



conservation law with symbol p = @"0"a(&1, ..., &, C1y oo Cm) + 0(7@”“”). Then we must have
p: € Im(D,). In the symbolic representation we have

pr = W0™a(Ery - Eny Cry ey Gn) [01(E1) - A wi(n) + wal(C) + -+ A walGn)] + o(R™T™).

Since p; € Im(D,) we must have

(Gt 6t Gt ACn) [al€ns o &ny Gy Gn) [w1(§1) + -+ Fwi(6n) +wa(C) + -+ w2 (Gn)]

Since p is a non-trivial density, p ¢ Im(D,) so that a(&y,...,&,, (1, -+, Gn) is not divisible by
&1+ +& + G+ -+ Gn), and therefore we must have

G+ &+ G+t Gn) [wi(&) + -+ wi(€n) +wa(G) + 0+ wa(Gn)-
This implies
wi(€) + - Fwi(&) FwalC) + - Fwe(Gnot) Fwa(=&— =& —G = —Gno1) =0,

Assume that n +m > 2. Then differentiating the above expression with respect to any two
distinct arguments in succession we obtain either w; = 0 or wj = 0, which contradicts the
conditions wys(k) # c12k. Clearly, if p is a density of a non-trivial conservation law with
symbol

n

,6 = Z ﬂi@"_iai(fl, e ,fi, gl, Ce 7Cn—i) + 0(7?,”)

i=0
and n > 2 then we again arrive at the same contradiction. So the density must necessarily start
with quadratic terms, and therefore p = 4% a(&1, &) + a0 b(&1, (1) + 92 ¢(Gr, G2) + o(R?). Hence

pr = 12 a(&1, &) [wi (&) +wi (&)]+00 b(Er, G [wn (&) +wa ()] 40 e(Cr, Go)[wa(G) +wa(Co)] +0(R2).

Since p; € ImD, we must have

a(&, —&)wi (&) +wi(=6)] =0, (G, =) [w2(Cr) + w2 (—C1)] = 0,
and b(&1, —&1)[w1(&1) +wa(—&1)] = 0. If wy (&) +wi(—&1) = 0 then Ay = —\;, which contradicts

the assumptions. Thus a(&;, —§;) = 0 and we can disregard this term as trivial. Similarly,
if wo((1) + wa(—¢1) = 0 then puy = py, and thus we have ¢((;, —(;) = 0 and disregard this
term as well. Therefore we must have b(§;, —&;) # 0. The last condition gives s = —\y and
M1 = )\1. ]

Using the above proposition with a combination of a Galilean transformation and rescaling ¢,
we thus can consider only systems of the form

(1= Dy)uy = uy + f,
{ (14+ Dy)v, = Ull +g. (27)

We shall assume that differential polynomials f, g are of one of the following three forms:

Case 1. f, g are quadratic differential polynomials of the form

f = cou2 + cquv + 02112 + czuug + cquug + c5uf + CgUIV + Cruvy
+  cgusv + couqv + crouve + c11vv1 + Cci1avv + clgvf,

g = dou® + dyuv + dov® + dsuug + dyuug + d;,uf + dguiv + druvy
4+ dgusv + douivy + diguvy + divvy + digvvg + dlgvf.



Case II. f, g are cubic differential polynomials of the form

f = cou3 + clu2v + czuz;2 + 031}3 + 04u2u1 + c5u2uz + C@U% + 07u2f02 + cguuqv + CQU%'U
2 2 2 2 2
+  Ccrouvuz + 110 Uz + C120V1UL + C13UV] F C1aUVV2 + C15V7 V1 + C16V V2 + C17UVT,
g = dou® + diuPv + douv® + dgv® + dyuPur + dsuPug + dGuuf + druPvy + dguug vy + ng%’U

+ deUUQ + d11U2U2 + d12UU1U1 + dlgu’U% + d14u1}’02 + d15’027}1 + d16U2U2 + dn’UU%,
Case III. f, g are linear combinations of terms in Case I and Case II.

In principle the above anzatz can be expanded by adding higher derivatives or terms with a
higher degree of nonlinearity. However we conjecture that there are no non-trivial integrable
systems of the above form with f, g being homogeneous polynomials of degree higher than
three.

We shall also assume that system (27) is not one that can be decomposed into a pair of separate
scalar equations in u,v, as well as not a triangular one i.e. not such that one equation is a
scalar equation in one variable while the other is a linear equation in the other variable. Clearly
decomposed systems can be studied as scalar ones, while the integrability of triangular systems
follows from the integrability of the scalar part and the fact that the second equation is linear
in its own variable. Thus we shall restrict ourself to fully coupled systems.

Applying the integrability test as described above leads to a total of six different systems, which
are listed below according to the type of nonlinearity.

Case I:

Theorem 2. If a non-decomposed and non-triangular system (27) with f, g satisfying the con-
ditions of Case I possesses an infinite hierarchy of higher symmetries then modulo the scaling
transformations u — au, v — Pv, x — vy, t — ot it is one of the list

(1 - Dy)us = uy + Dy(2 — D)u? +20D,(2 — D,)u, (28)
(1+ Dy)vy = vy +2uD,(2 + D,)v + Dy(2 + D, )v?;
(1 — Dy)us = uy + Dy(2 — Dy)u? + 2D,v(2 — D, )u, (29)
(1+ Dy)vy = vy + 2D, u(2 + D,)v + Dy(2 + D, )v2.

Case II:

Theorem 3. If a non-decomposed and non-triangular system (27) with f, g satisfying the con-
ditions of Case II possesses an infinite hierarchy of higher symmetries then modulo the scaling
transformations u — au, v — Pv, x — vy, t — 6t it is one of the list

{ (1 - Dz)ut =u + U(CKDI + 5)(2 - Dz)u27 (30)

(1+ Dy)vy = vy +u(aD, — B)(2 + D,)v%;

{ (1 — Dy)us = uy + (aD, + B)v(2 — Dy)u?, (31)
(1+ D)oy = vy + (D, — B)u(2 + D,)v>.

Case III:

10



Theorem 4. If a non-decomposed and non-triangular system (27) with f, g satisfying the con-
ditions of Case III possesses an infinite hierarchy of higher symmetries then modulo the scaling
transformations u — au, v — Pv, x — vy, t — 6t it is one of the list

(1= Dy)us = uy + aDy(2 — Dy)u® + 28D,v(2 — Dy)u + vDyv(2 — Dy)u?, (32)
(1+ D,)vy = vy + 2aD,u(2 + Dy)v + D, (2 + Dy)v* + yDu(2 + D, )v;
(1= Dy)us = uy + aDy(2 — Dy)u® + 26vD,(2 — Dy)u + yvD,(2 — Dy)u?, (33)
(1+ D,)vy = vy + 2auD, (2 + D,)v + 8D (2 + D,)v? + yuD,(2 + D,)v?

One can show that the above six systems possess infinite hierarchies of local higher symmetries
and infinite sequences of local conservation laws. However our integrability requirement is
the existence of quasi-local higher symmetries and conservation laws only as the system in
consideration in the evolutionary form is a quasi-local one. To the best of the authors’ knowledge
all known integrable Camassa-Holm type equations, despite being quasi-local ones, possess
infinitely many local higher symmetries and conservation laws.

In the next sections we shall consider compatible pairs of Hamiltonian operators, which will
lead to bi-Hamiltonian structures for each of the six systems listed above. We shall also present
Lax pairs for the systems with purely quadratic or cubic nonlinearity, without linear dispersion.

4 Compatible Hamiltonian operators

In this section, given two Hamiltonian operators of a certain type, we list all compatible pairs
which lead to non-trivial integrable two-component Camassa-Holm equations. The results of
subsection 4.1, where we consider linear Hamiltonian operators, are related to the approach of
[28], in which a classification of multi-component integrable systems was carried out based on
Novikov algebras [2]. However, in subsection 4.2 we find systems with cubic nonlinearity, which
do not appear in the latter approach.

We use the multivector method, as described in the standard reference [24], to investigate
the conditions such that the specified types of antisymmetric operators ‘H with entries H,;;,
1,7 = 1,2, depending on a pair of fields m,n, form Hamiltonian pairs with a nondegenerate
constant-coefficient differential Hamiltonian operator given by

_ ( Cle — CgDi Cg.l)$ — C4Dg

3Dy + eaD? ¢sD, — cgD? ) ) with constants ¢;, 2 =1,...,6. (34)

For the purpose of deriving coupled two-component Camassa-Holm equations, we are going to
study three cases:

(1) Cy = 1; (11) Cy = O, Cy = 1; (111) Cy = Cg = O, Ceg = 1. (35)

Moreover, we also use elimination requirements to get rid of non-coupled (triangular) or non-
Camassa-Holm type equations by removing pairs satisfying one or more of the conditions

® C1Ccy = c3¢q = C5c6 = 0

e The determinant of J is a multiple of D,;

o (Hi1)sn = (H12)sn = 0 and H11J12 — H12J11 = 0;
o (Hot)sem = (Ha2)sm = 0 and Hay Joo — Hoo Jo1 = 0.

Otherwise, we refer to the Hamiltonian pairs ‘H and J as non-trivial CH Hamiltonian pairs.

11



4.1 Compatible linear Hamiltonian operators

We consider linear antisymmetric differential operators in dependent variables m,n, of the form

2y — ai;(mDy, + Dym) 4+ as(nD, + Dyn)  azmD, + aymq + asnD, + agny (36)
- asD,m — aymy + asD,n — agny  az(mD, + D,m) + ag(nD, + Dyn) )’

where a;,7 = 1,...,8 are constants. The conditions for such a linear differential operator to
be Hamiltonian have been studied in [2] for arbitrary square matrices of finite size, that is, the
constant parameters in the operator are the structure constants of a Novikov algebra. In our
case, it requires a; satisfying

aras + 2asag — 2asa3 + 2a2a4 — a% + asag = 0;

2asa7 — aras + 2a1a4 — azas + azag = 0; 2a1a7 + azag — azas — 2aga7 = 0;
a1a¢ + asag — asag + a2 — asay = 0;  2asa7 + asag — asas — 2agag = 0;
arar + azag — aqag — azaq + a2 — asay + agay = 0;  asar — azag + agag = 0.

(37)

In the following theorem, we list all cases where the Hamiltonian operators H are compatible
with constant Hamiltonian operators 7.

Theorem 5. Let the operators H and J be given by (36) and (34), respectively.

e Suppose that ¢y = 1. There are three non-trivial CH Hamiltonian pairs:

3 2
) _ (@a(mDy + Dym)  ainD, w _ (aDs—eD; D, — D; _
(i) ( a1 D n 0 I c3D, + D? csD, » ae2 #0;

0 agD,m a1 D csD, — D?
.. (2): SL/x (2): 1Mz 3z x .
(if) H (angm as(nD, + Dzn)> J (chz + D? ¢D, — cGDi) » as¢s 7 0;

2

@)_ (™ (mD, + D,m) ainD, + agD,m (3)_ aD, csD, — D?

(i) H (cqun +agmD, ag(nD, + D,n) )’ J csD, + D> D, , G108 7
0.

e Suppose that ¢4, = 0, co = 1 and the parameter cs is arbitrary. There are two non-trivial
CH Hamiltonian pairs:

(iv) HO = ai;(mD, + D,m) + as(nD, + D,n)  ascg(mD, + Dym) + ag(nD, + D,n)
-~ \agcs(mD, + D,m) + ag(nD, + Dyn) agce(mD, + Dym) + ag(nD, + Dyn) )’

ch:c_Di 0
‘7(4):( 0 cregDy—ceD? ) C et s —ag =0 and ¢ 20

3
5) a;(mD, + D,m) anD, 5) _ aD, —D; c¢D,
(v) H ( a1 Dyn 0 I csD, csD, )’ a1¢5 7 0.

e Suppose that ¢4, = co = 0, c¢ = 1 and the parameter cs is arbitrary. There is only one
non-trivial CH Hamiltonian pair:

0 agD,m aD c3D
i (6) — 8 6 _ (1= 3Ly
(vi) H <a8me ag(nD, + Dxn)> J <03Dx csD, — Dg) » asa # 0.

Proof: For the operators (34) and (36), acting on the univector £, we have
0 c1bh — 203 + csm — canp
— - , 38
Je)=7 (ﬁ) (0391 + sz + st — com3 (38)

H(E)= 2a1mb; + aymy0 + 2a9nb; + asni0 + agmn + agman + asnny + agnan (39)
asmb + (a3 —ay)mi0+asnb + (a5 —ag)ni 0+ 2azmn; +armin+2asnn; +agnin)’

12



%

where we used the notation D' = 6; and D'n = n;. We define the bivector associated to the
operator H by

1
@7.[ = 5 /5 AN 7‘[(5) = /(alm + azn)e VAN 91+ <(CL3 — a4)m + (CL5 — a6)n>9 Am
—(agm + agn)by A n+(azm + agn)n A n;.

Here [ f = [ g denotes the equivalence relation f = g iff f — g € ImD,. For the purposes of
this theorem, we solve the system (37) together with the conditions for H to be compatible
with the constant-coefficient Hamiltonian operator 7, that is, the trivector Pr () (©4) vanishes
[24], which leads to an algebraic system for the constants ¢;, a;, as follows:

ascy = 05 arcy = 0; ageq = 05 arc3 + ascs — azey + agcy — ascs + ages = 0;
ascy — gy — a1cq = 0; —asCe + asca — agco = 0; aszco — 2a4c2 = 0; ageqy —agey = 0;  (40)
(ag — ag)cy = 0; —asce + 2agc6 = 0; arey + agcs — agcs — ages = 0; —azce + agcg = 0.

When ¢, = 1 we get the following three solutions after applying our elimination requirements:

l.as=ai, ag=az3=as=as = ay = ag = ¢ = 0, a;cy # 0;
2. a3=ag4=ag, a1 =ay =as = ag = ay = ¢ = 0, agcg # 0;

3. a5 =ay, a3 = a4 = ag, Ay = ag = a7 = c3 = ¢ = 0, aag # 0;

these correspond to the three non-trivial CH Hamiltonian pairs (i)-(iii) in the statement. Simi-
larly, treating the other two cases with the help of the Maple package Groebner, we obtain the
listed pairs (iv)-(vi). This completes the proof. O

Before we derive integrable systems based on this theorem, we make some remarks.

Remark 1. In this theorem we list all cases without considering any transformations among
them. Indeed, case (i) and case (ii) are related by the exchange of dependent variables (m,n) +—
(n,m), as are case (v) and case (vi). We first derive the non-trivial CH systems for Hamiltonian
pairs of this type. Then we look at the transformations between the equations.

Remark 2. We prove this theorem by directly checking the compatibility condition of two Hamil-
tonian operators. This method can be easily applied to different situations, for instance, the
quadratic Hamiltonian operators in Section 4.2, since we didn’t use the underlying structure of
Novikov algebras for linear Hamiltonian operators.

Remark 3. The classification results in [28] are based on the classification of low-dimensional
Nowikov algebras by Bai and Meng [1]. There is an equivalent structure for Novikov algebras.
Case (ii) is a special case of the N4 Novikov algebra.

Any compatible Hamiltonian pair H and J which does not depend explicitly on the independent
variables z and ¢, with J nondegenerate, leads to an integrable equation for the vector of
dependent variables m, that is

m; = HJ '(m,). (41)

In fact, for scalar m, the Camassa-Holm equation (2) was first constructed in this way in [10]
(although the correct form of the equation itself did not appear until [3]). In the case at hand,
with the vector m = (m, n)T, we apply this construction to the compatible Hamiltonian pairs

13



listed in Theorem 5. Since the pairs of operators J®, H® for i = 1,...,6 in the six cases
above depend linearly on arbitrary constant parameters, in each case we have a lot of freedom
to obtain different compatible pairs, by fixing the constants in the operator J® to get 7, and
taking linear combinations of J® and H® with different constants to get H.

From case (i), we get the integrable equation

<mt):(H(1)+<chx—czDi c3D, >>< 0 D,— D? >_1<mz).
ny csD, cs D, D, + D? 0 Ny
Letting
m=(1—Dy)u, n= 1+ D,)v, (42)
it follows that

{ (1 = Dy)uy = a1 D,v(2 — Dy)u + c3uy + €105 — CoUgpy (43)

(1+ Dy)ve = 4Dy(2 4 Dy)v* + 30, + 5y (arez # 0).

In the same way, from cases (ii) and (iii) we get two pairs of integrable equations, given by

2 = 2D, (2 — Dy)u? 4 csuy + c1v,

(1— D)

{ (14 Dy)vy = agDyu(2 + Dp)v + c3v, + C5ty — Collgps (ascs # 0), (44)
(1 = Dy)uy = a1D,0(2 — Dy)u+ %Dy(2 — Dy)u? + csuy + c1v,

{ (14 Dy)ur = 9 D,(2 + Do)o® + auDyu(2 + Dy)v + cyvg + ez, (0198 7 0 (49)

respectively. Notice that system (44) is the same as (43), upon swapping dependent variables
u <+ v and sending * — —x; they do not belong in the list in the previous section since they
include third derivatives, putting them outside the family (25). In fact, the system (43) can
be seen to be a reduction of Example 2 on p.97 of [28] by setting the parameters h =0, f = 1
and performing a Galilean transformation. It is also worth pointing out that it is possible to
relax our elimination conditions slightly and still obtain interesting bi-Hamiltonian systems; for
instance, setting ¢3 = ¢5 = ¢g = 0 in (44) or a; = ¢3 = ¢5 = 0 in (45), with ag = ¢; = 1 in both
cases, gives Falqui’s system (6), which is almost triangular (it would be with ¢; = 0).

For the system (45), if we take ¢; = ¢5 = 0 and ¢3 = 1 and rescale u and v, we get the system
(29) in Theorem 2. Thus we arrive at the following result.

Corollary 1. Define m and n as in (42). System (29) is bi-Hamiltonian, having the form
m; = H10ps = Hadp1,
where the compatible Hamiltonian operators Hy and Ho are given by

2 — 0 D, — D? Yo 2mD,+2D,m  2nD,+2D,m + D,
“\D,+D? 0 © "\ 2D +2mD, + D, 2nD, +2D,n

and the corresponding Hamiltonian functions are given by the densities p1 = un and py =
wo(2m +2n + 1).

Remark 4. To fiz the notation, note that for the Hamiltonian H = Hlm] = [ pdx defined by
the density p, we write the variational derivative as

§H (5H 5H)T
op = =

“om \0m’ on
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in the two-component case at hand. Also, recall that when p (and hence H ) is specified in terms
of Miura-related variables w, with the Miura map m = M(u), the chain rule is

SH SH
o _ 101
5o = M),

where the star denotes the Fréchet derivative, and the dagger denotes the adjoint operator.

Remark 5. Upon taking the linear combinations u = %(u —v), 0 = %(u + v) and applying

a Galilean transformation together with suitable rescalings, the system (29) can be seen to be
equivalent to Example 1 on p.97 of [28] with parameters h = 3 = 0.

For case (iv), if we let
m=(1-D>u, n=(1-D>u, (46)

then we obtain the integrable equation

my o H(4) 4 Cle 0 Dw - Di 0 - my
ne ) 0 cicgD, 0 c6(Dy — D3) ng )

in the explicit form

my = a1 (2mu, + mgu) + az(2nu, + ngu + 2mo, + myv) + Z_§<2”Uw + ngv) + Uy
ny = asce(2muy + mgu)+ag(2nu, + nyu + 2mu, + mxv)+‘z—:(2nvz + n,v) + cyv, (47)
ajag — asce + azag — ai =0 and cg # 0

Under a linear transformation, this system can be decoupled. For example, if we take a; = 1,
as = ag =0 and ¢g = —1 in (47), we get the two-component CH system (26) in [31] as follows:

m; = 2mu, + myu — 2N, — Nyv
ng = 2NU, + Ny + 2mu, + myv,

which can be transformed into

(1 — DU, = 2i(3UU, — UU,uy — 2U,Usy)

under the transformation v =i(U — V) and v =U + V.
For case (v), we let m = (1 — D?)u. Then we get the integrable system

(CL105 §£ O) (48)

my = a1 (2mu, + myu) + anng + 2ng + iy,
ny = 3y + ai(nug + nyu)

For case (vi), we let n = (1 — D?)v. Then we get the integrable system

(agcr # 0). (49)

my = c3v,; + ag(mu, + myv)
ny = ag(2nv, + ngv) + Smmg + 2my + 5,

Similarly to before, equations (48) and (49) are seen to be the same by swapping the dependent
variables. After taking ¢; = 0, ¢ = 0 and rescaling suitably, the system (48) becomes the
known two-component CH equation (5) from [5].

With a change of notation, the transformation (7) presented in the introduction is

u=U~+V, n=(1-D,)U+(1+D,)V, (50)
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which implies that

1 1
(1-D,)U = 5D;l(m — (1= Dy)n), (1+D,)V = §D;1((1 + Dy)n —m). (51)
Thus equation (48) when ¢5 = —1, ¢3 = 1 and ¢; = 2 becomes

(1= Da)Uy = ay(UU, = Ulzy = U +2U,V = U V) 4 Us (0 )
(1+ Da)Ve = a1(2UVe + UVig + 2VVe + VVea + V) + Vo 17 0),

which is system (28) when a; = 2. Thus we obtain the bi-Hamiltonian structure of system (28)
by using the result for equation (48), as follows.

Corollary 2. Define m and n as in (42). System (28) is a bi-Hamiltonian system, given by
my; = H10p2 = Hadpr,

where the compatible Hamiltonian operators Hi and Ho are given by

1/ 0 D,—1
Hl_ﬁ(Dw+1 0 >

12— —D.'my, —m,D;*! m—f—n—i—%—i—mID;l—D;lnI
“\—(m+n+3)—nD;'+D;'m, n.D;' + D;'n,

and the Hamiltonian functions are given by the densities p1 = 2u,n and py = 2(v?m, — u’n, —

u?v, + v, + ugv).

Proof: To clarify the notation, we put hats on all variables in equation (48), that is, we
write 1,7 etc. Thus the transformation (51) becomes m = ID;'(m — (1 — Dy)n), n =
5D ((1+ Dy)in — ), so that

A=m+n, 1m=(1+D)m+(1—Dy)n. (53)

With a; = 2, ¢ = —1, ¢3 = 1 and ¢; = 2 in equation (48), the compatible Hamiltonian
operators are

2 (20MDs 4 Do) +2D, 20D; + D;\  ,_ (D; =D 0
- 2D, + D, 0 Y7 0o -b,)

Under the transformation (53), the Hamiltonian operator J is sent to
1+D, 1-D, 713 1-D, 1\ 1/D; L=D N\, (=D D\
1 1 1+D, 1) — 4\-D;' 1+D;* 1+D;' 1-D;Y) ™

and H is transformed to Hs in the statement. O

Remark 6. The inverse operator of Hamiltonian operator 2Hs in Corollary 2 is of the form

2N -1 —1 2Nz _ 1 2Nz -1 —1 2my
(142m+2n)? Dx + D:v (142m+2n)? 14+2m+2n + (142m+2n)? D:L" D:v (142m+2n)?
1 _ 2my D—l + D—l 2ny _ 2my D—l _ D—l 2mg
14+2m+2n (14+2m+2n)2 ~x z  (14+2m+2n)2 (14+2m+2n)2 ~x z  (14+2m+2n)2

Thus the local symmetries for system (28) can be generated by the recursion operator HiH, .
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4.2 Compatible quadratic Hamiltonian operators

In this section, we consider antisymmetric differential operators that are quadratic in the de-
pendent variables m and n, instead of linear as in the previous subsection. We assume that
they are of the form

o Hit  Hio My 1
H_(_Hb H22)+b14(n )Dw (mx nm)7 (54

xT

where, as before, T denotes the adjoint operator, with

Hiy = bymD,m + bo(mD,n +nD,m) + bsnD,n;
Hiz = (bym? + bsmn + bgn?) Dy + bymmy, + bgmny, + bgmgn -+ bignng;
Hoo = byymD,ym + bio(mDyn + nD,m) + bisnD,n

and b;,7 = 1,...,14 being constants.

Theorem 6. Let the operators H and J be given by (54) and (34), respectively.

o Assume that ¢4 = 1. There is only one non-trivial CH Hamiltonian pair:

@©_y (MmDzm nDym \ , (mg\_1 _ m\ ~_1
() _ Cle CSDx - D?; .

j — <03Dx + Di C5Dx 7b1 7é 07 (56)

o Assume that c4 =0, co =1 orcy = c3 =0, ¢g = 1, and the parameter c3 is arbitrary.
There are no non-trivial CH Hamiltonian pairs.

Proof: We prove this statement in the same way as we did for Theorem 5. Due to the large
degree of similarity, we avoid tedious repetition and only write down the necessary steps and
results. The operator H is compatible with the Hamiltonian operator 7 if and only if the con-
stants in H and J satisfy an overdetermined algebraic system of the same type as (40). When
¢y = 1, we solve it and obtain only one solution after applying our elimination requirements:
the nonzero constants in (54) should satisfy —byy = by = b5 = b1z = by, and ¢ = ¢ = 0.
We denote the operators H and J under the above constraints by H® and J(. By direct
computation, we are able to show the operator H(® is Hamiltonian, and thus we obtain the
Hamiltonian pair in the statement. For other cases, there are no solutions for the above system
after applying our elimination requirements. O

For the Hamiltonian pair given by (55) and (56) we can immediately write down the integrable
two-component equation

my . H(C) + Cle Cng 0 Doc_Df; - My
ne ) csD, c5D, D,+D? 0 ne |-
We introduce the same notation for v and v as in (42). It follows that

{ (1= Dy)uy = 3 Dyv(2 — Dy )u® + cauy + 10, (by # 0). (57)

(1+ Dy)v = %Dxu(Q + D, )v* + csuy + 30,

For equation (57), if we take ¢; = ¢5 = 0, ¢c3 = 1 and by = 2a, then we get the system (31) in
Theorem 3 when 8 = 0. Thus we have the following result.
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Corollary 3. Define m and n as in (42). System (31) when 3 = 0 is a bi-Hamiltonian system,
that is, it takes the form

m; = H10ps = Hadp1,

where the compatible Hamiltonian operators Hy, and Ho are given by

0 D, — D? ~( 2mD,m 2nD,.m + D, Mg\ 1
Hl_(Dm +D2 0 ) ’ HQ_(ZmDmn +D,  2nD.n )_2 (nw)Dx (e 72)

and the corresponding Hamiltonian functions are specified by the densities py = un and py =
u?vn + uv.

Similar results to Theorem 6 and Corollary 3 have been obtained in [27] from Frobenius algebras,
but in that context the D? terms cannot appear.

We now work on to find the bi-Hamiltonian structure for system (31) in Theorem 3 for arbitrary
« and §. There is a known quadratic Hamiltonian operator related to the AKNS system, which
is not included in our Theorem 6. In the same way as was done for the nonlinear Schrédinger
equation in [11, 29], the AKNS equation can be written as

My = —Mge + 2m2n
Ny = Nyy — 2N

= Hga)é(mnm —m?n?) = (Héa) + Hga))(S(mnx),

where Hamiltonian operators

@ (0 -1 @ ( 0 D, @ [ 2mD;'m —2mD;'n
= ( 1 0 )’ Ha' = ( D, 0 )’ Ha' = —2nD;'m  2nD;'n (58)
form Hamiltonian pairs, that is, their linear combination is still a Hamiltonian operator. This
leads to the known integrable equation

m, = (H;" + BHy) (Mg + ) ',
Using m = u — u, and n = v + v,,, we rewrite it as

{ (1= Dy)uy =ty + Bv(2 — Dy)u? (59)

(1+ D,)vy = vy — Bu(2 + Dy)v?

which is the system in Theorem 3 when o = 0. For the Hamiltonian operators (58) and the
ones in Theorem 6, in the same way as the proof for Theorem 5 we are able to prove this
statement:

Proposition 2. Given constants a, 3,7, i and v, the operator
Ho=aH + BHY + 1Y + 0T + oMY, T = < 1())2 _133) . (60)
1s Hamiltonian if and only if av = Bu.
Take v = A3, p = Ao and v = A(a + ) in (60). It follows from Proposition 2 that
oM + BHE + Na(HS” + T + BHS” + H))

is Hamiltonian for arbitrary A. Thus we have
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Corollary 4. Define m and n as in (42). System (31) without linear terms is a bi-Hamiltonian
system, that s, it takes the form

m; = H0py = Hadpi,
where the compatible Hamiltonian operators Hy and Ho are given by

< 0 a(D, — D*) — B(D, — 1))
a(D, + D?) — B(D, + 1) 0

B m 1 s (mD;'m  —mD;'n
Ha=aDs < n ) D (m n)De=p <—nD;1m nD;'n
2

and the corresponding Hamiltonian functions are specified by p1 = 2un and ps = u~vn.

Hi=

Y

Notice that we did not get system (30) in Theorem 3. This is due to the assumptions we
made on the Hamiltonian operators. Indeed, (30) is also bi-Hamiltonian, but does not have a
Hamiltonian operator of the form (54). Here we just state the relevant result without proof,
since the proof uses the same method as for Theorem 5.

Proposition 3. Define m and n as in (42). System (30) when B = 0 is a bi-Hamiltonian
system, that 1s,

m; = H10py = Hadpr,

where the compatible Hamiltonian operators Hy, and Ho are given by

0 D,—1
Hl_(Dz+1 0 )

-1 -1 1 -1 -1
2_( mle My +myD_"m —mn — 5 +mD;n, —m,D_'n )
= -1 -1 -1 -1

mn + 5 —nD_m; +n, D "m —nD,_ "n, —n, D "n

and the corresponding Hamiltonian functions are py = 2un, and py = u?vn, + u?v,n + uv,.

Remark 7. The inverse of the Hamiltonian operator 2Ho in Proposition 3 takes the form

_ 2ny 2Ny 2ny —1 —1 2myg
. . (1+2mn) D n+ nDJU (1+2mn) ) 1+2mn + (1+2mn) D m— ’I’iD (1+2mn)?
1+2mn (1+2mn) D n+ mDI (1+277ﬁn) (1+2mn) D m = mD (1+27rfn)

Thus the local symmetries for system (30) can be generated using the recursion operator HiHy ™.

By direct computation as for Theorem 5, we are able to prove that the above 7—[;(3“) is compatible
with the Hamiltonian operator Hs in Proposition 3, giving the following statement.

Proposition 4. Define m and n as in (42). System (30) is a bi-Hamiltonian system, that is,
m; = H10ps = Hadp1,

where the compatible Hamiltonian operators Hy and Ho are given by

- 0 D,—-1 (Hu Hio
Hl_(DaﬂLl 0 ) ’ HZ_("HIQ Hao ) ’

with the entries of Hy given by

Hu = 2a(mD; m, +m, Dy m) + 26mD; m;
Hiz = —1 — 2a(mn — mD, 'n, + m,D;'n) — 28mD; 'n;
Hoy = —2a(nD;'n, +n,D;'n) + 280D, 'n

2

and the Hamiltonian functions are p1 = un, and py = a(u*vn, + u%mn) + pulon + uv,.
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It follows from Corollary 1 and Corollary 3 that both systems possess the same Hamiltonian
operator H; (in fact, 7® = J(). So both Hamiltonian operators % and H(® form Hamil-
tonian pairs with the same operator. We are able to directly verify that any linear combination
of H® and H(® is also Hamiltonian, and forms a Hamiltonian pair with J®. Thus we can
construct the integrable system

{ (1= Dy)us = a1 Dyv(2 — Dy)u+ 2D, (2 — Dy)u® + 2 Dyv(2 — Dy)u? + cauy + ¢1vy, (61)

(14 D)oy = 2D,(2 4 Dy)v? 4 asDyu(2 + Dy)v + 2 Dyu(2 + Dy)v? + csuy + csvg,

which contains both equations (45) and (57). If we take ¢; = ¢5 =0, ¢3 =1, ag = 2, a1 = 20,
and b; = 27, then we get the system (32) in Theorem 4. Thus we have the following result.

Corollary 5. Define m and n as in (42). System (32) is bi-Hamiltonian, being given by
my; = H10p2 = Hadpr,

where the compatible Hamiltonian operators Hy and Hy are given by

26D,n + 2amD, + 2ymD n + D, 2a(nD, + Dyn) + 2ynD,n

B Mg\ ~—1 - 0 D, — D?

and the corresponding Hamiltonian functions are py = un and ps = uv(2am + 26n + ~yun +1).

2y _( 28(mD, + D,m) +2ymD,m  2fnD, + 2aD,m + 2ynD,m + D;E)
o=

The same situation arises for systems (28) and (30), upon comparing Corollary 2 to Proposition
3. We present the result immediately, as follows.

Corollary 6. Define m and n as in (42). System (33) takes the bi-Hamiltonian form
my; = Hi0p2 = Hadpy,

where the compatible Hamiltonian operators Hi and Ho are given by

0 D,-—1
Hl_(Derl 0 )

12— mD,;'m, +m,D,'m —mn +mD_'n, —m,D 'n
=V \mn — nD'my + no D7 'm —nD;'n, —nD;'n,
+ 5(D;1mm+me;1) _a(m+mmD;1)_6<n_D;1nx)_%
o(m = Dy 'ma) + B(n+ne DY) + 3 —a(n. D" + D'ny)

and the corresponding Hamiltonian functions are p; = 2un, and

pa = Yu?(vng + ven) — Br*(mg + ug) + au(ng + vy) + uv,.

5 Reciprocal links, Lax pairs and exact solutions

In this section we describe reciprocal transformations relating the coupled Camassa-Holm type
systems to negative flows in other known integrable hierarchies. We also present Lax pairs, and
provide some exact solutions in certain cases.
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Before we proceed, it is worth commenting on the linear terms appearing in the systems under
consideration. It is necessary to include linear dispersion terms in order to be able to apply
the perturbative symmetry approach. However, given a system in the form (27), we can rescale
the dependent variables and time so that u — e 'u, v — e v, t — €%, where d is the common
degree of f and ¢ in w,v and their derivatives, and then take the limit ¢ — 0, to obtain the
system in the form )
my = fa ny = ga

where m = u — uz, n = v + v, and f , g are homogeneous of degree d. In general, the latter
system is not isomorphic to the original system (27), although this is the case for the first
quadratic system (28). Indeed, if we perform a combination of shifting the dependent variables
with a Galilean transformation, that is

u — u+ ug, v — v+ vy, r — x —ct, t—t, (62)

then with ug = vy and a suitable choice of ¢ it is possible to remove the u, and v, terms on
the right-hand side of (28). However, for the second quadratic system (29) this is not the case,
because applying (62) creates a mixture of u, and v, terms on the right-hand side of the system;
and for the systems with cubic nonlinearity, applying (62) produces additional quadratic and
linear terms.

5.1 First quadratic system

We have already seen that the first quadratic system is related by a Miura map to the system
(5) of Chen-Liu-Zhang. This means that we can immediately obtain a Lax pair for (28), by
using the results in [5].

Proposition 5. The first quadratic system (28) has the Lax representation

2
Voo = [A2(2(m+n) + 1) — )\<2(m+n) +142m, — 2nx> + i} Y,
¢t = (%+2(u+v)+1) ¢x_ (um+vx)77b7
where m = u — Uy, N =V + V.
In fact, as already mentioned, the linear dispersion terms can be removed from this particular

system without taking any scaling limit, by using (62), and after rescaling time the system
becomes (4), which can be written in the form

my = (um), +v(m+u),, ne = (vn)y +u(n + v),.

In order to obtain solutions of the system, it is helpful to make use of the second equation of
the system (5), which is in conservation form, and leads to the introduction of new independent
variables X, T via the reciprocal transformation

dX = gdx +pgdt, dT = dt, with p=u+v, ¢=m+n. (63)

As explained in [5], this change of independent variables transforms (5) to the first negative
flow of the AKNS hierarchy (which, at the level of the Lax pair, is equivalent to the classical
Boussinesq hierarchy, up to a gauge transformation). Under the reciprocal transformation, we
have the following system of four equations relating u, v, m, n:

my = (m+n)(m +v)ux, (m+n)uxy =u—m,

nr = (m+n)(n+u)vy, (m+n)vx =n—uv. (64)
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Solutions of this system, as functions of X, T, lead to parametric solutions of the original system
(4). However, it turns out that it is more convenient to first obtain solutions of the second
quadratic system, as described in the next subsection, and then exploit a Miura map between
the two systems, rather than attempting to solve (64) directly.

5.2 Second quadratic system

In this subsection we consider the second quadratic system (29) without linear dispersion terms,
which (after rescaling ¢) can be written as

M, = ((U FVIM + UV) N, = ((U LVIN + Uv) (65)

) Y
x x

with M =U — U,, N =V +V,, where all the dependent variables are given upper case letters

to distinguish them from the variables in the first quadratic system. The need to make this
distinction here is due to the following result.

Proposition 6. A solution of the first quadratic system (4) gives rise to a solution of the
second quadratic system (65) via the Miura map

U=u+v+u,, V=—u, (66)

Proof: From (66) it follows that U = v+ n and U + V = u + v, so that
M =m+ (1 - D,)n, N = —n,,

which gives
M —N=m-+n, M+ N=m+n—2n,.

Upon taking the time derivative of the latter two equations and using (4), we see that the
difference and sum of M and N evolve according to

(M=N)=(U+V)M=N)) ,  (M+N) = ((U+V)(M+N)+20V) ,  (67)

x xT

which is equivalent to (65). O

From the above, we see that the system (65) is intermediate between (4) and (5), and we can
write the Miura map from (65) to (5) directly as

p=U+V, q¢=M-N. (68)

By taking the Lax pair in [5], or by shifting/scaling the coefficients of the Lax pair in Proposition
5 and using (66), we immediately have the following.

Proposition 7. The second quadratic system (65) has the Lax representation

Yoo = [N(M—N?2=MNM+N+M,—N,)+ 1],

where M =U —U,, N=V +V,.

22



Next, observe that the first equation in (67) is just the conservation law ¢, = (pq),. This means
that the same reciprocal transformation (63) can be used to link (65) to the first negative AKNS
flow. The equations (67) and the relations M = U — U,, N =V + V, are transformed to

(q_1>T+pX:OJ qUX:U_M7

(M Mg?) =@V, aVx=N-V. (69)

Upon adding and subtracting the equations that involve only X derivatives, and using (68), we
see that the relations

(M+N)g ' =pg ' —(U-V)x, U-V=q(l+px) (70)

hold. With the introduction of a potential f(X,T) into the conservation law for ¢!, such
that ¢! = fx, p = —fr, it is possible to use (68) and (70) to express U,V purely in terms of
derivatives of f. Moreover, all of the terms in the conservation law for (M + N)g~* in (69) can
also be rewritten in terms of f, to yield a single equation for this potential, namely

((fx§x—1>x_foT)T:%(ﬁ_%)x‘ )

The latter equation is equivalent to equation (2.16) in [5]; below we rewrite it in a form which
makes it more easily identifiable as such.

Theorem 7. Let f(X,T) be a solution of the equation

Fxfxxrr — [xfxxfxrr — fxfxrfxxr — [xfrr + fxxfer = 2f5 frfxr — fxx =0.
Then taking

1

Uz%(—fT—(fXT—l)fxl), Vzé(—fw(fm—l)f;l), = f(X,t) (72)

gives a solution (U(x,t),V (z,t)) of the system (65) in parametric form.
Corollary 7. A solution (u(x,t),v(x,t)) of the system (4) is given in parametric form by taking

1

Uzi(_X_fT_/foTdX)a U:%<X_fT+/foTdX>-

Proof of Corollary: Applying the reciprocal transformation (63) to the second equation in
(66) yields vy = —¢ 'V = — fxV. The expression for v then follows by using the formula for
V in (72) and integrating with respect to X (which leaves a function of time unspecified); u is
then found by noting that u + v =U +V =p = —fr. m

Example: travelling waves. Travelling waves of the system (65) depend on x,t via the
combination z = x — ct, where c¢ is the wave velocity. They are obtained in parametric form by

~ ~

taking z = f(2), f(X,T) = f(Z)+cT, Z = X —CT, which gives solutions of (71) corresponding
to travelling waves with velocity C in the reciprocally transformed system (69). If we set p = f’ ,
then (71) becomes an ordinary differential equation of third order for p, and after integrating
twice this yields

() = p* —=2cC71p° + Kop® + Krip + C2, (73)

where K, Ky are arbitrary constants. The general solution of the latter equation is an elliptic
function p(Z). In general, from (72), U and V are then given in parametric form in terms of
p(Z) and p'(Z) according to

U:%(Cp—cjtep/jl), V:E(Cp—c—Cp;—l). (74)
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(a) Dark soliton case: k = 1/2, § =1, 79 =4 (b) Bright soliton case: k =1/2,0 =1, rp = 2
with ¢ = 3/4, C = 1/10. with ¢ = 94/10/20, C = 1/+/10.

Figure 1: Parametric plots of U (red) and V' (blue) showing dark/bright solitons.

Here we consider single soliton solutions, which are obtained by choosing the quartic in (73) to
have a double root. In that case, the solutions take the form

KKZ):ﬂhj:(26kﬁx—k%$nh(6Z)

1+ (1 — k2)sinh®*(62)
where the values of C and ¢ are fixed by the choice of parameters k£ and r¢,0 > 0. To be more
precise, substituting the solution (75) into (73) determines C, ¢, K1, K5, and ro must be chosen
to ensure that dz/dZ = p(Z) > 0 everywhere, in order for the parametric solution for U,V to
be single-valued. Upon integrating (75), the similarity variable z = x — ct is obtained as

1+ tanh(67/2) 1 F 2ktanh(6Z/2) + tanh*(67/2)
1+ tanh(éz/z)) (1 + 2ktanh(67/2) + tanhQ((SZ/Z)) ’

), 0<k<1l, (75)

z :roZ:i:leog(

up to shifting by an arbitrary constant. The field p has the shape of a dark soliton (a wave of
depression) when the plus sign is chosen in (75), while with a minus sign it is a bright soliton;
in Figure 1 the corresponding fields U, V' given by (74) are plotted in these two different cases.

5.3 First cubic system

For simplicity, we consider the system (30) for § = 0 in the absence of linear terms on the
right-hand sides, in which case (with suitable scaling) it can be written as

my = v(um),, ny = u(vn),, with m=u—u,, n=v+ v,. (76)

In that case, it is useful to consider the first non-trivial symmetry of the system, which (up to

rescaling) takes the form
Uy = _Ma v, = e (77)

(mn)>’ (mn)>
The quantity F' = mn is a conserved density for both (76) and the latter symmetry, which
satisfies

F=(wF),, F=-G, with F=mn, G=F" (1 + (log(m/n))x>. (78)

In order to find the Lax pair for the cubic system, it is helpful to consider a simultaneous
reciprocal transformation in the independent variables x, ¢, 7, by setting

dX = Fdz +wFdt — Gdr, dT =dt, ds=dr. (79)
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(Of course, this could be extended to include the whole hierarchy of symmetries of (76), but
the symmetry 0, is sufficient for our purposes.) The partial derivatives transform as 0, = Fox,
Oy = Or + wFOx and 0, = 0; — GOx. To begin with, we identify the symmetry (77) by
introducing new dependent variables p = m™!, ¢ = n~!, and find that under the reciprocal
transformation (79) it yields a system of derivative nonlinear Schrédinger type, namely

. 1 1
Ps = —DPxx + 2qppx, ¢s = —qxx + 2pqqx, with p= A= (80)

which is the Chen-Lee-Liu system [4]. For the latter system, we take the Lax pair in the form

1 _
Uy =F¥, U,=GU¥, with F—<2(/\+pQ) Ly ] )
G- ( A2+ pg + 1 (pax — pxq + P*¢) —q\ — qx — pg° )

PA? + (—px + P\ —IX% — pg) — L(pax — pxq + P*¢?)

If the same reciprocal transformation (79) is applied to (76), then in terms of the variables
P, q,u,v we find a system given by two pairs of equations, that is

pPr = UV — puv, qr = —u+quv, (82)
ux = —q-+tupqg, vUx = p—upq,
which is symmetrical under the involution
p < —u, q+ —v, X & -T. (83)

The latter system corresponds to a negative flow in the hierarchy of symmetries of the Chen-
Lee-Liu system [4], and its Lax pair is found by taking the same X part as in (81) and a T’
part which is linear in the inverse of the spectral parameter \.

Proposition 8. The system (82) has the Lax pair
Uy =FU, U, =HY, (84)

where F is as in (81), and

H— S(AT ) —u\!
N v (A +w) )7

Remark 8. Upon taking the first component of the vector ¥ to be 11 = \/q@, the X part of the
Laz pair implies that the function ¢ is a solution of the energy-dependent Schrodinger equation

bxx = GAQ L UM v) é

where U,V are certain functions of p, q and their derivatives. This shows that the system (82) is
related by a Miura transformation to the first negative flow in the classical Boussinesq hierarchy.

Corollary 8. The system (76) has the Lax pair

(iiiii> B (%(W;AAH) _%@n”hl))(i;)’ (85)

Yie _ (vvmn\ + 2uv + A1) —uvm — ul~1 Wy
(¥ B uonA +v —%(uvmn/\ + 2uv + A7) by )
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Proof of Corollary: This follows immediately by applying the inverse of the reciprocal trans-
formation (79) to the vector wave function ¥ = (1)1, 15)7 in (84). O

As it stands, the system (82) is not so easy to analyse from the point of view of obtaining
solutions. However, the dependent variables u,v can be rewritten in terms of p, ¢ and their
derivatives according to the expression

u 1 4x —quw —q wr , q
= th w = =-. (86
<v> 2w? —w(logr)x (Px+pw —p) (wXT—Qw)’ R = pe T D (86)

Under the reciprocal transformation (79), the conservation law for F = w™!' becomes wr +
(uv)x = 0, and using (86) the product II = wv can be rewritten purely in terms of w and r,
leading to a system for these two variables alone, namely

A

wr + x =0, (logr)r = 211 — B (87)
with
B w?
The system (87) passes the Painlevé test with expansions around a movable singularity manifold
©(X,T) = 0 having the two different leading order behaviours w ~ ¢!, logr ~ Flog .
Moreover, from a solution of this system one recovers p,q, and hence also u,v from (86), as
functions of X and T'; via the reciprocal transformation (79), this produces a solution of (76).

2 2
H:%(A wT), A= w—wXQ:T—ZL, B = (logr)x — 2w.

Theorem 8. Let (f(X,T),r(X,T)) be a solution of the system

dfr + fx <A25’72 - f)chf)?) = 0,
(logr)p + 2fr + AB™1 = 0,

with F Foxt
A= ofXXTJXXINT B (logr)x — 2fx.
fX fX
Then taking w(X,T) = fx(X,T), p = \Jw/r, ¢ = \Jwr together with (86), and setting v =
f(X,t) gives a solution (u(z,t),v(x,t)) of the system (76) in parametric form. Equivalently, a
parametric solution of (76) is obtained from a solution (f(X,T),r*(X,T)) of the system

Afx + fr((AP(B) 2 = Fafi?) = 0, (9)
(logr*)x +2fx — A*(B*)"' = 0,
with

A = pdxT _ fXTQfTT —4, B = —(logr*)r + 2fr,
fT fT

by taking I(X,T) = —fr(X,T), u=+/I1/r*, v = VIIr*.

Proof: The quantity f arises by introducing a potential in the first equation in (87). The
differential of the above formula for x gives dz = fx(X,t)dX + fr(X,t)dt = wdX — I1dT,
which follows by identifying IT = —fy, A = A and B = B, upon comparing the terms from
the second equation in (87) with those in (88); this expression for dz corresponds precisely to
the inverse of the reciprocal transformation (79), as required. The same parametric solution
(u(z,t),v(z,t)), with x = f(X,t), can be obtained in a different way by exploiting the symmetry
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(83). Indeed, from (82), or by applying the involution to (86), the dependent variables p, ¢ can
be rewritten in terms of u, v and their derivatives as

P\ _ 1 vp +ull v ITx (90)
q 2112 4+ TI(log r*)p \ ur —ull wu —xp+2I1 )
with IT = uv and r* = 2. The involution (83) swaps w <+ Il and r <> r*, and this leads to the
alternative system (89), from which u,v are recovered directly. O

Example: travelling wave solutions. To illustrate the preceding result, we consider travel-
ling wave solutions of (76), such that u and v are functions of z = x — ¢t, where c is the velocity
of the waves. By comparing the conservation law (78), or the first equation in (87), with the
reciprocal transformation (79) (where we ignore dr and ds), it follows that such solutions cor-
respond to travelling waves in the system (82) which are functions of the variable Z = X — CT
for another constant C, where setting pq = w(X,T) = w(Z), v =1I(X,T) — 7(Z) yields

Cw=r+c (91)
Furthermore, for the independent variables we have
dz=dz —cdt =w(X,T)dX —II[(X,T)dT — cdt = w(Z)dX — (7(Z) + ¢)dT = w(Z)dZ,
by (91). so if we replace f(X,T) — f(Z) + ¢T then
2= f(2), with [(Z)=w(Z)=C"'(n(Z) +o0), (92)

where the prime denotes d/dZ. To describe these travelling waves, it is most convenient to
obtain a single equation for 7(Z), which is achieved by first using the definition of B* to write

(logr*)' = C™H(B* + 2m), (93)

then putting this and (91) into (89), to obtain a pair of quadratic equations in B* with coeffi-
cients depending only on 7 and its derivatives. After eliminating B* to find

C(QCTMT” —C(n')? + 47r2) <C7r” + 47 + 20)

B — _ , (94)

(27 +¢) (C(W’)2 + 472 + 4c7r)
then removing a prefactor, a single equation of second order and second degree for m results:
2 > r r
<7r” L O A+ 20)> — 2 (47r2 +dem+ 02) ()2 +C? (167r4 +32er + 20620 + 4c37r> . (95)

The latter equation has a first integral: if 7 satisfies the first order equation

Zer® T (é_z - 4K) 7 —4Kcem +4(KC —1)% = Q(n), (96)

for any constant value K, then it satisfies (95). The generic solution of (96) is an elliptic
function of Z, but to have bounded periodic solutions for real ¢, C, K requires that the curve
(')> = Q(7) in the real (7, 7’) phase plane should have a compact component (see Figure 2a),
otherwise solutions are generically unbounded with simple poles on the real Z axis.

The quartic Q has discriminant A = 256(2KC — 1)2C3(16¢*C + (8 KC? + ¢* — 8C)?). In order
to obtain non-periodic bounded solutions, we fix K = (2C)~!, so that A = 0 and (96) gives

' =+CHC —cm — 7?). (97)
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3 10 15

(a) The quartic curve (96) in the (m, ") plane. (b) Parametric plot of (2(Z),n(Z)).

Figure 2: Phase plane and 7 against z in the case c = =5, C = -1, K = —1.
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(a) Parametric plot of (2(Z),u(Z)). (b) Parametric plot of (2(Z),v(Z)).

Figure 3: Travelling wave profiles of v and v against z with c= -5, C=—-1, K = -1, A= 1.

Upon taking the plus sign above, then using (93) and (94), this yields

V2 4+ 4C
w(7) = Cktanh(k2) — £, k=YL (z) = exp / C (B +27)dZ = An(Z)
(up to shifting the origin in Z), where A > 0 is an arbitrary integration constant. Finally, from

(92) and Theorem 8, we see that the solution of (76) is given parametrically by

c/ 1 c
2 =logcosh(kZ) + =,  w=——, v:\/Z<thanth——>, 98
up to shifting z by an arbitrary constant. It is necessary to impose the conditions ¢ < 0, C < 0,
¢?+4C > 0, in order to have a real single-valued solution in z, otherwise 42 = w(Z) will vanish
for some Z. So in this solution, corresponding to the plus sign in (97), u is constant and v is a
kink-shaped travelling wave; with the opposite choice of sign, the roles of u and v are reversed.

To obtain explicit formulae for travelling waves in general, one should fix a root m of the
quartic Q in (96), and make a birational change of variables of the form o = a(r — my) ™" + 33,

© = —an'(m — m) "2, to yield a cubic equation of the form (p')? = 4> — gop — g3 for the
Weierstrass p-function. For example, the special case c = —m?—1,C = -1, K = —m?/2—m—1
gives a one-parameter family of quartics, which has the root my = —1 for all values of the

parameter m, and has 4 real roots whenever m < —1 or m > 3, giving a curve with a compact
oval (as in Figure 2a). For illustrative purposes we fix m = —2, so that Q= 7(7—1)(r—4)(7r—5),
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and find

3 §

W(Z):p(z>_%+1 oz )< >( )+1, (99)
where ©(Z) denotes the p-function with invariants g, = %, gs = % and half-periods
~ 1.40060304, wy =~ .79812111i, and Z* = — 57/162 dC(4¢3 — B¢ + 389172 4 ) 4wy &
70030152 + .79812111i. Using (91), together Wlth (93) and (94), gives (logr*) = —w =

o' (Z*) <p(Z) — p(Z*)>_1 — 4, and upon integration this yields
r*(Z) = olz" = 2) exp(2¢(Z*)z — 4z) z=—logr*(2) (100)

o(Z*+ Z) ’ ’

up to shifting z — z4const, where the constant A > 0 is arbitrary. As a function of Z, the
product m = uwv given by (99) has real period 2wy, and from (100) it follows that it is also periodic
in z: when Z — Z+2w; then z — 2+, where Q = —log | exp(4{(Z*)w; —4¢(w1)Z*)| + 8wy ~
7.00301521 is the period (see Figure 2b). From (100) we also have r* = exp(—=z), so by Theorem
8 the travelling wave profiles of u = /7/r* and v = \/7r* consist of exponentially/growing
decaying solutions on a periodic background (see Figure 3).

5.4 Second cubic system

After removing the linear dispersion terms, setting 5 = 0 and rescaling for the sake of simplicity,
the system (31) becomes

my = (uvm),, ny = (uvn),, with m=u—u,, n =v+v,. (101)

Both equations in this system are in conservation form, but in order to apply a reciprocal
transformation we pick the conservation law

G = (P,  where q=(mn)2, p=uv. (102)
For what follows, we also note the equation
Kt = D K, where k= (n/m)%. (103)

Now from (102) we can define new independent variables according to
dX = qdz + pqdt, dT = dt, (104)

so that derivatives transform according to 0, = q0x, 0y = Or + pq Ox. Since this is a reciprocal
transformation, the equation (102) becomes a conservation law in the new variables, that is

G)T +px =0, (105)

while the evolution of £ in (103) becomes 2% = 0 = x = x(X). This means we can write
the quantities m and n in terms of ¢ as
m=r"1gq, n==kq, (106)

where the prefactor k™' depends only on the new independent variable X. The question is
now how to find an equation for ¢ = ¢(X,T) and thence obtain the fields u and v in terms of
functions of X and T, and thence obtain solutions u(z,t), v(z,t) in parametric form.
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To begin with note that, in view of (104) and (106), we can use u, = u —m, v, = n — v and
transform the derivatives to find

ux =q tu—r1 vx =K —q v (107)
This means that from (105) we obtain d7(¢™!) = —(uxv + uvy) = —ku + £ 'v, and hence
v=r*u+k(qg " (108)

The above expression for v can be substituted back into (105) to yield

1

(5>T = (u el — w2 u). (109)

In order to get a single equation involving only s and ¢, it is necessary to write u in terms of
k,q and their derivatives, and this is achieved by substituting (108) into the second equation
in (107), so that the latter becomes a linear system for u and wuy, which is readily solved.
However, it turns out that it is most convenient to introduce a new function J(X,T'), which is

defined by

1 d
- =20 - —1 X). 11
Yo og r(X) (110)
In terms of ¥ and k, u and v are then given by
1 —9xr — 299 1—9 290
u— k! ( XT T)7 U:FL( xT + T)7 (111)
29 29

so that the product p = uv is independent of , and so (105), or equivalently (109), becomes
an autonomous partial differential equation for 1) alone, namely

)2
Oy = 10 (19%, — %) . (112)

Upon introducing a potential f(X,T') such that ¢ = fx, this equation can be integrated with
respect to X, and an arbitrary function of 7" that appears can be absorbed into f without loss
of generality, so that an equation of third order for f results, that is

(fxxr — 1> —Af3 fxr +8fxfr=0. (113)

Theorem 9. Let f = f(X,T) be a solution of (113), let k = k(X) be an arbitrary function,
and let (X, T) = fx(X,T). Then setting x = 2f(X,t) — log k(X) together with (111) gives a
solution (u(x,t),v(x,t)) of the system (101) in parametric form.

Proof: Comparison of (113) with (111) shows that p = uv = —2fr. Then taking the dif-
ferential of = above gives dz = (2fx(X,t) — dxlogr)dX + 2f7(X,t)dt = ¢~ 'dX — pdT, in
accordance with the inverse of the reciprocal transformation (104). By reversing the reciprocal
transformation, the equations (102) and (103) result, and together these imply the system (101)
for u and v. O

In order to find solutions of the equation (113), it is instructive to consider the behaviour near
singularities. The equation has two types of expansions near a movable singularity manifold
©(X,T) = 0, with leading order behaviour f ~ +logp, corresponding to simple poles in
the solution of (112). This suggests that one can apply the two-singular-manifold method
introduced in [6], leading to the following result.
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Proposition 9. The equation (113) has an auto-Backlund transformation which relates two
solutions f, f according to the transformation f =logY + f, where Y satisfies

Yy = A—2fxY +Y2

o (Ixr | (A=fxxr)) 1 CIxr (= fxxr) e (114)
YT(2+ 1fx )—2)\Y—i—( 2+ ify >Y

with an arbitrary parameter . The above Riccati system for Y is linearized via the transfor-
—1
mation Y = A (%( + 19) , to yield a scalar Lax pair for (112), given by

Uxx + (Wx — 92+ N =0,
dr (1 —Yxr) (115)

_ -1 _ 1 - _
Yr = AT HUYx — UxY), U 5t 10x

Corollary 9. The system (101) has the scalar Laz pair

Gee + (PN +1)0 =0,

116
b= (p+ 0N by — Lpo + w A1), (116)
where
T S SR § (U S .
T w0\ () 1)

with p = wv, ¢ = \/mn, K = \/n/m as above.

Proof of Corollary: The Lax pair follows from (115) by setting ¢» = /g ¢ and applying
the inverse of the reciprocal transformation (104). The compatibility conditions for this linear
system consist of (102) together with

1
re = SPaas + 2007+ Pre + 20°Ws + 290 and  Weg + drwg + 2w =0,
where the last one is a consequence of the definition of r in (117). These conditions are best
checked with computer algebra. O]

The form of the Lax pair (115) reveals that 9 corresponds to the dependent variable for the
modified KdV equation, and the standard Miura map V = 9Jx — 9?2 relates (112) to the first
negative flow of the KdV hierarchy, as considered in [12] (see also [14]), which takes the form

1 1
Vr=2Ux,  Ulxx — §u§ +2VU* + 3=0
in terms of the variables U, V. If r and w were constants, then (116) would reduce to the Lax
pair for the Camassa-Holm equation, as presented in [3].

Example: periodic solutions and their deformations. To obtain simple solutions of the
system (101), we consider solutions of (113) which, apart from a shift by a linear function of T,
depend only on the travelling wave variable Z = X — uT. Upon setting f(X,T) = f(Z) — vT,
we find that W (Z) = f'(Z) satisfies the following ordinary differential equation of second order

and second degree:

(W 4 1)% = 4PW2(W)? = 8(uW + v)W? = 0. (118)
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(a) Plots of uw and v at t = 0 with k = 1. (b) Plots of u and v at t = 0 with k = exp(sin X).
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Figure 4: Parametric plots of u (blue) and v (red) against x for different choices of x(X).

The latter equation is solved in elliptic functions: for any value of the constant co, W is a
solution of (118) whenever it satisfies

(W2 = W* + coW? = 2 ' W + ¢, Co=———. (119)
For such a solution, Theorem 9 gives

x = log (p(i(_;{/;ﬁ) — v, with  p(Z) = exp/W(Z) dZ, (120)

while (111) becomes

1 " 2uWW! 1 W —2uWw’

so in order to avoid singularities in u and v, we require that W should be a bounded, positive
periodic function of Z; this is achieved by choosing the quartic on the right-hand side of
(119) to have three positive real roots, 0 < w; < we < ws, whence the fourth root is wy =
—(wy + wy + w3) < 0. Using a Mobius transformation W = a(p — 8)~! + w; to send the first
positive root to infinity leads to the solution in terms of Weierstrass functions, similarly to the
previous example for the system (76).

For illustration, we pick the quartic (W + 9)(W — 2)(W — 3)(W —4) in (119), so that ¢y =
—55,¢9 = —216, p = —1/105, v = 3889/88200, and then

W(Z):l—lgl+2 o(27)

20(2) + % ©(Z) — p(Z*)

where the p function is associated with the cubic (¢)* = 4p® — 28 + 2% with half-periods
1/6

wi & 0.77203133, wy &~ 743133181, and Z* = — [[1} 1, dC(4C° — 45C+ 59) 72 + w1 + wp =

16697654 4 .74313318i. For the function p in (120) we find p(Z) = Ug*é) exp(20(Z*)Z +22).
The behaviour of the solutions u(x,t), v(x,t) obtained in this way depends crucially on the
choice of function £(X). In order to have singled-valued solutions it is necessary that the deriva-
tive 0x/0X should never vanish, which requires that the logarithmic derivative '/ should be
suitably bounded. In particular, if x =constant then this is so, and in that case travelling
wave solutions of (101) result, and both u and v are periodic functions. More generally, taking

k = exp k(X) in (121), where both the function k and its first derivative are bounded, gives

+2, (122)
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bounded deformations of these periodic solutions - see Figure 4 for the comparison between the
cases £ = 1 and k = expsin X. However, if Kk = exp k(X) with k(X) being a linear function
of X, then unbounded solutions result, exhibiting similar profiles to the solutions of (76) with
exponential growth/decay on a periodic background, as illustrated in Figure 3.

6 Conclusions

The perturbative symmetry approach has yielded a classification of integrable two-component
systems of the form (3), producing two systems with quadratic nonlinearities (Theorem 2), two
systems with cubic nonlinearities (Theorem 3), and two mixed quadratic/cubic systems (Theo-
rem 4); the systems with mixed nonlinear terms include the others as limiting cases, by sending
suitable parameters to zero. At the same time, an alternative approach via compatible Hamil-
tonian operators has provided a different set of two-component systems, and has allowed us to
find bi-Hamiltonian structures for all of the systems obtained from the symmetry approach.!
We have also found Lax pairs for all of the systems in Theorems 2 and 3, at least in the ab-
sence of linear dispersion terms, as well as reciprocal transformations linking them to known
integrable hierarchies, and this has allowed us to construct some simple solutions explicitly.
Reciprocal transformations are only suitable for obtaining smooth (strong) solutions, but an
interesting open question is whether these systems admit families of weak solutions analogous
to the peakons in the Camassa-Holm equation.

As far as we know, integrable systems of the form (3) have not been considered in detail before,
apart from Falqui’s system (6). However, while we were completing this work we learned of a
three-component system in which two of the equations involve nonlocal terms of this type; the
system was constructed as a dispersive version of the WDVV associativity equations [25]. There
are several issues still to be resolved regarding the systems introduced here. In particular, for
the systems (29), (30) and (31), as well as the systems in Theorem 4, we have not presented
Lax pairs that include the linear dispersion terms. Also, the system (43), or equivalently (44),
is worthy of further analysis, since it is outside the class (3).

In the near future, we intend to classify two-component systems with the nonlocal terms (1 —
D*)uy, (1 — D?)v; on the left-hand side, such as (47) (which can be decoupled). Recently,
various different systems of this kind have been proposed [26, 33], which deserve further study.
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