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Abstract: A general theoretical model is developed to improve the novel
Spectral Domain Interferometry method denoted as Master/Slave (MS)
Interferometry. In this model, two functiong, and h are introduced to
describe the modulation chirp of the channeled spectrum signal due to
nonlinearities in the decoding process from wavenumber toaindedue to
dispersion in the interferometer. The utilization of these two iomet
brings two major improvements to previous implementations of the MS
method. A first improvement consists in reducing the number of channeled
spectra necessary to be collected Master stage. In previous MSI
implementation, the number of chraled spectra at the Master stage
equated the number of depths where information was selected from at the
Slave stage. The paper demonstratfest two experimental channeled
spectra only acquired at Master stage suffice to produce A-scans from any
number of resolved depths at the Slave stage. A second improvement is the
utilization of complex signal processing. Previous MSI implewatens
discarded the phase. Complex processifthe electrical signal determined

by the channeled spectrum allows phaessing that opens several novel
avenues. A first consequence of such signal processing is reduction in the
random component of the phase without affecting the axial resolution. In
previous MSI implementations, phase instabilities were redimedn
average over the wavenumber that led to reduction in the axial fesolut
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1. Introduction

Spectral (or Fourier) domain InterferometryD(} is widely spread in many fields of
biomedical optics, especially in Optical l@rence Tomography (OCT) [1-2]. SDI encodes
distances, thicknesses, scattering propertiesrefractive indices onto the density of
modulation of the optical spectruirg. channeled spectrum, at the interferometer output.

To decode the channeled spectrum, SDI uséurier Transform (FT) operation that
translates the modulation density into a distance measurement. SOplpsrean be applied
to systems employing either a broadband optical source (spectrorssdr 5a) or a tunable
optical source (swept sce, SS). In the case of a Systeyn, the channeled spectrum at the
interferometer output is read by a camera incorporated within thetr@peter. This
channeled spectrum is chirped due to a nonlinear dependence mikehgosition in the
camera versus the optical frequency. When ay8%m is employed, the temporal signal read
by a photodetector at the interferometer outpigsents a chirp mainly due to non-linear
frequency sweeping. We will refer to these chirping effects as due wetloaling process
from channeled spectrum. In addition to the chirp due to spectrum dgcadibalanced
dispersion in the interferometer arms also a#félse regularity of maxima and minima in the
readout channeled spectrum. For a strictly periodic modulation (no chirpg athanneled
spectrum, a FT returns a well-defined peak. The chirp in the spectrum nadtdabslates
into an enlargement and reduction in the amplitude of such a peakening the axial
resolution and sensitivity.

In order to correct the chirping before Hiardware and software methods have been
reported. In terms of hardware solutions, acsgppmeter using a prism after the diffraction



grating [3,4], or chirped sampling using an analogue line scan camera [5] wereepropos
Several solutions have also been proposed to compensate for dispersion, usiveg matc
lengths of glass [6], spectral delay line [7], fiber Bragg gratings [8]. In terms of seftwa
solutions, several methods have also been developed to resample and otgardaat
linearly along the optical frequency axis, or wavenumber, prior to the FT.mGom
corrections are based on the interpolation efgthase in order to obtain linearity in k-space
[9]. More complex techniques based on fractional Fourier transforms [10]unifmmm
Fourier Transformation [11], or advanced computational algorithms [12-14]idpros
posteriori data resampling.

Master-Slave Interferometry (MSI) is aweapproach to SDI teliminate the chirp
effects [15]. The MSI proceeds fwo stages. In a first stage (Master), a mirror is used as an
object and experimental channeled spec@@,.f) are measured and stored, for a nunfbef
different values of the optical path difference (OPD) in thefietemeter. In a second stage
(Slave), the object replaces the mirror and ¢channeled spectrum ompared with every
CS.psaved in the memory block and used as a mask. The comparison operation of each mask
with the channeled spectrum was implemented via correlation [15-118§ eimplified dot
product procedures for faster implementation of correlation for argumeni2@21]. The
maximum value of each comparis@orrelation) is selected farovide the depth information
profile (A-scan) at each OPD valudesged during the Master stage.

MSI presents several advantages compared to conventional SDI. The mbcieda
resampling performed during measurements isaogl by data storage at the Master stage,
which shortens processing time whilerfpeming measurements. The quality of data
resampling for the conventional FT-baseshethod affects the axial resolution.
Advantageously, MSI exhibits a constant resolution over the OPD range imwbazhmends it
as a useful tool for metlogy and imaging. EadBS., provides direct access to measurements
from that OPD value used at the Master stagproduce it, conferring advantage to MSI in
terms of production oen-face OCT images. Recently, its tolerance to dispersion in the
interferometer has also been demonstrated [19].

Nevertheless, the implementation of MSI reported in previous reports presents some
shortcomings, such as:

(i) Typically, a large number 6€S, need to be recorded e Master stage, a problem
especially when using large bandwidth sourcBse sampling of the A-scans in depth is
determined by the number 88, recorded for incremental depths.

(i) MSl is characterized by trade-off between phase instability and axial resolution. The
phase in the interferometer varies between the step of recordir@Stheand the step of
scanning the object to be imaged, considered here as a random phasg.st## the phase
is discarded, it is not possible to eliminate fees. To reduce the effect of the random phase
shift, the correlation function is averaged oweveral lags [15-19] that leads to some
deterioration of the axial resolution.

In this paper, an improved method is presented that addresses the abowmaigstc
This method, Complex Master Slave Interferometry (CMSI), does not dinestZS.., as
masks, contrary to [15-21], but develops a procedure to infer any number of masks from a
reduced number &€&, acquired. Additionally, the masks generated are complex in order to
conserve the phase information.

This paper is organized into three theoretical sections and an expelissai@an. The
theoretical sections describe the interferometignal in a SDI set-up unbalanced from the
point of view of dispersion and equipped with a chirped decoder, obtaineshventional
MSI [15-21] and in the novel CMSI presented here. The chirp affecting the channeled
spectrum at the interferometer output is modeled by two functjaarsd h. Based on these
functions, a procedure of inferring a numbefothanneled spectra (masks) at the Slave stage
from a variable numbelP of CS,, with Q>>P is then presented. The experimental section



demonstrates the conservation of axial resolution over depth for both spetetramd swept
source based SDI methods.

2. Chirped decoder and interferoméer with unbalanced dispersion
2.1. General description of an SDI experimental set-up

In Fig. 1, a SDI schematic diagram is shown, made of two main components, an
interferometer and a decoder. The interfermméncludes a splitter (shown as a directional
coupler), a reference mirror (M), an interfacaicgpthat conveys light towards an object (O)
subject to tests or imaging. tase the application is spectral domain OCT, the interface optics
contains a lateral or transversal galvo-scanner. The decoder block émriklatchanneled
spectrum shape at the interfemer output into an electricaignal. For a spectrometer-based
configuration, the source isdadband and the decoder is a spectrometer. For a swept source
configuration, the optical swce is a swept source laser and the decoder is a fast
photodetector.
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Fig. 1. Block diagram for a spectral domain D&y/stem. C1 and C2, collimators; M, reference
mirror; O, object. Two channeled spectra sinewn underneath, for a mirror as a samble.
represents the power spectrum of the opticaree, shown by the red Gaussian shape solid
line. The A shape is shown by the dashed blug litetermined by the interference contrast of
the modulating signal proportional to the channeled spectrum. On the left, the usual case i
practice is shown whemd *A. Here, the interference contrasis deliberately shown smaller

on the left side of the spectrurm this case, A varies belowd on the left hand side and
regains thegdc value on the right. The channeled spectrum on the right shows the ideal case,
when be = A, i.e. when the contrast profile A and the profile are superposed on each other.

In the following, a mathematical expressiohthe electrical signal at the output of the
interferometer shown in Fig. 1 is obtained, where the decoder performs ndwliaed
dispersion is left unbalanced betwebe arms of the interferometer.

2.2. Fourier transform of the channeled spectrum

Let us consider a non-uniform distribution of frequenciealong the pixels of the line array
detector when using a spectrometer, or along time when using a tunable laser. The
relationship between the optical frequencgnd is given by the functiog( )= .



The unbalanced dispersion between the afrikbe interferometer can be described by a
functiond( ):

d()=2 fn()sn()es(n()sn()es, @

wheren;, andn, are the refractive indices of the disgiee parts in the reference and in the
object arm respectively; and e, their thicknesses and, the central optical frequency of the
source.

The electrical signdl( ) delivered by a non-ideal decade a chirped signal according
to and can be written as a superposition of a DC thygnand a complex exponential form
of a periodic functior( ) as follows

1O=lee@( D+5(10+L ), @

whereg takes into account the decoding procedthigp and * corresponds to its complex
conjugatelpc follows the shape of the power speantrof the optical source (in spectrometer-
based configurations and to the tuning bandwidth in swept source catifigs).

Consideringr the complex reflectivity of the object varying with depththe complex
electrical signal( ) corresponding to the decoded channeled spectrum can be written as a
continuous summation of modulations

.2
10=3()Ae()Be 1 Ta()2 +n( fa . @
wherec is the speed of lighth( ) = d(g( )) is a function depending on the unbalanced
dispersion in the interferometer and the nonlinear dependence ®he depth = 0

corresponds to the OPDG=in the interferometeA( ) represents the interference contrast. In
practice,A( ) is different from the powespectrum of the optical sourdgc( ) as shown by
the left channeled spectrum in Fig. 1. Thisdise to several additional effects such as
polarization mismatching of reference light and object light fields or due rtometiic
aberrations introducedby optical components, factorsathreduce the axial resolution.
Although the amount of unbalanced dispersion due to the object can be incorjtiathe
overall unbalanced dispersion presavithin the system, we restridt to describe the
dispersion in the interferometer only. Equation (3) presents the mostberpression for
the channeled spectrum, which imdés the nonlinear dependence ormand the dispersion
effects.

If the decoder is lineag( ) = = ) and the interferometer is perfectly balanced for
dispersion ¢ AO0), the inverse Fourier transform bfis directly related to the complex
reflectivity r in depthz of the object (A-scan) via thllowing expression as detailed in

Appendix A:
~ 228 ~ 2z 1 2z 1 F§v22-
I — = +=r(z) R + =r(Sz S— 4
co - 2(%@°=o 2() ‘e c- 1 )
wherel andipc are the inverse FT dfandlpc respectively, is the convolution operation
andP, is the axial Point Spread Function (PSF) of the system defined by
R ()= FT™ 2A( )9, (5)
As shown by Eqg. (5), the axial resolution (the widthPgf does not vary with depth, being
only determined by the interference contrdgt,). This happens in the case of a perfectly
dispersion-balanced interferoraetinterrogated by an idedecoder (either spectrometer or
tuning laser).
In the paper the refractive index and the disioer of the sample are ignored to simplify
the study. All distances are measd in air. In the common practice of conventional FT based
OCT methods, the depth in the sample was inferred by dividing the axial depiral, after




FT, by the index of refraction of the sample. To compensate sample dispersiab, &
similar material in the reference arm or a nunsrcompensation should be used. Similarly,
the axial intervals associated to each masliCMSI are measured in air, therefore they
correspond to a depth in the sample obtained by their division to an averageoind
refraction. As far as sample dispersion is comedy CMSI should also be used with a slab of
similar material in the reference arm or with masks modified by the amourgpafrsion to
be compensated at each depth.

3. Theory of master-slave interferometry
3.1 Master slave signal

In contrast to conventional spectral (Fouridomain interferometry, MSI delivers a signal
from a single depthz, within the object to be investigated. Initially, for the compariso
operation required by the MSI method, correlation was used [15-19]. To improve on the
calculation speed, a modified correlation operation was proposed [20-21], reduties
correlation calculation in lag N = 0. This delivers the value of an A-ataepthz, the MSI
signal, according to

MSI()= QN %, =3C5,( % N () df,.. ®)
where C is the correlation operatiobetween the channeled spectruroollected when the
object is placed in the object arm (Slave sjagnd the mask corresponding to the channeled
spectrumCS,, collected at the Mastestage for an OPD =z2when the mirror is used as an
object.

3.2. Limitations in the MSI practice due to using the&% masks

The experimental channeled spe@@.{2) can be written according to

(i) a random phase shif§,n4(2) induced by the fluctuations of the OPD between the step
of acquiring the channeled spectra to be used as masks and the step of measuring the
channeled spectruimassociated to the object,

(if) a coefficient (2) describing the variation with OPD of the strength of @fg,,
collected. This is due for instance to the variation of the amount of lightédjéuio single
mode fibers when altering the OPD in the interferometer,

(iii) a complex-valued channeled spectr@s, not affected by theandom phase shift.
The channeled spectru@S is only affected by the specific modality of decoding the
spectrum into an output electsignal, and the dispersiontine interferometer as follows:

a 2 §o° .
CS( ,2= Expi — 2z+ . 7
cs(.2= A )) Bt “a( )2z+ b )7 ™) N
According to the considerations (i), (ii) and)(above, the experimental channeled spectrum
is described by

CSo 925 (30§, Ko+l ()zds e @

Note that no DC component appears in E{.b@ause a high-pass filter is applied on each
savedCS,p
Combining Egs. (6)-(8), the MSI signal can be written as
MSI(2) :% (8= 3cg, f (1) d+ CE )
where CC stands for Complex Conjugate, or using the complex exponential form of
(Appendix B), as

usi(9)=2 ¢ (98~ ac§ .} () d. (10)



whereR€g} denotes the real part of the complaxttion within the curly brackets. Equation
(10) is valid for an object positioned outside OPD = 0 (Appendix B).

In order to present the relationship between the MSI signal and the refjectofithe
object, a complex functior(z) is defined by

(2)=xs( .9 I()d. (11)

Using the expression of tl@&Sgiven by Eq. (7) and the expression of the complex channeled
spectrum given by Eg. (3),(2) can be expressed as

(2)= 3 ) |Ao( ) Bo 9—@%9( ) x2(2% )id d. (12

As the same amount of unbalanced dispers$ipn) is present in botlCS,, andl, (and
consequently in their complex forr@§.,, andl), the effect of unbalanced dispersion is totally
eliminated in Eq. (12). A change of variables z- , allows us to rewrite Eq. (12) as

= < 2
(z2)= 362zS )|A(g( ))|2 ep S Tg( )2 gﬁd d . (13)
Let us denot®; as
R(t)= 3A(g( )] BpSi2 o )tzg . (14)
Incaseg( )= = , we recognizé®(t) as the axial PSF of the system, similar to Eq.

(5). Here the power of the interference contrast squared because both the mas&s, and
| depend omA. Using Eg. (14) in Eq. (13),(2) can be expressed as a convolution product
between the complex reflectivity profile of the obje@ and the functiof®,(2z/0):

(z)=3(zS )R(2 /19 d =3 P27}, (15)
Let us conside6 as the inverse function gf G(g) Al. Using a change of varialié ) =
the functionP; can be expressed as follows

R()=$A0) ExdSi {6()d, (16a)

whereG’( ) is the derivative o5( ) in respect to. Via a Fourier transform, Eq. (16a) can be
written as

R()=FT* 1A G( )5, (16b)

As a more general description for the MSI operation, the MSI signal for ORBane
expressed as the convolution product betwidendepth-resolved complex reflectivityand
the axial PSHP;, defined in Eq. (16b), by

MSI(z)=¥ e ({3 Hat}. (17)

Eqg. (17) shows that the reflectivity of ehsample measured via the MSI method is
independent of the amount of dispersion left unbalanced, meaning that theesadation is

not affected. This property baalready been demonstrated [19]. Additionally, as the
decoding non-linearity described B/ is the same at all OPD values, the axial resolution is
also independent anbut it is not optimal, as Eq. (16b) involves the square of A than simply

A in Eqg. (5). For instance i has a Gaussian shape, the axial resolutio&ispoorer than

the axial resolution obtained with the FT method without any unbaladispersion and
nonlinearities. An improvement in the practice of MSI would be itoieate the shape &&
from the masks in Eqg. (10) as suggested by the theoretical model in [I8jtlddne in [15-
18,20,21]. Equation (17) also shows that coration of phase in the complex r with the
random phase impedes the recovery of the complex r.

In order to address this problem, we propose to use complex masks, asnie deshe
next section.

»
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4. Complex master-slave interferometry

The main idea of CMSI is to generate,ridg the Master stage, a complex function
incorporating two phenomena: (i) the non-uniform distribution along the axispf the
detector (pixel for spectrometer or time slot for swept source) due twthimearities in the
decoder, functiomy, and (ii) the unbalanced dispemsiof the interferometer, functidm The
masks to be used in CMSI #ie Slave stage are then to dletained from this complex
function, evaluated in as many OPD z\&lues as the user requires, independently from the
OPD values used to measure @f®,,

4.1 Extraction of the functions g and h( ) at the master stage

In CMSI, it is possible to infer the masks from a Mask funchiyy; created by calculating
the functionsg( ) andh( ) from data acquired in the Master stage, when a numbsr
CSpare recorded fdP OPD values. These experimentahicheled spectra are then extended
into their complex exponential for@S.,, according to a procedure described in Appendix C
and in Fig. 11. Their corresponding phas8Y , 2) are obtained by extracting the arguments
of CSp The phase®®( , 2) is expressed according to

2

exp( ’Z):Tg( )22+h( )+ rand(z). (18)
A partial derivative of Eq. (18) in respect toremoves the random phase and leads to
B ,Z):%g-( )2z+h( ), (19)

whereg’( ) andh’( ) are the derivatives @f{ ) andh( ).

A linear regression according topermits to retrieve the slope ¢ ( ;)/c and the y-
intercepth’( ;) for each ; of the channeled spectrum, and buildy4 )/c andh’( ) along
the spectral coordinate Then an indefinite integration is used to infeg( )/candh( ).

Figure 2 describes the step by step procedure of obtaining the set of fugaiaitsfrom an
experimental set €S, and then the Mask functidvy.

€S (7,2) ORI o5, (7,2) BN o () VAN g5

% rebuildin arg(v)/ integration (5 e linear fit
M, (V,2) <—g ”g(V re ¢ g Arg (V)/c

)
h(7) (V)

Fig. 2. Step by step procedure to infer the Mask function from a reduced set of expeymentall
measured channeled spectra.

By retaining the phase of tl@&§,, only, the spectral amplitude of the Mask functiMigi; is
flat. The elimination of the spectral dependerof the masks usday CMSI leads to an
optimum axial resolution related to B[R] as it will be demonstrated in Section 4.3 below.

4.2 Complex MSI signal
The Mask functioM,,;; to be used by the CMSI, is defined at the OP2 a2
a 2 §°
M, . (,2= Ex —_— 2z+h( ) 20
ot (29 () P& C@J() ()©i}4 (20)

whereg’( ) is the derivative ofy( ). CMSI signal is defined similarly to Eq. (6) by the
following integral

CMSI(z) = My ( .2 I( )d . (21)



CMSI involves a similar definition to the MSI except that B&,, used as masks are
replaced by a complex function with the adjustable parame@Sl is valid for an object
set outside OPD = @.e. 2z should be larger than the coherence lehgtbf the light source
(inverse proportional to the bandwidth of the optical source in Sp-@irto the tuning
bandwidth in SS-OCT).

4.3 Relation between CMSI and reflectivity r in depth

By using the complex exponential formlofCMSI can be written as follows (Appendix D)

oMSI(2)= My (1 ) 22)

and the operation of the CMSI can be described by

1 < 2 -
omsi(z) =2 3q ) Alg( ) Be S Z-g( )x2(z8 )Z:g (Jdd ., @3
according to Eqg. (20) and Eq. (3). Changes of variablg( ) and /= z- are carried out in
Eq. (23) leading to
2 o
~ 2 <&/? d . (24) ,,
Equation (24) can be rewritten as a convolutproduct between the complex reflectivity

profile r(z) and the point spread functi®y

CMSI(Z):%r(z) R(22/9, (25)

for 2z2L, whereP, is the axial PSF defined by Eq. (5) and equal to[AT

Again, depth information profile is extracted and expressed as a convolution product
between a complex reflectivity function and tldeal PSF of the system, which leads to a
constant axial resolution in depth irrespective of the non-linearityghef decoder and
irrespective of the amount of the unbalanced dispersion in the moradter.

The drawbacks of the previous implementations of MSI addressed by C#Sl)ahe
depth points of the A-scan are now determined by a sampling paramatiependent of the
OPD values used to acquire tlE,,in the Master stage, (ii) CMSI operation returns a
complex signal, hence phaserof conserved. Moreover, the building of the Mask function
does not depend on the random phase shift as it will be shovettiors5, which eliminates
the need for averaging ewan interval of lag wavenumbers (window in [15-19], practiced in
previous MSI reports). (iii) The axial resolution is related to'[A], as for a perfect
interferometer.

cMsI(2) =% 38235 )A( ) Bxp S

5. Experimental results
5.1 Discrete formulation of the CMSI operation

As with the MSI, CMSI has been described above by continuous varihblgsver practical
implementations involve digital processing. IM§..(n, g) be the complex mask inferred at
the Master stage, where= 1 to N corresponds to the sampling along the pixels in the
spectrometer line camera or along the time sidtisin the sweeping time for a swept source
and whereq = 1 toQ corresponds to the different OPDs required by the user independently
from theP number ofCS,, In these conditions, Eq. (20) becomes

a o}

My (00) =0 (1) B0 ¢ 2 g(r) g oPDr n(n)® (26)

- C ey,
where OPD defined by the user is, in practiceleatst half of the coherence length of the
optical source, and ERX) can be re-written as

»
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emsI(a)= | My, (na) 1(n), 27)

n=1
as an upgrade of the dot prodirttoduced in [19]. In this way, an A-scan can be assembled
from CMSI signals evaluated at Q depths, given by the number of Q masks infemetthdr
numberP of theCSy,acquired at the Master stage.
The operation of the CMSI is demonstrated below on two versions of the set-ups
described in Fig. 1, in Section 5.2 using a broadband source and arspéstrand in Section
5.3 using a swept source and a photodetector.

5.2 A-scan with a spectrometer-based OCT

The experimental set-up is similar to that shown in [16,19]. The broadbarwt $8@ super
Luminescent Diode (SLD) with a @ssian spectrum centered at 18D&m and a bandwidth
of 28t1nm. The detection part includes a hométlapectrometer equipped with an InGaAs
linear camera (Goodrich SUI, iRceton, New-Jersey, model SU-LDH, 1024 pixels, 14-Bit).
Data obtained from the system are direqgbiyocessed by the CMSI procedure with no
resampling.

At the Master stage, experimental channalpéctra are recorded for different values of
the OPD. After the extraction of the experimemtahses (procedure presented in Section 4.1),
the variation of ®®  according to the posith of the mirror, looks like the one presented
at the center of the spectrum (Fig. 3).

The linear regression on thierivative of the experimental phase for each value of
permits to extract the functiomg ) andh( ). The integration constant has been chosen so
thatg( ) andh( ) are equal to zero at the center of the spectrum.

Figures 4(a) and 4(b) shay¢ ) andh( ) calculated from three sets of limited numBer
of CS,p These sets correspondRo= 2, P = 11 andP = 71 of CS,, recorded fronz = 140
um toz = 1540um at the Master stage. The accuracy of determigiagdh depends on the
noise of the experimental phase measurement and the number of ipaithe, numbeP of
CSyp used for the linear regsion. In the case of this experiment, the functigresdh
inferred are quite similar for the three set€&,, as shown in Fig. 4. The instabilities shown
at the edges of the spectrometer do not coumptrdictice, as the optl spectrum is almost
zero there, shown in solid line.
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Fig. 3. Derivative of the experimental phase with respect tfor different positions of the
reference mirror M in Fig. 1 (black dots) adjusting the OPDz=The derivative phase is
evaluated at the center of the spectrum. Continuous line, linear fit of experimental

measurements.
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Fig. 4. The functiong (a) andh (b) versus the pixels of the spectrometer according to the
numberP of CS,, acquired in the Master stage. Blue liRes 2. Green lineP = 11. Red line,
P = 71. Black line, normalized channeled spectrum at the Master stage for OPD = 0.

At the Slave stage, channeled spectra have been recorded forichpasitthe reference
mirror (220pum, 720pum and 132Qum measured from OPD = 0). Figure 5 shows the axial
reflectance profile based on Fourier Transfortack line) and CMSI amrding to the three
sets ofCS,, (blue line forP = 2, green line foP = 11 and red line foP = 71). An axial
sampling of 2um was chosen for CMSI to perform good sampling of the A-scan pieaks,
usingQ = 771 masks in the range [0, 154f]. The Fourier transformation of the channeled
spectrum for 3 positions of the reference miisocalculated to demonstrate the existence of
chirp in the channelled spectra.
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Fig. 5. A-scans for 3 OPD = 2z values< 220pm, 720um and 1320um measured from
OPD=0). Black line, A-scan peaks obtained using FT. Blue line, A-scans obtained usgig CM
with P=2 CS,, in the Master stage. Green lifescans obtained using CMSI wikh= 11. Red
line, A-scans obtained using CMSI wikh= 71. All peaks are normalized with respect to the
first peaks az = 220um. The inset shows a zoom in the peaks around 1820

Although FT peaks broaden with OPD due to the dispersion inducedhdy t
interferometer and the non-linearity of spectral conversion in the spectrorhetpgak width
of CMSI does not change with depth. Mover, the reflectance profiles are identical
irrespective of the number @S, used for inferring the Mask functidv,,.. The graphs in
Fig. 5 show that high resolution A-scans are achievable with aMgglobtained fronP = 2
CS,ponly. Lastly, the inset of Fig. 5 shows details in the peaks aroundpiB2thd the fact
that the profiles foP = 2, 11 and 77 are identical.

Obviously, if a resampling method would be used, then the FT profile would fosvedr
and in principle, if such resampling/linearizatiwould be done to perfection, the ideal shape
of A-scan peaks should be obtained as well. We do not show such graptss likey have
been presented in numerous reports on the conventional FT basedn@Giich corrections
are not the subject of this study.
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Fig. 6. PSF corresponding to the channeled spedtfonthe OPD at position 3 (z = 134n)

in Fig. 5. The PSF is obtained by calculating"fl{ )|] that is equal to Fi[|A(g( ))|]. The
complex form| has been calculated in Appendix C.f{I{ )|] corresponds to the Fourier
transformation of a channeled spectrum with no chirp.

It is important to distinguish two modalities to evaluate thialaesolution: 1) Lpc
equalto the full width at half maximum (FWHM) of the Bfipc(g( ))] profile. For a
Gaussian spectrum shape the axial resolution is matheryataedcribped by Lpc =
(2Ln2)/x 2 = 271 pm, which represents the ideal axial resolution, determined by the
source bandwidth only. 2)Liyer is equal to the FWHM of the FTJI( )] = FTYIAG( ))I]
profile (Fig. 6). In this case, the axial resolution depends on a combination of factors
including the spectrum shape of the sourceanmition effects and injection coupling in
fibers that exhibits spectral behavior due to chromatic aberrations. INatpectral
components under the optical source envelope contribute to interferencegrafoléh Ly
is expected to be larger thahpe. Ly iS defined as thachievableexperimental resolution
of the interferometer. In practice Ly iS Obtained by selecting one of tkS., I1( ),
calculating its complex formi( ) by using Appendix C, and Fourier transforming the
absolute valud( )|.

As shown in Table 1, the resolution of CMSI is equal to the experimesgalution of
the interferometer for the three peakkerr, Which confirms our theoretical approach.

Table 1. Axial resolution accading to the position of the reference mirror M in Fig. 1 (determining the optical
path difference value) and the numerical tool used. L is the width of the peak FT{lpc(g( ))]- Linter is the
width of the peak FT[|L( )|]. All widths are evaluated via a Gaussian fit.

Loc (Um) Livet (M) ~ FT (um)  CMSI (um)

Position 1 2641 27.0:0.7 28.30.3 27.@0.2
240um

Position 2 26+1 27.6:0.7 56.0:0.4 27.60.2
740um

Position 3

1340um 26+1 26.1#0.7 104.50.9 26.20.2

MSI and CMSI are not sensitive to the deidn of the channeled spectrum modulation
from a regular periodicity modulation [19]e. to the chirp coming from the nonlinearity of
the decoder and from the unbalanced dispersion of the interferometerfolidndhere is no
need for any compensation procedure as data resampling employed in taetiooaV FT
based OCT practice.



5.3 A-scan with a swept source-based OCT without k-clock

The experimental set-up is similar to that presented in [15,17,18,20,21§ wisarept source
(Axsun Technologies, Billerica, MA), central wavelength 1060 nm, sweepihggera06 nm
(quoted at 10 dB) and 100 kHz line rate is used. The interferometric signahfimtance
detection receiver (Thorlabs, Newt New Jersey, model PDB460C) is sent to one of the two
inputs of a dual input digitizer (AlazartecQuebec, Canada, model ATS9350, 500 MB/s).
Although the SS used for our experiments was equipped with a k-aboftklyt demonstrate

the benefits of the MSI, we did not take adweayet of this facility. At the Master stage, three
sets ofP-channeled spect@S, have been recordel,= 2,P = 11 andP = 491, fromz = 143

pm toz = 2833um.
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Fig. 7. A-scan forz = 1001um. Black line, A scan obtained with FT. The other three graphs
are A-scan peaks obtained using the CMSI method Qith 776, evaluated from different
numbers oP-CS,,used at the Master stage. Blue liRes 2. Green lineP = 11. Red lineP =

491. Inset, details of the A-scans from 980 to 1030um.

At the Slave stage, a channeled specthes been recorded for a reference mirror
positioned at 100um measured from OPD = 0. Figure 7 shows the reflectance profile in
depth based on Fourier Transform (black line) and on the CMSI method according teehe th
sets ofCS, (blue line forP = 2, green line foP = 11 and red line foP = 491). Here again
the Fourier transformation of the channeledctpum corresponding to the reference mirror
positioned at 100um is calculated to demonstrate theistence of chirp in the channeled
spectrum.

A depth sampling interval of 2m was chosen for CMSI to perform good sampling of the
A-scan peakd,e. usingQ = 776 masks for the range [0, 155@]. The FT peak broadens due
to the non-linearity of seeping, as expected. Thehievableexperimental resolution of the
interferometer Liyer iS equal to the FWHM of the FI( )] = FTYJA(g( ))|] profile,
which is estimated to be 9.0+Quen (Fig. 8) for the three sets BfCS,, Lastly, in the inset
of Fig. 7, the reflectancprofiles are identical foP = 11 andP = 491, i.e. the green line
overlaps the red line. Fd? = 2 (blue line), the A-scan displays a similar resolution but
presents a slight shift of | 2n and more noise on the edge of the peak.
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Fig. 8. PSF corresponding to the channeled spedtriaman OPD = 2, wherez = 1001pm.
The complex form has been calculated in Appendix CI{ )|] corresponds to the Fourier
transformation of a channeled spectrum with no chirp.

5.4 Stability study and signal drop-off in depth: comparison between hiSC&ISI

In order to illustrate the insensitivity of CMSI to the random phase ahdhanneled spectra
acquired at the Master stage, several A-scans have been recordethewehile imaging a
flat mirror. The interferometer used in this experiment is the same &sciion 5.3j.e. a
swept source without k-clock. The sampling in depth is chosen equal gonQ#uch denser
than the sampling obtained with the FT based method, estimatedpeh &3 measuring the
displacement of the peak in Eter domain according to thdisplacement of the reference
mirror. This massive oversampling is implemented in order to determine alefiekd
reflectance profile, to accuratatyeasure the peak width (9.0xQu here).

The MSI signal has been calculated using (B on data collected every 2 seconds and
displayed in Fig. 9(a). To perform the calculation, 0%\, have been recorded at the Master
stage from OPD = 50(m to 540um. These 10@S,,are used as masks. As shown in Fig.
9(a) and by the corresponding reflectance profile for a particular time in Fig. 9(c), the
reflectance profiles are noisy. We interpret thssresult of fluctuations in the phase of the
channeled spectrum collected during measuréif®ave stage) combaéa with much larger
phase fluctuations cumulated during the acquisition oCiig, channeled spectra during the
Master stage.

In Fig. 9(b), the absolute value of CMSI signal has been calculatedtlimsame raw
data previously used for the MSI. To perform the calculation, the Mask furidtjgnhas
been calculated using = 2 CS,, measured at OPD = 5Q@m and 540pm and used to
generaté) = 100 masks distanced at uah. As shown in Fig. 9(b) and by the blue profile in
Fig. 9(c) the CMSI reflectance profiles daot present significant fluctuations. This
demonstrates the superiority of using masks generated theoreticalfjyedefrom the
random phase affecting the phase of expertally collected channeled spectra. More
guantification of this behavior represents the subject of future more rigexpasiments, for
the limited study here we evaluated that the standard deviation of the rahdse shift in
the set-up was 0.27 rad per second. This still affects the rgsuttage in Fig. 9(b).



Fig. 9. (a) A-scans (vertical axis) for a mirror as object, represented in time (hakiaris)
calculated with MSI and® = 100 CS,, utilized as masks. (b) &eans (vertical axis) for a
mirror as object represented in time (kontal axis) calculated with CMSI using = 100
masks obtained froR = 2 CS, (c) Reflectance profiles calculated by MSI (red) and CMSI
(blue) fort = 100 s in each respective image.

Another important parameter to be compared between MSI and CMSI is thiedsagpia
off with optical path difference. To illustrateith B-scans of the anterior chamber of a human
eye have been obtained using CMSI (Fig. 10(a)) and MSI (Fig. 10(b)). Téréeinmeter
used in this experiment is the same as in Section.&.3, swept source without k-clock. The
sampling interval in depth is chosen equal tquh. Both images are normalized to 1
according to the maximum of each of them.

Fig. 10. (a) B-scan of the lens and the irisadfuman eye with CMSI. (b) B-scan of the same
raw data as in (a) but with MSI. Both imeggare normalized according to the maximum of
each of them. To demonstrate the slight improvement in contrast at large depths of the CMS
image, we display their bottom only, showing kives and the iris. The 2 mm-axial range of the
B-scans is considered in air.

The sensitivity for both MSI and CMSI is measured as 101.3 dB close to=@PRith a
power equal to 1.7 mW on the sample, using the procedure detailed in [15]. Tles ianag
quite similar except for the drop-off in depth that is slightly lafgerthe MSI than for the
CMSI. This is because in previous reports [15-21], MSI was impledamsing the product
between the raw channelled spectra and experaherasks, all affectebly a decrease in their
interference contrast with OPD. In CMSI] anasks have the same amplitude, hence an
improvement in the decay of regtivity with depth. This immpvement can only be seen at
large depths, therefore we have truncated tlagy@s to display large OPD values only, where



some improvement can be seen in the CMSigen The expected improvement is anticipated
by the difference between Egs. (16b) and (25).

6. Conclusions

CMSI employs a Mask function to generate any nur@bef masks, where each mask is used
in the second stage, Slave measurement, torothtaireflectivity of the object from a selected
depth, characteristic for each mask. In previous implementations of MSInthedepths
addressed were those for whiCl®,, were initially acquired at the Master stage. CMSI can
create any number of intermediateasks between the depths wh&&,, were initially
acquired from. This represents a major improvement in comparison with thenempéions

in [15-21], as CMSI requires fewer experima& measurements whilallowing for much
denser sampling in depth. This feature is especially important for kighrasolution OCT,
where a large number of masks are et accurately construct an A-scan.

As with the correlation-based MSI method, there is no need for organizing théndat
equally spaced frequency slots. The Mask fimncincorporates both the non-linearity of
reading the channeled spectrum as well asdibeersion of the interferometer in the same
way as the experimentally collected maskshie MSI Therefore, MSI and CMSI can work
directly in the non-uniform distribution space in opposition to the conventional FT based
spectral (Fourier) domain systems. In addition, as demonstrated here, CMSI atartheea
expected theoretical resolution. MSI could diyuachieve such resolution if the spectral
envelope imprinted by the optical source spectrum is eliminated, procedeciheémproved in
the CMSI, as shown in building Mask functions in Fig. 2. In the FT based @@iEviang the
best axial resolution depends on how good the resampling/tingari method is. Several
methods have been developed to address this issue that allowed &Tol@EEanethods to
achieve axial resolutions close to the theoretical axial résonlutowever, these procedures
are performed in the very moment of data acquisition before disgléhe results, involve
extra computation resources and are time woisy. In MSI and CMSI the experimental
masks and respectively the Mask function andvédrmasks are obtained at the Master stage,
i.e. prior to measurement. The Master stage mhoeecan be considered as the equivalent to
the resampling/linearization procedure ire thT-based OCT method. However, MSI and
CMSI are radically different in output fno the FT-based OCT methods. MSI and CMSI
perform a procedure for each depth of interest while the FT-based metliods adull A-
scan in a single step. Although this may look disadvantageous, MSI antallM&a more
direct production oén-faceviews, as there is no need, like in FT-based OCT method, to split
the A-scan into its depth components.

In terms of time required by the CMSI in comparison with the MSI method, the main
gain is at the Master Stage. While MSI would have required a tedi@egitien of
experimental collection of hundreds of channelled spectra subsequently usedkas the
CMSI presented here requires a much reduced number of channelled spectra to be
experimentally collected at the Mtar stage, which can then pcessed theoretically into as
many masks needed.

In terms of calculation at the Slave stage ¢imly difference is tt CMSI requires the
operator for the core operation [21] to be implemented in complex, salthdations at the
Slave stage for the same number of masks require slightly morehialouble the time of
the MSI. This disadvantage may be eliminated by using graphic cards [18}nis o
comparison of the time required by the core operator of the MSI wéthirtie required by
conventional FT based method, with or withowgamapling, this is benchmarked in Fig. 3 in
[21]. Similarly, the improvement in the timing of the core operatiomgugraphic cards
detailed in [18] for the MSI can be extrapolated here for the CMSI method.

Finally, it has been shown that the theoretegiression for the opation of the CMSI is
identical to the Fourier traform of channeled spectra for a perfect interferometer (no



dispersion) and perfect decoder, such aseeith spectrometer linear in wavenumber or a
linearly tunable swept source, however with thfference that the CMSI delivers a complex
signal without random phase shift. This allo@MSI to eliminate the process of window
integration practiced in the MSI, integratiorathhas lead to worsening the axial resolution.
Having access to the phase, CMSI method cafutiber explored to measure the phase of
signal acquired from the object. The recovery of phase has not been airipbogehowever

it is expected that this will trigger future developments in pa#on and flow
measurements.

7. Appendix A: demonstration of Eq. (4)

Let the Fourier transform (FT) and its inverse ‘#Fbe defined by the following
expressions

FTf(tf = s (1) Byi2 t]adt, (28)
FTS f( B=3f( )Exp[Si2 t]d . (29)
The decoder is considered linegf () = = ) and the interferometer perfectly balanced for

dispersion (dA0). According to (28), the inverse Fourier transfornh iof (2), denoted ak is
equal to

(1) = Foc (1) +5L() +50(8) - (30)

wherelpc andl are the inverse FT dfcandl, and where for the last term the usual property
of the Fourier transform was used

FTf()2=1(8). %, (31)
Eqg. (30) can be evaluated fior 2z/c and becomes
[ (2z/c) = IDC(Zz/c)+— i(27 )+— (5279 - (32)
Moreover, forg( )= = , Eq. (3) can be written as follows
1O=3()A()BwiZ 2.0 NE
and its inverse FT evaluated for 2z/c is equal to
it=2z/c)= 34 )A( )Bp éi% 2( 28 )j&/d d, (34)
that can be written as follows i '
i(2z/0)= ﬁ%(zé )é ()d =K22} (2, (35)

for which A(t) = FTHA( )].

8. Appendix B: demonstration of Eq. (10)

Eq. (9) can be written in the Fourier domain using a variablgair conjugate to as
follows

|v|5|(z):% (3 &= 3cétl ()t dt ce (36)
by using the Plancherel-Parceval theorem defined by
fL()f()d =31(t) f(t)ck, &7)

forwhich f, =FT 2 andf, =FT %, 9,

»



Similar to (30), the inverse Fourier transform of the channeled spektsuaqual to

() =Toc () +206)+50(8) - (38)

For an object placed axially in respect to @ET system, in such a way as the OPD =0 is

placed outside of thebject, the producCS x 1 is only equal tol/2CS ><j. Indeed the
position of the pealCS depends on that is defined for z32, only, condition that avoids the

peak CS to overlap the peaIEDC (see Fig. 11).

Fig. 11. Schematic representation of the peatiktained by calculating the inverse FT @op)
andCS(bottom) for a single layer object. The OPD is chosen sd thas not overlapc.

Then we have

cs(t 3 (1) dt:%S c$ty i) at (39)
By using the Plancherel-Parseval tteso, Eq. (39) is written as follows
cs(t¥ (Y d=2acs . f () d. (40)

and the expression of MS)(is equal to

usi(2=2 (3 ¢ &= 3¢k, )z (1) §. (41)

where Re{} means the real part of a complex function.

9. Appendix C: complex exponential fam of a real sinusoidal function

Letf( ) be a real sinusoidal function modulate@ and defined by the following expression
£ )=l )+%|_( o' +%|_( ) eSaz (42)

The complex fornf( ) of f( ) is then equal td_( )eiaZ and can be retrieved using (29) and

the steps shown in Fig. 12.



Fig. 12. Diagram explaining the process of aiag a real sinusoidal function into a complex
form. The parameteg is chosen to eliminate the DC component of the real sinusoidal function.

10. Appendix D: demonstration of Eq. (22)

Eq. (22) can be written in the Fourier domain by using the PlandPars¢val theorem as
follows

cMSI(2= 3M,, (t 23 (9 dt (43)

For an OPD = 0 placed outsidéthe object, only the produd,t2l\7lbui|t* ><£ is different from

0, according to similar reasoning used in Fig. 10 in Appendix B. TherefaeCMSI signal
can be written, after using the Plarodl-Parseval theorem, as follows

omsI(3=2 M (3 () d. (44)
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