
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Chechina, Natalia and Li, Huiqing and Ghaffari, Amir and Thompson, Simon and Trinder, Phil
 (2016) Improving the network scalability of Erlang. Journal of Parallel and Distributed Computing,
90-91 . pp. 22-34. ISSN 0743-7315.

DOI

https://doi.org/10.1016/j.jpdc.2016.01.002

Link to record in KAR

https://kar.kent.ac.uk/54099/

Document Version

UNSPECIFIED

J. Parallel Distrib. Comput. 90–91 (2016) 22–34

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Improving the network scalability of Erlang

Natalia Chechina a,∗, Huiqing Li b, Amir Ghaffari a, Simon Thompson b, Phil Trinder a

a School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, UK
b School of Computing, University of Kent, Canterbury, CT2 7NF, UK

h i g h l i g h t s

• We address the network scalability limitations of distributed Erlang.

• We present the design and implementation of Scalable Distributed Erlang.

• We give a semantics for scalable groups and validate the implementation against it.

• We provide a preliminary evaluation of distributed Erlang and SD Erlang performance.

• The performance evaluation shows that introducing s_groups improves the scalability.

a r t i c l e i n f o

Article history:

Received 5 January 2015

Received in revised form

26 August 2015

Accepted 28 January 2016

Available online 8 February 2016

Keywords:

Distributed system

Erlang

Actor model

Operational semantics

Validation

Conformance

QuickCheck

Testing

a b s t r a c t

As the number of cores grows in commodity architectures so does the likelihood of failures. A

distributed actor model potentially facilitates the development of reliable and scalable software on these

architectures. Key components include lightweight processes which ‘share nothing’ and hence can fail

independently. Erlang is not only increasingly widely used, but the underlying actor model has been a

beacon for programming language design, influencing for example Scala, Clojure and Cloud Haskell.

While the Erlang distributed actor model is inherently scalable, we demonstrate that it is limited

by some pragmatic factors. We address two network scalability issues here: globally registered process

names must be updated on every node (virtual machine) in the system, and any Erlang nodes that

communicate maintain an active connection. That is, there is a fully connected O(n2) network of n nodes.

We present the design, implementation, and initial evaluation of a conservative extension of Erlang

— Scalable Distributed (SD) Erlang. SD Erlang partitions the global namespace and connection network

using s_groups. An s_group is a set of nodes with its own process namespace and with a fully connected

network within the s_group, but only individual connections outside it. As a node may belong to more

than one s_group it is possible to construct arbitrary connection topologies like trees or rings.

We present an operational semantics for the s_group functions, and outline the validation of

conformance between the implementation and the semantics using the QuickCheck automatic testing

tool. Our preliminary evaluation in comparisonwith distributed Erlang shows that SD Erlang dramatically

improves network scalability even if the number of global operations is tiny (0.01%). Moreover, even in

the absence of global operations the reduced connection maintenance overheads mean that SD Erlang

scales better beyond 80 nodes (1920 cores).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Erlang [2] is a distributed actor-based functional programming
language. The actor model dates from 1973 [21]. In the model a

∗ Corresponding author.

E-mail addresses: Natalia.Chechina@glasgow.ac.uk (N. Chechina),

H.Li@kent.ac.uk (H. Li), Amir.Ghaffari@glasgow.ac.uk (A. Ghaffari),

S.J.Thompson@kent.ac.uk (S. Thompson), Phil.Trinder@glasgow.ac.uk (P. Trinder).

URL: http://www.release-project.eu/ (N. Chechina).

system is represented by community of actors, where actors are in-

dependent and interactive entities whose interactions are defined

by asynchronousmessage passing. Themodel is inherently concur-

rent due to actors being self-contained—every actor has a state that

is not shared with other actors, and hence may fail independently

from each other. Some of the early actor-based languages are as

follows: E [30], Erlang [8], and Smalltalk [19]. An overview of, and

discussion on, the first actor languages can be found in [1].

The Erlang concurrency model is based on share nothing mes-

sage passing between independent actors or processes. Because of

http://dx.doi.org/10.1016/j.jpdc.2016.01.002

0743-7315/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2016.01.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.01.002&domain=pdf
mailto:Natalia.Chechina@glasgow.ac.uk
mailto:H.Li@kent.ac.uk
mailto:Amir.Ghaffari@glasgow.ac.uk
mailto:S.J.Thompson@kent.ac.uk
mailto:Phil.Trinder@glasgow.ac.uk
http://www.release-project.eu/
http://www.release-project.eu/
http://www.release-project.eu/
http://www.release-project.eu/
http://dx.doi.org/10.1016/j.jpdc.2016.01.002

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 23

this, it can support parallelism and reliability directly. The uptake
of Erlang is increasing around the world and broadening from its
telecom base into other sectors including finance, database, mes-
saging, and embedded systems. Erlang concurrency differs from
many other programming languages in that it is handled by the
language and not by the ‘host’ operating system [3]. The con-
currency is based on the light-weight processes that are easy to
create and destroy, and inexpensive message passing between
processes. The language follows the functional paradigm in that
variables are single-assignment: once a value is assigned to an in-
stance of a variable it cannot subsequently be changed. Distributed
actor programming is distinctive as it is based on highly-scalable
lightweight processes that share nothing. Erlang/OTP provides
high-level coordination with concurrency and robustness built-in:
it can readily support 10,000 processes per core, with transparent
distribution of processes across multiple machines, using message
passing for communication.Moreover, the robustness of the Erlang
distribution model is provided by hierarchies of supervision pro-
cesses which manage recovery from software or hardware errors.

Currently, Erlang/OTP [13] has inherently scalable computation
and support for building reliable systems, but in practice network
scalability is constrained by the default model of full connectivity
between all distributed Erlang Virtual Machines (VMs, also called
nodes) in a system. This limits network scalability as the system
must maintain live network connections quadratic in the number
of nodes.

In the RELEASE project [7] we aim to scale Erlang’s radical dis-
tributed actor programming paradigm to build reliable general-
purpose software, such as server-based systems, on massively
parallel machines. We target reliable scalable general purpose
heterogeneous platforms. Our application area is that of general
server-side computation, e.g. web or messaging servers. This form
of computation is ubiquitous, in contrast tomore specialised forms
such as traditional high-performance computing. Moreover, we
target computation on stock platforms, with standard hardware,
operating systems and middleware, rather than on more spe-
cialised software stacks on specific hardware, e.g. highly reliable
HPC hardware.

To extend the distributed actor paradigm to large-scale reliable
parallelism we have designed and implemented a conservative
extension to the Erlang language, Scalable Distributed (SD) Erlang,
for reliable network scalability. The paper is the first published
description of SD Erlang s_groups, and makes the following
research contributions.

1. We demonstrate the network scalability limitations of dis-
tributed Erlang (Section 2).

2. We define and implement s_groups to reduce network
connectivity by dividing large sets of distributed nodes in
reliable actor systems (Section 3).

3. We provide an operational semantics for s_groups and vali-
date the implementation against it using QuickCheck [22] (Sec-
tions 4 and 5).

4. We demonstrate that SD Erlang provides improved network
scalability on up to 257 distributed nodes (6168 cores)
(Section 6).

2. Distributed Erlang & scalability limitations

2.1. Distributed Erlang

Distributed Erlang was introduced to enable Erlang nodes
placed on the same or different physical machines to work
together. By default the system aims to maintain a fully connected
network of nodes by means of transitivity, i.e. when node N1
connects to node N2 it will also automatically connect to all nodes
N2 is connected to, and visa versa.

It is possible to override the default distributed Erlang

connection transitivity and namespace management policies, for

example, by using -connect_all false flag.Many applications

need to do so to enhance performance when scaling, e.g. Spapi-

router [31], Megaload [16]. However, transitive connections and

shared namespace are an important feature of distributed Erlang

because they support fault tolerance and elasticity.We first explain

the type of fault tolerance we mean here. If a process (let us call

it a master process) is globally registered then other processes

that want to send it a message do not need to know its pid, only

the name. In case the master process fails it will be immediately

unregistered, so all nodes will be notified of the failure. When

the master process is re-started and re-registered using the same

name, its pid changes but other processes can continue to use

its name to send messages. So, the frequency of global name

registration usually depends on the frequency of the failure of

globally registered processes. By elasticity we mean an effortless

scaling (from a programmer’s point of view) of the number of

nodes up and down. That is, if a node fails, all connected nodes

are notified of the failure. When a new node is added to the

system it gets connected to all its nodes and automatically receives

information about globally registered names.

In this paper we discuss network scalability limitations of the

default set-up for distributed Erlang. The s_groups we propose

in Section 3 are designed to preserve the transitivity and the

shared namespace of distributed Erlang while enabling scalability

of applications.

In distributed Erlang the connections and namespace of a node

are definedbyboth thenode affiliation to a global_group andby the

node type, namely hidden or normal. By a namespacewemean a set

of names of processes replicated on a group of nodes and treated as

global in that group. Thename is either registered on all nodes or on

none. Global name registration ismainly used to provide reliability.

For example, a master process that communicates with worker

processes from different nodes may need to be globally registered,

then worker processes communicate with it by name, rather than

by process id (pid). If the master process fails, we restart and re-

register it using the same name, and hence the worker processes

can still communicate with the new master.

If a node is free, i.e. it belongs to no global_group, the

connections and the namespace only depend on the node type. A

free normal node has transitive connections and shares a common

namespacewith all other free normal nodes. A free hidden node has

non-transitive connections with all other nodes and every hidden

node has its own namespace. A global_group node can belong

to only one global_group. Independently of its type – normal or

hidden – a global_group node has transitive connections with the

nodes from the same global_group and non-transitive connections

with other nodes.

In Fig. 1 we show transitive and non-transitive connections

between different types of nodes where nodes N1, N2, N3, N4 are

free normal nodes, nodes H5, H6 are free hidden nodes, and nodes

S7, S8, S9, S10, S11, S12, S13, S14 are global_group nodes. Nodes

S7, S8, S9, S10 are in global_group G1 and nodes S11, S12, S13,

S14 are in global_group G2. The lines between the nodes represent

different types of connections: a solid line denotes a transitive

connection, and a dotted line denotes a non-transitive connection.

2.2. Scalability limitations of distributed Erlang

The main two network scalability limitations of distributed

Erlang that led to introducing s_groups are global name sharing

and transitive connections.

Global name sharing. To analyse the effect of global operations

on the network scalability of distributed Erlang systems we

have conducted experiments using the DEbench benchmarking

24 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

Fig. 1. Types of connections between different types of nodes in distributed Erlang.

Fig. 2. Impact of percentage of global operations on scalability.

tool [17] a P2P scalability tool based on Basho Bench [4]. Nodes are
interconnected, and every node runs on a separate host and has its
own copy of DEbench. In the experiments wemeasure throughput
depending on the number of nodes up to 100 (Fig. 2), and we
only use four operations: two local operations (spawn and RPC),
and two global operations (name registration and unregistration).
The percentage of global operations ranges from 0% to 0.1%. The
results show that even a very small percentage of global operations
significantly reduces system throughput, e.g. 0.005% of global
operations prevents a linear increase of the throughput beyond 60
nodes.

Fully connected network. Maintaining a fully connected network
between N nodes requires N(N − 1)/2 or O(N2) connections. In
distributed Erlang these are both live TCP/IP keepalive messages
to maintain the connection, and distributed Erlang heartbeats to
monitor the nodes. Clearly, as the number of nodes grows this
places a load on the communication infrastructure. We analyse
the network scalability of the Riak reliable NoSQL DataBase
Management System (DBMS) [23], and found that Riak 1.1.1 does
not scale beyond 60 nodes. Fig. 3 shows Riak 1.1.1 throughput
as we increase the number of nodes from 10 to 100 (one node
per host). We have investigated possible causes of the network
scalability limitations and shown that neither disc, nor RAM, nor
network limit scalability. Although Riak is very complex we find
good reasons to believe that the number of connections limit
scalability [18].

3. Scalable group design and implementation

Scalable Distributed (SD) Erlang is a modest, conservative ex-
tension of distributed Erlang. SD Erlang introduces the following

two concepts to improve scalability of distributed Erlang appli-

cations: scalable groups (s_groups) and semi-explicit placement.

S_groups aim to reduce the number of connections maintained

by nodes and hence the size of shared namespace. Semi-explicit

placement aims to semi-automate the choice of an appropriate tar-

get node when spawning a process by introducing node attributes

and communication distances. In this paperwe only cover research

related to the s_group part of the SD Erlang: essentially we address

the question of how to scale a network of Erlang nodes by reduc-

ing the number of connections between the nodes. A discussion of

semi-explicit placement can be found in [26].

The design of SD Erlang is guided by the following principles for

reliable network scalability. The principles include concepts that

we want to either preserve or avoid when scaling distributed Er-

lang, namely (a) preserving the Erlang philosophy and program-

ming idioms; (b) minimal language changes, by minimising the

number of new constructs and reusing the existing constructs;

(c) keeping the Erlang/OTP reliability model unchanged as far as

possible, so maintaining concepts of linking, monitoring and su-

pervision.

3.1. Scalable group design

Not only does a fully connected graph of Erlang nodes

imply a quadratic O(N2) number of active TCP/IP connections,

but globally registered names are replicated on all nodes, and

the name registration operations are global and synchronous,

e.g. register_name/2 is performed either on all nodes or on

none. The larger the network of Erlang nodes the more expensive

it becomes for each node to periodically check connected nodes

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 25

Fig. 3. Network scalability of Riak DBMS.

Fig. 4. Connections in s_groups.

and keep up-to-date replications of global names. We propose
overlapping scalable groups (s_groups), where nodes transitively
connected with other nodes within their s_groups, and non-
transitively with other nodes.

In SD Erlang nodes with no asserted s_group membership
belong to a notional group G0 that follows distributed Erlang
rules and hence allows backward compatibility. By backward
compatibility we mean that when nodes run the same version
of Erlang VM independently of their usage of s_groups the nodes
are able to communicate with each other. Therefore, s_groups
may be introduced to improve the network scalability of existing
distributed Erlang systems.

To demonstrate transitive and non-transitive connections in SD
Erlangwe consider the following example. Assumewe start six free
normal nodes: A, B, C , D, E, F , then the nodes belong to the notional
group G0 (Fig. 4(a)). Note that a node belongs to the group G0 only
when this node does not belong to any s_group. Assume also that
nodes are interconnected; here, the fully connected network of Er-
lang nodes is not compulsory and is for a demonstration of transi-
tive connections only. First, on node Awe create a new s_group G1
that consists of nodes A, B, and C . When nodes A, B, and C become
members of the s_group they keep connections with nodes D, E, F
but now these connections are non-transitive. We then disconnect
the nodes of s_groupG1 from the nodes of groupG0 using the func-
tion erlang:disconnect_node(Node) (Fig. 4(b)). After that

on node C we create an s_group G2 that consists of the nodes C ,

D, and F . The nodes D and F now have non-transitive connections

with the node E.Wedisconnect nodesD and F fromnode E. Fig. 4(c)

shows that node C does not share information about nodes A and B

withnodesD and F . Similarly,whennodesA and F establish a direct

connection they donot share the connection informationwith each

other (in Fig. 4(d) a dotted line represents a non-transitive connec-

tion). Note, however, that node disconnections are not compulsory,

and are included here for the purposes of demonstration.

3.1.1. Design alternatives

Before introducing s_groups we considered grouping nodes in

hierarchical, overlapping and partitioned groups. To choose the

most appropriate approach we took into account the following

principles.

• Preserving the distributed Erlang philosophy that any node can

be directly connected to any other node.
• Dynamic adding and removing nodes from groups.
• Enabling nodes to belong to multiple groups.
• A simple mechanism.

A hierarchical approach prevents a node from being a

member of different groups and also prevents there being direct

connections between nodes from different levels and subgroups.

26 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

Table 1

Types of connections and namespace.

No. Grouping Type of connections Namespace

Distributed Erlang

1 No grouping All-to-all connections Common

2 Global_groups Transitive connections within a global_group,

non-transitive connections with other nodes

Partitioned

Scalable distributed Erlang

1 No grouping All-to-all connections Common

2 S_groups Transitive connections within an s_group,

non-transitive connections with other nodes

Overlapping

We have therefore implemented overlapping s_groups, as this

approach seems to best satisfy the Erlang philosophy and our

goals. In addition, both overlapping and partitioned groups can be

implemented using overlapping s_groups, so that we have enough

generality with this choice.

Joe Armstrong [14] speculated about storing global data

using an approach based on Distributed Hash Tables (DHTs),

e.g. Kademlia [27] and Tapestry [37]. In this case a reduction

of the namespace and the number of connections would be

achieved through a change of routing algorithm. That is, instead

of establishing direct connections, nodes would communicate

with each other via ‘‘hash close’’ nodes, and global names would

be also stored on ‘‘hash close’’ nodes. However, implementing

this approach would mean going against established Erlang

philosophies such as ‘‘any node can be directly connected to

any other node’’. It would also mean putting a restriction on

developers, forcing them to use a particular network configuration.

But most importantly, we do not know in advance how effective

remote supervision will be (i.e. supervising a process via other

processes due to a lack of direct connection between nodes

on which the processes reside) and impact of extra load on

routing nodes on the performance. Whereas using the SD Erlang

s_groups the DHT approach could be implemented and analysed

systematically before the actual implementation.

The idea of SD Erlang s_groups is similar to the distributed

Erlang hidden global_groups in two ways: (a) each s_group has its

ownnamespace, and (b) transitive connections are onlywith nodes

from the same s_group. The differences fromhidden global_groups

are that (a) a node can belong to multiple s_groups which implies

a different synchronisation mechanism, and (b) s_groups can be

modified dynamically [10]. The functionality of free nodes in SD

Erlang is the same as it is in distributed Erlang. Table 1 provides a

summary of types of connections and a division of the namespaces

in distributed Erlang and SD Erlang.

The notion of s_groups is also similar to that of MPI communi-

cators [11] but while an MPI communicator groups processes, an

s_group groups Erlang nodes. Another difference is that s_groups

aim to reduce common namespace and transitive connections, but,

unlike MPI communicators, impose no other limitations or restric-

tions on node communications. In addition when s_groups are ar-

ranged in a hierarchical manner one can find similarities between

Erlang nodes that belong to a number of s_groups (let us call them

gateway nodes) and super-peers, i.e. nodes that act simultaneously

as a server and a peer [6]. However, in SD Erlang a gateway node

having a super-peer functionality depends on an application and

this role is not imposed by s_groups.

3.1.2. S_group implementation

In SD Erlang connections and data replication between nodes

that belong to the same s_group are handled by the following two

Erlang processes: global_name_server and s_group. These
processes are present on every node and are started when the

node is launched. The s_group process is started from s_group

module and is responsible for keeping information about s_groups.

The global_name_server process is started from global
module, and is responsible for keeping connections and common

data on the nodes identified by the s_group process.

A node can become amember of an s_group either dynamically

using s_group:new_s_group/1,2 functions (Section 3.1.3) or

at launch using the -config flag and the .config file. For

example, Listing 1 presents the configuration of node C if nodes

in Fig. 4(d) join the s_groups at launch.

Listing 1: S_group configuration for node C in Figure 4(d)

[{kernel ,[{s_groups ,[
{group1,normal ,[’nodeA@glasgow.ac.uk ’ , ’ nodeB@glasgow.ac.uk ’ ,

’ nodeC@glasgow.ac.uk ’]} ,
{group2,normal ,[’nodeC@glasgow.ac.uk ’ , ’ nodeD@glasgow.ac.uk ’ ,

’ nodeE@glasgow.ac.uk ’]}]}]}].

The configuration file may contain information either about the

s_groups of a particular node or about the whole system. In the

latter case the node is aware of the remote s_groups and may

interact with processes registered there (Section 3.1.4). That said,

information from .config file about remote s_groups must be

used with caution because it is not updated during runtime and

may be inconsistent with the actual group structure. We have

introduced this functionality to explore the opportunities and

challenges of dynamic configuration update but this has not been

implemented yet. See further discussion in Section 8.2.

The SD Erlang implementation and measurements we present

in this paper are based on Erlang/OTP 17.0 and 17.4. We

call SD Erlang an extension because it only makes some

changes in Erlang/OTP modules, but does not change Erlang

VM. In particular in lib/kernel/src/ directory SD Erlang re-

places global_group.erl module with s_group.erl mod-

ule to group nodes and modifies the following four modules:

global.erl, global_search.erl, kernel.erl, net_
kernel.erl. Instructions on how to build SD Erlang can be found

in http://www.dcs.gla.ac.uk/research/sd-erlang/.

Erlang code that uses neither global_groups nor s_groups can

be run on both distributed Erlang and SD Erlang. However, it is not

advisable to use both types of nodes in the same application due to

a modification of Erlang/OTP modules that handle connections.

3.1.3. S_group functions

In this section we discuss five s_group functions related

to grouping Erlang nodes: creating a new s_groups, remov-

ing nodes from an s_group, and listing own and known nodes.

The types of arguments in the functions below are as fol-

lows [15]: Name::term(), Pid::pid(), Node::node(),
SGroupName::group_name(), Reason::term(), Msg::
term(). The description of the remaining four functions, such as

deleting an s_group, adding nodes to an s_group, and listing the

nodes of own and known s_groups can be found in [10].

A summary of modified and new functions from global and

s_group modules is presented in Tables 2 and 3; some of these

http://www.dcs.gla.ac.uk/research/sd-erlang/

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 27

Table 2

Summary of s_group specific functions.

Function Description

new_s_group([Node]) Creat new s_groups

new_s_group(SGroupName, [Node])
delete_s_group(SGroupName) Deletes an s_group

add_nodes(SGroupName, [Node]) Adds nodes to an s_group

remove_nodes(SGroupName, [Node]) Removes nodes from an s_group

s_groups() Returns a list of all s_groups known to the node

own_s_groups() Returns a list of s_group tuples of the s_groups the node belongs to

own_nodes() Returns a list of nodes the node shares namespaces with

own_nodes(SGroupName) Returns a list of nodes from the given s_group

functions we discuss in detail in Sections 3.1.3 and 3.1.4. Functions

frommodule global have identical functionality on free nodes in

distributed Erlang and SD Erlang.

Creating an s_group. The s_group:new_s_group/1,2 functions

are used to create new s_groups dynamically (Listing 2). A new

s_group is created first on the initiating node and then the

remaining nodes are added. If the initiating node either is not in

the list of s_group nodes or is already a member of the s_group

the function fails and an error is returned. When an s_group

name is not provided the crypto:strong_rand_bytes(30)
function is used to generate a randoms_groupname. The particular

function was chosen as a proof of concept, and may be replaced by

an alternative one that also guarantees high probability of name

uniqueness.

Listing 2: New s_group

s_group:new_s_group([Node]) -> {SGroupName ,[Node]} |
{ ’error ’ ,Reason}

s_group:new_s_group(SGroupName ,[Node]) -> {SGroupName ,[Node]} |
{ ’error ’ ,Reason}

Removing nodes froman s_group. Thes_group:remove_nodes/2
function is used to dynamically remove nodes from an existing

s_group (Listing 3). The initiating node cannot remove itself, and to

remove other nodes it should be a member of the target s_group.

Listing 3: Removing nodes from an s_group

s_group:remove_nodes(SGroupName ,[Node]) -> ’ok ’

After leaving an s_group the node unregisters the s_group

names. In case the node belongs to no other s_group it becomes

free. Which free node type it is – hidden or normal – depends on

the flag with which the node was launched. If the node becomes

a free hidden node then it just keeps its existing connections. If

the node becomes a free normal node then apart from keeping its

existing connections the node synchroniseswith other free normal

nodes with which it has connections, and as a result shares their

connections and namespace.

Listing own nodes. The s_group:own_nodes/0,1 functions are

used to list nodes with which the node shares namespaces (Listing

4). On an s_group node s_group:own_nodes() function returns

a list of nodes from all s_groups the node belongs to. On a free node

the function returns a list of connected free normal nodes.

Listing 4: List of own nodes

s_group:own_nodes() -> [Node]
s_group:own_nodes(SGroupName) -> [Node]

The s_group:own_nodes(SGroupName) function returns a

list of nodes of the given s_group. In case the node does not belong

to the s_group an empty list is returned. On a free node the function

returns an empty list.

3.1.4. Name registration functions

In this section we discuss the following six functions related

to manipulating registered names: name registration, listing

registered names, and searching for registered names. The

functions called on s_group nodes treat free nodes as if they

belong to an ‘undefined’ s_group. The detailed description of the

remaining functions from Table 3 can be found in [10].

Name registration. A name is registered with one of the

register_name/2,3 functions (Listing 5). On free nodes names

are registered using global:register_name(Name,Pid), and
on s_group nodes names are registered using s_group:
register_name(SGroupName,Name,Pid). Neither name nor

pid should be already registered in the given group, and only a node

that belongs to that group can register a name in it.

Listing 5: Name registration

global:register_name(Name,Pid) -> ’yes ’ | ’no ’

s_group:register_name(SGroupName ,Name,Pid) -> ’yes ’ | ’no ’

If for some reason we want a name to be known to the whole

network, then we cannot simply register it in every s_group,

because when registering a process globally the node onwhich the

process information is replicated establishes a link to the node on

which the process resides. This is due to a mechanism of process

monitoring. So, to avoid establishing direct connections between

nodes from different s_groups a programmer needs to introduce

a mechanism of forwarding messages to the s_group in which the

process is registered, for example, via gateway nodes.

Listing registered names. A list of registered names is returned
by the registered_names/0,1 functions (Listing 6). The
global:registered_names() function can be used on both
s_group and free nodes; it returns a list of all names registered on
the calling node.

Listing 6: List registered names

global:registered_names() -> [Name]
s_group:registered_names({s_group,SGroupName}) ->

[{SGroupName ,Name}]
s_group:registered_names({node,Node}) -> [{SGroupName ,Name}]

The s_group:registered_names/1 function can be used

with one of the following two arguments: {node,Node} and

{s_group,SGroupName}. With {node,Node} argument the

s_group:registered_names({node,Node}) function can

be used on both s_group and free nodes; it works similarly to

global:registered_names() function but returns registered

names from the given node. If the node that owns the calling pro-

cess is not connected to the target node then a new connection is

established between the nodes. This connection will remain un-

til, for example, it is decided to disconnect the nodes or one of the

nodes fails. With {s_group,SGroupName} argument if the node

that owns the calling process belongs to s_group SGroupName the

s_group:registered_names({s_group,SGroupName})
function returns a list of names registered in this s_group; if the

28 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

Table 3

Summary of global and s_group functions.

global: s_group:

info() info()
Returns global state information Returns s_group state information

register_name(Name,Pid) register_name(SGroupName,Name,Pid)
Registers a name on the connected free normal nodes Registers a name in the given s_group

re_register_name(Name,Pid) re_register_name(SGroupName,Name,Pid)
Re-registers a name on the connected free normal nodes Re-registers a name in the given s_group

unregister_name(Name) unregister_name(SGroupName,Name)
Unregisters a name on the connected free normal nodes Unregisters a name in the given s_group

registered_names() registered_names(node,Node)
Returns a list of all registered names on the node Returns a list of all registered names on the given node

registered_names(s_group,SGroupName)
Returns a list of registered names in the given s_group

whereis_name(Name) whereis_name(SGroupName,Name)
Returns the pid of a name registered on a free node Returns the pid of a name registered in the given s_group

whereis_name(Node,SGroupName,Name)
Returns the pid of a name registered in the given s_group. The name is searched on the given node

send(Name,Msg) send(SGroupName,Name,Msg)
Sends a message to a name registered on a free node Sends a message to a name registered in the given s_group

send(Node,SGroupName,Name,Msg)
Sends a message to a name registered in the given s_group. The name is searched on the given node

node does not belong to s_group SGroupName but has informa-

tion about it then the node establishes a connection with one of

the nodes of the s_group. A node may have information about an

s_group but not belong to it when s_groups are started at launch

(Section 3.1.2), e.g. in Listing 1 node nodeA@glasgow.ac.uk has

information about group2 but does not belong to it, and therefore,

does not share the group’s namespace.

Searching for a name. A registered name can be found using

whereis_name/1,2,3 functions presented in Listing 7. The

name search is done sequentially, and as soon as the name is found

its pid is returned. The global:whereis_name(Name) function

on a free node returns a pid in case the name is found, otherwise

it returns ‘undefined’. On an s_group node the function returns

‘undefined’ because the s_group name is not specified.

Listing 7: Searching for a registered name

global:whereis_name(Name) -> Pid | ’ undefined ’

s_group:whereis_name(SGroupName ,Name) -> Pid | ’ undefined ’

s_group:whereis_name(Node,SGroupName ,Name) -> Pid | ’ undefined ’

The s_group:whereis_name(SGroupName,Name) func-

tion first checks the name in the node own registry. If the name

is not found locally then it is searched in other known s_groups by

picking a node from the given s_group, then establishing a connec-

tion with that node, and checking whether the name is registered

on that node. The function returns a pid if the name is registered in

the given group and the node is aware of that group.

The s_group:whereis_name(Node,SGroupName,Name)
function searches the name only on the defined node indepen-

dently of the type of the initiating node. If the initiating node and

the target node are not connected, then the connection is estab-

lished.

4. Operational semantics

Toprovide a formal basis for programunderstanding and enable

reasoning we introduce an operational semantics for the s_group

operations, and validate the library against the semantics in the

following section. The semantics also provides an intuition for the

functions that enabled us to improve implementation of a number

of functions.

We start by defining an abstract state of SD Erlang systems

(Section 4.1), before defining each function as a transition between

states (Section 4.2).

Fig. 5. SD Erlang state.

4.1. SD Erlang state

We define the SD Erlang system state and associated abstract

syntax variables as shown in Fig. 5. The state of a system is

modelled as a four tuple comprising a set of s_groups, a set of

free_groups, a set of free_hidden_groups, and a set of nodes. Each

type of groups is associated with nodes and has a namespace.

An s_group additionally has a name, whereas a free_hidden_group

consists of only one node, i.e. a hidden node simultaneously acts

as a node and as a group, because as a group a hidden node has a

namespace but does not share it with any other node. Free normal

and hidden groups have no names, and are uniquely defined by the

nodes associatedwith them. Therefore, groupnames, gr_names, are

eitherNoGroup or a set of s_group_names. A namespace is a set pairs

of names and process ids, pids, and is replicated on all nodes of the

associated group.

A node has the following parameters: node_id identifier,

node_type that can be either hidden or normal, connections, and

group_names, i.e. names of groups the node belongs to. The node

can belong to either a list of s_groups or one of the free groups. The

type of the free group is defined by the node type. Connections are

a set of node_ids.

SD Erlang state property. Every node in an SD Erlang state is a

member of one of the three classes of groups: s_group, free_group,

or free_hidden_group. The three classes of groups partition the

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 29

set of nodes. That is, for any state (grs, fgs, fhs, nds) {Πnode_idgrs,
Πnode_idfgs, Πnode_idfhs} is a partition of Πnode_idnds where Πnode_id

is projection onto the node_id attribute, or set of attributes, of the

tuples.

Assumptions. We make the following assumptions to simplify the

state transitions. It is clearly desirable to relax some of these

assumptions in our future work on the SD Erlang semantics

(Section 8.2).

1. No two s_groups have the same name, that is all s_group_names

are unique.

2. All node_ids identify some node. More formally, for all node_ids

occurring in some state (grs, fgs, fhs, nds), there exists some

node in ndswith that node_id.

3. No failures occur.

4.2. Transitions

The transitions we present in this section have the following

form:

(state, command, ni) −→ (state′, value)

meaning that executing command on node ni in state returns value

and transitions to state′. The transitions use a number of auxiliary

functions that we also define. In the following ⊕ denotes disjoint

set union; and by y′ ≡


{y| . . .} we mean that elements from all

generated y sets are accumulated in one y′ set.
In total we have implemented transitions of fifteen SD

Erlang functions. Nine of these functions change their state

after the transition, whereas the other six functions only return

some state information but do not change the state after the

transition. To illustrate the semantics we present the transitions

for three functions previously described in Sections 3.1.3 and 3.1.4:

s_group:register_name/3 and s_group:new_s_group/2
change the state, and s_group:whereis_name/2 does not. The

full semantics is available in [9].

s_group:register_name/3. When registering name n for pid p in

s_group s the pair (n, p) is added to the namespace ns of the

s_group only if node ni is a member of s_group s and neither n nor

p appears in the s_group namespace (Listing 5 in Section 3.1.4).

((grs, fgs, fhs, nds), register_name(s, n, p), ni)

−→ (({(s, {ni} ⊕ nis, {(n, p)} ⊕ ns)} ⊕ grs′, fgs, fhs, nds), True)

If (n, _) ∉ ns ∧ (_, p) ∉ ns

−→ ((grs, fgs, fhs, nds), False) Otherwise

where

{(s, {ni} ⊕ nis, ns)} ⊕ grs′ ≡ grs

s_group:whereis_name/2. If node ni belongs to s_group s the func-

tion returns pid p registered as name n in the s_group, undefined
otherwise (Listing 7 in Section 3.1.4). The IsSGroupSNode func-

tion returns either True or False depending on whether node ni

belongs to s_group s. The FindName function searches for the pid

p of a registered name n depending on the type of the group in

which the name is registered, i.e. s_group, free normal, or free hid-

den group.

((grs, fgs, fhs, nds),whereis_name(s, n), ni)

−→ ((grs, fgs, fhs, nds), p) If IsSGroupSNode(ni, s, grs)

−→ ((grs, fgs, fhs, nds), undefined) Otherwise

where

{(s, {ni} ⊕ nis, ns)} ⊕ grs′ ≡ grs

p ≡ FindName(ni, s, n, grs, fgs, fhs, nds).

s_group:new_s_group/2. When we create a new s_group s, the

s_group togetherwith its nodesnis are added to the list of s_groups.

If before joining the s_group nodes nis are free then the nodes

are removed from corresponding free groups fgs and fhs. The new

s_group has an empty namespace (Listing 2 in Section 3.1.3).

InterConnectNodes function interconnects nodes from nds

identified by nis node ids. AddSGroup function adds membership

of s_group s to all nodes identified by nis node ids. RemoveNodes
function removes node ids identified by nis from free normal

groups fgs and free hidden groups fhs.

((grs, fgs, fhs, nds), new_s_group(s, nis), ni)

−→ ((grs′, fgs′, fhs′, nds′′), (s, nis)) If ni ∈ nis

−→ ((grs, fgs, fhs, nds), Error) Otherwise

where

nds′ ≡ InterConnectNodes(nis, nds)

nds′′ ≡ AddSGroup(s, nis, nds′)

grs′ ≡ grs ⊕ {(s, nis, {})}
(fgs′, fhs′) ≡ RemoveNodes(nis, fgs, fhs).

5. Validation of conformance

A specification is of little value if there is no attempt made to

check that it corresponds to its implementation. In order to ensure

conformance between the SD Erlang semantic specification and

the actual implementation, we have implemented an executable

version of the semantic specification based on the formal

mathematical definition of Section 4. This work is reported in full

in [25]; in this section we give an introduction to the approach, as

well as a full statement of the results. The paper [25] provides a

comprehensive account of the work and its background.

5.1. Property-based testing

The executable semantic specification is implemented within

the property and model-based random testing framework pro-

vided by the Erlang testing tool QuickCheck [22]. Property-based

testing (PBT) provides a high-level approach to testing: rather than

focusing on individual test cases, in PBT the required behaviour

is specified by properties, expressed in a logical form. For exam-

ple, a function without side effects might be specified by means

of the full input/output relation using a universal quantification

over all the inputs; a stateful system will be described by means

of model, which is an extended finite state machine. The system

is then tested by checking whether it has the required properties

for randomly generated data, which may be inputs to functions,

sequences of API calls to the stateful system, or other representa-

tions of test cases. Since SD Erlang has a stateful API, we use the

modelling approach here.

The advantage of writing the executable semantics within

the QuickCheck testing framework is that it allows us to test

the conformance between semantics and implementation as

well as, inter alia, the correctness of semantic specification

and the correctness of implementation. As a link between the

formal mathematical specification and the implementation, the

executable model makes it more feasible for the co-evolution of

specification and implementation; it also provides uswith ameans

to explore the new features to be added to the library without

having to provide a full implementation of them.

5.2. The validation approach

The architecture of the testing framework is shown in Fig. 6.

First we define an abstract state machine eqc_statem client

30 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

Fig. 6. Testing s_groups using QuickCheck.

module that is the executable version of the semantics. The source

code can be found at https://github.com/huiqing/s_group/blob/

master/s_group_eqc.erl.

The state machine defines the abstract state representation

and the transition from one state to another when an operation

is applied. Test case and data generators are then defined to

control the test case generation; this includes the automatic

generation of eligible s_group operations and the input data to

those operations. Test oracles are encoded as the postcondition for

s_group operations.

During testing, each test command is applied to both the

abstract model and the actual s_group implementation. The

application of the test command to the abstract model takes the

abstract model from its current state to a new state as described

by the transition functions; whereas the application of the test

command to the real system leads the system to a new actual

state. The actual state information is collected from each node in

the distributed system, then merged and normalised to the same

format as the abstract state representation. In order for a test to be

successful, after the execution of a test command, the test oracles

specified for this command should be satisfied. Various test oracles

can be defined for s_group operations; for instance one of the

generic constraints that applies to all the s_group operations is that

after each s_group operation, the normalised system state should

be equivalent to the abstract state.

By default, QuickCheck generates 100 test cases for each run,

with each test case consisting of a sequence of test commands.

The number of test cases to test can be changed however. Testing

is deemed to be successful if all the test cases have been passed,

otherwise a test fails and a ‘shrunk’ counter-example is returned.

5.2.1. Results

The model covering the fifteen s_group operations contains

1100 lines of code. So far, thousands of tests have been run using

this test model. In this section, we summarise the kinds of errors

encountered during testing.

• Errors in the test code. Test code is code, hence not immune from

errors. As a result, some of the errors encountered, especially in

the early stage of the testing, were errors in the test code itself.

• Errors in the semantic specification. In this case, the actual

state is different from the abstract state after some test

execution, and human examination identifies that the actual

state represents the expected result.

We found two semantic errors during testing. One error was

that a free normal node was not properly removed from its

original free group when the node joins an s_group; the other

error was due to erroneous manipulation of the gr_names of a

node resulting that gr_names contains both NoGroupName and

an s_group name.
• Errors in the implementation. An error in the implementation

also leads to a disagreement between the actual state and the

abstract state, but in this case the abstract state represents the

expected result.
Our testing revealed two errors in the implementation. One

error was due to the synchronisation between nodeswhere one

nodewas expecting a ‘nodeup’ message from another node but

failed to receive it after a timeout although the other node was

actually up; the other error was related to the remove_nodes
operation, where a mismatch between the expected result and

actual value returned by a list search operation happened and

crashed the Erlang node.
• Inconsistency between semantics and implementation. In this

case, although the actual system state and the abstract state are

equivalent, the value returned by the implementation and the

abstract state machine are not always the same.
In one case the formal semantics specified that the send oper-

ation should return ‘undefined’ as the result if the message

receiving process does not exist, however the actual imple-

mentation returned a tuple with the first element as ‘badarg’
and the second element being the arguments supplied; in an-

other case the semantics specified that theunregister_name
operation always returns ‘True’, whereas the implementa-

tion could also return {no, cannot_unregister_from_
remote_group}.

The results show the value of the executable approach, in that we

were able not only to debug the implementation, but also to debug

the formal semantics itself, as well as the consistency between the

semantics and its implementation.

6. Preliminary evaluation

In this section we discuss the results of the preliminary

evaluation of the SD Erlang implementation. The evaluation

includes measurements with a test harness where we can control

key network scalability aspects, such as percentage of global

operations using DEbench (Section 6.1), and an analysis of the

impact of transitive connections on the scalability of a distributed

application using Orbit benchmark (Section 6.2).
DEbench is selected for these benchmarks as it enables us to

investigate both the impact of reduced number of connections and

of smaller namespaces. In contrast Orbit demonstrates the impact

of reduced number of connections alone.

6.1. The DEbench measurement harness

To analyse the impact of global operations on network scalabil-

ity of SD Erlang we again use the DEbench tool (Section 2.2). This

timewe compare distributed Erlang results with corresponding SD

Erlang results when the transaction mix contains 0.01% of global

operations. Recall that in context of this paper a global operation

is an operation that is applied to all nodes of a group and treated

as global in that group (Section 2.1). The experiments are based on

Erlang/OTP 17.0.
In the SD Erlang version we partition a set of nodes in such a

way that every s_group has 10 nodes. Therefore, when we register

a name in distributed Erlang the name is replicated on all nodes,

whereas in SD Erlang the name is replicated on 10 nodes of a

particular s_group. We ran the experiments varying the number

of nodes between 10 (80 cores) and 100 (800 cores). The results

presented in Fig. 7 show that on up to 40 nodes distributed

Erlang and SD Erlang perform similarly, and beyond 40 nodes the

throughput of distributed Erlang stops increasing, whereas the

throughput of SD Erlang continues to grow linearly.

https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl
https://github.com/huiqing/s_group/blob/master/s_group_eqc.erl

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 31

Fig. 7. Impact of global operations on network scalability of distributed Erlang and SD Erlang.

6.2. Orbit

To evaluate the impact of reduced number of connectionswhen

introducing s_groups on the network scalability of Erlang appli-

cations we have conducted experiments using the Orbit bench-

mark [24], i.e. a symbolic computing kernel and a generalisation of

a transitive closure computation. We have chosen Orbit as a case

study as it uses a Distributed Hash Table (DHT) similar to NoSQL

DBMS like Riak and standard P2P techniques. Orbit is only a few

hundred lines of code, and has a good performance and extensibil-

ity. To compute Orbit for a given space [0..X] a list of generators

g1, g2, . . . , gn are applied on the initial vertex x0 ∈ [0..X] that

creates new numbers (x1 . . . xn) ∈ [0..X]. The generator functions

are applied on the newnumbers until no newnumber is generated.

Wehave implemented distributed Erlang and SD Erlang versions of

Orbit [29] where neither version uses global operations. The com-

putation is started on the master node, and then is distributed be-

tween worker nodes.
We ran Orbit experiment on a cluster located in EDF, France,

called Athos. For the experiments we had simultaneous access to

up to 257 compute nodes (6168 cores) for up to 8 hours at a time.

Each Athos node has 64 GB of RAM and an Intel Xeon E5-2697

v2 processor with 24 cores. In the Orbit experiments each worker

node has 8 DHTs. The number of nodes varied between 1 (24 cores)

and 257 (6168 cores). The experiments are based on Erlang/OTP

17.4.
The distributed Erlang implementation of Orbit has one master

node and the remaining nodes are workers. All nodes are

interconnected.
The SD Erlang implementation of Orbit has one master node

and the remaining nodes are submasters and workers. The nodes

are grouped into sets of s_groups (Fig. 8). Within an s_group

nodes communicate directly with each other but to reach a node

outside of an s_group the communication is done via the submaster

nodes. The s_groups reduce the number of connections between

nodes, i.e. the number of connections of a worker node is equal

to the number of worker nodes in its s_group, and the number

of connections of a sub-master node is equal to the number of

connections of a worker node plus the number of sub-master

nodes. Every s_group has one submaster node and ten worker

nodes. Every sub-master node has 40 gateway processes that

perform transferring of messages between worker nodes from

different s_groups.
Fig. 9(a) and (b) compare the runtime and the speed-up

of distributed Erlang and SD Erlang implementations. Every

experiment was repeated 7 times, and the median results

Fig. 8. Communication model in SD Erlang Orbit.

are plotted in the diagrams. The vertical segments depict 95%

confidence interval. The speedup is a ratio between execution

time on one node with one core and the execution time on

corresponding number of nodes and cores. The results show that

performance of distributed Erlang version starts degrading after

40 nodes (984 cores). SD Erlang performs better on larger scales

– beyond 80 nodes (1920 cores) – and the performance does not

degrade as the number of nodes grows. The results confirm our

expectations that on a small scale SD Erlang performs a bit worse

than distributed Erlang but the larger the scale the better SD Erlang

performs in comparison with distributed Erlang.

7. Actor languages & frameworks

The Erlang programming model and philosophy is widely

acknowledged as very effective. It has influenced and inspired a

number of languages and frameworks, including Akka [36], Cloud

Haskell [12], APRIL [28], and Kilim [32]. Themostwell-known ones

– Akka and Cloud Haskell – we discuss here in more details.

Akka is an event-drivenmiddleware framework to build reliable

distributed applications [36]. Akka is implemented in Scala, a

statically typed programming language that combines features

of both object-oriented and functional programming languages.

Fault tolerance in Akka is implemented using similar to Erlang

‘Let it crash’ philosophy and supervisor hierarchies [35]. An actor

can only have one supervisor which is the parent supervisor

32 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

(a) Network scalability.

(b) Relative speedup.

Fig. 9. Impact of transitive connections on network scalability of distributed and SD Erlang Orbit.

but similarly to Erlang actors can monitor each other. Due to

the possibility of creating an actor within a different Java VM,

two mechanisms are available for accessing an actor: logical and

physical. A logical path follows parental supervision links towards

the root, whereas, a physical actor path starts at the root of

the system at which the actual actor object resides, but cannot

reference actors on other Java VMs. Like Erlang Akka does not

support guaranteed delivery. As far as we know, cluster support

for Akka is only planned to be introduced [34,20].

Cloud Haskell [12] is a domain specific language embedded as a

library in the Haskell functional programming language [33]. From

Haskell the language inherits purity, types and monads. As a pure

functional programming language Haskell provides immutability

of data, and types and monads statically guarantee program

properties. Similarly to Erlang the processes in Cloud Haskell are

lightweight and are central for the concurrency. In contrast to

Erlang, CloudHaskell allows shared-memory concurrencywithin a

process. The language utilises Erlangmessage-passingmechanism,

i.e. processes do not share data and communicate with each other

only via message passing. However, in contrast to Erlang, where

messages can be sent to process for which the sender has the

address (or name) of the recipient, in Cloud Haskell the messages

are sent via two types of channels: untyped and typed. Here,

the incoming messages are matched by type. The supervision

philosophy for the fault tolerance is also borrowed from Erlang,

i.e. processes are monitored and can be restarted following a

failure. [5] presents network scalability measurements on up to

160 cores.

The above shows that Akka and Cloud Haskell are heavily

influenced by Erlang and apply many of Erlang properties and

philosophy. When scaling these languages over a set of nodes

we believe the programmers will find useful our experience of

scaling Erlang. This does not mean though that the functionality or

wording should be the same to have a similar impact. For example,

such property as shared-memory concurrency within a process

should not have an effect on a scalability of a set of nodes. It

may have an impact on a performance of a single node or rubbish

collection but as processes are isolated from each other this should

not effect processes on remote nodes and scalability of a set of

nodes in particular.

On the other hand, both Akka and Cloud Haskell do not support

transitive connections, however monitoring a process on a remote

node implies a connection between the nodes and a heart-bit

signal. As the number of nodes in the system grows nodes likely

to maintain a larger number of connections which will have a

negative impact on scalability, so a restriction of connections

to sub-groups of nodes may be advisable. The same principle

applies to global namespace and global operations. Applying global

operations to a subset of nodes rather than to all nodes should

significantly improve scalability.

8. Conclusion and future work

8.1. Conclusion

We address the network scalability limitations of distributed

Erlang (Section 2.2) by presenting the design and implementa-

N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34 33

tion of SD Erlang—a small conservative extension of distributed

Erlang (Section 3). We discuss the main aspects of s_group de-

sign and implementation. That is nodes have transitive connec-

tions with nodes from the same s_groups and non-transitive con-

nections with other nodes. Free nodes in SD Erlang have the same

functionality as in distributed Erlang. In total we introduce nine-

teen functions of two types: s_group functions that manipulate

s_groups, for example, creating an s_group and listing all s_groups

of a particular node, and name registration functions that support

registration of names in s_groups, for example, unregistration of a

name and listing names registered in a particular s_group.

We provide a semantics for s_groups by defining an abstract

state of SD Erlang systems and presenting the transitions of fifteen

SD Erlang functions (Section 4). Nine of the functions change

their state, whereas the remaining six functions do not. We

validate the consistency between the formal semantics and the

SD Erlang implementation using Erlang QuickCheck testing tool

(Section 5). Apart from validating the semantics the test enabled

us to validate the implementation of the SD Erlang functions,

and the conformance between the semantics and implementation.

We provide the details of the testing approach and discuss the

errors that we encountered while working on the semantics, the

implementation, and the validation.

We provide the preliminary evaluation of SD Erlang perfor-

mance compared with distributed Erlang (Section 6). The results

show that introducing s_groups improves network scalability. We

analyse the impact of global operations on network scalability

of distributed Erlang and SD Erlang applications using DEbench

benchmarking tool. The experiments are conducted on 10–100

nodes (80–800 cores). The results show that with 0.01% of global

operations the distributed Erlang version stops scaling beyond 40

nodes (320 cores) whereas the SD Erlang version continues to scale

(Fig. 7). The impact of all-to-all connections is analysed using the

Orbit benchmark. In the experiments we utilise between 1 and 257

nodes (24 and 6168 cores). The results show that on a small scale

(up to 40 nodes or 960 cores) distributed Erlang version of Orbit

performs better than SD Erlang one, but as the number of nodes

grows (beyond 80 nodes or 1920 cores) SD Erlang outperforms dis-

tributed Erlang (Fig. 9).

8.2. Future work

We plan to proceed the work on SD Erlang in the directions

outlined below. Ultimately, we aim SD Erlang to be included in the

standard Erlang/OTP.

Evaluation of SD Erlang reliability. To analyse SDErlang reliability

in comparison with distributed Erlang we develop an Instant

Messenger (IM) benchmark. From the IMexperimentswe expect to

get a better understanding if additional features need to be added

to ensure application fault tolerance when using s_groups.

SD Erlang semantics. We plan to relax some of assumptions

of the SD Erlang semantics discussed in Section 4.1, and in

particular to consider failures. We hope this will provide a deeper

understanding of Erlang’s non-defence approach to fault tolerance.

Dynamic information updating about remote s_groups. In SD

Erlang we introduced a possibility for a node to be aware of other

s_groups (Section 3.1.2). Currently, this information is static and a

node can get it only via the .config file at launch. The idea is to

introduce a dynamic updating of this information.We conduct this

work in conjunctionwith thework on semi-explicit placement [26]

that also requires an up-to-date information about the network of

nodes to make reasonable placement decisions.

Patterns and properties. We analyse different SD Erlang appli-

cations to identify common patterns and properties of s_groups.

The work on the s_group patterns includes introducing functions

to group nodes according to different structures, and identifying

refactoring mechanisms for gateway processes that route mes-

sages between nodes from different s_groups. We also work on

identifying s_group properties, such as the best ratio of the number

of worker nodes to the number of submaster nodes (see for exam-

ple Fig. 8).

Acknowledgments

We would like to thank our RELEASE project colleagues for

technical insights. This work has been supported by the European

Union grant RII3-CT-2005-026133 ‘SCIEnce: Symbolic Computing

Infrastructure in Europe’, IST-2011-287510 ‘RELEASE: A High-

Level Paradigm for Reliable Large-scale Server Software’, and

by the UK’s Engineering and Physical Sciences Research Council

grant EP/G055181/1 ‘HPC-GAP: High Performance Computational

Algebra and Discrete Mathematics’.

References

[1] G. Agha, An overview of actor languages, SIGPLAN Not. 21 (10) (1986) 58–67.
[2] J. Armstrong, Programming Erlang: Software for a Concurrent World,

Pragmatic Bookshelf, 2007.
[3] J. Armstrong, Erlang, Commun. ACM 53 (2010) 68–75.
[4] Basho Technologies, Riakdocs. Basho Bench, 2014. http://docs.basho.com/riak/

latest/ops/building/benchmarking/.
[5] O. Batchelor, R. Green, Cloud Haskell: First impressions and applications to

processing large image datasets, in: Proceedings of the 28th International
Conference on Image and Vision Computing New Zealand, IVCNZ, 2013, 2013,
pp. 412–417.

[6] B. Beverly Yang, H. Garcia-Molina, Designing a super-peer network, in:
Proceedings of the 19th International Conference on Data Engineering, 2003,
pp. 49–60.

[7] O. Boudeville, F. Cesarini, N. Chechina, K. Lundin, N. Papaspyrou, K. Sagonas, S.
Thompson, P. Trinder, U. Wiger, RELEASE: A high-level paradigm for reliable
large-scale server software, in: In Proceedings of the 13th International
Symposium on Trends in Functional Programming, Vol. 7829, Springer, 2012,
pp. 263–278.

[8] F. Cesarini, S. Thompson, Erlang Programming: A Concurrent Approach to
Software Development, first ed., O’Reilly Media, 2009.

[9] N. Chechina, H. Li, S. Thompson, P. Trinder, Scalable SD Erlang reliabilitymodel,
Tech. Rep. TR-2014-004, The University of Glasgow, 2014.

[10] N. Chechina, H. Li, P. Trinder, A. Ghaffari, Scalable SD Erlang computation
model, Tech. Rep. TR-2014-003, The University of Glasgow, 2014.

[11] J.J. Dongarra, S.W. Otto, M. Snir, D. Walker, An introduction to the MPI
standard, Tech. Rep., University of Tennessee, Knoxville, TN, USA, 1995.

[12] J. Epstein, A.P. Black, S. Peyton-Jones, Towards Haskell in the cloud, SIGPLAN
Not. 46 (12) (2011) 118–129.

[13] Ericsson AB, Erlang/OTP Efficiency Guide, System Limits, 2014.
http://erlang.org/doc/efficiency_guide/advanced.html#id67011.

[14] Ericsson AB, Inside Erlang—Creator Joe Armstrong Tells His Story, 2014.
http://www.ericsson.com/news/141204-inside-erlang-creator-joe-
armstrong-tells-his-story_244099435_c.

[15] Ericsson AB, Types and Function Specifications, 2013. http://www.erlang.org/
doc/reference_manual/typespec.html.

[16] Erlang Solutions, Megaload—The Age of Load Testing, 2014.
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.
VsHd9ECLo-0.

[17] A. Ghaffari, Investigating the scalability limits of distributed Erlang, in: Pro-
ceedings of the 13thACMSIGPLANWorkshoponErlang, ACM, 2014, pp. 43–49.

[18] A. Ghaffari, N. Chechina, P. Trinder, J. Meredith, Scalable persistent storage

for Erlang: Theory and practice, in: Proceedings of the 12th ACM SIGPLAN

Workshop on Erlang, ACM, New York, NY, USA, 2013, pp. 73–74.
[19] A. Goldberg, D. Robson, Smalltalk-80: The Language and Its Implementation,

Addison-Wesley, Boston, MA, USA, 1983.
[20] J. He, P. Wadler, P. Trinder, Typecasting actors: From Akka to TAkka,

in: Proceedings of the Fifth Annual ScalaWorkshop, SCALA’14, ACM,NewYork,

NY, USA, 2014, pp. 23–33.
[21] C. Hewitt, P. Bishop, R. Steiger, A universal modular ACTOR formalism for

artificial intelligence, in: Proceedings of the 3rd International Joint Conference

on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1973, pp. 235–245.
[22] J. Hughes, QuickCheck testing for fun and profit, in: Practical Aspects of

Declarative Languages, Springer, 2007, pp. 1–32.
[23] R. Klophaus, Riak core: Building distributed applications without shared state,

in: ACM SIGPLAN Commercial Users of Functional Programming, ACM, New

York, NY, USA, 2010, pp. 14:1–14:1.
[24] F. Lübeck, M. Neunhöffer, Enumerating large Orbits and direct condensation,

Experiment. Math. 10 (2) (2001) 197–205.

http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref1
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref2
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref3
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://docs.basho.com/riak/latest/ops/building/benchmarking/
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref7
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref8
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref9
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref10
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref11
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref12
http://erlang.org/doc/efficiency_guide/advanced.html#id67011
http://www.ericsson.com/news/141204-inside-erlang-creator-joe-armstrong-tells-his-story_244099435_c
http://www.ericsson.com/news/141204-inside-erlang-creator-joe-armstrong-tells-his-story_244099435_c
http://www.ericsson.com/news/141204-inside-erlang-creator-joe-armstrong-tells-his-story_244099435_c
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
http://www.erlang.org/doc/reference_manual/typespec.html
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.VsHd9ECLo-0
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.VsHd9ECLo-0
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.VsHd9ECLo-0
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.VsHd9ECLo-0
https://erlangcentral.org/webinar-megaload-the-age-of-load-testing/#.VsHd9ECLo-0
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref17
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref18
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref19
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref20
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref21
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref22
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref23
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref24

34 N. Chechina et al. / J. Parallel Distrib. Comput. 90–91 (2016) 22–34

[25] H. Li, S. Thompson, Improved semantics and implementation through

property-based testing with QuickCheck, in: Proceedings of the 9th Inter-

national Workshop on Automation of Software Test, AST 2014, ACM, 2014,

pp. 50–56.
[26] K. MacKenzie, N. Chechina, P. Trinder, Performance portability through semi-

explicit placement in distributed Erlang, in: Proceedings of the 14th ACM

SIGPLANWorkshop on Erlang, ACM, 2015, pp. 27–38.
[27] P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information system

based on the xor metric, in: Peer-to-Peer Systems, Springer, 2002, pp. 53–65.
[28] F.G. McCabe, K.L. Clark, APRIL—agent process interaction language, in: Pro-

ceedings of theWorkshop on Agent Theories, Architectures, and Languages on

Intelligent Agents, Springer-Verlag New York, Inc., New York, NY, USA, 1995,

pp. 324–340.
[29] RELEASE Project, Benchmarks, 2014. https://github.com/release-project/

benchmarks.

[30] J.E. Richardson, M.J. Carey, D.T. Schuh, The design of the E programming

language, ACM Trans. Program. Lang. Syst. 15 (3) (1993) 494–534.
[31] SpilGames, Spapi-router, 2014. https://github.com/spilgames/spapi-router.

[32] S. Srinivasan, A. Mycroft, Kilim: Isolation-typed actors for Java, in: ECOOP’08,

Springer-Verlag, Berlin, Heidelberg, 2008, pp. 104–128.
[33] S. Thompson, Haskell: The Craft of Functional Programming, third ed.,

Addison-Wesley Publishing Company, USA, 2008.
[34] D. Trabold, H. Grosskreutz, Parallel subgroup discovery on computing

clusters—first results, in: 2013 IEEE International Conference on Big Data,

2013, pp. 575–579.

[35] Typesafe Inc., Akka Documentation: Release 2.1—Snapshot, July 2012.

http://www.akka.io/docs/akka/snapshot/.

[36] Typesafe Inc., Akka: Event-driven middleware for Java and Scala, 2012.

https://www.typesafe.com/technology/akka.
[37] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J.D. Kubiatowicz,

Tapestry: A resilient global-scale overlay for service deployment, IEEE J. Sel.

Areas Commun. 22 (1) (2004) 41–53.

Natalia Chechina received a Ph.D. degree fromHeriot–Watt
University, UK in 2011. Sheworked as a ResearchAssociate
at the University of Glasgow in the RELEASE project (A
High-Level Paradigm for Reliable Large-Scale Server Soft-
ware.) sponsored by an EU FP7 STREP (287510), and is
now a Research Fellow at the same university. Her main
research interests are distributed and parallel computing,
scaling Erlang programming language, mathematical and
theoretical analysis.

Huiqing Li is a software designer at EE limited, UK,
a visiting researcher at the school of the Computing,
University of Kent. She received her BA andMaster degrees
in computer science from Southeast University, China; in
2006 she received her Ph.D. degree in computer science
from University of Kent. Her research interests include
program refactoring, clone detection, software testing,
multi-core and functional programming.

Amir Ghaffari is a Research Assistant in the RELEASE
project and a member of the Glasgow Parallelism Group
and the Embedded, Networked and Distributed Systems
research groups in the School of Computing Science at the
University of Glasgow.

Simon Thompson is Professor of Logic and Computation
in the School of Computing at the University of Kent, UK.
His research interests include computational logic, func-
tional programming, testing and diagrammatic reason-
ing. His recent research has concentrated on all aspects
of refactoring for functional programming, including the
tools HaRe andWrangler for Haskell and Erlang. He is also
the author of standard texts on Haskell, Erlang, Miranda
and constructive type theory. He is a Fellow of the British
Computer Society and has degrees in mathematics from
Cambridge (MA) and Oxford (DPhil).

Phil Trinder has been an active researcher in parallel
and distributed technologies for over 20 years. He has
been an investigator on 15 major research projects. Pro-
fessor Trinder holds a DPhil from Oxford University and
has over 100 publications in journals, books, or refer-
eed conferences. Professor Trinder’s key research interest
is in designing, implementing, and evaluating high-level
distributed and parallel programming models. For exam-
ple he co-designed and co-implemented Glasgow parallel
Haskell, and is working on improving the scalability of Er-
lang.

http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref25
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref26
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref27
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref28
https://github.com/release-project/benchmarks
https://github.com/release-project/benchmarks
https://github.com/release-project/benchmarks
https://github.com/release-project/benchmarks
https://github.com/release-project/benchmarks
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref30
https://github.com/spilgames/spapi-router
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref32
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref33
http://www.akka.io/docs/akka/snapshot/
https://www.typesafe.com/technology/akka
http://refhub.elsevier.com/S0743-7315(16)00003-4/sbref37

