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Abstract—The correlation between test coverage and
test effectiveness is important to justify the use of
coverage in practice. Existing results on imperative
programs mostly show that test coverage predicates
effectiveness. However, since functional programs are
usually structurally different from imperative ones, it
is unclear whether the same result may be derived and
coverage can be used as a prediction of effectiveness on
functional programs.

In this paper we report the first empirical study on
the correlation between test coverage and test effective-
ness on functional programs. We consider four types of
coverage: as input coverages, statement/branch cover-
age and expression coverage, and as oracle coverages,
count of assertions and checked coverage. We also con-
sider two types of effectiveness: raw effectiveness and
normalized effectiveness. Our results are twofold. (1) In
general the findings on imperative programs still hold
on functional programs, warranting the use of coverage
in practice. (2) On specific coverage criteria, the results
may be unexpected or different from the imperative
ones, calling for further studies on functional programs.

I. Introduction
Software developers need know how good the test suite

on hand is in order to decide whether to stop testing
because it is adequate, or continue with more. The quality
of test suites is commonly defined by how well they are
able to detect potential faults, known as test effectiveness,
which can be measured in two ways: the basic raw effec-
tiveness is the percentage of all defects that the test suite
is able to detect, while normalized effectiveness [18] only
concerns the defects that exist in the code that is actually
executed by the test suite, resulting in a higher percentage.

Test effectiveness is hard to measure in practice and is
commonly approximated by test coverage. Broadly speak-
ing, test coverage can be divided into two categories:
input coverage (concerning the percentage of code that
is executed by certain test inputs) and oracle coverage
(concerning the percentage of code whose effect on the
output is examined by the test oracles). The former
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includes statement coverage, branch coverage, condition
coverage etc. while the later includes checked/assertion
coverage [28] and a simple count of the number of as-
sertions [32]. Note that in this paper we consider only
the traditional oracles on the output, but not the recently
proposed inner oracles [31] on the internal state.

As an approximation, one natural question to ask is how
closely test coverage is related to test effectiveness. There
has been a lot of studies [6], [9], [10], [12], [13], [17], [18],
[22], [29], [32] on imperative programs that mostly warrant
the use of test coverage to predict test effectiveness. But
giving the nature of test coverage (it targets source code
instead of faults), the results are unavoidably sensitive to
changes in program structure. It is known that even very
simple program transformations, such as variable inlining,
dramatically affect coverage measures [15], [26], and thus
the effectiveness of test suites that achieve them.

The difference in code structure is far greater when
comparing imperative programs to functional ones. For
instance, a program written in the imperative style with
iteration, state update and array is bound to be very
different in structure from an equivalent version written in
the functional style with recursion, immutable state and
list. Then an immediate question is whether the empirical
results based only on imperative programs remain applica-
ble, which as far as we are aware, has not been answered.
There is no study measuring test coverage against test
effectiveness in a functional settings.

This lack of empirical evidence is certainly worrying,
but was allowed to continue largely because traditionally
functional languages, often developed for academically
curiosity, did not cross path with mainstream software
engineering. But the situation is changing rapidly. Com-
panies including WhatsApp [1] and Facebook [25] now use
functional languages in large scale. And ideas originated
from functional programming such as lambda expressions,
higher-order functions, list structure, generics, etc. have
made their way into the design of many modern program-
ming languages including Java, C++, C# and more. It
is well conceivable that mainstream programmers may be
using functional features in their code with or without
realising. Therefore, it is more important than ever to
reexamine the established software development practice



and see whether the same conclusions can be drawn for
functional code.

In this paper we conduct the first empirical evaluation
of test coverage for functional programs, and compare the
results with those from imperative programs. One notable
technical challenge is that, though there exist tools for
measuring coverage for functional languages [3], [11], they
do not use the standard criteria commonly found in main-
stream software development, disabling cross comparison
with imperative programs. To address this problem, we
use a hybrid approach in our experiment. For standard
statement/branch coverage, checked coverage, and the
count of assertions, we map them to the functional setting
closely following the principle of the design rational, rather
than the letter of it, which is impossible due to the large
differences between the language paradigms. On the other
hand, we also consider expression coverage [11], a criterion
that is specific to functional languages.

Based on the set of coverage criteria, we conduct two
sets of experiments (concerning input and oracle coverages
respectively) to measure the relation between test coverage
and test effectiveness with Haskell [2] – the most popular
modern functional language. We choose Haskell because
it is known as a pure functional language, strictly free of
imperative features such as side effects and assignment.
Consequently, our result is “purely functional”, allowing
an interesting comparison with the imperative counter-
parts.

In summary, the contributions of the paper is listed as
follows:

• New coverage criteria for functional programs, mim-
icking those of imperative programs.

• First experiment comparing input coverage with test
effectiveness on functional programs.

• First experiment comparing oracle coverage with test
effectiveness on functional programs.

II. How are functional programs different
Generally speaking, functional programming is a style

of programming: the main program is a function that
is defined in terms of other functions, and the primary
method of computation is the application of functions to
arguments. Unlike imperative programming, where com-
putation is a sequence of transitions from states to states,
functional programming has no implicit state and places
its emphasis entirely on expressions (or terms). This style
of programming is enabled and encouraged by a number
of language features that were considered distinctively
functional, but are increasing adopted by others [16].

A. Recursion and Pattern Matching
Functional programs are usually defined by recursion:

functions call themselves in the definitions; and when
the calls return, the results are used as components for
constructing new return results. For instance, consider the
insertion function of binary search trees. Figure 1 shows

function INSERT (k, T)
root = T
x = CREATE -LEAF(k)
parent = NIL
while (T != NIL) do

parent = T
if (k < KEY(T)) {

T = LEFT(T)}
else {

T = RIGHT(T)}
PARENT (x) = parent
if ( parent = NIL) {

return x}
else if (k < KEY( parent )) {

LEFT( parent ) = x}
else {

RIGHT( parent ) = x}
return root

Fig. 1. INSERT function in imperative style

insert k Empty = Node Empty k Empty
insert l (Node l x r)

| k<x = Node ( insert k l) x r
| k>=x = Node l x ( insert k r)

Fig. 2. INSERT function in functional style

an implementation in the imperative style, and Figure 2
is its functional equivalent in Haskell. In the Haskell code,
the capitalised terms Empty and Node are data construc-
tors, representing empty and non-empty trees respectively.
When used on the left-hand side of a function definition,
data constructors represent patterns that can be matched
by input values; on the right-hand side, they are used
in expressions to build values. Function insert has two
clauses that deal with empty and non-empty trees respec-
tively. When the tree is empty, a new node is created in
its place; when the tree is non-empty, depending on the
values of the inserted element and the current root (the
boolean conditions k<x and k>=x that controls this are
called guards), the element is recursively inserted either
into the left or right subtree.

This programming style results in a very different (usu-
ally more succinct) code structure compared to the imper-
ative style with iterative loops and explicit manipulation
of pointers, which may require a different level of effort
in achieving high code coverage. Indeed, to cover all the
lines of this program, one test case alone is sufficient for the
functional version, as long as the test traverses both left
and right in the process of finding the inserting location,
whereas we need at least three for the imperative version.

B. Higher-Order Functions
An idea of functional programming which turns out

to be influential is higher-order functions—functions that
take other functions as arguments and may produce func-
tions as return results. Roughly speaking, a higher-order



function captures a reusable recursion pattern over a data
structure, and the functional arguments to it initialise the
pattern into a concrete function.

For example, “fold” is a pattern that captures struc-
turally inductive computation, where a function is apply
to each structure layer and returns the accumulated result.
Readers familiar with object orientation may think this
as a variant of the VISITOR pattern. For example, we
can define a function (insertList) that inserts a list of
elements into a tree

insertList ks tree = foldr insert tree ks

which iterates through the key list and performs the
insertions one by one, and returns the final tree with the
inserted keys.

Traditionally considered a distinctive functional fea-
ture, higher-order functions are everywhere now. Google’s
MapReduce is directly inspired by similar concepts in
functional programming, and languages such as Java,
C++ and C# jump one after another on the lambada-
expressions bandwagon to streamline this kind of higher-
order programming.

In the context of testing, the use of higher-order func-
tions further distant functional code from its imperative
counterpart. Due to the reuse, functions like insertList
have extremely short definitions, which puts the effective-
ness of statement coverage in doubts, as it becomes trivial
to cover the program, including all the library functions it
calls!

C. Immutable Data and Lazy Evaluation

Another important characteristic of functional program-
ming that has impact on testing is the absence of de-
structive updates, known as referential transparency or
purity. In the functional code in Figure 2, the symbol
‘=’ means true equality: insert k Empty is equal to Node
Empty k Empty in any execution context, and can be used
interchangeably. This is very different from the case in
the imperative sense, where ‘=’ refers to a destructive
update, assigning a new value to the left-hand-side vari-
able. Consequently, there is no concept of system state
in pure functional programming; a function’s behaviour is
completely determined by its definition and the arguments
passed to it.

In testing, this means there is less issue with observabil-
ity, as the returned value is the only effect of execution.
The case of oracle coverage becomes interesting when we
consider Haskell’s call-by-need evaluation strategy (also
known as laziness), which delays the evaluation of an
expression until its value is needed. For example, if we only
need the head of a list, then the expressions that computes
the rest of the list structure will not be evaluated. With
this feature, we can straightforwardly create program
slices that are evaluated by selectively ‘using’ parts of the
returned value to simulate checked coverage.

III. Coverage Criteria for Functional
Programs

With the very different language constructs, functional
languages do not naturally share the same kind of cover-
age criteria developed in the imperative world. Typically,
functional programs are based on expressions instead of
statements, and pattern matching (together with boolean
guards) are more common than if-branching. As a result,
one shall either try to map traditional criteria to functional
constructs (which may or may not be possible), or devise
new ones for the functional setting. For the study in this
paper, we consider both cases. Specifically, we map the
usual statement/branch coverage and checked coverage to
Haskell, and use a notion of expression coverage that is
native to Haskell.
Statement/Branch Coverage. Since there is no con-
struct in Haskell that is equivalent to imperative state-
ment, we take an approximation to consider units of
computation that typically occupies a line of code. This
means each clause of a function defined with pattern
matching, which is also known as an alternative. For
example, in Figure 2 there are three “statements” in
the definition of insert concerning the empty-tree cases
and the two alternatives of the non-empty-tree case. If
there are local definitions (i.e., functions defined in let
expression or in where expression), we count their clauses
as separate statements too. A case that is difference from
the imperative setting is if-conditionals: in Haskell both
branches have to be non-empty (to explicitly pass on
control) and branch coverage (each branch condition must
have been true at least once and false at least once) now
coincide with statement coverage. A very similar argument
applies to guards: a clause’s pattern must fail to match
for the next clause to be tried (just like nested ifs), and
if all clauses fail to match the program simply crashes.
For this reason, in our experiment we consider statement
and branch coverage as one, and write statement/branch
coverage.
Expression Coverage. Expression coverage [11] is a
coverage criteria used in testing functional programs. A
Haskell program can be viewed as a set of expressions,
where each expression is composed from smaller expres-
sions, i.e., an abstract syntax tree of expressions. We use N
to denote the total number of expressions, including both
the primitive expressions and expressions composed from
other expressions, and use E to denote the total number
of expressions where at least one of its sub expression
(including itself) is evaluated. Then expression coverage is
defined as E/N . Expression coverage is more refined than
statement coverage because of lazy evaluation: a statement
may be evaluated but not necessarily all of its expression
components.
Count of Assertions. Count of assertions is a simple
measurement of oracle coverage used in existing empiri-
cal studies [32]. Assuming that more assertions indicates



better oracles, we can use assertion counts to predicate
effectiveness. However, functional programs do not tend
include a variety of assertions; instead oracles are typically
expressed as equations involving the final returned value
of a function—this is adequate as the returned value is
the only effect of execution. In our experiment, we divide
such all-inclusive equations into ones concerning individual
components of the returned value, to populate the number
of (virtual) assertions and therefore enable counting. For
example, data constructed by constructor X a b has two
components, corresponding to a and b, respectively. Sim-
ilarly a list of size n contains n + 1 components. Each of
the first n component corresponds to an item in the list,
and the last component is the size of the list.
Checked/Assertion Coverage. Checked coverage [28],
sometimes referred as assertion coverage [32], is a way
to measure how much the test oracles cover the original
program. Checked coverage is measured by performing a
backward slicing on the programs, and measure how many
statements are included in the backward slice. To map
checked coverage to functional program, we use the same
definition of “statement” as in statement/branch coverage
to count the number of statements in the backward slices.

IV. Methodology
We will answer three research questions in this paper:
RQ1. Is input coverage correlated with effectiveness in

functional programs?
RQ2. Is oracle coverage correlated with effectiveness in

functional programs?
RQ3. How are the correlations compared with those

obtained from imperative programs?
Since many publicly-available Haskell programs do not

come with test cases, we resolve to automatic generation of
test inputs and assertions for the selected programs. We
also mutate the programs to get variants with injected
faults. Finally, we execute the programs (and variants)
to measure coverages and effectiveness. In the rest of the
section we explain the details of this process.

Our experiments were carried on a Linux virtual ma-
chine with 8 GiB memory. The host machine has an
eight-core Xeon E5-1410 CPU. Our experimental pro-
grams and data are available online at https://github.
com/onetwogoo/coverfun.

A. Subject Programs
We selected the standard NoFib [24] benchmark suite as

our subject programs. NoFib is a widely-used benchmark
suite in evaluating Haskell compilers [19]. The programs
in NoFib are divided into three subsets, Real, Imaginary,
and Spectral. The Real subset consists of real-world pro-
grams written in Haskell. Typical programs in the Real
subset include a Prolog interpreter, a theorem-prover, an
arbitrary-precision calculator, a Fluid-dynamics program,
etc.

We rule out programs that use non-standard Haskell fea-
tures (such as the C preprocessor) and select 24 programs
from Real, totalling 25k lines of code (excluding comments
and empty lines). The names of the programs and the lines
of code are shown in the first two columns in Table I. Note
that, as shown by a study [23] Haskell programs usually
have much fewer lines of code than their counterparts in
C or Java.

B. Generating Test Input
Since the NoFib programs come without test cases, we

use Irulan [4] as a tool to generate test inputs. Compared
to other generation methods [7], [27], Irulan can auto-
matically generate test inputs without requiring generator
functions for user-defined datatypes. In addition, Irulan
has a proven ability of generating tests achieving high
coverage, a feature that is very useful in our study.

For each program in our experiment, we run Irulan to
generate test inputs for it. To control the running time of
our experiment, we randomly select for each program 1000
test inputs. We omit functions that produce as return val-
ues functions or structures containing functions, because
functions by nature cannot be compared for equality (a
feature needed to construct oracles). Nevertheless, this
does not exclude us from testing higher-order program-
ming since such high-order functions are used in other
functions in final executions and are tested indirectly.
Similarly, we do not generate function values as test
inputs either, and rely on indirect testing for higher-order
functions that require such arguments.

The numbers of test inputs are shown in “#Cases”
column Table I. In a few exceptional cases, when the pro-
gram is dominated by higher-order functions that return
function values, we may end up with less than 1000 cases.
Column “#Tested Func.” shows the number of functions
we tested and column “#Func.” shows the total number of
functions. Finally, “Stmt/Brch. Cov.” column and “Expr.
Cov.” column show the statement/branch coverage and
expression coverage of the test input on the programs,
respectively.

C. Generating Test Oracles
Since we use the original program as a correct version

and inject faults into the program, we can directly use
the output of the original program as test oracle. To
effectively measure output coverage, we additionally divide
the output into components and generate assertions for
each as described in Section III.

D. Generating Faults
To measure the effectiveness of a test suite, the usual

way is to use a set of faulty programs and check how many
faults can be revealed by the test suites. Since we do not
have a set of faulty versions of NoFib programs, we inject
faults by mutating the programs. An existing study [20]
showed that faults injected by mutation operators can well
simulate real faults.

https://github.com/onetwogoo/coverfun
https://github.com/onetwogoo/coverfun


TABLE I
Basic Statistics on Subject Programs

Program #Lines #Cases #Mutants #Faults #Func. #Tested Func. Stmt/Brch. Cov. Expr. Cov. #Assertions

anna 5289 1000 948 296 534 379 69% 43% 2702
bspt 1284 1000 893 400 224 136 48% 59% 4334
cacheprof 1409 461 383 194 141 23 4% 10% 1343
fem 754 1000 942 116 114 19 19% 14% 3578
fluid 1470 1000 947 184 135 31 33% 23% 2933
fulsom 907 1000 928 470 267 146 64% 71% 3708
gamteb 468 1000 985 782 60 28 84% 82% 2962
gg 824 1000 845 292 140 100 46% 46% 2226
grep 263 1000 240 27 46 21 79% 67% 2241
hidden 442 1000 515 188 48 25 48% 45% 2632
hpg 961 1000 903 95 157 66 31% 14% 2056
infer 746 1000 298 130 157 53 66% 55% 2105
lift 495 1000 584 310 74 47 75% 69% 2952
linear 1023 1000 757 245 257 51 33% 33% 2387
maillist 81 649 125 15 10 4 26% 11% 1557
mkhprog 198 1000 192 42 31 11 23% 25% 2032
parser 751 432 158 24 81 53 31% 27% 1950
pic 305 1000 604 485 26 7 87% 86% 3982
prolog 427 1000 546 61 63 19 28% 26% 1993
reptile 1041 1000 880 453 242 152 57% 54% 2393
rsa 64 1000 152 113 13 3 84% 82% 2018
scs 613 1000 789 41 65 15 16% 12% 1830
symalg 863 1000 928 303 73 33 48% 47% 2276
veritas 4193 1000 921 228 673 198 42% 34% 2172
Total 24871 22542 15463 5494 3631 1620 47% 43% 60542

We use the open source tool MuCheck [21] to generate
mutants. MuCheck is similar to many mutation testing
tools that apply a set of predefined mutation operators
to the source code. We configure MuCheck parameters to
generate mutants in an efficient and fair manner: (1) We
assign lower weights to operators that mainly generate
equivalent mutants in the functional setting. Specifically,
we set doMutatePatternMatches and doMutateValues pa-
rameters in MuCheck to a low value (0.5), after observing
large amount of equivalent mutants generated by them.
(2) We control the order of application so that the results
are not dominated by the a few operators that tends to
generate a lot of mutants. More specially, we first apply the
operators that tend to generate fewer mutants and then
apply the operators that tends to generate more mutants.

We generated 200 mutants for each module. However,
since each program consists of several modules, the num-
ber of mutants may be too large in some cases; and thus
we further control the number by randomly selecting 1000.
We also remove mutants that change the interface of the
program and fail to compile. The final number of mutants
is shown in the “#Mutants” column in Table I.

We consider a mutant equivalent (not a fault) if it is not
killed by any of our generated tests. The number of faulty
versions obtained through the above process is shown in
the “#Faults” column in Table I.

E. Executing Tests
Haskell is evaluated lazily. So no execution happens

unless the return value of a function is demanded. To
create this demand, we print the returned values and

force the evaluation. An issue with this approach is in-
finite data structure: it is idiomatic Haskell to write data
producing functions that potentially go on forever and
generate infinite steams of data, with the expectation that
consumption of the data will be finite and thus the whole
program terminates. Since there is no way of telling an
infinite structure from finite ones (the equivalent of the
Halting problem), we take an programatic approach by
truncating all outputs to 1024 characters. The assertions
we generate are also based on the truncated outputs.

We consider a mutant killed by a test case if it crashes
or times out during execution, or it fails the test oracle.

F. Measuring Input Coverage

As mentioned before, we consider two types of coverage,
namely statement/branch coverage and expression cover-
age. To measure coverage, we use the Haskell coverage
tool HPC [11], which instruments Haskell programs, runs
the instrumented programs, and then records coverage
measures. HPC supports three coverage criteria specifi-
cally designed for Haskell, which are (1) clause coverage:
the coverage of clauses in functions defined with pattern
matching, (2) boolean coverage: branch coverage involving
boolean expressions used in guards and if conditions, and
(3) expression coverage: the same expression coverage that
we use in our experiments. As a result, we can compute
statement/branch coverage by combining the clause and
boolean coverages, and directly obtain the result of ex-
pression coverage.



G. Measuring Oracle Coverage
Following from Section III, we approximate the count of

assertions by the number of output components that are
checked. Since each assertion we generate checks exactly
one component, we can simply count the number of output
components that are involved in an oracle. The count of
assertions of each program is shown in “#Cases” column
of Table I.

Checked coverage is normally measured through back-
wards slicing, working out the percentage of the program
that is involved in producing the output component. As
discussed in Section II-C, Haskell’s lazy evaluation comes
very handy here. We do not need a separate slicing tool
other than HPC because by fixing the output component
demanded by an assertion, only relevant expressions will
be evaluated and recorded as standard expression cover-
age. We do not include the maximum checked coverage
(achieved when full oracles are used) in Table I because it
is the same as the maximum statement/branch coverage
already shown.

H. Measuring Effectiveness
We measure two types of test suite effectiveness. Raw

effectiveness is the percentage of faults that a test suite
finds. Normailized effectiveness is the percentage of covered
faults that a test suite finds. Here we say a fault is covered
by a test suite if that test suite executes the function
where the fault lies. Normalized effectiveness is proposed
by Inozemtseva and Holmes [18] to measure the ability of
test suites to trigger and detect a fault, rather than to
cover the faulty statements. Their study [18] has found
out that input coverage criteria do not have a strong
correlation with normalized effectiveness.

I. Data Analysis
To conduct the experimental efficiently, we first run all

test inputs on all programs and examine all test oracles.
In this process, we record the coverage information of each
test input and each generated assertion, and whether each
pair of test input and assertion captures a fault. Then
based on the data, we simulate the results of running
different tests with different levels of coverage. Our simula-
tion aims to repeat the experimental procedures in existing
empirical studies on imperative programs [18], [32], so that
the result can be compared with the existing results.

To answer the first research question, we randomly
group individual test cases into suites of fixed sized of 3,
10, 30, 100, and 300. For each size, 100 suites are generated
and their coverages and the two effectiveness values are
computed.

To answer the second research question, we randomly
select assertions for each test input to form test oracles
of different strength. For the counts of assertions, we ran-
domly select n% assertions from the original set for each
test. For checked coverage, we randomly select assertions
until n% of the maximum checked coverage for the test

input is reached. We use five different n values: 20, 40,
60, 80, and 100. In this research question we only consider
raw effectiveness as only raw effectiveness is considered in
existing work on imperative programs.

To answer the third research question, we compare our
result with the results from two most recent empirical
studies [18], [32] on imperative programs.

V. Results and Analysis
We say a correlation to be strong if the correlation

coefficient is more than 0.8, moderate if the coefficient lies
between 0.5 and 0.8, weak if the coefficient lies between
0.3 and 0.5, or very weak otherwise.

A. Is input coverage correlated with effectiveness in func-
tional programs?

The result of the analysis is shown in Figure 3 and 4. We
present the graph in the same visual form as the study by
Inozemtseva and Holmes [18] to enable cross comparison.
Each row shows the results of a program and each column
shows the results of a test suite size, while the last column
is for all sizes. Each small graph has coverage as its x axis
and effectiveness as its y axis. Different coverage oracles
are represented as different colors, where red represents
statement/branch coverage and blue represents expression
coverage.

To quantitatively understand the correlation, we also
compute the Kendall τ correlation coefficients between two
types of coverage and two types of effectiveness, as shown
in Table II and III. Due to space limit, we include only the
coefficients for the combined results, and those for each
fixed test suite size are available online.

First let us consider normalized effectiveness. As we
can see from Figure 3, when the coverage increases, no
consistent change of effectiveness can be observed. As a
matter of fact, one coverage value usually corresponds to
a wide range of effectiveness value. Also, the coefficients
in Table II are generally smaller the 0.8. The results from
both statement/branch coverage and expression coverage
are similar. These observations indicate the following find-
ing.
Finding 1: Input coverage has no strong correlation with
normalized test effectiveness.

This result is expected: normalized effectiveness con-
cerns the ability to trigger and capture a fault, and these
abilities are largely decided by test oracles but not test
input.

Second let us consider raw effectiveness. As we can
see from Figure 4, the dots mostly form a tilted line
pointing from the lower left corner to the upper right
corner. Also, the coefficients in Table III are generally
larger than 0.8, with an average value 0.87 and a minimum
0.74. From both the figure and the table, there is no
significant difference between statement/branch coverage
and the expression coverage. These observations indicate
the following finding.
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Fig. 4. Coverage and Raw Effectiveness



TABLE II
The Kendall τ coefficients between different types of

coverage and normalized effectiveness

Program Statement/Branch Expression

anna 0.51 0.52
bspt 0.08 0.10
cacheprof 0.54 0.59
fem 0.26 0.28
fluid 0.68 0.67
fulsom 0.57 0.57
gamteb 0.77 0.79
gg 0.42 0.42
grep 0.60 0.61
hidden 0.59 0.60
hpg -0.26 -0.27
infer 0.48 0.51
lift 0.65 0.63
linear 0.46 0.46
maillist 0.00 0.00
mkhprog 0.14 0.15
parser 0.66 0.67
pic -0.29 -0.28
prolog 0.78 0.77
reptile 0.47 0.48
rsa 0.90 0.91
scs 0.79 0.76
symalg 0.63 0.63
veritas 0.41 0.41

Finding 2: Input coverage has a strong correlation with
raw test effectiveness.

Third, by comparing statement/branch coverages and
expression coverage in Table I, Table II, Table III, we have
the following finding. This finding shows that though ex-
pression coverage is more fine-grained, it does not provide
significant boost over statement/branch coverage.
Finding 3: Statement/branch coverage and expression
coverage have no significant difference in their correlation
with test effectiveness.

B. Is oracle coverage correlated with effectiveness in func-
tional programs?

The results are shown in Figure 5 and Figure 6. Again,
we present the result in the same way as existing work [32]
to enable cross comparison. The x axis is the count of
assertions or checked coverage and the y axis is raw
effectiveness. The raw effectiveness is plotted as an error
bar for each coverage level.

We make the following observations from the figures.
First, as we can see from the figures, both count of asser-
tions and checked coverage is correlated to test effective-
ness. When the count of assertions or the checked coverage
increases, the test effectiveness increases. However, the
correlations between the two coverage criteria are different.
Checked coverage usually has large Kendall coefficients,
with most larger than 0.8, while counts of assertions have
only small Kendall coefficients, between 0.21 and 0.33. As
a result, we have the following findings.
Finding 4: Count of assertions has very weak correlation
with test effectiveness.

TABLE III
The Kendall τ coefficients between different types of

coverage and raw effectiveness

Program Statement/Branch Expression

anna 0.87 0.88
bspt 0.86 0.88
cacheprof 0.89 0.92
fem 0.88 0.89
fluid 0.88 0.89
fulsom 0.89 0.89
gamteb 0.85 0.88
gg 0.91 0.92
grep 0.81 0.80
hidden 0.84 0.84
hpg 0.88 0.85
infer 0.86 0.86
lift 0.78 0.80
linear 0.89 0.90
maillist 0.97 0.95
mkhprog 0.88 0.91
parser 0.73 0.74
pic 0.89 0.89
prolog 0.92 0.90
reptile 0.90 0.91
rsa 0.93 0.94
scs 0.75 0.78
symalg 0.92 0.92
veritas 0.87 0.87

Finding 5: Checked coverage has strong correlation with
test effectiveness.

The findings indicate that for functional programs, we
cannot just check the coverage of oracles on the output,
but have to understand more deeply on what part of the
program produces the output.

C. How are the correlations compared with those obtained
from imperative programs?

Among our five findings, Findings 1, 2, 4, and 5 can
be compared with existing studies [18], [32] on imperative
programs. Among them, Findings 1, 2, and 5 are consistent
with those on imperative programs, where those studies
find or deny a strong correlation with similar Kendall
coefficient values. The only exception is Finding 4, where
Zhang and Mesbah found that the count of assertions is
strongly correlated with test effectiveness on imperative
programs. We suspect the reason is the difference between
imperative programs and functional programs. Imperative
programs usually have a large final state to assert, where
a new assertion usually checks a new distinct part of the
state. On the other hand, functional programs usually
have smaller output. Though the output may contain
data structure such as lists or trees, different parts of the
returned data are likely to be produced by the same part
of the program, and thus checked coverage plays a more
important role in functional programs because it deeply
investigate the coverage on the program but not only the
output.
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VI. Threats to Validity
The automatically generated test inputs achieve low

coverage in some subject programs. The correlation may
be different from the correlation of high coverage test
inputs for those programs.

We use automatically generated test inputs and asser-
tions. According to existing research [13], [32], the corre-
lation between generated inputs and effectiveness tends to
be weaker than that of manually written tests. Therefore,
the correlation may be stronger when we consider manual
test input and oracles.

We use mutants as a simulation of real faults. Al-
though there are many studies supporting it in imperative
languages [5], [6], [8], [20], whether or not it is a good
simulation leaves uncertain in functional languages. More
research is needed to clarify this issue.

VII. Related Work
A lot of existing studies have contributed to the correla-

tion between effectiveness, test suite size, input coverage,
and oracle coverage.

Frankl et al. [10] compared the effectiveness of the all-
uses and all-edges test data adequacy criteria. Hutchins et
al. [17] investigated the effectiveness of all-edges and all-
DUs coverage adequacy criteria for fault detection. Frankl
[9] did an empirical evaluation of the fault-detecting ability
of decision coverage and the all-uses data flow testing
criterion. Andrews et al. [6] compared block, decision, c-
use and p-use coverage criteria with mutation analysis.
Namin et al. [22] studied the relation between test suite
size, structural coverage, and fault-finding effectiveness.
Shin et al. [29] evaluated the fault detection effectiveness of
Function Block Diagram (FBD) model-based test coverage
criteria. Gligoric et al. [12] presented an extensive study
that evaluates coverage criteria over non-adequate suites.
Gopinath et al. [13] used suites from a large set of real-
world open-source projects to determine which coverage
criteria best predict mutation kills.

Inozemtseva et al. [18] studied the correlation between
coverage and effectiveness. First, they picked five large
Java programs from application domains as their subjects.
Second, they used PIT to generate faulty versions of the
program. Then, they chose 7 test suite sizes with each
size containing 1000 randomly selected test suites. They
measured statement, decision and modified condition cov-
erage of all test suites. To measure the effectiveness of
these test suites, they computed their normalized mutation
score which means the number of mutants a test suite kills
divided by the number of mutants it covered. Finally, they
analyzed their data and found there is a moderate to high
correlation between coverage and effectiveness but only a
low to moderate correlation when the number of test cases
in the suite is controlled for.

Zhang et al. [32] investigated the correlation between
assertions and test suite effectiveness with five Java pro-
grams of different sizes. First, they studied the influence of

the number of assertions by generating test suites in three
ways: randomly, controlling test suite sizes, and controlling
number of assertions. In all three cases, they found there is
a strong correlation between the effectiveness of test suite
and the number of assertions it contains. Second, they
defined assertion coverage as the fraction of statements
in the source code executed via the backward slice of the
assertion statements in a test suite. They compared the
correlation between assertion coverage, statement coverage
and effectiveness of randomly generated test suites and
of test suites controlling assertion coverage. They found
effectiveness is strongly correlated to assertion coverage
and is more sensitive to assertion coverage than statement
coverage. Finally, they analyzed the influence of the type
of assertions by comparing test suites of different assertion
categories. They found different types of assertions can
influence the effectiveness of their containing test suites.

To the best of our knowledge, there is no research at the
time of writing about the correlation between coverage and
effectiveness in functional programs.

Besides the input coverage and oracles coverage criteria
considered in this paper, researchers have also proposed
other types of coverages and oracles. For example, Dan et
al. [14] proposed to generate tests to cover “suspicious”
statements. Xiong et al. [31] proposed to use inner oracles
that assert the internal states of programs rather than just
the output. Tao et al. [30] proposed a coverage criteria
that assigns lower weights to loop guards than to other
branches. It remains as future work to study the relation
between these criteria and test effectiveness.

VIII. Conclusion

In this paper, we studied the correlation between test
coverage and test effectiveness in functional programs.
Our results indicate that most findings on imperative
programs are still valid on functional programs, asserting
the continuous use of coverage in practice. Our results also
show that count of assertions, which is shown to be a good
indicator of effectiveness on imperative programs, has very
weak correlation to effectiveness on functional programs.
Also, statement/branch coverage and expression coverage
do not have significant difference on functional programs.
These results indicate that though the use of coverage
on functional program is promising, we still need more
fine-grained study to understand how different coverage
criteria work on functional programs.
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