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Abstract
Pierre Lorrentz, PhD 2009

Weightless neural systems have often struggles in terrspesfd, performances, and
memory issues. There is also lack of sufficient interfacing of weightkessal systems to
others systems. Addressing these issues madigeie forms the aims and objectives of
this thesis. In addressing these issues, algorithms are formulatesifiestgsand mult
classifiers are designed, and hardware design of classifier are also refpseifically,
the purpose of this thesis is to report on the algorithms and designs of weightless neural
systems.

A background materiafor the research is a weightless neural network known as
Probabilistic Convergent Network (PCN). By introducing two new and different
interfacing method, the word "Enhanced" is added to PCN thereby givihg iname
Enhanced Probabilistic Convergent Netiw (EPCN). To solve the problem of speed and
performances when larggass databases are employed in data analysis,-ctagdsifiers
are designed whose composition vary depending on problem complexity. It also leads to
the introduction of a novel gating function with application of EPCN asatligent
combiner. For databases which are not very large, single classifiers subjpeesi and
ease of application in adverse condition were considered as improvement asielk o
the design of EPCN in hardware. A nowashingfunctionis implemented and tested on
hardware-based EPCN.

Results obtained have indicated the utility of employing weightless neyst@ms. The
results obtained also indicate significant new possible areas ofamyl of weghtless
neural systems.
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1. THESIS INTRODUCTION

1.0 Introduction

A neural network attempts to solve a particular problem with which it igifigeihas an
expert. The methods with which neural networks provide solution vary. Any of the method
usually relies on mathematical calculatiohbe definiton of neural netvork assunedin
this thesisis dueto Haykins[49], andit gates:-

A neural netvork is a massiwely parallel distributed process made up of simple
procesmg unit, whch has natural propensityof storing expeential knowledgeand
making it aailable or u. It resembleghe brainin two respects:

1) Knowledgeis acquired by the network fom its environment though a leaning
process

2) Inter-neuron connection snghs, knowras synaptic weights, are aedto store the
acquiredknowedge

It is noteworthy that theéerm “neural network” and “classifier” may refer to the same
network loosely in thishesissometimesMost pattern recognition problems can however
be solved by performing operations, such astorsne or ondo-many mappings on input
patterns to output. When an input pattern is binary, the problem is retueedimple
logic problem. Under this conéhih, Random Access Memory (RAM) based weightless
Neural Networks (classifier) are well suited. Pattern recognition emublbecome
attractive given that it is a simple case of transforming problems togitalequivalent
and supplying it to a RAMbased\etwork for solution. An early variation of RAlldased
classifier known as-tuple recognition system was introduced in the 1950s by Bledsoe and
Browning [10].

Most customary weighted neural networks, during training, passes through many
epochs. Epchs refers simply as the number of times the input data will be accessed by the
network, before the error rate decreases appreciably. The epochs of training are often quite
large, ranging from the order of tens to order of thousands somebunesg theepochs,
it is expected that the input data does not change value or structure,d.¢ypically
required that input dataset be static during learning. This period tastlfor minutes and
hours. This is disadvantageous for dynamic andtime& systems and systems from which
fast and intelligent response is required. In such situation as theseabhnatwork from

which one epoch of learning is required is more beneficial. One epoch of learning is also
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referredto as ondime pass over the input database; which is edégrredto as oneshot
learning for weightless nets. One epoch of learning implies time redagioompared to
many epochs of learning. It also implies a reduction in time requiredgdat pattern to be
stationary. Stationary in the sense that input pattern must not change bsamgaing
intervals. Although it is possible for RAlMased classifier to make several passes over an
input space, thisnay not berequired for an increased performance. Quite oftenpase

over the inputdatamay besufficient. Austin [7], Howells [57], and some other authors
have experimentally confirmed this on RAbAsed classifiersRAM-based classifiers
identify itself with binary number. So that both input and output data are inherently binary.
Becawse of this and the reasons in subsequent paragraphs, the decision to work in areas of
weightless neural system mayliEneficial and significant.

Examples of RAMbased classifier that has combined advantages cpase over
input dataset, sometimes called osbot learning, and the ability to process probabilistic
reasoning have not been successfully produced. Recall that probabilitaily expressed
as a number lying between 0 and 1. Secondly, associated with it is the freqfiency o
occurrenceof events. These characteristics are specific to Fbagked classifiers reported
in this thesis. For this reason, the study of weightless classiérastive.

All neural systemgpresentedn this thesis require mainly reading from and writing to
RAM-memory locations for their functionality. For this reason, they amenoanly called
RAM-based classifiers, since almost all mathematical functions are convertedirt
Boolean equivalent. For example, Boolean addition does not demand a high memory
requrement as does floatiqgpint calculations. Thus the amount of mathematical
calculation performed is relative to the amount of data supplied toabsifedr. Based on
this fact, the decision to implement weightless neural network is mediv&econdly,
floating-point and continuous mathematics require a relatively long time to cemplee
long completion time of processes also implies long training and riéioogiime of neural
network. Thus the elimination of time required faditional mathematidaalculation, by
replacingmany forms ofmathematical calculation wittheir equivalentBoolean logic,
will be beneficial, and it is a significant venture. It also constitutesabrthe mairreasons
for deciding to consider mainlyeightless neural netwks in this thesis.

In order to increase the speed of weightless neural networks, methods such as
pipelining and parallelism are introduced. Parallel execution of processes diféenesnt
and many events occur concurrently. Pipelining is a gropamllel processes with a shift

in time. But pipelining and parallelism has no software equivalent,apply almost only
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to hardware design. Employment of pipeline and parallelism in hardwaren dissig
required when confronted with an implementatiora @omplex system such as addressed
in this thesis. To enable the employment of weightless classifier ondiagge database,
the implementation of a pipelined system is significant. Now and irrefutueural
networks will have an increasing number ofgkeclass databases to classify. For this
reason, it is decided to implement RAMsed neural network in hardware.

The Probabilistic Logic Neuron (PLN) [71] and Generalised Convergent Network
(GCN) [57] are notable examples of weightless neural networks. Probabilistic Convergent
Network (PCN) is introduced due to its ability to process probabilistic reasoning.
Probabilistic reasoning finds itself in PCN and is beneficial in naspects. One of the

most important benefits is the confidence measure obtainable at the afUREN.

1.1 Aims and Objectives

When PCN was first developed, connectivity are formed as specified inTbig|.
method fails to consider other attributes and features of patterns vedl suconnectivity
formation. Secondly, it does not consider alternate method of forming connectivity [65],
[76]. These motivate the intention to introduce other methods of cante&brmation
algorithms to PCN. Introduction of new connectivity methods to H&ilitates its
application to many other problem domains such that the word “enhanced” is added to the
PCN, and the new neural network is called Enhanced Probabilistic ConvergemtriNet
(EPCN). When other connectivity formation methods are introduced, different types of
PCN may result as different types of connectivity methods are utilisddthas able to
solve different types of problems.

Multi-classifier (MCS) design is motivated by the need to improve performance on
“difficult” patterns such as found in some handwritten characters. WesghiICS have
an added advantage of reducing problems to simple logic problem. A pattemmed
“difficult” if it could not be classified, or if itmay beclassified wrongly by a neural
network. A Multiclassifier System consists of a number of single classifier arranged in
such a way as to decrease classification errors beyond that which is pfissibkngle
neural network. The need to designM@S consisting wholly of weigless classifier is
motivated by computation overhead, speed, and memory requirement. Theseclare mu

reduced in a random access memory based MCS as compared to a custdmeary (o
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alternative) MCS. Weightless muttiassifier design is motivated by very low

computation overhead, high speed, and low memory processing requirement.
Currently,mosttraditional MCS often struggles with largealed multiclass databases

such as found in biometric domain. For this reasendtateof-the-art MCS may utilise

very many base classifiers when classifying very lagged multiclass databases. There

are other problems associated with traditional MCS such as bias, aratisatefects.

Bias and saturation effecisay affect weightless MCS also. Providing solution to these

problemsconstitute the motives for specific weightless MCS desigthis thesis Quch

that, itmay bedemonstrated that a weightless MCS consisting of few base classifiers is

capable of classifying biometric database without performance -offalen short

solutions to bias and saturation effectsveightless MCSwill be addressed. The potential

industrial benefit of each MCS will be demonstrated by their applic&ticiatabases such

as handwritten character (such as are found in filling of forms), and in fingerprint

verification.

One of the aims of this thesis is to research, in practical terms, #sgipty of
implementation in hardware (possibly FPGA) of a weightless classillarrently, a
hardware implementation of a complex weightless NN is very rare. The ifipssiba
hardware implementation offers many benefits such as ease of applicatianR€.gs not
required), higher speed of execution of processes etc. An extension of the hardware
implementation may be enabling and enhancing a variance of the neural nedwork t
portable devices. Thus a hardware implementation is significant and bainefiein time
and ease of application are considered. For these reasons, this thesis exaenines th
implementation in hardware of weightless classifier, and Rx¥gled multclassifiers.
Hardware implementation of EPCN also shortens the time requires for learning and
recognition.Additionally, hardwaramplementation of EPCN is motivated by the scarcity
of a digital classifier hardware that classifies a pattern, and at the same tintepaovi
level of confidence that a pattern meant for recognition belongs to each clecdsatda
implementation of EPCN is attractive because of its speed artdbpity which are
comparable to (and may surpass) that of existing neural netwidrissmeans that it is a
good alternative (and even a better alternative) to actdte-art neural systensoftware
implementationof weightless multclassifier systems and Hardware implementation of
EPCN has memory consumption overhead, and also the problem of mapping all
probabilistic values (between 0 and 1) to positive whole number valessaRh efforts

in these implementatis shouldolace adequate consideration on these problems.
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This research is of academic significance since; the experimentation witherdiffer
types of connectivity usage on PCN has exhibited different types of chasthcsenf the
network which ha not been encountered. Secondly, these implementations have made
possible using weightless NN in parallel and hierarchical design of M@#ks in this
thesis may be useful in providing a hardware and software prototype of EPCN, and also a
software prototype of a MCS, for industrial and academic benefits. Since the MCS and
EPCN, when implemented, may also be used in Banks and Hospitals for recognition on
handwritten character, therefore for “good” pattern target perfornmangée expected to
be very highwhereas for “difficult” patters target performance may be expected to be
high. False recognition and low % recognition of handwritten characters may be
intolerable in banks and hospitals, because of aftermath consequences.

The work is also motivated by the intension to produce intelligent neural systems
which haveapplicaions in industries and also inland, sa, and air bagd exploration
sygdems. Prodution of this sysem concerns mainlyhte production of gb-systems that
cary out the pecegion of daf, interprtation of these da, patern recggnition, and
control signal. This will be achieed by udng real-world dat, and external indust
applcation. The pojeds could be groupedsfollows:

1. Input data sensingandinput datapre-piocessng.

2. WeightlessNeural Networks (NN):- RAM-based andisingformal logic.
3. WeightlessMulti-Expert System.

4. Hardware deslopment.

The rest of this chapter is organised as follows. The projects contairleid thesis
employ the work in [57] as background materials so that, in section 1.2, the content of [57]
with respect to PCN is reviewed as a background material for the.thés organisation
of the projects reported in this thesis is explained in sectioririlekecuting these plans,
the areas where difficulties might arise are explained in section 1.4isTlubowed by

conclusion in section 1.5.

1.2 Weightless NeuralNetworks

Weightless neural network is formally defined as a neural networlsevhimctionality does
not explicitly depend on activation function and weigl@ne of the advantages of this class
of neural network is that it neither requires high mathematicaipcwation nor high
linguist demand. But require only two values “1” and “0” for its functidgalSince

only two values are involved, they may be referred to as binary (dependens) ne
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networks.

Most problems which may be difficult for other classes of NN or reqghigh
resource demand are solved easily by binary neural network, thuagrhls class of
neural network an important class. The bbynaeural network is also called RAkased
or weightless NN. They depend, for their functionality, on Boolean logic.h&g t
mapping problems to their Boolean equivalent is the only requiremenppihta
problems to their Boolean equivalent signifies a pia@ to binary domain.

The necessity of design and application of weightless NN could thus bdrsee
the much less resource demand, high speed, and comparable performaimeplefand
quick illustration of how problems may be mapped to logic dansathe recognition of
the character “0”. The character “® shown in figure 1.0The problems become very
simpleto resolve whenhey ae threshold-binarisedo give binarypattern Thus p#ern
recogniton problems could be expressad Booleanor Logic function involving only
two values 1 andO.

000000000E &1 000000000000
0000000@1 111111111 1 ER000000000
000000 1111111111111 ] 'e0000000
ooooool1111111111111111 1000000
DODOOgIL11111111111111111 800000
Background mxeks———ﬂsann--11111111111111111111.
are converted to

“011.

Pixel for digit “0”
is converted to “1”.

aoooooooo
Too0oo0ooooo0
Qooooooooooo0o0

ODOR0111111111111111
Qoo 11111111111

Figure 1.0 Example of input pattern.
RAM-based (N-tuple) weidntless NN is nomally employedto implement ad mapthese
logic functions. Theras one<o-one mappng beween the recagnition problemsand the

logic functons. RAM-bagd NN provide solutionto these poblems by mappings to

these logic functons. Besides, weightless NN offers ©nsidealde advantags over
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weightedones;thes ae:-

X One-shot learning: This refers to onéime pass over the input databaBAM-
based\Ns does not gahrough manyepochsof learning as the weldedones.

X It is fast - They are aken arrangedin look-up Tabdes (LUTs). And leaming is a
process of radifying the content of these LUTs.No complex mathematal
computationnvolved.

X  RAM-based NN will attempt to provide inpatutput Boolean logic mapping for
any arbitrary problem.

The opeation of RAM-based classifieris analogouso that of conventionalRAM chip,

namely,it consist ofaddessline(s)and memorylocations. Because RAMbased NN is

binary in nature, for n number of addrds®, 2' memory locations can be addressed.

The rdationship béweenthe addesslinesandmemorylocation is

y=2"
Where:

n =number ofaddess lines; hey, thismaybe referred t@asconnectivityof the newon.
y = number of memoryocaton; this is referred to as a neuron witlconnectivity.

IMAGE

> Feedback

Figure 1.1: A schematic of a general weightless artificial neural netwo

Of a particular interest ishe architeture espousd in [110] which will be explained
here

Figure 1.1 shows a diagram wfeightless classifier whereby the input patté&sra
threshold imag. An algorithm ofterexist known as learning algorithm, which connects
the image features to the neurons located in the RAMhiWieachneuon are 2”*n
numbers oflocationswhere n = nunber of addessline (the connetivity). A good

example of weightlesslassifieris PCN. For this reason PCN is also referrea-tisple
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classifier The pocess wheebythe RAM accesseshe input patternandsone loctions
within the neurong eachlayer are assigned nazero valuesjs called learning process

Simlarly, the processvhereby the RAM accessesboth the input pattern and the
learned RAMs,and some locabns within the neusnsin the RAM are &sgned non-
zero \alues, iscdled recognition processThese RAMs (the “recognition” RAMs) are
combined to the outpuflThis representthe outputof the neuron. he outputmay be
fead-back iteratively until convergence or axéd number of tines (see figure 1.1)
during a recognition process

1.3 Organisation of the Research Projects in the Thesis

This section introduces the projects that constitute the research. It them®xpe
planning of the projects logically. Some terminologies will beothiiced as follows.

Difficult pattern: A “difficult” pattern is a patter class that cannot be classified by
weightless NI$ when they generalise. The weightless NN require an auxiliary system
and/or be put into a special behavioural mode before they are able to clagffultdi
pattern.Example of methods used to classify difficult pattern are BoostingBagding.

The “good” pattern class can always ddassifiedcorrectlyby weightless NN when they
generalise well.

Ambiguous case®mbiguous case of pattern recognition occurs when a patteandi$os
belong to more than one class with equal probabditying recognition Thus the
ambiguous pattern cannot be assigned to a specific class by the weigiNlegihg
classification Ambiguous case may be evairtven (behavioural) within the NN sicture

such that in some cases it may be correctly classified. Bias (see below) mayealsseg

to ambiguous cases. These have nothing to do with a pattern (a “difficuéfrpahat is
consistently classified wronglyhen a specific pattern is consistently ambiguous, it may
also be called a “difficult” pattern.

Saturation effectas patter class becomes large and also for increasing large number of
classes, the weightless NN distinguishing features for-ohests classification diminishes,

this phenomenon is known as saturation effect.

Bias: The weightless NN is said to be biased when the performances depend on a specific

arrangement of the training classes.
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By formulating some problem areas associated with these projects andiiegplai
method(s) which shall provide solution to them, the project plalhbedome clearer.
A) Problem: How to optimise PCN/MCS to achieve better recognition performance?
Secondly, what effect will system parameter modification have on perfornfances
Proposed Slution: Paramount in this area is the address formation methods. It is
intended to perform both literature research and practical research imasapon
techniquesThe introduction of novel weightless NN will be attempted. If the noves NN
give promising result, then improvement of the NN for performances and robustness is
required. In such situation, Genetic Algorithm (GA) may be considered for parameter
optimisation A better solution is an intrinsic improvement to the weightlessiith
does not warrant an auxiliary system like GAneor two of these techniques mbag used
on PCN/MCS. And their effect on performance will be considered.
B) Problem: What modification to what aspect of the PCN/MCS will increase
generalisation, most especially on “difficult” patte?ri$ere are other problems such as:
(1.) ambiguous cases (2.) saturation effects. (3) bias
Proposed Solution:lt is to be expected #t performance depends, to some extent, on
type of input database also. Large number of inputs may also lead to saturation. These
projects may also consider:
1) Investigate effects of tuplgize.
2) Consider using filter.
3) Consider using Particle swarm/Aotlonyoptimisation.
4)  Genetic Algorithm.
5) Reconfiguration: Dynamic and static adaptation techniques.

To extend the functionality of PCN (i.e. increase the situations wherayibeutilized),
reviewing the input mapping method is in order. The first part of this work will focus on
PCN and its enhancement, whereby two novel types of connectivity will toeluced.

The first partof this work focuses otwo types of PCN. The main differences between
these PCNs are in their input mapping methods. It is envisaged thaatdiess formation
method be substantially different from that of [57].

Secondly, since PCN expects its input to be binary and mostifee@put varies
greatly, tools for processing input to give binary patterns are developed.

Howells [57] explains the advantages of RAb&sed classifier but does not point out
serious limitations to its areas of application. Of a particularastas a large muktlass

problem that is databases which consist of large classes. With this tyg&loases there
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are two major problems. One is knownkaas and the other is calleshturation effects.
Bias toward a class occurs when the probability of recognition of a classsisaliy high.
Saturation occurs when distinguishing features of classes are no tepgesented within
the network. The network is said to saturate. For these reasons rsaugbd network
becomes incapable of classification of large databases. It is to be noted thizndkad
neural networks designed depends on logging and retrieval of information from RAM
locations in a neuron. By “good” pattern is meant those pattesily eecognisable by any
classifier, while “difficult” patterns are those patterns that are classifiaiyeby special
techniques such as Bootstrapping, Bagging and Boosting. Weigh#ssgiels capable of
classifying largescaled multiclass databases are very few. The aim therefore is to
implement multiclassifier using RAMbased neural networks as component (base)
classifier. The proposed MCS (see paragraphs below) may not require a special technique,
such as Bootstrapping, on “difficult” patterse€ sectiod). The proposed Mukclassifier
system has some advantages over the contemporary MCS. For more detailsseg.8ecti

It is worthy of note that the input format of Enhanced Probabilisticv@gent
Network (EPCN)demands an encodingf its input if it is intended as an intelligent
combiner. In order to map the output of the base classifiers to the inthé oftelligent
combiner, none of the existing gating functions were found suitable. Ahatability of
existing gating functionmotivates a new gating function. The new gating function
introducedconstitutesa combination strategy and is known as a combiner unit. Thus the
design of a RAMbased MCS automatically entails a design of a nowglbiningstrategy

—the combiner unit. Téully test the impact of the combination scheme, a parallel

M 7= Module 1

>| hodule 2 |

*

Owuipmt
vector, y.
x, Input

vector.
>| hodule k|

Gating
=1 network

Figure 1.2: Schematic diagram of a muttiassifier. It consists of
different types of base network in paral[dD]
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arrangement of component classifiers is preferred, of the type shown in figure 1.2.

When the proposed muitiassifier have been designed, it becomes appropriate to
explore its usefulness by experimentations. Experimentations on soaleagks then
follow. Experimentation on the MCS employs fingerprint databases. Areastahatic
templatefree fingerprint verification have been subject of intensive research. Isas al
noteworthy that biometric databases are characterized with large classesrgeusaks
criterion makes it a suitable candidate database for the MCS reported lesfe If the
MCS is able to generalise, it may found application as a biometric tenga
fingerprint verifier.

There are situations which demands autonomous operations such as in automated
machines, Robot®tc. There is also electronic harsh surrounding in whicingelligent
weightless neural netwonkight operate, e.g.; sea exploratidio. enhance the capability
of the presentedsoftwaredesigned EPCN andveightless multclassifier in such
environment, the implementation platiomeeds to be changed. Secondly, a quick and
accelerated response is required in cases of emergencies. These conditionsasuggest
hardware implementation, because a hardwased assifier operates very fast as
compared to a classifier designed in software. High speed of hardware basedsdesign
suitablefor cases of emergency and adverse conditions. It suggests a digital hardware
which is reconfigurable. Virted pro is an avance Field Programmable Gate Array
(FPGA), and belong to a group reconfigurable (see paragraphs below) FPGA. The high
level of integration possible with FPGA means it lends itself easilynplementation of
complex electronic systems. Reconfigurable BP{ke Virtex Il pro, offers rapid design

process and reprogrammable functions.
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Figure 1.3: Annotated Diagram of VirteX pro which will be used in EPCN
prototyping.[134]

This is in contrast to micrprocessing whereby functions are not reprogrammable and a

long time is required to produce working silicon. Also, since EPCadlaptive in nature,

to adequately represent its characteristic, a reconfigurable FPGA is reqiiecdirtexl|

pro development board, Figure 1.3, is an advanced digital prototyping board, it is
reconfigurable and found suitable for EPCN implementation. The proposed hardware is
expected to operate autonomously, thus suitable for electronically harstursling,

autonomous machines and robots.

ORGANISATION: -The researches investigated have been organised into chapters. The
chapters are organised as follows.

In chapter 3, other forms of connectivity weseccessfullyintroduced, followed by
addiional enhancement in what is now called Enhanced Probability Convergaewirkiet
(EPCN). For example, PCN cannot train/recognize objects of type shown in figure 1.1
(section 3.1) while EPCN can. Two types of EPCN are designed in software and they are
employed on a benchmark of unconstrained handwritten numbers. It is expected that the

classifiers, taken singly, may be unsuitable for applications tmaamigs higher accuracy.
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Secondly, a single classifier will often struggle with lacigss classification sks. These
motivate the design of multilassifier.

In chapter 4and5, various classifiers are designed and used for various purposes. The
multi-classifiers designed in chapter 4 introduces a combination strategy (i.&ieclass
fusion methods) stable for weightless muktlassifiers. This combination strategy
together with a weightless muttlassifier is tested on unconstrained handwritten
numerals. The mukHtlassifiersare unsuitable for very large classification tasks due to
bias, and saturation.

In chapter 4 a multiclassifier is designed, and solutions to bias and saturation
problems are provided. The target applicationhis chapter (i.e. chapte) & biometric
problem domain. Biometric database classification tasks demand igbnpérformance
accuracy, and are usually very large databases. High accuracy is required because it deal
with issues such as authentication, and identification of individuEie biometric
database utilised here is fingerprint databases. The input, and the traiatagysof the
optimised multiclassifier utilised is specially planned so as to minimise problems of
saturation and biaseExcellent performanceare achieved. Butery poor performances
are also achieved
This motivates a considerationrfopossibly, a new combiner or optimisation of the
existing one.

So that in chaptet, the coding scheme of the combiner is replaced by a better encoding
scheme, and again tested on larger classes for which thectasfifier of chapte fails.

In the same chapter, comparisons are drawn between classifier fusion usingaB&CN
majority voting method. No 0% performances are observed, rather all performances are
above 60%.

The speed of softwarenplementedEPCN is determined by sequential execution of
function calls, refresh rates, etc. This is to such an extent thatdifficailt to employ
EPCN in certain professional areas. This speed constraint might be isechiray
considering parallel execution of function calls, pipeline ofate processes, and memory
management within EPCN. These scenarios motivate the hardware design NfilePC
chapter6. Reconfigurable field programmable gate array (FPGA) of advanced type is
considered as a suitable hardware. Secondly, since EPCN is adaptivepitfigarability
and/or adaptability are investigated also in chapter

The conclusion, in chapter @f the thesis summarises all the works accomplished, and

reflect on their merits, demerits, and their application potentials.
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There are problems envisaged in the design of these systems as preskentedhese

problems are however surmountable.

1.4 Major Challenges

The current PCN could only process data of known size explicitly speafiedAnd it
is required that the numbef olasses in one training session not to be too large. This
makes possible a ofshot learning since most system parameters and database parameters
are explicitly specified a priori. In this thesis however, the removéheasfe constraints is
desirable. Since the aim of the thesis is also a design which is geadajve, and
reconfigurable, the removal of explicit specification of both systems datdbase
parameters represent a right step in the direction of adaptability and wodieabitity. It
is challenging to design such a system that identifies an “optimal” database temd sys
parameters to use in learning and recognition. More so of a challenge as tatasdhe
possibility of high recognition rate in one pass over the input database.

Currently, mostweightlessclassifier converts any mathematical calculation to its
equivalent Boolean calculation automatically, and fails completely where dksifidr
cannot convert the problem to Beoleanequivalent. To widen the scope of mathecwlti
calculation possible for conversion to its equivalent Boolean logic andewdrethe
weightless neural system fails to convert a given function to its Boagqaivalent, a
coding scheme is employed. The coding algorithm is a conversion, a priarigioén
mathematical function to a simpler form suitable for conversion ®Bdtdean equivalent.
Deciding on the best possible coding algorithm to replace a given mathematiciabri
posses a significant challenge.

The advanced nature of the classifier planned demands reduction in execugi@s tim
and where possible within the algorithms. The nature otlesifier allows training and
recognition in one period (one epoch) of learning, thecadled oneshot learning.
Recognition in one epoch is meficial and posses a significant challenge to this project.
The benefit and significance of eshot learning become pronounced when dealing with
large classes and largéass databases. This is lacking in the predapt weighted
classifiers.

Pipeine processes is desirable within the functionality of the classifierglssois
parallelizing of processes as both saves time. The structural impactgaifetaice of

pipelining and parallelism is the reduction in overall size of eachifidais#t is believed
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that utilisation of pipeline and parallel processes may enable the classifiewtwolly
onto the FPGA. It is a big challenge to determine when and where, withinetival
networks’ functionality and structure, is a pipeline or parallel process required, and if so
does it lead to an overall reduction in size of the classifier?.
Other difficulties encountered aréhe procesag of large amount of datand real-
time processing. Redéilme pocessng of datainvolve a multielassifier sysem camble
of “online” training, rapidadustmentof its paraneters, and capable of handling data
stream in a tiraly manrer. Multi-classifiershdl is best suedto patern recognition ad
interpreation of data. A multi-classifierhas (br its input) resilts from the subsystems
andcombine these rest, in orderto produceappopriate responseslrhe nulti-classifier
section oftenstarts by introdwing classifier in gereral, wherebyspedfic types of
classifierare desabed briefly In conclusion, ppgramming challenges in the software
and the hardware design are as follows. The major areas where these challenges arise are
stated below.
1. Index and indexing: These problems occur mainly at the boundaries.
2. Encoding method to the MCS combiner: The probleere is deciding which
encoding method is suitable for a given application.
Programming challenging areas to the Hardware design of EPCN are:
1) Glitches and race conditions.
2) Memory issues.
3) Time and timing.
It is also a big challenge trying to write such portable code as to fit imtexMi pro
or Singlechip-microprocessor. It seems that testing and verification demands more time
and expertise.

1.5 Summary

Boolean logic is simpler and execute fastsr that if the conversion is either
automatically done by a tool or by algorithmic programming, therebeith gain in time.
Considering that the learning is a est®ot learning and that the epoch of learreag
be limited to onewithout appreciable errpthe system thus designed will be very fast as
compared to a typical classifid?rojects reported in subsequent chaptelisdetermine if
the systems designed based on these concepts are usable and useful batilyraiudt

academically.
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In previous susection, the decision to parallelize and pipeline as many of the
procedures as possible, were explained. This decision should result in design which are
economical (monetary or otherwise) and portable. The feasibility of ingpleon of
paallel processes in NNs and MCSs, and resultant benefits are elucidatedequsuibs

chapters.
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2. INTRODUCTION TO ARTIFICIAL NEURAL SYSTEMS

The aims and objectives of this thesis are explained in chapter one. &ys ofe
introduction to subsequent chapters, this chapter aims to present current methods
design and application of neural networks.

Neural networks aims to mimic human experts. A human expert issampeery
intelligent and knowledgeable in a specific area, andbagd on certain number of
charateristic outwad behaiours. Intdligenceis neitherproportional to the ige nor
number of neuon in the bain, northe biochemtal adivities going on in a neuroBut
all these contribute tomtelligene, including he biochercal acivities which ae all the
samein all neuons(namesf minerds andextentof adivity may differ) of everybeing.
Thirdly, thoughone neuon isno more intelligent than any other neuons [49], they are
neverthelessesponsible forensory perceptiomf beings.

The interadion of neuonswithin themselves, and Wi their suroundng, play major
rolesin acquisiton and pocessng of knowledge and knowddge rlated information.
Although, current research efforts have not given a definitiantefligerce, it is widely
agreedhatanintelligent sytem possesssone or more of the followig chaacteristics:-

X Ability to invent

X Common sense

X Sensoryperception

X Learning andnductive reasoning.

X Patern recognitiorandclassfi cation.

X Inference fromincomplee or appioximate information.
X Adaptalility to newor unfamiliar stuations.

X Display of emotons.

Neual Neworks belongto a groupf madinescalledintelligent machine Currently,
hardware based artificial neural network (ANN) al®o retrred toasNeuro-computers,
Parallel distributed procers, connetionist network etc. [49]. Neuralnetwork, being
an intelligent machine possesses nmy of aforementioneccharaderistics The definition
of neural networlassunedin this thesisis dueto Haykins[49], and it re-states:-

A neural netvork is a massiwely parallel distributed process made up of simple
procesmg unit, whch has natural propensityof storing expeential knowledgeand

making it awailable or us. It resembleghe brainin two respects:
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1) Knowledgeis acquired by the network fom its environment though a leaning
process

2) Inter-neuron connection snghs, knowras synaptic weights, are adto store the
acquiredknowedge

The procedure followedy classifiersto acquire theknowledge is ched learning
algorithm In case ofweightless (also alled RAM-based or N-tuple) neat network,
“synaptic weighs’ may be replaed by “neuron connetivity”. Refering to the
charaterigics of intelligent, explained in previous paragraptiassifier concernedn
this thesisshares miay of these charderistics [49] the relevant ones are briefly
explained below

Sensry perception: Thisis madeby deriving some paranters or \alues from input
paternor dataset.

Learning (also cdledtraining).: Seesection 2.1

Pattern recognition and classificaton: Classfication refers tohow best a gien
patern is said to bdong to certan class Reca@nition concems a pdtern beng known.
The recanition algorithms of supervised learning involvainimising the error éinction
derived from the actual output and the desired output. An ouipuccepded dter a
certain numberof epachs or iteration, or when the error has fah below a st minimum
value. In unsupervigd learning, clasi$ication/recognition is achieved when a winning
nodeachievesa cetain value orby simply obserung the output after a fixed numbef
iteration.

Adaptability to new or unfamiliar situation: This is achieved through the
specialisation/gereralisationcapability of neural networks [73]

Ability to acquire knowledge: This is doneby high4evel processig of information.
Enhancedacqusition of knowledge in a speific field is termedexpertise hence the
termmulti-expers (or multiclassifier)[49].

Since specialisation and generalisation capabilitthesbackbone of evenyeural
network, amore éabaate exphnationof specialisation and generalisatiain order,
due to their impdance.

Specialisation and Geeralisation: Genealisation refersto the abilty of neural
networksto produce reasonable resudtr input pattens notencountered dung training.
Specialisation refersto high-lewel processng of knowledge acquied in a specific area.
Many neural networkdhaving the ahility to gereralise or specialise [49, 73],are dten

combined innumbers of formandtermedmulti-classifier (expertghel.
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This chapter is organised as follows. Section 2.1 introduces weigatedl metwork,
their learning and recognition algorithm, and application areas. BeZi®presents an
introduction to multiclassifier systems, while section 2.3 introduces nathgr types of
neural networks. Section 2.4 explains methods of hardware implementations of neural
systems. While their testing and validation methods are explainedctiors 2.5. A

summary, which concludes this chapter, is found in section 2.6

2.1 Weighted Neural Network

The human brain has greatcapablities in procesmg information and naking
immedide decsions. Thigs asa result of a massive network of pé&hbhnd dstributed
computaional element caled neuobns. The linkhg and interadion of these neuons
providesliving organismsa verypoweaful capabilty to leam. This is vey much unlike
computers that only implearts eciic algorthms Neual Neworks (or classifiersiare
designed to model these nens, theirlinkages,and thér interadions. These could be
achiewed by udng electronic components or dtware. The general procedesinvolved
in modelling of neuronare:-

X Network architecture [73]
X  Learning [73]
X  Recogniion/clasgfication [73]

In ealy 19405, W.S. McCulloch andlv. Pitts were thefirstto make a serious @mpt
at modeling the neuon [106]. This ultimaely sparked a sexs of reseach into neuron
models The resultis the existence of aet of weighted classifierswhose neuonal
interconnection, i.ethe synapses, are moled by weights. Thefirst atempt at neuron
modelswere madeby Bledsoe and Browning [10], which does notinvolve weights or
weight adustment. But ather, certain logic functionswill be derived from the problem
set, evaluatedly theclassifier stoedin RAM-memory. This type of classifieris called
RAM-basd classifieror N-tupleclassifier The man am of a learning algathm is to
combine the major fatues of a computer with thoseof human expertise. A system
capalbe of learning without a guideould acqure and gairknowledye ofits own. Two
main feduresaredesirablein aclassifier
1) Adjustment of their paraeter in responseto unpredctade charges in their
dynamics.

2) Ability to adustto a new operatg envionment.
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To (1), Evolutionary methods e.dseretic Algorithm (GA) and the like [11]is often

usedto evolve optimum parametets suit the chargesin dynamics. GA is also ugdto

evolve anew corfiguration whenevela newoperding environmentis encountegd. Thus
learning could always proce& ursupervised and auonamous in any environment.

Learning ofclassifiernormally proceeds in one of the following ways:-

X  Symbolic Learning:- Symbolc learning refersto manterance ofa knovledge
base froman operaing set of rules. These rules are deriveahfrinputdata-set ad
data réating to the performarce of the system. A god exanple is the lf-
organisng fuzzy logic system[73]

X Numerical learning:- This ofen involve minimisng the cumulative sum of
errors betwen the desied output vedor and the NNs’ output \ator. E.g. Bac
propagatiomalgotithm.

X RAM-Based learning:- Some €atues of the input peern is converted b
numbers ad sored in RAM-memory, or these &ues are usedto form
addresesto memorylocation. A classifierthatimplementsRAM-based éaning
is simple andleams very fas. It neither dgpendson guided rués nor is any
rigorousnumeirical analyss involved [7].

The types of learning introduced in this ssdxtion constitute supervised learning i.e.

learning from examples. But in sslection 2.1.1, unsupervised learning will be

introduced.

2.1.1. Unsupervised Learning

All neural networks pass through a process of learning. Having introduced supervised
learning in section 2.1.1, it becomes important twoofuce the counterpart, which is
known as unsupervised learning. Unsupervised leaiisirgtype of éaning where the
classifieris left to discoer patern regularitywithin clases and organise these paern
into clustersor categoiies dependingon collective properties discovered. There isno
compaison with a tar@t pattern hencet is sometimes called open-loop adapton
learning. The result pydued at the output $ asa resultof compeition betwesn the
nodes ofthe output layers. Aany point in time, thenodewith the highest Vae is the
winner. Theconnetion weight between the inputlayer andthe output lagr are often
adjuded in favour of the wnning node. Sone ursupervised leaning schenes exist

where, at the outputlayer, winning nodesand neghbouing nodes’ connectivity are
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strengthené. This isachevedby employng a neghbouing paameter.

The fuwzzy classifiers possesknowledge acquigion sysem which is cgable of
deriving knowledgebase ruksfrom higorical data. Thefuzzy classifies also possess
the abilty to modify its knowledge base anthange s configuration without anexternal
teache —thus an unsupervised learnirfgelf-orgnzing fuzzy logic sysems represena
good example ounsupervised learning [7./RAM-basedclassifierexhibit unsupervised
learning when th&@ AM-locations are modifed by the keaning algorithm with repectto
intrinsic regilarnties discovered in the inputpatem. In most caseswith RAM-based
classifiers feauresare conveed into connetivity and ued asaddes®sfor the RAM-

location.

2.1.2. Matched-basedLearning and other Learning Algorithms

Matchedbased learnings bagd on simlarty between the inpugndtarget patern (or
desiredoutpu). Matchbased learning may be regardasl a templatenatching with
integrated learning and generalisation capability, and thus abtevdoide noise in
pattern. Also once it is trained, a classifier using mb@éed learningpossesses the
capabilty of detding an incanplete verson of patern or a modied verson, and thus
desirableclass ofclassifier Other advantagsover error-based learning e
x Easyknowledge extraiton
X No caastrophic forgding
x Fast (one-shotelning[19]

Implementation of mahed-basd leaning algorithm is network dependent. Itam be
feedforward or recurent Network.An example is a bipefield network. A Hopefield
network is a topology of recurrent netwok within which a certain assocative (content
addressable) memoris formed. The processof storage goeghrough a learning
algorithm cdled Hebbian learning ruleln memory, loclly stable sates are formed by
the ouer product ofadacent nodes, hencthe memoryis cdled assoctive memory
(associationof adacentweights fodes)). Thus the memory forms sesof locally stable
states from any input pattern. These stabletes become centresf atracion for any
pattern meantdr recognition. Hence the assative memory § capake of overwriing a
noisy or an incompletepatiern presentedo it, by usng these stable ttes. Hopdield
statement @plain that: “Any physical system whose dhyamics in phase pgace is
dominatd by a substantialnumber of loclly stable gatesto whichit is attraded can
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therefore be regardemksa general contergddessable memory.” [54]. Consider a &t g

of patern p (k=1,...q) presentedto the classifierwith n number of neuron,then the

weight is expresseds
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After weightsinitialisaton and weight adustment as in equation (2.2) and (2,3he

actvation rule is appliedto produce the outputj gwhich gives+1 or —1) dependingn

the value ofthe threshold .Hopefield network bund extersive applcéion in

information retrieval, pattern and sgehrecanition, andoptimisaton problems, e.g. the
traveling salesman poblem[63].

Another NN that employs ratch-ba®d leaning is Adaptive Resonance Theoryapl
(ARTMAP), and its derivatve Rewad/PunishementAdaptive Re®nance Theoy
(RePART). ARTMAP corsist of two modules,ARTa andARTb. Input paterns are
addresed by ARTa and the taeg or desied outputis addressd by ARTb. Theg
pattens are linkedby an algoithm cdled outstar learning [19], in a nodule cdled the
map-field. A vigilance paramder is used to adjust the minimunlevel of similarity
before a pHern is accepted as belongng to a cetain class. This is the scope of
advantages which this type of neural network has as compared to otherdiype
neural systemsThe fuzzy ARTMAP extract its rule in the form of if-then” from the

pattens and math this with its knowledge base. An addedadvantage of the fuzzy
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ARTMAP (variance ofARTMAP) is that it iscamble of autonomoug&ningin a non
staionary surrounding. Fuy ARTMAP employs thevinner-take-allin its dedsion. The
RePART NN [19] uses the ewad/punishment stategy for its decision. These NNs
leams by creating a new set of neurons, dRAM-locaions are oeded to store
informaton about new patterns.hEsenew neurons aded arecaledcategay neuons.
In case of izzy ARTMAP, new rules are créad andadded to thé&nowledge base. The
ARTMAP NN andits variance havehefollowing disadvantages:

X They are sensive to noise whch may cawsecategory (neuron) prdieration.

X Misclassfication of patern duiing recll process

When esuts from ARTMAP family of NN have beerrompaed with those of error-
basd larningNNs, it wasfoundthat the ARTMAP NNs out-performed those of error-
bagd leaning [19] in many cags. ARTMAP NN found appication in medial
diagnosis. Oherforms of kaning Algorithms ae:

x Conventionaklgorithm. [39]

x Deterministic algorithm.[14]

X Lazyconventioml algorithm. [32]

X Lazydeterminisic algoithm. [32]

X Progressive algghm. [33]

The Gal seeking neuron (GSMetwak is a god candidate for these algthms.

The question as to when does a neuron starts learning and when does it stop islanswere
in the concept of activation function. This is a topic of-sabtion 2.1.3.

Reinforcement learning - This is a type of learninthat includes &eds from is
surrounding.Reinforcement learning is hereby explained with respect to Bakkd
classifier as followsWeights are et toinitial random alues. In RAM-basd classifief
the RAM-locations are initialised to u or zero (0). The weld connetion, or the
connetivity (in caseof RAM-based classifie) are adjused accoding to the feedback
from the suroundng andthe classifier’s ouput [73]. Thisis a pasitive feedback system,
since the output nodesvith highest value havéhar connectivity strengthened while
those of lower values have their contieity weakened. This form oke&ning is also
called graded Earning because the adjustmendf connetivity or the update of weights
is regulaed by the feedback &m the suroundng. Whenexcited by its suroundng, a
random garch meahodis used by the classifierto reah a corect output. Examps of

reinforcement learning ar@dapive heuistic citic and the Q keaning. Reinforcement
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learning algorithm differs flom supervised learningn that there isno taget pdtern
present a pori. It also dffersfrom unsupervied leaning because t involvesfeedback

from its surounding.

2.1.3. Activation Functions

An Activation function is an important function required by a neuron for turning on
and off its activity. The study of this function is important for the full understgnof
learning procedure of classifiers. Aadivation fundion is a mappng apdied to a
weighted sum of inputs. Thednputsare sippcsedto come fom other nodes or neuron,
and theoutput of this mappngis ddiveredto the next neuron. The appng could also
be regardedstranster functions Prior toapgdication of adivation function f,to every
incoming signal X, is apdied a weight w,. The weightsare tlen summed,and a

threshold is applied as shown in equation (2.5).

| a

Ok f : le X Z—« (2'5)
i1l -

H(x) difx 10
% otherwise (2.6)

The output @ (equation (2.5)) ofpplicaion of adivation function goesto the next node.
Activation functionshavethe following chareteristics:

X Ability to model the densy of joint probablity P(X]Y) for X input and Y output.

X Ability to appoximate an arbitrary continuous functioon a conpact domain

with arbitrary precision.

X Ability to, in conjuncton with other process,classfiesimages.

The function used as adivation function dependson any of the aforementioned
characteristicsand also on dimension. Some names of activation functions aep
(Heavisde) function, equation (2.6) abovesigmoid function, bi-radial functioretc.
These are not multidimensional fuioms. For mulidimensional purposes, ativation
functions like arc angernt, hypebolic tangent or multi-quadrat function coud be

employed Sums of one-diersional ativaton funcions have beeneapated to yield
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good performance [49] e.g. Gawsdan bar funcdions, sigmoid bar functionProducts of
activaton functions have alsdeen used. The mtilarnate Gawssan gives hyper-
ellipsoidal output denses A good ativation function should not be trapped local
minima, caught in plateau oro<cillate excessvely. Activation functions are used mainly
in NNsthat involve weights andweight adjustnen.

In RAM-based NNs, dtvation functions arenot used.But it could be argued that
activation function, the Heaviside function, is used gice this result in equation (2.5)
which is compatible with digital system¥he RAM-ocaton and the LUTs will be
modfied, read from, or witten to acording to the result orcombinations of result of
H(x). Thisis refered to asaddess femation or connetivity formation. Othewiseit is
the vdue of the H(x) orits combinationthat is written to LUTs or RAM-locdions
directly.

Activation functions are also employed in the process of recognition. Thesprote

recognition is introduced in sub-section 2.1.4

2.1.4. Recognition andClassification

Classfication refers tohow best a gien patern is said to bdong to certan class
Recogniion concens a pdtern beng known. The ecaynition pocedue that follows
reinforcement learning inwlves the strengthening of connetions beween a winning
node and input layer. Reinforcementecaynition procedureinvolves a method of
queryng the environrmentin order to alidateits output.A reinforcement learning and
subsequent recognition procedure ha®ved to be closestto human reasoning
proceduredy interacting with its physical ervironment.

In mach-ba®d learning, the adual outputis compaed with the desired output for
eachpatern. Acceptance depends on siarty between the targt output andhe acual
output. Hopdield neural network for example emplogententaddessable memory to
form locdly dable states from any input pdtern which is used to overwite an
incompleteor inaccuate verson of that patern when presentetb it for recognition.
This is useful in erroreorredion tasks. The ReRRT neural network [19] on the other
handemploys ewad/purishment stategy durng recagnition. Thewinner node wil be
rewaded,that is, have the connectivity beter themandthe inputlayer strenghered.
While the “looser” nodeswill have the strength of their connectivity edwed (i.e.

punished).
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2.1.5. Architecture

Most weightedNNs are arrangd in layers which are input, hiddemnd output layers
eah layer ends in a seriesf nodes,andwithin each nodeare a smmation, threshold,
and ativaton functon. Figure 2.1 shows generalized schematics of a node of neural

system.

Figure 2.1 The operation at a node of a neural network. Xiffjeural
input; Wi— Synaptic weights;+1,2,3....y(t) = Nodal output[3]

The diagram (Figure 2.1) shows an input laygt)X =1,2,3,... connectetb the input
patern. The lagr conneced to the output layer is cdled output layer. All layers in
between arecalled hiddenlayers. The layers are interconnéed (either unidirectionabr
bi-directional) by means of synaptic weights, w, classifiers with a unidiedional
synaptic weif@ts connecion are @lled feedforward (FF) or open-loometwork while
classifierswith bi-directional spagic weight connection arecdled recurent néwork
(RN). The outputof feedforward networkis independent of previousutput while the
outputs ofRN are fed back andthusdependsn the previous outputdr sate). Examples
of RN are hbpefield netwok, andtime delagd classifier. The supervied leaning is
also alled ative leaning [49]. Figure 2.2 shows schematics of typical supervised
learning. Supervised learningequiles the input ad desired output pattern bag

presentedto the classifiera prioi. During training, theclassifier outpuis continuously
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comparedwith the desired output pgatn. The neasure of discrepanies betweenthe
classifier output and the desired output, the error, is esl to adust the weight

connections b®veenthe nodes.

Figure 2.2 A schematic of supervised learning r{48]

The most coommonly used error measuras the nean square eror called the error
function. Good examplesof supervised leaning algorithm are the backpropaation
algoithm andleast mean square (LMS) algtim [49]. Thesealgorithms usemean

square x2 error, (see equation (2.7) below) wmpdatesthe connetion weights.

Supervied learning is used often in feed-forwaiN topolog/, such as Multilayer
percegron (MLP), and Radial basis functio®RBF). Back - propaga&n algorithms find
applcation in MLP while Least-mean¢are methods usedin RBF. Though supervised
learning exiss in fuzzy sysemandRAM-basd NN, it is nota canmon pratice to use

error functionto adjustweights.
2
P (2.7)

Where ¥ = output of Neural Network;
t? = desired (target t) output;
and ¥ = meansquared error.
In some RAMbased and fuzzy NN, feaures of input pattems are compaed with a

knowledge base in look-upales(LUTSs), or some values@edin RAM-neurons. The
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contentof the RAM and LUTs arghen modifed with regectto the target pattern e.g.
Goal Seeking Neuron (@$) [19].

ADVANCES IN ARTIFICIAL NEURAL NETWORK RESEARCH: - research
publications in weighted neural network extend both the architecturehantkdrning
algorithms of this section and prevous sections. Such that neural network caulteno
grouped into the following groups:-

Support Vector Machines (SVM)These are kernel based, and the learning algorithms
depend often on distribution such as Gaussian distribution. The most notable and
industrially applied example is the Radial Basis Function. Signifiezsearch publication
in SVM includes Bernad [8], Lopez [80], and these has, in various ways, increase the
application arreas. RBF is a good example of support vector machine.

Fuzzy dependent Neural Networkuzzy algorithms areften applied independent of a
neural network, but current research results have changed the trend to include fuzzy neural
network. In Canuto [30], fuzzy neural netwok is designed and applied to character
recognition. In Karray [73], fuzzy neural netwaskapplied to PID control scheme.

Bayesian neural networksThese are neural networks whose learning/classification
algorithms are based on conditional probability. Though the concept of conditional
probability has been around for decades, it is ordge to the current research that great
numbers of neural networks has been developed based on Bayesian rule. Notable examples
are Beyers [9] and Bocsi [13]. The variation in the individual algorithm and
implementation are significant and thus the groujing a distinct group is necessary.

Percepteron:Backpropagation and percepteron learning is one of the oldest learning
method in history. But current research has introduces very many variations and hybrids of
Multi-layered percepterorSome notable publications includes; Sukanesh [127], Lahoz
[78], and Nahid [98].

2.2 Weightless Neural Networks

2.2.1 Introduction

Previous sections have introduced weighted neural networks. Weighted neural
networks utilises high mathematical functions. Accompanying tliilisation of

mathematical function is high memory demand and high resouitisation. The
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fundamental principle behinattuple network is that pattern recognition may be assumed
to be the process of building a set of Boolean logic functions which describe the problem.
A standard weightless classifier may be regarded as a discriminator compas&tAd/-
based neurons. A discriminator is-#0iN decoder followed by storage cells. A summing
device following the storage cell of a discriminator completes a weightéessm
At initialization, all storage cells may be set to zero. For each trainingrpaa “1”is

stored in the memory location addressed by the pattern. When learningetasnpbme
memory locations will have been set to “1” by corresponding training psttehile other
locations may remain at “0” or “u” (where “u” denote unknown). The learrecgrd of
the RAM-memory will be used to solve previous unseen problems when one is given as
pattern. During recognition stage, RAMemory content addressed by the input pattern
are read and summed by the summing device to obtain what is called thenidescn
response.

lllustration of a basic weightless neural network follows. When idata is presented to
WNN for classification, susets of the Boolean logic function will evaluate to true for a
specific pattern class whereas other-sets will evaluate true for other pattern classes;

thus solving a classification task. A simple example is given belowldistrétion.

Example Basic Locklp Table (LUT)
Consider a 3x3 LUT below;

Figure 2.3: This (3x3) LUT can recognize the letter “T”

Figure 2.3 is a LUT of tupleize = 3. Each class of patterns has a set of Boolean logic
function that evaluates to true to indicate the recognition of that pateess. For “T”, the

Boolean logic function that may express “T” recognition is given by:
f(T) ABC DEF GHI (2.8)

Equation (2.8) is shown schematically in figure 2.3. Thus f(T) may tfassi and all
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letters that resemble “TSimilarly f(K) may classify “K” and all letters written as “K”.

Figure 2.4 A basic weightless neural network.

By using a logical 20-N decoder followed by a set of binary storage memory for each

term of the Boolean logic equation, each tuple (e.g.; ABCD&F of equation (2.8))
require one storage unit. The Boolean logic decoder is able to calculate alilgpossi
Boolean function of the N inputs. So that when presented with learning input data, various
decoder will indicate which function they have derived from the in@rhieg data. To
classify the test/validation data, the test data isgued to the NN of figure 2.4. The NN
will access the storage cells and evaluate the Boolean functions that are true for each
pattern class. Evaluated values are summed to output. Thus the basic Boolean neural
network learns and classifies patterns.

Multiples of discriminators are often employed in parallel to |etansify patterns,
example of which Shefa [116] calledRAM weightless neural network for handwritten
digit recognition. This is the same as in figure 2.4 except that N = m and meaay b
number greater than 2. When figure 2.4 is implemented in a microcontroller of a robot for
sensor control and/or monitor, we have the scenario of Siti Nurmaini [123]. Though the
basic principle may appear simple, it forms the building block of WiSARRrchitecture
with a recent application to change detection by Massimo [92] and defornigéitsdoy
Massimo [93].

2.2.2 Probabilistic Convergent Network (PCN)

Many prediction problems and pattern recognition problems can be solved by performing
Boolean logic on them. In situations whereby prediction or recognition problems can be
interpreted in terms of Boolean logic, a type of random access memoiy)(Résed

network called Probabilistic Convergent Network (PCN) becomes suitableadéed
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advantage of PCN over existing RAb&sed network is the inclusion of confidence
measure.

To perform a logic mapping, it is expected that all inputs be reduced to Ipiaisyn.
Due to the complexity of architecture and function of PCN, it is wortlodioiting some
terminologies which will be used throughout this thesis. They are arpldielow

Binary inputs: - The Probablistic Convergent Neuro(PCN) aaeptsas input,
binary images only. Any input data is threshbldarized and appropriately resized
so that PCN may make sense of the data.

Compound symbal - Symbols are usetb denote theneuron otput of RCN. The
architecture of PCN is shown in figure 2.5 below. Neuron outputs are inherently
restricted to a small set of symbols often only “1” and “0”. These armaf s§tnbols often
called base symbols. To increase the set of base symbols for a neurorsyothets
may be introduced. For example, for numbered classe9,0one may allow the same
number 0— 9 as possible symbols. This permits the storage and retrievaulbiple
symbols consistent with input classes. The symbols thus emplagedknawn as
compound symbolg husfor examplea compound symbaonsigentwith class “5”and
“6” will be “56”. This mansthat class “5” and tass ‘6” hasbeen presrntedto theNN.
The main difference in neuron output of PCN, as compared to other weightless nets, i
the indication of frequencylhe frequencyat which one class addssesa givenlocation
is indcaed in PCN and EPCNFor exanple, for two classesaddessng a location,if
class “1” addesssthis locaion 75 timesand class “2” addes®sthislocaton 25 times,
the outputof the RAM-neurmon will be: [75 25].If class “2” addesss the location 25
timesandclass “1” aldresses the locatioi5 times, the output Wi be:[25 75]. Thus
PCN and EPCNyive the“probablity” of occurence of achpatern.

Adjustment: - For N training pdtern and x division, a numbeg™ occurring in a

memorylocation will beadusted & in equation (2.9)

a a D8
N©
a round(?3d (2.9)

a the new value replacing a in that ldoat

This adjustment is necessany restict the probabity measure of all tasesto the
number of divigon that hasbeen st a piori. If the number of training pattern per class

varies, claseswith large training st would have large probalty ewven when they are

40



not many in the test st or validation ®t. Adjustment reduces this large probdéliko the
real value pesent dung recognition. Adjustmenis also ugdto remove oundingerrors
and trunc#éon errors.

Divison: - This is a value seasthe sum ofall the scaledprobabilty of the classes.
The pobabilty of occurrence of thelasesis proportional to division. & exanple, if
there are 3lasesand the divisinis setto 100, thenf the output of EN is, sg [50 25
25], the sum of this should equal00. This result wil be interpreted as: The pattern
preented to the NN belongs to class “1” th probabilty 0.5, to class 2" with
probabilty 0.25, ando class “3” with probablity 0.25. Notice that thdength of vector
output flom PCN is always equako the number of classe underconsideration.

Merging: - The term merging referred togroup of layers, composed togethso as
to form one layerMergng of maingroup layersconsistof averagng the valuesn the
memory locations wh respet to classto form a sngle canpoundsymbol

Neuron: - The smallest complete functional informatiprocessing unit in the PCN

and EPCN is known as a neuron (see section 3.2 for a detailed discussion).

2.2.3 PCN Network Architecture

The FCN consist of a pre-goup, a mergelayer for the pre-group, the main-grougnd
mergekayer for the nain-group. A feedback path &m the merge lagr of the main-
groupto the man  group layes is included inthe designEach groupis arranged in
layers. E&h layer consis$s of neuons. Eah neuroncorsigs of Soragelocatonscdled

the N-tuplelocations.

Figure 2.5 A schematic representation of Probabilistic Convergent Network
(PCN). This is an example of a RAM-based Neural Networks (NNs). [55]
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An alternaive viewis to regard eeh layer asa look-up table (LU). Theneuons are
arranged in (X * y)-matlices where X* y) represens input patterndimension. Every
elementin an input patternis asciated with a neuwon in each layer. . A feedbak path
from the merge lagr of the main-group to the man group layes is included inthe
desiqn as shown in figure 2.5. The pgeoup layers are meant for learning while the
main-group layers are meant for patter recognition. Pattern learnt durimgngaare
merged and stored in prgroup mergedayer such that the maigroup layer
connectivity can be formed. Results of the mgiiaup layers are merged such that they

can be sent to output and feed back unmodified.

2.2.4  Learning or Training

Leaning stats when a new pattern is presentedhe NN. Itis assumed the patn is

thresholded (binary). The progaresareasfollows:

X Addreses are forned from input pdétern. These ddresses dlso @lled
connectivity) are usdto acess neuwnswithin alayer and location within neuon.

X  The locdionswithin a neuon are rdative to numberof classs.

X  The gze of alayer is rdative to the sze of pattem (Further information are found
in chapter 3).

x  Depending orwhich patternclass an address is foed from, acorresponding
location will haveits valueincrenernted [83]. Othewise zerowill be stoedin
the locdion.

x A normalisaaton phase dllowed. This corsist of dividing the valuen each neuon
location by the numberof training patern of a corregpondng class this is
multiplied by the number of division. The result is roundetd the neargswhole
number as in equation (2.9) of section 2.2.2.

x  These vindle numberswill be goredin neuwon locaionsof the pre-goup

2.2.5 Recognition orClassification

A recognition procedure @sfollows:
x  The pre-group layers Wibe mergdinto a sinde layer; this iscdled pre- goup
merge-layer.

x  Values inthe neuon locaion of the mergelayer will be adusted to m&e the
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“sum-of probabilties” [57] equalto thenumber of division.

X The connectivity and pre-gup mergeklayer will be employed in the formation of
the maingroup layers.

X Adjustment of values in thRAM-location follows.

X Mergng of main-group layers gesmain-group mergdayer.

X  Values in the mergtayer will besummed anddustedto become neural network

output. The output may beddback teratively into the min-grouplayers.

ADVANCES IN CURRENT RESEARCH: After the invention of WIZARD [5], and
AURA [7], there has been extension and variation of application of pyramidal neuron and
Correlation Matrix Memory (CMM). Major researches into weightless neural networks
have been mainlgxtension of the previous one, and application based. Few exceptions do
exist as in Howells [55]. Most current research efforts has aimed to expand the areas of
applications of weightless neural networks as evidenced in Sirlantzis [122], and Lorrentz
[84], where weightless classifiers are applied to biometric and other databasesteA futu
guantum weightless neural network is also “available” in W. De Oliveirg] {13

2.3 Multi -Classifier Systems

Multi-classifier systems begin in the early"1&ntury. A notable invention in the
18" century is the Borda Counts, for combining multiple rankings, named after the
inventor JearCharles de Borda. Subsequently, a pandemonium was invented in
about 1958 by Selfridge. A pandemonium is a learning paradipereby a head
demon would select a demon that performs best. Thereafter follows several
publications about mukltlassifier systems, in which the most notable among these
are Kanal [72] and Minsky [94]. Early works on mtdtassifier centred on
combinng multiple models of the same problem.

In the late seventies emerges distinction between models;\iloske are heuristic
and/or statistical, and those that are not. Many more and differing @&ppoa
evolved. It has now been discovered that the concept of integratingpleudata
sources and/or multiple intelligent system models occurs naturallg@pining of
estimators in econometrics, combining of evidences in-baked systems, muiti

sensor data fusion, and combining of senses in the huerdratnervous system. It
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has been explained that neural networks are expert in one area and her iareas.
This means that many neural networks are experts in different &eakl a single
system be designed which, given different and varied pmollemain, is capable of
providing reasonable solution? The design of such a system is significdrt it
saves time and resources. The answer to this question is the dadsigulti-
classifiers and is the subject of this ssdxtion. he development oflassifier shel
demands huamn expertsin the field of interes. One set ofhuman experts dealsvith
problem epresentation; ey could beengineers, mmagers, ad progranmers. They
define and model thdomain of problemsto be solved. Acther £t of engneerswill
be involved in design of appropaite expert shel A “shell” in the €mse that the
experts bBould not cortain a speciic prior solutionto a speific class of problem but
rather capmble of prowding solution to various blemsds. Ideally,an expert sysm
should haveltte capabiity to learn and continuowsly updae itself [73]. Expert $ells
arecombined in various fornto form Multi-classifierShdl (multi = many). There are
four man architedural category of muli-classifiershel, they are:

x  Paallel system.

X  Moddar (Hierachicd) system.

X  Sequentl (seral) system.

X Hybrid system.

These architectures will be explained below.

2.3.1 Parallel Sysem

A parallel system here refers to a case whereby a machine and oreeoNNs are
arranged to accept input simultaneously, and their output are combined eotigurk
paralel sysem is someimes cdled ensemble-based systemAn example of ensemble
based system is shown in Figure 2.6 which showattgenent of NNs in paallel. It
is to advantageif these Ns are as dferent as podisle. The same inpusignal may be

usedto excite thes@aralleINNs.
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Figure 2.6: Schematic of a parallel Neural Network system. [73]

The output my be combined by:

X Summaion and averagng. [20]

X Summaiton and weighted aveaging.

X  Winner-take-# appgoach nay be employed.

In a variant alled the blackboard syam, various inputs go into a global datadas
system alled the blackboat. This databasé then made visibleo all the NNs. Snce

the NNs are diferent, different decision i$o be expectedat their outputlayers.

2.3.2 Hierarchical System

This isan approachn which input is divded into nanytasks, ad expets divided into
modulesor clusters. @e cluser of expet is assigned to ontask. Modular netwek is
formally definedasfollows:

“A neual néwork is saidto be modularnf the compuiaton performed by the netwak
can be decompad into two or more modules (subdgms) that opertgs on distinct
inputswithout communiating with each other. The outputs of theoalues ae nmedated

by an integréing unit which both (1)decide how the output of he modules Boud be
combined to form theihal output of the system, an#)(decides which modules should
learn which taining paterns” [49]. A schematic of hierarchical system is shown in

45



figure 2.7.1t is possble for onecluster of expets to lean, supervied, while the others
leam, ursupervised. A simple fornof modular networkcorsids of singe NN as a

module and a gatg netwak.

Figure 2.7: Modular network; the output of the expert networks (modules)
are mediated by a gating network.[49]

Before combination of NNs as modulesexperiments areperformed to degermine ther
area of expert. Ad portionof taks areallocaed to eah modules oheural networkby
the gating network, @carding to their capabity. Just as syapse work by geting the
right information at the right time ér opimum performance so dodise gaing netwak
works by geting the right type and amount of training da to the ricdht moduleat the
right time. The gting network eceives the error beween the adual output and the
desied outputof the neural network use thisin a feedback systm to decidewhich
module ofneural networdeanswhich task. hus thegating networkperformsthe role
of a mediator It is also responible for implementing a combination strategy to the
output of the ensemble.

In acomplex sydem, the modules are amged into hierachy. And the amount of
information to eachhierachyis graded, with the module of the highest hiechy having
the least information resolution.Geneally, the NNs in higher hierachy are “more
intelligent” than the oneatlower levels.[73]

2.3.3 Sernal System

The seial system, alsedled sequentil system,comprisesof linking the outputof one
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neural networko the input of the otherOne type of neural networkis used asinput
layer, one or mar typesof neural networkprocessesthe fanin from the input nodes,
and onetype of neural networkmay be wsed as the output layer. Seral sysem is
common in Neuo-fuzzy systemin whatis cdled coopeative neuo-fuzzy syem As

shown in figure 2.8

Figure 2.8: Cooperative neurfuzzy system[73]

Thisis a Multi-expert Bell wherebythe convationalneural networkextractsfuzzy sets

(membership dnction) from training data. Fuzzy neural networkacceptsfuzzy setsas

input from corvertional neural networkcompareit with the fuzzy rulesin a rule bas

(figure 2.8) Other possibilty exist wheeby the @nventional neural network(e.g.

MLP) extract fuzzy rules fom training data or where the neural network is used for

paraneter tuning beforethe input is pipedto the fuzzy system Daa clustering

techniqueds used by neural networkio identify and exiact fuzzy rulesfrom training

data, which is then transferredto the fuzzy syem. The fuzzy sysem implements the
membership dnction and upddesits knowledgebase. One iportant sequenal system
is Neurl Netwak-driven Fuzzy Reasoning (NNDF) designedby Takagi and Hayashi.
[128]

2.3.4  Hybrid System

All otherforms ofcombinationof neural network (theneural network mustbe
independent)that is neither, sequentig pardlel nor hierarchial (modufr) is
hybrid. Various forms exist and could be grouped @ofvs:

1. Those that have theonventional topology but ussfuzzy neuronest their

47



nodes.

2. The conertional fuzzy sydem that employs lasscal neural network for
numercal canputationseither during derivation of membershipudnction or during
derivaion of fuzzy rules. This is dferent from the sequeat system, sce the
classi@al neural networlkcould belocated anywhere within the fuzzy system.

3. Thereexst a groupof classi@al neural networkthat employs fuzy mehodsto
update the weightsinstead of a éaning paameer and ensitivity function (ie.
differertial of log-likelihoodfuncton with respect taveights).

4. A group consist of fuzzy systems andclassi@al neural network working
independently, and synchronised.

5. A groupinvolve one or more mixtesfrom the above-mentionateural network.

One exampleof Neuo-fuzzy hybrid NN was designedby Canuto[20]. In this, a tizzy

neural networkcalled ReFART, a fuzy multi-layer percepton (F-MLP) and rdial RAM

wasused. The ReART neural networks anormal ARTMAP butwith reward/punishment
process The uzzy MLP is a normal MLP butvith fuzzy nodesat the outpunodes. Radial

RAM is a nornal neuon but employs aadal region, definedby its Hamming distance

from a referace pointin its trainingandrecdl phase. Theihal output is then canpaed

with a radial region defineloly Gaussan distribution.
Another important example is the Adaptive-Neork-basd Fuzy inference Sysem

(ANFIS), popased by Jang [67]. ANFIS is a Sugnotype fuzzy system. Tie canmonest

ANFIS sysemis afirst- or zero-order Sugeno system.

CURRENT RESEARCH MILESTONE IN MCS: Research publications on multi
classifier are increasing with notable methods of combinations. Brdit6r{17] utilizes
decision tree as base “classifiers” with boosting, and refers to detnseomulticlassifier
system as the most significant development in classifier desigrsidgbade. Refering to
classifier diversity and biases, Gemam et al. [44], and Mitchell [95] maed that
different types of classifiers have different types of “inductive biases”c@imbination of

base classifiers has witness sequences of developrfrent averaging [108], to majority
voting by Bodgan [12], to using special techniques and/or function by Gunter [119]. The
most advanced stage is the usage of other classifiers forir@imh [109]. Using
classifier for classifier fusion is terméuatelligent combinationThe methods used in this

thesis belong tantelligent combinatiommethod.
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2.4 Hardware Implementation

Neuron was first implemented by McCullogh and Pitts in 1943 whesas represented
by a thresholdogic unit. There after begin hardware development when, in 1959,
Bledsoe and Browning developed the first weightless neural network. Fotjois the
RAM-neuron developed by Aleksander in about 1979. There was a beefesin
hardware neural system development until the-eighties, when it was realised that
the massive parallelism inherent in neural network models doeldtilized to profit
only by implementation in hardware. This led to industrial developméntagous
neural systems in hardware. For example WISARD was developed from-riRAkdN
and in 1986 marketed; AURA was developed by Austin, etc. The early hardware
development also spread to other neural systems such as MLP, RBRyeettardware
platforms utlized also vary from digital, analog electronics, optical, torfddof these
platforms. Neural network research became widespread in theigtiles when it was
realized that the massive parallelism inherent in neural netwodelm@romised great
advantages which is realizable only when implemented in hardwdme. has given rise
to variety of hardware implementations ranging from digaéatl analog electronics,
optical, to hybrid techniques.

Most ANNSs are implementedh sdtware. However a hadware implementation fbers
considerabl@advantages oar sotware implementton. These are:

Speed: - Pipelining andpardlel execution of instrucons is faster than sequéal
execuion. Pipeline instructions are more associated with hardwapéementation of
ANN. Concurrent implementation of both pipeline and parallel instructions are
possible in hardware but scarce in software.

Cost: - In high-volume apptiaions, hardware impleertation will provde overall
reductbn in sysem cost, by reducingtotal componentourt. Total component count is
reduced in integrated systems.

Reliability: - The deci®n (output) from hardwar@eural network isnore eliable
when corcemed with large input data that involve large amountof computation.
Building of fault tolerance into aeural networksystem is easier done in hardware.
The perfornarce of sdtware neural network (e.g.; speed dependent on hdwae

computeron whichit is instdled.
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Property protedion: - Hardware offers proedion aginst “reverg Engneeing”
which could be made use bfy competiors. The protection offeredainst “reverg
Engneeing” may or may not be effectiv®ecryption and decoihg is alwayspossble
with software based neural networks.

As canponents, hardwar@eural networks areavadlable in different forms. These
include enbedded ntrocomputers,Neuo-computers, Cell libraries, chips and PC

accelerators. Hadware NN implementéions are divded into three main caegories

These ag-

1. Digital implenertation.

2. Analogue implementation.
3. Hybrid implementation.

Theadvanageof sdtwareNN is:-

Flexibility: - Software neural networkcould be implemented on any gereral pupose
computer. And is generlly advisalle to do so dumg expeimentation of a new
techndogy or/and a newneural network. Lowolume appliatons sofware neural
network dfers (1) consderable advantagein terms of conrsumpton of reurces; (2)
more possibilty of parameter tuning and dynarnt recorfiguraton. For highvolume
applicationhowever, software neural network is unsuitable due to decreased precision

and long execution time.

2.4.1 Digital Impl ementation

Digital implenertation of NN are charaderised by havng al values represeited in
binary word length. Exact precison values andoperations on values are ade eay.
Weights and coefficients soredin RAM do not needo be refreshed and areefe from
noise. Snceinputs fromthe realworld ae analoge in natue, conveting this to digtal
signal nay lead to distortion, and Icss, e.g. during quantisation. The followings are
diff erent method of digil implementation of NN:-
A) Random Access Memory RAM) based NN: - When ugdto clasgy paterns
not used dumg learning, neural networks tend to generalise. Depending on a
specific NN, there are various variations of the learning proces3he
Probabilisic ConvergentNeuon PCN, outputs agraded response due to

decison reacted from the main group. Samphardware implementations of
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weightlessNN include WISARD, designedby Alexander and Stonhaip3]. A
specdalised processor, the CMNAP, hasalso been designetb implement
Advanced Distributed Aciaive Memory ADAM) in pamllel [74]. ADAM
hardware implerarted, applies the Generadd Hough transform (GHT) to
inputs, eg. document images.Other weightless hardware implemntation
includes pRAM, GSN, etc.
B) Sice Architecture: - These are buildig blocks forNN of arbitraryword length and
size e.g. Newlogic NLX-420, Neual Processor, NtroDevices MD 1220, Phiips
LneuroChip.
C) Multiprocessor Chips: -This involves havng many simple processors amsinge
chip. Multiprocessors havevo method of operation; ons SIMD (Sinde Instruction,
Multiple Data). Hereall processorswork in pamllel, execuing the samenstruction but
on different hput data. The other $ sydolic arrays, the processors operaequentlly,
and onegstep of an instrucion is performedy a processor befoqgessngit to the nexin
the aray. Examples ofSIMD chip are hova N64000HNC 100NAP, SienensMA-16.
D) Radial Basis Function (RBF):- This involves defining and stoing regons of
influence or #ractionsaroundtraining input dda using bass functions. RBF will often
define hyer-surface asundpaints of influence. Canmercial RBF are IBM ZISC (Zero
Instrudion SetComputer) chip and Nestdi1000 Chip.
E) Other digital designs: -Other digital designarethose thatcould not be goupedas
belorging to any of the groups above. Examples a&: Micro Circuit Engneeing
MT19003 NISP (A muilayer Pecepron), Hitachi wafer Integration ChipsHopsdield
Network).

2.4.2  Analogue Implementdion

Analogue neural networks are those neural networks, in hardware impésinent
which employ other alternative means for storage apart from rarmdoess memory.
Information is not explicitly stored in 1's and 0’s. Information is stored in charged
capaciances most of the time. For optical neural networks, informasiatored in light
intensities.

The commonest problem associated with analogue neural network haidvggstem
noise. System noise is more pronounced in analogue neural network as coto@argd
other hardware alternatives, and it causes limited accuracy for the keSecondly, the

components of analogue neural network (electronic or optical) areimtorm. This
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arises mainly from the fabrication process and the operating camdMost learning

algorithms are implementable in analogue, and does give reasonablts. rd$e

algorithms are, in most cases, discretised, and derivatives aezadpby a suitable
approximate equivalent. Most difficulty encountered in implementation of algusitin
analogue, is due to representation of Hinear functions. A good example is the use of

Heavyside function in place of sigmoid function. Another exampleaseplacement of

the Gaussian function in radial basis function network byaagular function.

The implementation of neural networks in analogue has benefiteat® Beneficial
effects may motivate design of neural networkEtli@se benefits, the most important
for hardwarearalogue implementabn of neural networkver all otheralternatives
are-

1. Reakltiime processing: The processing of information is re@the. Intermediate
storage is not essential for its functionality per see dumfgrmation exchange
between the neural network and its surrounding, but is an advantage. Thus real
time processing of information by this type implementat®imherent.

2. High dengy of NN: - Many components are muftinctional e.g. filters. Mult
functional utilisation of component saves resources. If there is little or no
intermediate storage required, then the system could be very compact.

3. High speed:- The possibility of reatime processing and parallel processing
increases its speed considerably.

But the dff icultiesto be surmounted are:-

1. Problemsof reliability and accuracy- Variation in operaing condtions, such as
charges in tenperature, thermal noise, etc., changes the tolerance of circuit
components This in turn makes many components unstable and may change
“weights” stored in capacitors.

2. Problems ofconsistency of weights It is diffi cult to store chargsin a capadarnce
without charges. Chargesta@ed in capatances represent theeights. The
capacitancemeedto be refreshed pedicdly to avoid los®f weights.

2.4.3 Neuromor phic desgn

Neuromorphic refers to circuitry designed which closely emulates biolaggceaion.
The function ranges from classification to being used as sensosikcgn retina,
synaptic touchpad. The Pulse Coupled Neural Network (PCNN) is an example of a

neuromorphic neural network. A common biological model of neuromorphic neural
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network is a model of the cortical column. This follows from taet fthat the brains’
cortical column is mainly responsible for information processithe cerebral cortex.
The cerebral cortex consists of neurons which vary slightly in anatomys the
interconnection between the neurons that plays a vital role in learning. A naocd
often used in Engineering is known as the Hodgkin and Huxley model [52]. The
Hodgkin andHuxley model of a neuron is characterised by membrane potential V
potassium ionic currenty,i sodium ionic currentyp, leakage currentieh, and a
modulating currenty. These currents are voltage V dependent. The time dependent
equivalence of evestat a synapse is described by a concept of spike tidépgndent
plasticity (STDP). This describe the spike train (or the wavefagainst time) of an
event at a synapse.

Hardwareneuomaphic desgn of neural networksn analogue implementationis
very promising becawse this haghe capabity to mimc the biologcal neuronsand
synapses. E.g. Intel 801ZTANN [101]. In a protorantiproton collider at Fermilab
Tevatron, IntellETANN chip is employed in the classification of energy deposited in a

calorimeter as either from electron or from gamma rays.

2.4.4 Hybrid D esgn

Hybrid design aims to combine digtal and armalogue methods. External
communicaions (excluding input ®urces) and weight storageawy be done digally
(apart from surce) while signal processg is in analogie domain. Bellcore CLNN-32
Chip peforms simulatd anneaing usng analogie circuitry. The simulated annealing
schedulesstore weights codficient in the digial domain. Other examplesare Neural
SemionductorChip set compriag SU3232 synapse unit, the B32 Neuone unit, and
RicohRN-100.

2.4.5 Comparison of Implementation Practises

In hadware, NNs are implementedin analogie or digital. The aalogue
implemertaton demands for referce voltag. Reference voltags are dificult to
maintain. Analogue implenertaton hasa very good perfonance and low cost. Once
built, the architeture is fixed, therefore sued only to one tye of target task. Whereas

the embedded system is more robust armcbnfeggurable, thisinvolves the ug of
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software and hardwae. The digtal sysem is divided into ASIC and FPGA. Like the
araelogue, the digtal ASIC is fast to implement, hasxéd architecdure andvery good
perfamance. The dedvantagebeng thatit is only suitable forone type of problem
The recorfigurable FESA has lots ofattradions. In addibn to havng all the adantages
of analoguecountepat, its architecture and system paraniers ae recorfigurable at
anytime. A reconfigurableFPGA may be slower than a “correspondin§SIC because
of extra time required for modification of system parametergital implementatiorof
NN does not gppat floating-point arthmetic, thus runs the risk of nomeonvergence,
and wong output.Software implementaion is low cost, possbility of high preision,
conpad, less tedous, andthe problenof non-convergece,andinaccurateoutput could
be adequily addessed. NNgould be implenented usng any programning larnguagg;
amongthem are Mdab andC.

2.5 Methods of Testing and Validation

By imageswe meanany picture, charader, or number written, painted or captured (
camean) by man or machine. All imagsare procexd by some functions to ste them
to manageable %z Afterwards follows the binarisation procedure that rendeisa\b
image.Oncethey have ben convertedo binary imageswhich areregarded a patems
(or sd). Group of similar pattens are groupedinto one class e.g.unconstrained
handwritten character “2” written by different people all fall ire tsame classor
neural networkhat dependsn weight adustmentduring training, corversionto binary
imagesmay not be requitk Gererally, paterns are divided intthreeparts:-

A) Training set - These are ptarns used for taining. Training setsare ofen sdected
asrepresrtative of a dassof objed.

B) Test set: -These are ptarn which were not uedduring training and which theNN is
expeced to generalise to. dst set is oftemsed, during recognition phaseto obtainan
unbiagd edimate of the generaletion error. Gererally, this %t will be chosen from a
populationof a dass randomly.

C) Validation set: -Validation £t may be the samastest &t or be diferent. This setis
often usedto determine the stability of NN for anytask.And is therefore used to tes
how robust theNN is.

D) Measue: - For pattens without crosszorrelaton, the percentageof correct

classfication could beused as performance measue. This is the case in most of the
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projects treated in the thesis. But getlg, for an outputy, and atarget outputt, the

sumof squared error is often tsedasmeasure of performance. The sum of squared error

is defined as:
1 '\ll 2
[ 2.0, b (2.10)

wherey, = actual output;
t, = desired output;
and /=sum of squared error.
If the target variableis binary, for a gigle output y,we useBernouli randomvariableto
represent the condinal probabiity of equation (2.11)
(2.11)
PtIx) y(t y'
whereP(t|x) = posterior probability;
y = output;
and t = target coding scheme.
Taking the negdive logalithm and summing yields the cross-entropy eor function
given in equation (2.12):

E 1t In(y) @ t) Int y'R (2.12)

n

Where n = number of pattern;
Yn = actual output;
t, = desired output;
E = sum of errors raised to power of n.

For example, for a talg class one t = 1, fazlass one, adt = O for the restlasses.
E) Model Testing: - Model testingaims toinvestigatehow sysem parameers aff ect the
perfamance of NNs. For Ns with weight adustment, this may refer to the learning
rate, biagsand deay tems. For weightlessNN, speifically for PCN, this refers tahe
number oflayer in the pre-goup, the number of layer in the main goup, the division,
and he connetivity patem. Hee, the graph of percentageognition versis pre-group,
main-groupnumberof division, andconnetivity may be ugdasperformarnce citera.
F) Test for Application: - The aim of teging for appli@tion is to obtan an unbiased
estimate of the generéisation error. Cr@svalidation and Bootstrapping ardoth

methodsused to obtan an unbiagd egimate of the genealisation error. The process
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as Pbllows:-
x  Divide the pattern into mubset.
x  Train thenetm times.Then, dter every trainiig period leave one or more patterns
out.

X  Use the omied pattern to compute theegeralisaion error.
Since the number of unclassied and misclassfied patems is under consideration,
leave-v-out cross-Valation is more suiéble, where vis an integer greaer than one. A
suitabde error function should beamble of processingdisontinuouscases. Cross-
validation v, is approximately;

1 a

<

1 — =
og(n) 1 (2.13)

where n = number of training times;

v = number of patterns to be left out.

Sub-samples for trainingill be sekded randonty without replacemat. Fewpatterns

per class ray beemployed for learning

2.6 Summary

The current state of the art in classical neural systems has been iettadgeneral
terms. This is followed by weighted neural systems. Their implementatioin
application in a multclassifieris introduced. Also a class of neural network, the
fuzzy neural network, is introduced as currently and industrially been used. An
introduction to their functionality and application were provided.

Afterwards, the other type of neural network calledvtleégghtless neural network is
introduced. The statef-the-art learning algorithm, implementation, and applications
were explained. This is followed by introduction to PCN. The current state of work
on PCN and its current functionality is introduced.

In the next chapter however, novelty (ies) in the architecture and functionfality o
PCN will be identified. The novelties may lead to realization of PCN potsntial

thereby making it more beneficial than other existing or similar networks.
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3. THE ENHANCED PROBABILISTIC CONVERGENT
NETWORK - EPCN

This chapter presents a novel adaptation of a weightless neural network entitled the dgnhanc
Probabilistic Convergent Network (EPCN). This work is motivated by the né&dNto improve

its performance and widen the problem domain on which it may be appliecbfGme problem
domains is handwritten characters. For this reason, the input mapping methods of EPG&l wil
enhanced and tested on handwritten numerals. The EPCN possesses the ability &deaasoci
relative probability with each candidate class when a test pattern is presentethsification.

The relative probability measures the certainty that #gpva meant for recognition belongs to a
class with the highest probability measure. Two distinct typesP@NEare presented; one is
termed raneEPCN and the other fiEPCN. The randEPCN employs random selection of bits
within the input patterns to form connectivity, whileEBRCN uses consecutive bits within the

input patterns during connectivity formatiorhese EPCNSs are contrasted.

3.1 Introduction

This chapter proposes some major modifications to the customary PCNe The
modifications concern the input mapping method, the introduction of inplingcd
patterns, and image processing possibilities. The custo@ly employs a static
method for formation of connectivities, while the methods of connegtigitmation
here is dynamic. Possibility of input scaling has been introduced whitdnees the
portability of the whole system. Programs for image convergdinary image have
been introduced. They are employed on figure 3.1(a) resulting in figure 3.1(h) as a
example of its usefulness. Figure 3.1(b) is the form acceptald# €CN.Thus input
methods to PCN has been modified and incorporated into EPCNpfmoid other
sources and types of datany other forms, e.g. JPEG, REG etcis automatically
converted threshotled) tobinary image before leg presentedo ERCN's input. A
sample imag, e.g. hurricane Rita (Figure 3.1(&y)ll be compressed and conveed,
ugng a function,to a binary image as in figure 3.1(b).
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The sea body (marked “S” in both figures 3.1(a) and 3.1(b)) is converted to “1”
essentially in figure 3.1(b). Land and green vegetation (Exammpharked as “L” in
both figures 3.1(a) and 3.1(b)) is represented by’0”. There are regions of mixed “1”

and “0 in figure 3.1(b) representing mixed vegetation in figure 3.1(a)

Figure 3.1(b): A binary image of Hurricane Rita.
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The EPCN is a classifier which gives a confidence measure to all classes, based on
supervised learning, when a pattern is presented to it for classificationtype®s of
EPCNSs are implemented; one is called r&RCN and the other termed #PCN. The

major differences between the EPCN designed by the thesis author, and tmeacyst

PCN [55] are:-

X The possibility of adjusting and rescaling any input pattern.

x  Formation of connectivity by using consecutive bits within inputepa coupled
with rejection criteria.

X  Random selection method of address formation. This method is the customary
method of connectivity formation but with the exception that dibates are
functionally initialized and dynamic.

X Improved system interfacing: For example, EPCN can learn/recogaitrern of
type shown in figure 3.1(b), while PCN cannbhis is because the input interface of
EPCN is adaptive and can sense whichgroeessing steps may be required on the
input pattern.

From henceforth, and because of these modifications (enhancements), the PCNs are known

as EPCN- Enhanced Probabilistic Convergent Networks.

3.2 The Input Pre-processing

The input pattern prprocessing into binary pattern will be explained in general
perspetive because prprocessing procedures follow similar sequence for most data
sourcesA holistic processing method is hereby presented.
1) Noise filter is applied to minimize the effect of noise.
2) Edge enhancing filter id applied
3) Athreshold is determined fdinarization
4) Pixels in patter below the threshold will be converted to “0” whereas thasé tegr
above the threshold will be converted to “1”.
Figure 3.1(a) ism aerial pictureof advancing hurricane. As the composition of waber
land aerial imagehanges, figure 3.1(b), the counterpart to figure 3.1(a) also changes in

unison. The prgrocessing procedure is applied to benchmark databases (known as
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CEDAR and NIST). Example of handwritten digits from CEDAR is shown in figure 3.2(a)
while samples ofts binary pattern are shown in figure 3.2(b). CEDAR and NIST

databases are employed in the experimental section of this chapter.

Figure 3.2(a): An extract of handwritten digits from a
benchmark database known as CEDAR.

Figure 3.2(): A binarisedhandwritten digits from a benchmark
database known as CEDAR.
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3.3 EPCN - The Enhanced Probabilistic Convergent Network

Weighted Neural Networks are those Neural Networks whose modificationstensy
parameters and performance depend on weights and weight adjustment. On the other hand,
Neural Networks whose performance and system parameters are independeights w
(and teir adjustments) are called weightless Neural Networks or fRA8&d Neural
Networks [7]. One of the advantages of a weightless Neural Network esttéefirning
algorithm, of which the EPCN is an example. The EPCN consist of neurons which are
arranged into layer. The architecture of EPCN consists of two groups of layers. The group
of layers utilized during the training process is known asgpwap layer. The group of
layer utilized mainly during the recognition process is called the-gramp layersThe
architecture of EEN consiss primarily of these four component layers termed pihe>
group, a mergetayer for the pre-group the main-group andmergetayer for the main-
group It incorporates deedbak path from the merge layof the nmain groupto the
main-group. Each group of the layer is made up of a number lafers with each
constituent lagr consisting of componenbheuons (defined in section 2.2) which
themselvegorsig of a number of storagecations known as RAMocations,as shown
in figure 3.3.

Figure 3.3: An EPCN neuron.

Each storage location itself is divided into separate values for eachnpatss under
consideration for the neuroAn alternative viewis to regard eeh layer asa lookup
table (LUT). The neurons are amed in (x * y)-matrices where X* y) represns the
input image dirensions. Everyelementin aninput imageis asociated with a newon in
eachlayer.The EPCN possesses a learning algorithm which percolates tgeoppelayer
and end in a merged layer for the greup as depicted in figure 3.4. It also has a

recognition algorithm which percolates both the pre and the-graup layers, ending in a
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memged layer for the maigroup. During learning and recognition, an integer number
called division is required foradjustmentpurposes. The ternadjustmentrefers to
multiplying values in a RAMocation bydivision and dividing by the number of pattern
per dass. Two types of EPCN are implemented; one is calledE&EN and the other

termed fixEPCN. A comparison is presented below:

Table 3.1 Comparison of fixEPCN and randEPCN.

The functionality of the architecture depicted in Figure 3.4 is divided into two prosedure

calledLearningandRecognitionprocedure.

Figure 3.4: A schematic representation of EPCN.
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Both learning and recognition algorithms are now presented.

3.3.1 Learning procedure

1) Only thepre-grouplayers will be trained for a given pattern class.

2)  For each neuron in there-group layer, an address is formed from binary threshold input
pattern, governed by the given connectivity pattern for the layer.

3) Depending on the address so formed, the respective -RAation is incrementefor the
given pattern class. Let the input patternxl)e Xg Xo X

1 X Let the set of addresses [m,

213
njp, dIlr, ..., S] be required; where [t,, ] depends on size and dimension of input pattern.
The set of addresses are derived from input pattefieaiure vectors, or pattern attributes. It
is employed to access a given memory location, M. Beipg on the address, A, formed,
(where A = [m,n][p, q][r, ..., S]) a corresponding memory location will be modified asryi

by equations (3.1) to (3.3)

tc 1 tc (3.1)

tc 1 tc
My "= M, (3.2)

when Ais not active
The equation above is an iteratiH VHTXHQFH RI WF

cycle; t = time, and ¢ = a constant. In practice, the iteration is limitaétebgonstraint given

by:

tc 1

M, dD (3.3
where D = the number callelivision
4)  Subsequent to theompletion of traininganadjusment phase @curs tonomadi ze thenatural

number in each memory locatioror N training patems and D division, a frequency of

occurrence of a valu” in amemorylocationwill beadusted as:
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a aB-§

No (3.4)

a round(?3d (3.5)
This adjustment is necessary to riestthe probabity measure of all dassesto the
number of divigon that hasbeen st a piiori. Also if the number of training pattern per
class variesgclasses with large training st would have large probaliyy even when
there are not nmey examplesin the test st or validation ®t. The learning algorithm
utilizes the pregroup layers which are merged to produce the merge layer for the pre
group. Similarly, the recognition procedure utilizes mainly the r@grioup layers which

are then merged to produce the mgiaup merge layer. After the Learning procedures
terminates, EPCN is able to recognise similar objects and patterns. Thiseishyon

employng Recognition procedures. Other views about the training procedure may be

found in [57]. The recognition procedure is how presented.

3.3.2 Recognition procedure

The Reognition procaluresfor EPCNareasfollows:-

1) An Address is formed for each neuron, within fre-group as for training. The
address formed is from input pattern and corresponds to the connectivity patterns of
various layers.

2) The maingroup layers will be merged to form one layer. Locations withie th
neuron of this mergelayer contain independently calculated averages from
corresponding locations of timeain-grouplayers.

3) After merging, an adjustment is required to make the “sum of probabiljb&$
equal to the number of division.

4) The output of tB maingroup mergdayer is fed back iteratively, a fix number of

time, or until the solution stabilises, whichever happens first.
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3.3.3 The PCN Software Implementation

In this subsection, the PCN functions, PC configuration, and Matlab configuration on
which EPCN was prototyped will be introducedlhe software modelling of EPCN
employs Matlab because of its availability, costum functions (e.g.csis, plot, etc.
functions) exist already, and because it is more suitable for engineeoitogypmg. As
compared to alternative modelling software, matlab require less efforden tr produce
simulations. TheMatlab is the medium of software implementation. In Matlaelp
about a PCN functionis obtainable Pr individual functon by typing:
>>help function_name
on thecommandline. Here, fundion_nameis the nameof an EPCNfunction under
inquisition. These functions are iten in Matlab, with the usual Mdab's function
naming method i.e.
functionans= function_name(varables)
as the first linein the M-file. After that, important constants are spéded, which
followedby the algorithm which the function implememhencalled. Itis often thecase
that one function clls another. This mainias interreltionshipbeween EN functions,
analogusto the synapse betwaneurons. The Mé&ib usedin this casewasinstalledon
a PC situadin theDigital Regach Labaatoly.

3.4 Experiments and Analysis

Experimental Data
For EPCN to be able to learn and recognise objects and images by following th

procedures above, pattern and images are first binarised. A binarised imageESeGN

as experimental data for training and recognition. These experimental datheuseate

handwritten digits “0” to “9”, and letter “T” and “I”, binarised, and come fropurses

listed below. The sources are:

x  The Centre of Excellence for Document Analysis and Recognition (CEDAR),
University at Buffalo, State University of New YorRQepartment of Computer
Science. Handwritten numbers from CEDAR were resized and binariseebie216

in dimension.
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X National Institute of Standards and Technology (NIST) in Gaithersburg USA. NIST
provide the handwritten simple form (HFS) of numerals, which were binarised and
resize to 3z2y-32.

The pattern used from CEDAR and NIST are handwritten number “0” to “9”. These are

thus named class 0 to class 9. The number of patterns in each class varies from 200 to 1000

depending on class. These numerals are divided into training patternssamétterns.

Training patterns and test patterns are stored in different directory. Tesnpato not

form part of training patterns and vice versa.

Statistical analysis reveals that the errors incurred are negligibly simatl sample size

[96] equal to or greater than 30 patterns were used from each pattern class. This applies to

both the test and training classes. Thus in this work, sample size betive®0 patterns

per class will be used.

The aims of this experiment are to evaluate the networks, and to inveshigagffects
of changes in system parameters with respect to performances. The firshthbases
mentioned are more relevant to these tests since they are complete, ldrigenammark
databases. These databases are independently collected from the societyprEseytre
unconstrained handwriting of various individuals. Each hand writnghdependently
collected. Thus these databases correspond to real and natural te&BCR on
unconstrained handwriting of numerals. Simulations were performed on EPCN using the
experimental data detailed above. The training patterns from experimendaladat
supplied to both EPCNs at its input during learning while the test déa, fom
experimental data, are supplied to the EPCNs at its input during recogiiitiis is done
during all the experiments. Three types of simulations were performdk-&PCN in
order to determine dependence of percentage (%) recognitipre@moup layers, main
group layers, and division. For rarPCN, variation in connectivity pattern is not
measurable when division is varied. For this reason, two types ofasioms were
performed on randEPCN; these are variation of % recognition with respegiréegroup
layers, and variation of % recognition with respeanngrouplayers.

Previous works on EPCN detailed in [55], hypothesised that the major causes of

variation in performance of EPCN depends on the group layers, number of division, and
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the connectivity pattern of layers concerned. The experiments detailed here aerif/to

these hypotheses.

1. In the first experiment, the number of divisions and the numbpresgroup layers
is held constant while the number a@haingroup layer is increased rédm
approximately 2 to 9. Percentage (%) recognition is used as performanageneas
The percentage recognition is recorded after every increase in the nunni@inof
grouplayer. This is done both for fix-EPCN and radBaBCN.

2. In the second experiment, the number of divisions, and the numipeaiogroup
layers is held constant while the number ppé-group layer is increased from
approximately 1 to 11. Percentage (%) recognition is used as performancgeneas
The percentage recognition is recorded after every increase in the nungrer of
grouplayer. This is done both for fix-EPCN and rd&aBCN.

3. To investigate the dependence of performance on division, the numpes @ind
main-group layers is made constant while the dieisiis varied from approximately
100 to 1000. Values of % recognition are recorded after every change in division.
This experiment is performed on f#&PCN only. Results obtained are recorded in
the table 3.2 and 3.3.

Table 3.2: rand-EPCN; Record of perentage recognition when

system parameters are varied. Numbers cfaamd mairgroup
layers, and numbers of division constitute system parameters.

Considering Figures 3.5 and 3.6 below, we note that as the number of layers increases,
more class representative features are extracted from input patterns, and the

performance increases until the maximum is reached.
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Table 3.3: FixEPCN; Record of percentage recognition when system parameters are variec
Numbers of preand mairgroup layersand number of division are system parameters.

Maximum performance occurs at 85.7% in figure 3.5, and 67% in figure 3.6. From point
(85.7,5) in figure 3.5, and point (67,9) in figure 3.6 onward, a decrease in performance
is observed. This is because the number of iteration is not sufficient tanafmoother

additional features extracted from input patterns.

Figure 35: A graph showing the effect of the majrouplayer on
performances. This is a plot of table 3.2 and 3.3 column 1 vs.2.
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Figure 3.6: A graph showing the effect of the pgeoup layers on the
performancesThis is a plot of table 3.2 and 3.3 column 34ss.

Figure 3.7: A graph showing the effect of the Division on performance.
This is a plot of table 3.3 column 5 V&.
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Additional features of EPCN is its ability to leave areas of local maximum amsaio

point (65,5) in figure 3.6. It is not unusual to obtain a local maximum solution for a
problem. As long as the network is able to leave the local maximum and achievala glo
maximum in quest, the aim has been achieved, and local maximum may be ignored.
Saturation of RAMneurons can also prevent performance from increaBiagn figure

3.6, there is no (except at point e = 3) difference between the performance ofdixd
randEPCN. But from figure 3.5, the performance of-BRCN (maximum at 79%) is
lower than that of rarEPCN (maximum at 86%). Since the difference betweeERLCN

and raneEPCN is in their method of connectivity formation, it would baduoded that

their methods of connectivity formation has led to this performancereiif€te. The
division value is employed in the adjustment phase to limit the pidpaimeasure.
Percentage recognition is related to the probability measure throughvesagiag
procedure. This means that changes in the value assigned to division |y ditatéd to
changes in performance. As the value of division increases, more bits becormmlel@vail
enumerate the features of input patterns. This leads to stadbilisd probability measure

for the different classes as the neurones reaches a consensus concerning the different
classes. This leads, in turn, to increase in percentage recognition. snithéhpercentage
recognition increases to 69.35% in figure 3.%.tAe value of division becomes very large,
same sets of features are enumerated repeatedly and this forces EPCN to reacimg repeati
sequence of state. This event is witnessed, in figure 3.7 when the division is 500 and 1000.

3.4.1 Benefits of weightless NeurabystemEPCN

Benefits derived from using the implemented neural network are:

x Oneshot learning (as explained in chapter 2)

x Easier to make fault tolerant because of its binary nature.

X More amenable to digital implementation

X Minimum of mathematical (floatirgoint) computation

X Increased speed
Though these benefits are not exclusive to weightless neural networks only, only
weightless neural system possesses all the mentioned characteristics cdyncliirese
points might be exemplified by comparing EPCN wstiate of the art neural networks
such as MLP.
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3.5 Comparison of EPCN with other Neural Networks

A learning cycle is known as (one) epoch in weighted neural system whilégintiees
neural system referred to as guess or onshot. Weighted neural tveork requires more
than one epoch of learning cycle, while the weightless network require@ass®ver the
input data.

Digital system is known to be resistant to noise because of its binarg.n&ioce
weightless system does not require weights and activation functestradunctions (e.qg.
Fourier) are known and discrete. Thus noise sources are easily ideatifiedvhen
necessary, removed. A great deal of effort is required to maintain an analeghts or
the charge on an ion for a long time. Thus the weightless neuron is more amenable t
digital implementation.

Table 3.4 shows a comparison of EPCN with o#iilar weightless neural networks.

It is possible, either automatically or otherwise, to map almostgabedic computation to
its Boolean logic equivalent. Mapping problems to its Boolean logic algmiavoids any
computation (most espially floating-point) overheads that might be required in, for
example, a weighted neural system or any other alternative systems. Majuilegnsrto
a Boolean logic equivalent is not a trivial task.

An increased speed may be inferred from lower computation demand and a
learning/recognition cycle of ofgass over the input data.

Inferring from the result obtained, for practical purposes, EPCN may be useful in
preliminary decision making and routine classification purposes. ERICNs are

unsuitalke in their present form (they require optimisation) for sensitive application, for
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example, in security issues and indifeath issues. In these areas, one expects error of less
than 1%.

3.6 Summary

Novel methods of connectivity formation have been introduced to EPCN. The random
selection of input bits within the input pattern to form conindgthas been shown to
improve percentage recognition. The dependence of performance on values of dndsion a
the number opre- andmaingroup layers has been verified. In this experiment, all inputs
were static during learning and recognition. Cases of moving object and/or moving
surrounding were not investigated. This experiment was designed totigates
performances of EPCN with respect to their system parameters and emphsasm®tw
placed on state of database. This may be considered as areas of future research and
development.

The results of this chapter call for improvement in implementation as tfegrpances of
both EPCNs are generally low.

Two types of EPCN have been implemented. Combination of these two nestlieta
may form a multiple classifier structure (with or without additidnother NNs) which
may find application in Automated Caal and Guidance Systems, Robot visual guidance
systems, etc. In the next chapter however, use will be made of achastifier derived
from these two EPCNSs.
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4. A WEIGHTLESS ARTIFICIAL NEURAL BASED
MULTI-CLASSIFIER

Recent years have witnessed intense research in the general area eClslssifier
systems (MCS), but this has rarely incorporated any utilisation of weightless neural
systems (WNS) as the combiner of an MCS ensemble. This chapter explores the
application of weightles networks within the multiassifier environment by introducing
an intelligent multiclassifier system using a WNS called the Enhanced Probabilistic
Convergent Neural Networks (EPCN). The chapter explores the use of EPCN by
illustrating its major featues, such as the specification of disjoint or overlapping input
subset to the MCS, and the parallel nature of the design. Within the proposed system, the
number of base classifiers per MCS could be specified manually or automatically. The
proposed MCS is pblemdomain independent and, our investigation is performed on
handwritten characters. The proposed MCS is adaptive; its combiner is capable of
extracting absolute or weighted classification decision (outpuijnfrbase classifier.
Diversity is increased in the base classifier by injecting randomnessthietasystem
parameters. Two types of EPCN classifiers are employecEFRN and raneEPCN.

These EPCNs are independent and orthogonal in behaviour because one uses a fixed
method of forming connectivity Wd the other uses random method of forming
connectivity.

In order to verify the performance of the recognition system, tests werenpeafaff
line, on benchmark datasets of unconstrained handwritten numéngdsrimental results
suggest that MCS tperforms single EPCN in classification of handwritten clotees.

Artificial Neural Systems in general and Weightless systems in partikwdag traditionally
struggled in performance terms when confronted with problem domains possessiyg rauliarier
of independent pattern classes. The overloading and saturation experienced by traditional
networks is addressed by training the base classifiers on differing sudistsie required pattern
classes and allowing the combiner classifier to derive a solution based whateensemble. The
system is demonstrated on the exemplar of fingerprint identification and sud@id&’eightless

Neural System called the Enhanced Probabilistic Convergeatal Networks (EPCN).
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4.1 Introduction

Motivated by the performance of each of the EPCN in chapter 3, the implemeiotatio
a multiclassifier is conceived. The aim of the mualassifier design is to improve
recognition on handwritten characters; most especially an improvemesiagseswith
low performance (i.e. the “difficult” pattern) rate is desired. Over receatsyea
significant research effort has been devoted to the development otchasttifier systems
(MCS) [109]. MCS consist of component classifiers, possibly of an artificial neural
configuration, called base classifiers, arranged in a specific fashion socasytmut a
specific task which would otherwise yield a poorer performance should such a task be
performed by a single neural network or classifier. The specifimgeraent of this
classifier s is commonly referred to as a classifier selection. R. Ranawana [109
summarises various methods used in classifier selection but doesmnifatasigly include
weightless classifier. Weighted classifiers are that classifier whose marfoe and
system parameters depend on weights and weight adjustment. In contrasigerclas
whose performance and system parameters do not depend on weights (and their
adjustments) is called weightless classifier. It is highly suitableiniplementation in
portable embedded systems and its ability to efficiently learn with a reduiceloen of
training iteration. In a weightless classifier, binary weights are stor@dedneved from
RAM. To date, most significant research in classifier usdd@$ has involved weights,
for example [36] uses classifier selection based on weights. This chapter presents an MCS
employing weightless classifiers. The base classifiers employed in dhksare derived
from The Enhanced Probabilistic Convergent Network, EPCNtails of the base
classifiers were published in [85].

But the multiclassifier designed is useful only if the number of classes is large, ten (10)
classes and more will be employed. A mulassifier for largescaled multiclass
classificaton is motivated by the fact that most stafe¢he-art multiclassifiers has been
shown to fail, in performance term, when the number of pattern classes beamyes
large. This scenario forms the motivation of this chapter. The issueplyirapa RAM-
based multiclassifier to largescaled multiclass classification tasks is addressed here. As
the number of pattern classes required to be recognised by an artificidlgystees are
increased, problems associated with the overloading and saturatiennaftévork begin to
manifest themselves. This chapter presents a novel method which not osl{oasolve

these problems, but is also able to produce an appreciable recognitiompade when a
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large classification is required. The solution that thisptdra presents comprises of
partitioning the pattern classes into disjoint -sebs, and employing a muttiassifier
system (MCS). The component classifiers are derived fromEFt@anced Probabilistic
Convergent Network, EPCN.

This chapter is orgaresl as follows. Sulection 4.1.1 introduces muttiassifier
system. The design of the MCS commences in section 4.2 where an MCS émigem
using EPCN is introduced, and then experimented on in section 4.4. The odsained
were recorded and analysed section 4.5 and 4.6. The chapter completes with a

summary and areas of further possible experimentation in section 4.7 and 4.8.

4.1.1Introduction to RAM -based Multi-classifier

Two types of EPCN were introduced in chapter 3. They were tested on handwritten
numerals. Here, base (component) classifiers are derived from these EPCNs. élhe bas
classifiers derived from EPCN (Chapter 3) will be employed in a folalssifier
framework. In order to facilitate the employment of EPCN in sector suclcastgend
health, an improvement on the performance of chapter 3 is required. Whilstaming
the benefits of section 3.4.1, it is considered significant to achievearparice in excess
of 90% on handwritten characters and numerals such as that EPCN are further useful. It is
expected that the design and employment of Mudtssifier on handwritten character will
improve performances as compared to when a single EPCN classifier is emflbged
EPCN is a classifier which allocates a confidence measure to each candidateasieds
on supervised learning, when a pattern is presented to it for classificAti interested
reader could consult [85] for more detail on EPCN.

A significant component within the design process of an MCS systema seléction of
the base classifiers to employ. The most common selection methods usedsdor b
classifiers are: input data [109], Genetic Algorithm (GA) [2], Objective functions [112],
[119], Random selection [42], Boosting [42], and Bagging [119]. Some designers [42], [55]
makeclassifier selection to depend on certain diversity measures.

One of the most successful ensemble creation methods is the random esuhsitend
[42]. Here input space is partitioned by random selection into subspaces of equal length
and a classifier is assigned to each subspace.
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The most common arrangement of base NN used in an MCS is the parallel method.
Other topologies are the cascading and hierarchical topology [34].a@riBima [26]
proposes the implementation of a hierarchical mixture of experts and fileyemnt of
dynamic reconfiguration to analyse robot dynamics.

It is essential that for classifier to be included in an MCS, either therpenfice must
be significantly above average (50%), or the classifier must make sitheficant and
positive contribution to the ensemble after combination, which may@&cexpressed in
terms of percentage performance. Lam [79] states that orthogonality; exoerghrities
and independence of a base classifier determine its inclusimm MCS. During training
and recognition, each base classifier utilises its normal training aagnigon algorithm.
The combination of base classifier output is catiiedsifier fusion Various techniques for
classifier fusion are broadly divided into:objective functions [120]; Qualitative
combination [11]; intelligent combiners [35]; Fixed combiners lmalanced classifiers
[112]. Significantly, EPCN, when used as a combiner, is a novel weighiitskgent
combinersince it possesses its own learning and recognition algorithms.

A. Krzyzak [135] categorizes combiners of MCS into two, namely, featrtor
based method (i.e. using neural network) and syntaatistructural (i.e. fuzzyule
based) method. [119] categorises them as: Linear, -IMear, Statistical, and
Computational Intelligent combiners.

The overall performance of an MCS is often compared to a single base classifier.
present, it is difficult to quantify how diversity measure affects pewoce, most
especially for MCS amprising large number of base classifiers. Gabrys and Ruta [12]
maintain that diversity measure has limited correlation with MCS pesiocen It should
be emphasised that MCS performance depends on careful selection of bafserslddsi
[77] uses a Regtion criterion and reliability to measure performance. The rejection
criterion and reliability are numerical quantities derived from a fuzzggral. A
performance improvement has been made on isolated handwritten characters [126], whole
words [121], postal addresses [70], [77], and bank cheques [63]. It is difficult to achieve a
high recognition rate using a set of features and a single classifiersTdesause totally
unconstrained handwritten numerals, as is the case in this work, cantaipprei@ble
level of pattern variation which mainly depends upon individual wriiyte.

The design of MCS using EPCN asiatelligentcombinermwill be the subject of the

next section.
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4.2 The Design of an MCS from EPCN

Multi-classifier utilising weightless classifiers are currently rare. This septiesents
an MCS that utilises weightless NN callEdhanced Probabilistic Convergent Network
(EPCN)[85]. MCS may be grouped according to their output. A formal grouping of such
classifiers is: abstract form, rank level, and measurement level [109]. eS¢, thhe
measurement level group is relevant.

x  Measurement level:No attempt is made to arrange the output of a base classifier in
any order, since the order of valuesitself has meaning. Each class is assigned a
belief of the classifier about the input. The result is an array of belief valhese
classifiers are also callggrobabilistic classifiers Fix-EPCN and randEPCN are
novel weightlesgrobabilistic classifiers

Previous studies have shown the performance of both EPCNs to be well above 50% [85].

Fix-EPCN is orthogonal to rarPCN due to its inherent method of forming connectivity.

The randEPCN uses random method while -BBPCN uses a préefined or “fixed

method, a systematic method which is reproducible.

These EPCNSs are designed to be independent and without correlation with regards t
their errors, giving no consideration for any future input dataset. Varying the system
parameter of each EPCN hagr@found effect on their decision making. These decisions
(outputs) do not give rise to error correlation, for disjoint input dataset. Thus EPCNs are
good candidates for MCS production.

In this work, the input space is partitioned into overlappingeaisband a classifier is
assigned to each subspace. This allows for a clear comparison with a starsiadbe
classifier. Since this MCS uses EPCN, it will henceforth be denoted by ME3&C
short. MCSPCN is designed with the possibility for dynamic reconfiguration, and the
parallel scheme is employed. In a changing environment, system parametdrdeou
made dependent on changes in the environment.

Diversity is increased in MCSPCN by incorporating diversity withine ttraining

algorithm [106], [109] of all EPCNSs. This influences their behaviour during training and

recognition. For example, if F classifier is required, andcldsses each, this will be
specified as:

>> mcspen(F,INr,c); 1=1,2,3, ... (4.1)

where,

r = number of rows in pattern.
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¢ = number of column in pattern.
For each F, the size of fay vary or overlap.
This work utilises theComputational intelligentmethod for classifiers fusion by

employing another EPCN as the combiner.

42.1 Combiner Unit

The termCombiner Unitrefers to the EPCN combiner MM ], and the gating functioh

() (See fig. 4.1)The gating function consists ofdecision makeand aconverter.The

Decision makers required for the following reasons:-

X  If the same character is classified or assigned by different NN to differingslasd
these classifications are correct, without deeision makerthese two interpretation
will be converted to different imagdxy theconverter A correct classification of a
pattern by different NN should produce similar pattern for the EB@hbiner to
train.

X  The combiner EPCN does not know if the input space overlaps or notleClson
maker is also required to monitor ovepaand to reflect this it its output by
weighting.

Decision Maker: - The decision makerconsiders the performance of the component

classifiers with respect to the classes, and passes its decisiorctmvegter It utilises a

weighting strategy on the quit of the base classifiers when inputs overlap. This

weighting strategy affects only those outputs corresponding to the region of input overlaps.

A zero weight switches off an output of a base NN with respect to a givex) olaite a

weight greater than zero switches it on. The decision maker does not eliminase a b

classifier, but only inhibits certain outputs with respect to certairsetasrhis inhibition

depends on input space overlap and performance on that class. For examgber a

charactera” is trained to one NN as class 1, and trained to another NN as class 2. During

recognition, correct classification requires the first NN to classifyas class 1 and the
second NN should classify it as class 2. @eeision makers responsible fornforming

the converter that the two output are the same i.e. are correct classifiaztl'a".
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Figure 4.1 The MCS unit is divided into multiple EPCN group and combiner EP@Npgr
The multiple EPCN group consist of EPCNSs in parallet pre-groug M; = main-group,
i =1,2,3,... f(.) = gating function. P= combiner’spre-group M, = combiner'smain

group.

Converter: - This converts theDecision makefs integer output into binary, e.g. for

division = 1000, [0, 0, 65, 45, 0, 0] will be converted to:
[0000000000
0000000000
0001000001
0000101101
0000000000
0000000000];

EPCN-combiner configuration: - An example configuration of EPCN combiner is shown

in figure 4.2.
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Figure 4.2: An EPCN configuration.

In the first field, nosteach number represents the number of training patterns per class.
The second field, nclas, represents the total number of classes. Theiekird fthe
number of layers in the pgroup. The % field is the number of columns in the image
while the % is the number of rows in the image. The last field, ntuple, is the-sigse

The combiner'snaingroup'sconfiguration is the same, except the field “nlay" is replaced
by "mglay”, where "mglay" is the number of layers for thaingroup. Thus we have a
MCS that looks like fig. 4.1, where [MR] is a base classifier; i = 1, 2, 3 ... This multi
classifier will be tested in experiment section.

Advantages of weightless classifier are their fast learning algorittease of
implementation in digital hardware, and ease of implementation in abwrmbedded
system. It could be argued that in a weightless classifier, binary weight&csied and
retrieved from RAM. An important component within the design process of an MCS
system is the selection of the base classifiers to use. The combinatiaseo€lassifier
output is callectlassifier fusion.The design of MCS in this section is input independent

and it uses EPCN as artelligentcombiner

4.3 Multi -Classifier System for Biometric Databases

Much research is currently based on biometric identification, but moses¢ tiesearch
efforts have utilized other means, not involving weightless neurabonis. This is
because of problems of biases and saturation which accompanies such vemiure wh
weightless neural networks are employed [7]. For these reasons, aclamsifier is
proposed in this chapter in which problems such as biases and satisrap@tifically

considered. Fix-EPCN and radRCN are novel weightlegsobabilistic classifers
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From the fact thamho error correlation exists between their outputs for disjoint input, and
varying the system parameter of each EPCN has a profound effect on their ddoesien,
make them diverse. Thus, by varying their configuration, EPC&sexy good candidates
for MCS production.

Since this work is concerned with large classification domain, the pattessesl are
partitioned into disjoint subset and a classifier is assigned to easpasegb This also
allows for clear comparison \hita standalone single classifier. The system parameters of a
component EPCN are shown in a structure of figure 4.4, and an extract of fingerprint from
FVC2004 database is shown in figure 4.3. The system parameters influence their
behaviour of the base classifiers during training and recognition. A desired number of
classifier required and number of class per classifier is usually spe@fiséCSPCN
(equation (4.1)). For example, if F classifier is required and wjthld¢ses each, these
values will be utilised for mukclassifier initialisation. For each F, the size ehiNy vary,
overlap, or be disjoint as in this case.

In this work, the classifiers fusion method used is @@mputational intelligent
method. his is a case where another EPCN acts as the combiner.
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Figure 4.3: A sample Fingerprints from database DBA 1

Figure 4.4: A component (base) neural network’s configuratior
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In figure 4.1, [R, M;] are the component classifiers, i = 1, 2, J(.),is the gating function,

while [P, M] is the combiner.

The Input Pre-processing

The preprocessing steps are experimentally determined so as to minimise ahsodrti

local features. Global feaes of the fingerprints are ppgecessed as this will leave local
features as they are. The proposedgroeessing steps are summarised below.

» Geometric alignment: The smallest bounding box for each fingerprint is found. This may
require rigid (uniform) rotation and/or translation of the fingerprint involved. The
alignment serves to isolate only relevant region of the fingerprint égpnocessing.

« Effects of uneven illumination are removed by morphological element (windo

* Noise is removed by filtering.

» The edges of ridges and valleys are emphasized by edge enhancing filters.

* Pinches and punches are corrected for by interpolation.

» downsampled fingerprints are binarized (see figure 4.5) using a one-value thresholding.
The binarised fingerprints are of the form accepted by EPCN. The resultiegpfiimg is
downsampled. Though the downsampling is uniform, no adverse effects were observed on

the local features.
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(@) (b)
Figure 4.5: (a) Processed fingerprint, (b) binarised picture of fipgat.

4.4 Experimentation

Chapter 3 demonstrate the difficulty experienced by a single classifier avinegh
performance rate is required. For this reason, the same CEDAR database i@nmploy
this experiment. The aim is to achieve higher performance rate on datalfases o
unconstrained handwritten numerals, a performance such as may not be possible for a
single classifierOff-line handwritten characters and numerals recognition &éas & topic
of intensive research for many years. The performance of EPCN as combiner should equal
or surpass that of feature vector based classifiers or syntactic/struct@aldbessifiers.
The MCSPCN is problerdomain independent and as such shouldopma well on
handwritten characters. The source of totally unconstrained numerals used in this work is:-
x The centre of Excellence for Document Analysis and Recognition (CEDAR),
University at Buffalo, State University of New York, Department of Cotap
Sdence. Handwritten numbers from CEDAR were resized and binarisedag2A464in
dimension.
The pattern used from CEDAR is handwritten numerals “0” to “9”. These asdahelled
class 0 to class 9. The number of patterns in each class varies from 200 wepending

on class. These numerals are divided into training patterns and testafiining
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patterns and test patterns are treated independently. Test patterns fdomeart of

training patterns and vice versa.

Experiment 1 (five NN; five classes each)

The aim of this experiment is to determine if the combiner can successtatyret result

and ignore individual erroneous result from the component classifiers. In this experiment,
the input space was partitioned as shown in Table 4.1. In this experthesiraining set

of the classes overlaps. Cases of disjointed training set of classesseusseld in
experiment 3. Where, for example, classifier NTWL1 is only trained on classes 0 through 4.
The component base classifiers, NTW# (where # = 1, 2, 3re)assigned to be trained

on the subset of classes depicted in each row of Table 4.1. Theetsuy strategy has
been employed in order to artificially lower the performance of each of the basiiela

to observe if the PCN combindR., M, is &le to allow for the poor performances and
give a good overall resuttthis is significant.

During recognition, each network is required to classify patterns dialpmo all the ten
classes. All patterns that result were collected in a directory. These wereaads
separated into training set and test set. The training set is used to traimbieecavhile
the test set was employed during recognition. The performance metric udbe i
percentage (%) of patterns recognised. All results obtained were processed and important
results recorded in Table 4.2.

Experiment 2 (five NN, ten classes each)

Obviously in practice, base classifiers would be trained on the entirenpaties set. The
second experiment is therefore aimed at determining if the MCS performs batteany
of the component classifiers alone.

Experiment 1 is thus repeated with each of the five component classHieedton all
10 classes. In practice, this is done by settimghband N= 10 in MCSPCN (equation 4.1
of section 4.2). During recognition, each network is required to classify patterns belonging
to all the terclasses. The results were later collected and processed by the gating function
(.). Again all patterns that result were collected in a directory. These are aaftterw
separated into training set and test set. Training set is used to traimibi@eowhile the
test set was employed during recognition. The performance metric used iscibet g

(%) of patterns recognised. This follows because all numerals were written independently
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by distinct writers, and no correlations were found between themegllts obtained were

processed and important results recorded in Table 4.3.

Table 4.1: Partitioning of the input space in experiment
NTW = Base classifier; # = number.

Table 4.2 Comparison of a combiner with base neural networks when F £5;
5. Clasf. = classifier; NTW# = Network, where # = a number. % = percentage.

Table 4.3 Comparison of a combiner with base neural networks when F #5101
Clasf. = classifier; NTW# = Network, where # = a number. % = percentage.

Experiment (3) on Largescale Multi-class database

The an of this expamert is to explae how EPCNs in a Multi-expert
configuration perfan when exposedo large classiftation poblems with fewpaterns
per clas

For the experiment, the input space is partitiomed disjoint sibset and a
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classfier isasdgned to each ubspace. Tis allows for aclear comparison wh a
standalone sirg classfier. The performance of theNN-based clasfiers, EPCN as
comhner, should equal or surpassha of feaure vedor based classfier or
syntactic/sructural based classifier MCSPCN is probem-doman independent
MCS andas suchshouldperformwell on fingerprint databases.

The database used for this experimis DBAL1 from the Tilrd Interndional
Fingerprint Verification Compettion 2004, FVC2@04. “NOTE: FVC2004 databass
are markedlymore dificult than FvC2002 and FVC2000 ones, due to the
perurbatons deliberatey introduced...” [43]. Most &perimentaton methods rely
heavily on minutiae and templatematching of minutiae. Holignum [53] employs
the graphical méibd, Jain[65], [66] uses pont patten matching, Wahab[132]
empby dructural matcimg technques to minutiae, aaxd Tico [129] uses
trangormation operation.To improve on these methods, Maio and Maltoni PO]
introduce the detection of false positive [60], [106], [133] provides methodsaimed at
removing false minuti@, and [85] uses NN for minutiae filtering. The advantagef
using an artiicial neural networklANN) ingead of minutiae analyis [85], [106], is
that a globalopemtion on the imagesis less sensitive to local distati tha
normally occur during extretion of local features. Fingerprints this databas, of the
type shown in figure 4.5are exracted ino adirectory(seefigure 4.5(a)). Theyarethen
filtered, centred andthenbinarised (see figure 4.5(b)). Bchfinger printedin variousforms
represents alass The binarised fingrpiints are divided irto two <ts, the training set
andthetest set. Eah sd consist of 10Glasses. This mativatesthe initialisation of MCS
consistng of 10 classifiers,and 10classes per clasfiers. In pratice, F, the number of
NN, is ®tto 10, and N, the numberof clasgNN is =t to 10, these are psed to the
program MCSRCN (in equation 4.1of sction4.2).

4.5 Results and Analysion Large-scale Multi-class database

Table 4.4 is obtained with an MCS of ten classifier and ten classes perealassifi

During the experimentatiorthe input space is partitioned into disjoint subset and a
classifier is assigned to each subspace, and little corrections were matuke ffdlotving
deformations:

x  Shifts
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X Rotations

X Intensity changes.

Table 4.4 This table shows the performance (in % of patterns résednof MCS
with respect to large pattern recoanition problems. In g dingerprints.

x  Occlusion

X  Pinch

X Punch.

The conditions under which these fingerprints are collected are as specified in [43]. Edge
enhancing filter is applied, and this is followed by binarisabbrthe fingerprints. The
reason for avoiding intensive ppeocessing is to prevent artificially adding to local
distortions already present, and leave all decision making processes to th&@ hkNs
makes the processes close to -fiéalrecognition system, and also decreases processing
time.

Performance Measures: On databases such as fingerprints, the most commonly used
performance measures are: True Acceptance rate (TAR), true rejection rate (TRR),
Predictive value positive (Pos), and Predictive value negative (Neg). Tleegpeaatitative

measures of the trustworthiness of results obtained. However every output of EPCN, in
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recognition mode, includes confidence measure. The confidence measuree or th
trustworthiness measure issaaled probability meaure scaled by a value called the

Division. For example, an output of EPCN is as shown in figure 4.6.

Figure 4.6: An Output of EPCN.

The important field in this structure is “desout”. This states that ttveonle is trained on
ten classes. When a pattern is presented to it for recognition, it is (450/1000)% (the
confidence measure) likely to belong to class ten, (118/1000)% likely to belong to class
two, etc. The summation of the numbers (variables in the field “desowti)dskqual the
variable in the field divisionThus results from EPCNSs, and Muttassifiers dependent on
EPCN, are inherently with trustworthiness measure. From table 1, thksrelow
recognition performances ranging from 0% to 100%. In the MCS configurdtised, no
selfreconfiguration was employed, the component classifiers employed ar®oifeadd
supervised EPCNSs. It may also be noted that most classes has their i@togiitabove
50%.

Because of zero cros®rrelation and independent update atdisses, percentage of
pattern correctly classified may be regarded as optimum performance metric.

4.6 Result and Analysis on experiments 1 and 2

Table 4.2 illustrates the result of experiment 1 and is obtained when F =55 ¢
specified to MCSPCN (function 4.1 of section 4.2) with the databases specified in section

4.3 is employed. Table 4.3 represents the result of experiment 2 and is obtained when F =
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5; N; = 10 is specified to MCSPCN (function 4.1 of section 4.2) with databases
specified in section 4.3 were employed. Averages were calculated with respraatitg
set.

The first column of both tables shows the component classifiers, the seclomeh
shows their respective performancasd the third column shows the overall performance
of the MCSPCN. In table 4.2, NTW1 shows an average (50%) recognition rate while
NTW2 shows a high percentage recognition rate (80%). NTW3 shows a poor recognition
rate (36%) while NTW4 shows a high percentage recognition(7&%). In table 4.3,
NTW1 shows an average (74%) recognition rate while NTW2 shows a high percentage
recognition rate (80%). NTW3 shows a fairly good recognition rate (63%) while NTW4
shows a high percentage recognition rate (79%). From this trend, it could be inferred that
when some base classifier performs fairly well on a database, others perforweltesg
the same database. This shows the inherent orthogonal propertiesP@iNfixand rand
PCN.

Comparing the second column of both tables, thesifias are seen to perform better
when trained on all ten classes than when trained osexttion of the classes. This affects
the combiner positively with an average improvement of about 2%.

In table 4.2, the performance of the combiner (at 93.3%&s) well above that of the
component classifiers and shows that the combiner is able to filter out poor component
classifier results. In table 4.3, the performance of the combiner (at 95.14%) was also well
above that of the component classifiers. From this we may deduce that tigefgatton
f () considers only the merits of the base classifiers. The individual eitri¢ise
difference column (in %) show the performance of the combiner over their corresponding
base classifiers.

4.7 Summary on Large-scak Multi-class database

In this work, we have focused on utilisation of EPCN in an MCS framework on large
class problem domainan instance of this is fingerprint identification. The maléssifier
shows performances ranging from 0% to 100%. Thisoide expected because little
corrections were made for deformations, sameppoeessing steps are applied equally to
all fingerprints, and also because the level of noise and deformations varied and are

distinct from one fingerprint to the other.
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Given the fact that 100 classes are presented for classification, the posditiiig o
recognition rate (up to 100%) shows that this configuration provides a solution to
overloading and saturation that result when very large class problem istgigesngle
neural network.

To further this research, utilisation of adaptive-precessing techniques to make-pre
processing each image dependent on level of noise and deformation iristherarder.
Recall that no NN selection strategy were employed to remove, modify systamgiers,
or replace the less performing NNs, these are also considered to be subjects of next
research possibilityit is not possible, due to various reasons that include resource and
time, to conduct all suggested future resegrobsibilities in this single thesis. For this
reason, a key research poithat of implementation of a novel combination strategy is
conceived. The next chapter explores the possibility of a new combinati@ygtfat a

multi-classifier system.

4.8 Summary

In this chapter, we have focused on a mellissifier combining strategy using a novel
RAM-based artificial neural network EPCN. The combiner of the rolalssifier has been
shown capable of interpreting results from component classifier and ignoring individual
erroneous results. Significantly, the mudltassifier is shown to have achieved a high
performance rate (93.37% in Table 4.2, and 95.14% in Table 4.3) compared to the
component classifiers. It is to be noted also that this performanceacesnfavourably
well with other multiclassifiers derived from weighted base classifier or neural network,
using other techniques, e.g. [7Bxperimental results suggest tHdCS outperformed
single EPCN [8bin classification of handwritten characters.
The problems associated with the mualassifier designed in this chapter are:
X The input may be biased.
x The network may be easily saturated.
X Its support for largescaled multiclass databases poor.
Some of these problems are addressed in chapter 5, emostially the problems of
classifying largeclass databases.
Other areas of further investigation may include other configuration methods, such as

Boosting, Bagging, or using performance criteria to initialise dmbse base classifiers.
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As this islikely to have the effect of eliminating such network as NTW3 (at 36 % in Table
4.2) from the WNS since its performance is sometimes below 50%.

Following a very good performance in this chapter, the classificafioery largeclass
databases is considered in the next chapter.
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5. AN ADVANCED COMBINATION STRATEGY FOR
MULTI -CLASSIFIERS

An advanced combination strategy is hereby introduced which addresses the scale problems
exhibited by traditional artificial neural networks. The encoding scheme introducegifueheces
a different and significant approach to solving the problemsi@hory demand, execution time,
and performances.

A subsetting strategy of the required input pattern classes isdniced in this chapter which
provide a more robust solution to the problems of overloading and saturation experienced by
traditional neural networks.

Current Multiclassifier Systems faces the problem of bias when classes are arranged and
maintained in a specific fixed pattern. A novel statistical arrangement method is Ipeesbyted
which aims to solve the bias problem. This statistical arrangement method also enhances
independece of component classifiers.

The system is demonstrated on the exemplar of fingerprint idetitificand utilises a
Weightless Neural System called the Enhanced Probabilistic @mmteNeural Network (EPCN)

in a Multi-Classifier System

51 Introducti on

Most combination methods for muttlassifiers are meant for weighted neural
networks. Attempts to utilise EPCN as a mualtissifierscombinerhas till now failed.
However, there are successful attempts made in chaptBug 4he combination metk
implemented in chapters ebuld not combine the output of very large clas3é®ere is
clearly lack of RAMbased solution to the problems of combination of RB&4ed
component classifier. So that, the objectives of this chapter is tenmept a combirteon
strategy. Implementation of the component classifier combination ooheth thus
motivated by the need to encode the output of the base classifier, so tB&Cah
combiner is able to combine largiasses.

Multi-classifier systems have traditionally struggled in performance terms when
confronted with problem domains possessing a large number of independent classes and
containing few patterns per class. Such Mdllissifier systems (MCS), consist of

component classifiers, called base classifieigrged in a specific fashion so as to carry
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out a specific task which would typically yield a poorer performance shaaldatask be
performed by a single classifier.
Currently, large number of distinct pattern classes is a classificatide-betk for

typical MCS because they suffer from large storage requirement, and long @xeicod.
This is mainly due to the fact that floating point mathematical calculatakaslonger to
complete as compared to simple Boolean logic. For this reason, onliithsg (also
called Random Access Memory (RAM) based) neural networks are used as component
classifier in this chapter. The decision to use only RB&8ed neural networks as
components to solve the aforementioned problems is faced with yet apobldégm,
which is that of combining the output of base neural networks.

This chapter presents a solution to the above problems via a novel coonbmethod.
The combination method consists ofgating functionwhich implements an encoded
pattern fo the combiner. The combiner is a neural network entitled the Enhanced
Probabilistic Convergent Network (EPCN) [81], [85]. The difference between an ordinary
EPCN and the EPCN used for the combination, hereby termed El®@Miner, is its
input and configuration as shown in figure 5.1. An encoding system is required in the
gating functionbecause the combiner neural networks expect a binary threshold pattern as
input, and the encoded pattern is binary. The encoding system is hereby ésgme
encoding The termgating functionand combination method will be used interchangeably.
There are two types of EPCN utilised in this work. Their difference lies chieftiiair

method of connectivity

Figure 5.1: A schematic diagram of combirEPCN
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formation [85], details of which are found in chapter 3. The base classifiers derived from
the two types of EPCN has been found, by experimentation, to be error independent. Their
advantages, over weighted Neural Networks are that their employment in alsatsine

does not incur additional high mathematical computations.

Overloading and saturation are often associated with decrease in dsttingdeatures
between classes, and limited means of enumerating these features. The problems of
overloading and saturation experienced by traditional networks [57] are solved for EPCN
based MCS by assigning the base classifiers on differing subsets of the required input
pattern classes.

When a class is trained to more of the base classifiers than other classes,sthwdliclas
be more recognise than other classes. Equal chances are not been given to all classes for
classification or misslassification; this is callethias. To solve this problem, a novel
randomisation technique is introduced in settto2 which produces an arrangement of
input patterns suitable for the removal of Classiféas. When this randomisation
technique is employed, a base classifier sees @etubf the classes with approximately
equal probability. It is expected that whaput pattern classes are randomised and evenly

distributed biaswithin the network will be removed.

5.2 Multi -classifier Systems

5.2.1 Selection

The decision to include a Neural Networks (NN) in a MCS is commonly referred to as
classifier selectionTwo selection strategies are currently widespread. They are:

X The direct method.
X  The “pool of network” method.
The direct method consists of selection of NN which are -emc@pendent of one another.
This selection is often a static selection method. The “pool of netwoethod is a case
whereby an initial large set of neural networks are available and various setigidas
error diversity measure is employed to select an error independent set Bdangéiset of
neural networks [117].

The direct strategy is employed in this chapter as the “pool of network” chethjaires

a very high computing resources and time.
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The selection of base classifiers may broadly be divided into static selecttbn
dynamic selection. Static selection methods are those methods used to astect b
classifiers before learning/recognition and can not change the compaos$ittemensemble
in an experiment. Dynamic selection method on the other hand can modify the
composition of the ensemble in an experiment. An apmtgpifeedback mechanism of
error correlation, for example, may change a static method to a dynamic method

Common selection methods used to select base classifiers can be groupéid as st
dynamic selection methods depending on the presence or absence of a feedback system.

r

Given n : n classes of r distinct types, where are of type i and are otherwise not
i1

distinguishable, the number of permutation withouetijon, of all n classes is:

n!

M, (n,...n) —
_I’]i
i1

(5.1)

The number Mis known as a mtihormial coefficient. A special case is when r = 2. This is a case
of binormial coefficient and is denoted byl (n,,...,n, ) |, Cwhere

n!
rrn r! (5.2)

n-r

Fay) f(¥0x f()y T (Y, (3 TV
Oy f(9x () (% f(Yy 3 €Yy (5.3)

When events f(x) and f(y) are indepentj¢he last item may be ze
fxy) f(¥x f(yy O

where f = the experimental outcome.
fy = experimental outcome of X;

fy = experimental outcomaf Y;

X = an element of X;

y = an element of Y.

The statistical selection method [34] is employed in this work assagss the potential to

alleviate the problem of bias. An outline of the method is as follows.
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In this statistical selection method, n is the total number of classarsl r is the amount

of class picked without replacement. Since the aim here is to minimasegandomisation

is done according to equation (5.2). Two independent randomisations are performed and

the results multiplied @ording to equation (5.3)Setting n =50 and r = 1 in equation (5.2);

n! 50! 50!
f(x)x Al
r‘n r! 1(50 1)! 49!
Similarly,
50!
f(y)y 29 S0

and we have
f(x,y) 50 50 10

In f(x,y) (Table 5.1) we have 100 classes in which each class is repeated twice.eln Tabl

5.1, each row represents pattern classes for oneclzssifier. The component classifiers

are named NTW# (where # =1, 2, 3, ...). The arrangement and the reoccurrence of a class

is random and independent.

Table 5.1:Randomised input classes. NTW# = Network, where #

1.2.3....n

The component classifier, named NTW# (where # = 1,2,3,...), are trained following the

scheme depicted in Table 5.1. An entry in a row is a number that represent a class. As an
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illustration, NTW2 refers to the second neural network. All numbers in the row
comresponding to NTW?2 refers to the classes on which NTW?2 is trained, firstbelams
45, second class being 26, third class being 13, etc. The numbers, e.g. 45, 26, are instances
of fingerprints. They are files containing rdié finger-prints [91] printed in various
forms. This method of arrangement is known asstaéstical arrangemenimethod. The
statistical arrangementis employed in the MCS to alleviate bias and maintain
independence of base classifiers. An optimal arrangement of the conmpossiiiecta
has been found, experimentally, to be 10 classifiers and 10 classes péeclassi

For component base classifiers to make a significant contribution taC&) ey must
be as diverse and independent as possible. Dependence of performalinversity and
correlation measures decreases rapidly as the number of Neural Networksegidraas
[79] states that orthogonality, complementarities and independence adeaclassifier
determine its inclusion in an MCS. Some designers like Mladeni¢c §3@ Zouari [50]
employ certain diversity measures in Neural Networks classifier selectioritefion for
Neural Networks selection is lack of error correlation among selected Neurabrkie
[109]. Dynamic methods such as Bagging, is employed by Gunter [119] while Boosting is
employed by Freund [42]. The term Bagging (Bootstrapping and AGGregatING) refers to
a selection mechanism for ensemble creation implemented by randomly girBwin
training sample from a training set S of size n with replacement, andiagsigolassifier
to each group of samples drawn. The probability of being drawn is equally distributed over
the training sample. Boosting is a different selection method from Baggithat the
probability of selection increasas favour of “difficult” pattern and decreases for “easy”
patterns. The most widely used variant of Boosting is AdaBoost. AdaBoost.M1 [42] is a
variation of AdaBoost for mukitlass problems. In AdaBoost.M1 a classifier is assigned to
each subset of training pattern drawn.

The next step that follows the selection of base classifiers according to theoosnd

specified here the arrangement of these classifiers.

5.2.2 Topology

Topology refers to the arrangement of base classifiers in an ensemble. Common
arrangemein methods are serial, parallel, and hierarchical arrangements. The parallel
method is the most common arrangement of base Neural Networks in MCS. The

introduction of dynamic self reconfiguration may enable the MCS talswiétween these
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topologies, depending on new environment, new tasks or both. During training and
recognition, each base classifier utilises its normal training and ridoogaigorithm.

The decision to employ a parallel combination method in this workweslfoom the fact
that the aitput of all component neural networks will be combined. All outpuhefbase
NN will be combined because the base neural networks are error uncorrelated ased diver
Parallel method of combination is known to incur high computation costs [109]. This
problem is solved here due to the decision to employ R¥sded (weightless) neural
networks. RAMbased neural network performs mainly logical mathematical computation
and thus does not involve high computation costs such as would a flpatmrig
computations for example.

The parallel method is employed in [109], while the serial method is employed
Austin [7]. Dima [26] proposes a hierarchical mixture of experts and the employment of

dynamic reconfiguration to analyse robot dynamics

5.2.3 Combination methods

The combination of component classifier output is calbtaksifier fusion Multi-
classifier (MCS) design is usually problem dependent, which may impydégendency.
The idea of flowchart figure 5.2 is to represent in a diagram aRrbastive combination
strategy of MCS. When an MCS developer chooses an explicitddptendent
combination method of MCS, large prior experimentation is usually required to determine
the composition of the ensemble. Each of these methods of MCS combirsatiery
extensive and beyond the scope of this chapter with one exception. The one exseption
the datandependent combination method which consists mainly of trained nembi
MCS with trained combiner usually require no prior experimentations because the
component classifiers can adapt themselves to match the given problem. 0%e M

designed in this chapter with EPCN as a trained combiner is an example.
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Figure 5.2: Multi-classifier combination scheme with respect to datab
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Every output of each base classifier is a one dimensional vector of poshivie w
numbers. The ondimensional vector output of all base classifiers are arranged into a

multi-dimensional matrix, as shown in equation (5.4), at any time during combination.

(5.4)

Each entry in equation (5.4), n{j)is derived from the output of EPCN of the type shown
in figure 5.4. The resulting mudimensional matrix requires an encoding scheme which
speaks the language of the trained neural network combiner. We require an gncodin
scheme such that equation (5will convey knowledge of input space to the trained
combiner when encoded appropriately. This is one of the main themes ofahisrch

Areas of multiclassifier combination has attracted intense research lately, most [110],
[114], [76] of which mantains that a benchmark combiner is rexistent. The majority
voting is suitable in situations where common consensus is reqBured.ignores the fact
that some neural network, though in minority, do produce the correct result [114],
especially in area of their specialisation. Secondly, the existence of givernginored by
majority voting as one of the motivation for ensemble creation, but favours common

consensus. Hansen and Salamon [48] showed that only when the nets make independent
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errors doesnajority voting provide increased accuracy. Tumer and Ghosh [130] maintain
that errorindependence leads to better accuracy than a specific combination method.
Gunter [119] calledbbjective functionshe functions used in combinatioQualitative
combinationis used by Blue [11]. Duin [35] refers to intelligent combinergramed
combiner and maintains that trained combiners outperformed fixed combindrsarilo
Giacinto [112] calls component classifietsalanced classifiersprovided they are
comhbned by any of théixed combinatiormethod, and have zero or negative correlation.
De Carvalloet al.[31] combined two Boolean neural networks in series. Prabhakar [105]

grouped Multielassifiers according to their output.

5.2.4 Experimentation

There areMCS designed for specific purposes, and they make explicit use of features of
their database, for which they are required to classify, for the design. An MCS, derived
from weighted Neural Networks, is specifically designed for fingerpiassification m
Cappelli [107]. There Cappelét al. identify two types of fingerprint classification: the
exclusive classification and continuous classification. Continuousifitasion is specific
to fingerprint classification, and refers to a nudlitnensional nurarical feature vector
which is obtained from a fingerprint. The vector is used in nearest neighbour (or similar
distance measure) search to map close finger prints into cluster.mi&thod inhibits
“ambiguous” classification of a fingerprint from being exclusively siféed as belonging
to a cluster. Exclusive classification (also specific to finger printg grtitioning of
fingerprint database into a given number of classes according to their-faaitnes. A
class can only belong to one patrtition.

Most other &perimentaion methods on fingerprintsrely heaviy on minutize and
templatematching of minutiae. Hollignum [53] employs the graphical method, Ja
[66] uses pont pattern matchng, Wahab [132]empbys dructural matcing technques
to minutae, and Tio [129] uses transformation operatiof.o improve on these
metlods, Maio and Maltai [90] introduce the detectionof false positve Hung [60]
Prabhakar [106]Xiao [133]providesmethodsaimed at ranoving falke minutiae, andviaio
[90], [91], uses Neural Network&or minutiae fil tering.

In this chapter, the MCS, derived from weightless Neural Networks, idiaeland
assumes no knowledge of the databases employed a priori. It is expectdn: thase

Neural Networks are capable of detecting features necessary for their classifichtie
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this configuration should work for any large midiass problem domain. A typical large
multi-class problem domain is a biometric database such as fingerprint database. Th
proposed MCS configuration will be applied to biometric databases;ifisply
fingerprint databases that comprise of large classes with relatively fesvnsaper class,

in an experimental setp.

5.2.5 Performance measure

When inputs to the component classifier are randomly permuted and apgielyi
equally distributed, it makes the performance independent of a specifigemamt of
input to the component classifier.

The performance of a MCS is often compared to that of a single componeiat Neur
Networks that forms part of the MCS. Gabrys and Ruta [12] maintain that diversity
measure has limited correlation with MCS performance. The paper states ti&at MC
performance depends on careful selection of comporclassifiers. Generalisation
performance of MCS should equal or exceed that of base classifiers. The most commonly
used performance metrics are sensitivity and specificity. Sensitiyiig, d&&fined as

Tp
ST F (5.5)

p n
whereT, = true positive;

andF, = false negative.

It measures the ratio of positive patterns being correctly classified asgtsithe whole

pattern classes. Specificity,, $ definel as

Tn

SP Tn Fp (5.6)
whereT, = true negative;

andF, = false positive.

It is a measure of the ratio of negative pattern being correctly recognised asdugitigen
Min et al. [77] uses a rejection criterion and reliability to measure performance. The
rejection criterion and reliability are numerical quantities derfueh fuzzy integral.

On databases such as fingerprints, the most commonly used performeasteen are:
True Acceptance Rate (TAR), True Rejection Rate (TRR), Predictive value posas)e (P
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and Predictive value negative (Neg). While performance sorea such as False
Acceptance Rate (FAR), False Rejection Rate (FRR), TERR, [106], [107], [1], and Equal
Error Rate (EER), [96], [83], are commonly associated with biometric authentication of
fingerprints. These are quantitative measures of the trustworthihessults obtained.
However every output of EPCN (see chapter 3), in recognition mode, includes a
confidence measure. The confidence measure or the trustworthiness measscalesl a

probability measurescaled by a value called tbevision

5.3 Implementation of the Multi-classifier

As stated above, a Multilassifier (MCS) is a system that fuses several base classifiers
into one. In this context, a base classifier is a neural network thatwskio be very good
at a certain classification tabkit may be poor at other tasks. The MCS implemented here
is dataindependent in the sense explained in section 5.3. The direct method of base
classifier selection is used and these base classifiers will be arrangedlel paee every
output of all bae classifiers will be combined. These decisions suggest the MCS

architecture shown in Figure 5.3.

Figure 5.3 The MCS unit is divided into multiple EPCN group and combiner EF
group. The multiple EPCN group consist of EPCNs in parallet pre-group, M;
maingroup i = 1,2,3,... f(.) = gating function. P = combiner’s pre-group. M,
combiner'smain-group.
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The specific component classifiers used,-ERXCN and randPCN, are weightless
probabilistic classifiersby reason of the nature of their output. Previous studies have
shown the performance of both EPCNs to be well above 50% [84]. In the proposed
system, each component classifier is trained upon, and thus only able tusecagubset
of the available pattern classes. It is thus a challenge for the trained eontbin
successfully combine the matrix of classifier outputs, i.e. equation (5.4), many of which
will necessarily have produced incorrect classifications. The input pattassesl are
randomly pemuted, and evenly distributextcording to equation (5.1 (5.3) of section
5.2. A component classifier is assigned to eachsstibof input pattern classes. This
ensures that there is no bias within any component EPCN. The selectasedflassifier
does not depend on input pattern classesther a parallel method of arrangement of
component classifier is made a priori, with randomization inject#d the system
parameter [77]This ensures independence anecdeelation of the base classifiers. The
address formation method of both EPCNs is their distinguishing features [85]. Their
learning and recognition algorithm are equivalent as described #sestibn 3.2.1 and
3.2.2 respectively. Coupled with the fact that the system parameters aidssters are
distinct and uncorrelated, all base classifiers are expected to prodiioet desults during
recognition.

Figure 5.3 is a schematic representation of the proposed MCS. T ][Represent
the component classifiers, i = 1, 2, 3..., dafirepresents thgating function while [R,,
M) is the combiner. The [PMi] component classifiers are f&xPCN and rand=PCN with
varied system parameters, so ig f] the combiner. A gating function is a function used
for weighting, encoding, and synchronizing the output of base classifiers before
combination. The novel component of this MCSf{9, the gating function. Thgating
functionin turn consists of various components. The relevant components gétihg
function are thecombiner engia. The combiner engineonsists of the interpreter and
converter, and is the subjects of the following-sabtions. The functional operation of the
interpreterand theconverterconstitute arencoding schemir the EPCNcombiner. The
output of all compoeant classifiers is combined using iatelligent combinefP., M|, i.e.
a neural network which in this instance is an EPCN with alternative confmgurdihus

the combination method consists ofiaterpreter, aconverterand an EPCN combiner.
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5.3.1 Combiner engine—the coding scheme

The termCombiner engineefers to the EPCN combiner ], and the gating function
f(.) (see Figure 5.3)The gating function is made up of amerpreterand aconverter

which together produce the encoding schemeillustrate the function of theombiner

engine if the same character, e.g. “b”, is trained to different Neural Networks @sybej

to different classes. This means that the first class for classifier fieiedt from the first
class for classifier 2. During the recognition phase, a correct clagsifi¢at these Neural
Networks requires that “b” be classified to their corresponding (respectigeslmswhich
it is trained) classes. But in classifier fusion stage, and withouhtlgpreter, this same

character will be converted to false and true pattern classes lopikerter For these
reasons amterpreteris essential.

The intermediate outputs are weighted by the gating function only in aspeci
circumstances of input space overlap. YWed results are treated as patterns to be
processed and not results. In the very special circumstance when inteenmeslidits are
weighted, they are no longer results but class patterns meant to be biaadsssived as
input to the combineEPCN. Traditionally, an MCS is usually named after the constituent
neural networks and/or with respect to the arrangement of the network. The thesis follows
this tradition of naming the MCS with respect to the constitutingah@etworksBecause
all component classifiers are weightless neural networks, it naturathyvthat the MCS
which is hierarchical composition of the weightless NNs, is a weightle&S.M
Employment of an external gating function (any type) for input/out patterprpoessing
does not affct the weightless MCS both in composition and in learning/generalization
behaviour, or in any other way.

When a Genetic Algorithm (GA) is applied to MLP to modify its paramefiar (
example), it does not change the name of MLP to something else, @y i#lso not
change the main behaviours of MLP. But it only enhances the performances of MLP in the
special circumstances. It is the same analogy here. The gating function is eneen mo
restrictedin this architecturdoecause it aps itself only to the (fan4n) input pattern of
combiner EPCN. The gating functionusuallynot an integral part of the MCS and it can
also be employed with other types of MCS. The weightless MCS implemkeatedcan
also employ an alternative (any other) gating function. dikor recommends that an
MCS utilising the combiner engine as a gating function may not change its siaply

because the combiner engine is being used since another gating functioneiday y
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equivalent result. The thesis will adopt to use standard nomenclature@an when all
component NNs are weightless NN, the MCS that is formed is a wegyMIES. In other
situations such as Lorrentz [81] it may be called a hybrid MCS.

5.3.2 Interpreter

The function of thenterpreter,as the name implies, is to accept equation (5.4) at its input,
and make sense of it to the converter. The configuration information, the output, and
confusion matrix of the base classifiers are also accessible iaténpreter. Based on
these, a decision per pattern is made byritexpreteras follows. A weighting strategy is
employed on the output of the base classifiers when inputs overlap.wEkghting
strategy affects only those outputs corresponding to the region of input ovérlapso
weightturns off an output of a base neural networks with respect to a given pattetn clas
while a weight greater than zero turns it on. The interpreter is incapable afagiingia

base classifier; rather it inhibits undesirable outputs with reg¢pextrtan classes. This
inhibition depends on input space overlap, configuration, and performance on that class.
As an illustrationjf character "b" is trained to one neural networks as class 1, and trained
to another neural networks as class 2. During the recognition phase of the component
classifiers, correct classification by the base classifiers requires theefinstl networks to
classify "b" as class 1 and the second neural networks should classify aisaf2clThe
interpreterinforms the converter thalhe outputs from the two base classifiers are correct

classifications of "b", and will be weighted by their respective proibabil

5.3.3 Converter

The converter encodes theterpretets integer output into binary. It makes use of an
integer value, calledivision to adjust its output. For example, consider the output of a
component classifier to be [10, 10, 65, 25, 10]. The vector [10, 10, 65, 25, 10] represents a
row vector of equation (5.4), and analogous to variable field “decision output” of Table

5.2.The vector is converted lmpmbiner enginéo Figure 5.4(b).
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_ _ (b) Engine
(a) Unit encoding encoding

Figure 5.4: Encoded information by the gating functit{r),
(&) Unit encoding from the combiner unit; (b) Engine
encoding from theombiner engine .

A similar encoding scheme in [73] yields Figure 5.4(a). The general netgydis as

follows. Any decimal number, N, is expressible in the form:

N d.d,.d 2 (5.7)

n 10M

Equation (5.7) is expandable in a polynomial P(d)in equation (5.8);

P(d) d.10" d,,.10' .. g, .10 (5.8)
The following algorithm () converts equation (5.8) to its binary equivalent.

(5.9)
b, d, d.£

i 0,1,2,.n
d  constituent intege

The least probable classes are indicated with low values, 10, in the vector
[10,10,65,25,10]. The low values are omitted by tdmoenbiner engineln the vector
[10,10,65,25,10], 65 occurs in th& Bosition. It is binarised according to equation (7) to
(9), and occurs in theBrow in Figure 5.4(a), while the same number is binarised and
occurs in the $row in Figure 5.4(b). The position of 65 in the vector [10, 10, 65, 25, 10]
is 3. This position number 3 is binarised to 00000000011 and occurs a$ thes 3
Figure 5.4(b) by theombiner engineThe pattern concerned here is most probably (the

highest probability 0.65) classes three and more probably class four (with probability
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0.25). For this reason, 25 is binarised, and it occurs in row 4 in Fgdfa), while in
Figure 5.4(b) it occurs in the second position. Both Figures (i.e. 5.4(a) and 5.4(b)) indicate
that the most probable class to be tlief@iss and following this is thé"4lass. Secondly,

a reversed bit of the most probable class, 3, is also passed on, aoipbiner engingto

the converter. Thus, it is included in Figure 5.4(b) in th8 vow. The reversed bit serves

to make the information detectable by the ER&ihbiner.Figure 5.4 is the form of
pattern accepted by EP@dmbiner The functional activity of thénterpreterand the
converter constitute what might be referred to as #mling schemdo the EPCN

combiner. The engine encoding is deployed in the experiment of section 6.4.

5.3.4 EPCN-combiner configuration

An example configration of EPCN combiner is shown in Table 3r2the field,ntppc
(i.e. number of training pattern per class), each number represents the number of
training patterns per class. The fiepdjdayer (pg stands fopre-group), is the number

of layers in the pre-group.

Table 5.2: An output of EPCN

Other important fields in this structure are division amtliple Division is used by the
converter to adjust its output, and used during learning and recognition for other scaling
purposes. When summing out the output,divésionis also used to scale output probabilities.
The field, n-tuple specifies the tupisize. The coriner'smaingroup'snumber of layer is

specified in field mgayer (wheremg stands formain-group).

5.3.5 Comparison to other similar coding scheme for multiclass

problems

The combination strategy addressed here is comparable to Bayes combinategy,str
and to majority voting. The combination method introduced is mutiilasi to Bayes

combination strategy than to majorigting method. The combination strategy in [86]
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employs acombiner unitwhich also bear many similarities to the combination strategy

introduced in this section. For this reason, comparisons will be doatweencombiner

engine, combiner unignd majority voting as and when possible.

Thecombiner enginéas the following advantages owembiner unitin [82]:-

The combiner engine encoding produce a reduced pattern size, as comparaditerco

unit encoding, and thus has the following implications:-

X  Leads to a reduced storage requirement.

f A reduced sie of layers in the preand mairgroup (recall that the size of a layer
equals the size of input pattern). This leads to a reduced amount of data being
processed at a point in time.

f  Anincrease in speed of execution since less data will be processed at anymgiven ti

A consequence of using tliembiner enginenstead ofcombiner unitis that a single
EPCN will now be able to combine large class sets and this combinatiobilgigsso
longer depends, to a large extent, on a specific configuration.

The structural difference between tbembiner unitand thecombiner enginas the
utilisation of aninterpreterin place ofdecision makerThis leads further to the following
advantages of theombiner engin@ver thecombiner unit
X  The interpreteconsiders more information with respect to individual base classifier.
X More efficient synchronisation between base classifiers.

We claim that the performance of tle®mbiner enginewill supersede other similar

combiner methods both in speed and in percentage of pattern recognized when employed

in the same experimentation (section 5.4).

5.4 Experimentation on the MCS

In this section, the MCS designed according to sections 5.3 vireightless Neural
Networks (EPCN), is tested. It is adaptive and assumes no knowledge otdhasda
employed a priori. It is expected that the base neural networks are capable dafigletect
features necessary for their classification. Thus this configarghould work for any
large multiclass problem domain. A typical large midiass problem domain is a
biometric database such as fingerprint database. The MCS configuration apibliced to
fingerprint databases, which comprise of large classes neittiively few patterns per

class, in an experimental sgb.
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Specifically, the aims of this experiment are to investigate the effe¢teafombiner
engine,and the effect of approximately equally distiion of input data (subection
5.3.1) on recognition performance of EPCN based MCS when a large class database with
few pattern per class are utilizekhe databas used for ths experinent is DBA1 from
the Third Interndiond Fingerprirt Verification Competiion 2004 (FVC’'2004]43]. It is

available athttp:/biometrics.cse.msu.edu/fvcO4db/index.htirthese fingerprints are real

(as opposed to synthetic) fingerprints.

5.4.1 Pre-processing

Intensive preprocessing is avoided to prevent local distortions which such procedures will
add. Instead, global pre-processing steps (see section 4.3) are employed in this work. It is a
test for this network to determine its own capability recognise and classify the
fingerprints amid the noises, distortions, and deformations already present in the source.
Thus no corrections were made for the following deformations present in the source
fingerprints:
(1) Shifts: Change of position or direction
(2) Rotations: Angular shift of an object with respect to a fixed point.
(3) Intensity changes: Irregular or changes in illumination.
(4) Occlusion: Covering of part or preventing of part of fingerprint from being
processed.
(5) Pinch: This is squeezing or nipping of parts of a fingerprint.
(6) Punch: May be a hole or missing parts of a finger print.
The conditions under which these fingerprints are collected are as specified in [43], [58].
However, the following prg@rocessing operations are performed. This methogref
processing avoids the aforementioned pre-processing problems.
x  The fingerprints are filtered to remove noises. The same level of-filtesmg was
applied equally to all patterns, and the level of noise varies from patteattéon.
X An edgeenhanang filter is then applied.

x  This is followed by the binarisation of the fingerprints.
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5.4.2 Experiment on the MCS

The adwantagge of ushg an artficial neural netwak (ANN) ingead of minutiae

analyss [87], [106], is tha a globd operation onthe images is les sensitie to loca

distortion tha normally occur during extretion of local features. Fingerprint® this

database are #acted io adirectory an example of which is shown kigure 5.5(a).The

fingerprintsarethenfitered centrededgeenhancedand then Imarised;

(@) (b)

Figure 5.5: (a) Fingerprint, (b) filtered and binarised picturg@f

(See Figure 5.5(b). Each finger printed in various forms represits a cless The

following points represent the main experimental processes:

f

Prior to the commencement of learning, input classes are randomly perasuted
stated in equations (1) to (3), and evenly distributed as shown in Table 1, to remove
any input bias from the network. Training set is sampled randomly fnemvhole
fingerprint classes without replacement.

Fifty (50) classes are employed in this experiment. Ten base classifiersialieedit

in parallel, and each network is trained on ten classes arrangedvas is Table 1.

In Table 1, each row represents pattern classes for one base classifier. The
component classifiers are named NTW# (where #=1,2,3 ...). Anentryin arow is a
number that represent a class. This arrangement of input patterns ensueeslthat
class is trained on (at least) two networks.

During the recognition phase each network is required to claaiifest patterns
belonging to all classes that participated in the learning phase.

The outputs of these base networks are combined asuati@y (4), and then

encoded to the trained combiner by toenbiner engine.
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f  For comparison, the outputs of these base networks are also combined using the
combiner enginé majority voting mode.
f  This experiment could not be performed on combiner dutto memory issues

(when the same memory size is used).

Performance measure: Every output of EPCN, in recognition mode, includes a
confidence measure. The confidence measure, or the trustworthiness meassicaled a
probability measurescaled by a Vae called thedivision We ensure that inputs to the
component classifier are randomly permuted and evenly distributed as edplaisub
section5.2.1. This ensures that performance is independent of a specific arrangement of

input to the component clsiier.

Figure 5.6: Normal combination mode: The confusion matrix from EPCN combiner
Columns 1 to 50 represent classes. The last column is uncldegiféterns.

An example of an output of EPCN is as shown in Table 5.2 of section 5.3.4. The important
field in this structure is théecision outpubf the neural networks. This states that the

network is trained on ten classes. When a pattern is presented to it forittecpgnis
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(1188/5000) % (the confidence measure) likely to belong to class one, (154/5000)% likely
to belong to class two, etc. The summation of the numbers in thedéeldion output
should equal the variable in the fiettivision in this case 500@W/hen a pattern is
presented to it for recognition, it is (1188/5000) % (the confidence measure) likely to
belong to class one, (1A000) % likely to belong to class two, etc. The summation of the
numbers in the fieldlecision outpushould equal the variable in the fiedision in this

case 5000 Thus results from EPCNs, and Muitxperts dependent on EPCN, are

inherently with trustworthiness measure.

5.5 Results

When the experiments are performed, each component classifier producesuaestifuct

type shown in Table 5.2 for every given pattern meant for recognition.

Figure 5.7: Majority Voting mode: Theonfusion matrix from EPCN combiner.
Columns 1 to 50 represent classes. The last column is uncldssif@terns.
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Based on these and other configuration informatiorctimebiner enginés able to produce

the confusion matrices of figure 5.6 and 5.7. Figure 5.6 is produced by the combiner unit
in normal operation mode, while figure 5.7 is produced bytmbiner enginén majority

voting mode.Figures 5.6 and 5.7 are known as confusion matrices. In figure 5.6 and 5.7,
each row represents recognition instances, while each column represeciassies to
which the patterns are classified. The last column represents ambiguous baseslues

along the diagonals represent the number tiEpss that are correctly classified, while the
off-diagonal elements represent the number of patterns that are wronglyesassifi

5.6 Analysis

The percentage recognition is calculated from the combiner’s confusioi,rhgtires 5.6
and 5.7, and recorded in table 5.3.

Table 5.3 Summary of results obtained when the experiments irssotion 5.4.2 were
performed. Column 1 and 3 represents class numbers, while colunthfrapresents the
percentage (%) of patterns recognised in a test set.

5.3(a) 5.3(b)

Table 5.3 shows the performance on most pattern classes to be 100%. A row consists of
two numbers; theSinumber is the class while th&°2umber represents the % of pattern
recognised. The®laverage quoted is the average of the corresponding column, while the
second average represents the average of the two. Table 3(a) represents the result of the
combination strategy in majoriyoting mode while 3(b) represents the result of the

combinationstrategy in normal modé&rom Table 5.3, when EPGdbmbiner is switched
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to majority voting mode, the average performance is 82.276%, while £B@Niner in

normal combination mode gives an average of 92.119%, a difference of about 10%.

Figure 5.8: Comparison of EPCN combiner and Majority Voting (Majvot)
combination method when applied to base neural networks.

That these aims:

f A reduced pattern size for the EP€Nmbiner:-This leads to a reduced storage
requirement;

f A reducedsize of layers in the preand mairgroup (recall that the size of a layer
equals the size of input pattern) of the EPE&iabiner: This leads to a reduced amount of
data being processed at a point in time;

f Anincrease in speed of execution;
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has been acléved could be inferred from the output of tpeting function Figure 5.3.
From Table 5.3, it could be deduced that EPCN as combiner outperformedyajting
method where a large class database, with few patterns per class, is concerned.

Since thecombiner units faced with difficulties when confronted with experiments of
subsection 5.4.1, this indicates thabmbiner engindas applicable in situations where
combiner uniis not. As seen in figure 5.8, from class 35 to 50, the variation frof 100
of percentage recognition decreases. Thus the problem of saturation and overloading has
been solved.

5.7 Comparison of FVC2004 with MCSPCN

The databases employed in Fingerprint Verification CompetitiéivCR004
competitior) are divided into two categories, the “light” category and the “open” category.
The light database is required for algorithms characterized by low compeasagreces,
limited memory usage, and small sized fingerprints. The open categabadatis meant
for all other algorithms. All participating algorithms are indepengieddveloped by
various academia and industries. The databases are benchmark databdsesc@idife
fingerprint identification, and verification algorithms. In tbempetition,all participating
algorithms havethe same inpubutput format, and they are tested in the same
environment. Most participating algorithms employgerprint matchingtechniques. All
results emanating from these algorithms are similarly formatted andifigchitd enable
direct comparison between them. Methods used in quantifying resylterr®eceivers
OperatingCharacteristic4ROC) of certain parameters. The choicesimts mainly used
are False Match Rate (FMR), and False Mtatch Rate (FNMR). These nthings refers
to matching of minutiae, ridges, or some other features characteristic of fingerprints. The
point at which FMR equals FNMR is known as equal error rat&kjEEhe rate employed
in FMR, FNMR, and EER refers to percentage of fingerprints nettchhe ROC analysis
originates from statisticadlecisiontheory, and was originally introduced during World
War Il. Thereafter, in the 1960s, ROC analyses become prominent in medical
analysis/diagnosis. Though ROC has gained popularity in other dissiglif@as not been
used in neural system analysis. But since the database hereby processe@figimat
Biometry, it enhances direct comparison to employ ROC analysis on thieafeSRPCN
combiner, and majorityoting when they have been trained on biometric databases. It is
noteworthy that ROC analysis does not indicate, with confidence, how good the MCS

performs. Similar situation has been noticed Yager [97] among others. Bi§{a¢ and
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5.9(b) shows a summary of ROC from FVC2004 while Figad®d $ows the ROC of
EPCN combiner, and figure 5.11 shows the ROC of Majority Voting combination method.

Figure 5.9(a): Open category; ROC curvesfrom FVC2004n DB1 (only
top 15 algorithms are shown) [27].

Figure 5.9(b): Light category; ROC curvesfrom FVC2004n
DBI (only top 15 algorithms are shown) [27].
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Figure 5.10:EPCN-combiner ROC on Fingerprint.

Figure 5.11: Majority Voting ROC on Fingerprint
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One of the main reason for larger variation in EER of FVC2004 and that of EPCN
combiner is that in FVC2004, almost all the available database are empglogiethe
participating algorithms vary immensely. The mulassifier utilized in thixhapterdoes

not employ any matching algorithms. It is a mulassifier employed in different
environment (from that of FVC2004 environment) whose wguiput format is distinct

and much different from that of FVC2004 participating algorithmsnirical quantitative
comparisons are to be treated with skepticism. The EER of FVC2004 may paredrno

the error rate (i.e. (100x) % of performance, where x represent the performances quoted
in table 5) of MCSPCN. In FVC2004, EER vary from 1.97% to 100%, while in MCSPCN,
the error rate vary from 0% to 100%. Detailed results of FVC2004 are contained in [48]
while that of MCSPCN on fingerprints are contained in Tal#e 5

5.8 Comparison of the Multi-classifiers employed within the

Thesis

X The multiclassifier of chapter four explores unconstrained hanewrittimeral

classification while that of chapter 6 employs differematgpem domain.

x  Secondly, data partitioning methods for learning the roldssifier of chapter 4 is
different from data partitioning method for learnimg tmulticlassifier of chapter 5.
Within an input to a base classifier of chapter 4, the classes are orderes. Adtis
the case when fingerprint database are employed (i.e. in chapter 5).

X One of the main aims of employment of handwritten characters (chaptertdg on
multi-classifier is to explore its usefulness and examine its weaknessedef€bes
of the multiclassifier are also examined with respect to lasgale multiclass
fingerprint database.

X  This lead to the development of combiner engine in chdpterreplace combiner
unit.

X  We may summarise that the combiner unit of chapter 4 supportssizatgs multi
class database poorly while the combiner engine of chapter 5 suppgetscialed
multi-class database very well.

X  Biases, overloading, and saturation effects are considerably minimizbdthei

multi-classifier of chapter 5; this is not the case in chapter 4.
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5.9 Summary

An advanced encoding scheme has been introduced fibi-d¥assifiers employed on
problem domains possessing a large number of distinct classes witiéd liavailable
training data. Results presented demonstrate an improved performance for the encoding
scheme over that achievable via the majority voting ntetroa largeclass database. It is
noteworthy that the Muklclassifier arrives at a good level of performance despite the level
of deformations, distortions, and noise present in the source fingerprints.

RAM-based Multiclassifiers does not template matching as do traditional fingerprint
verification methods. Thus this MCS could be regarded as an intelligeomatic, and
templatefree fingerprint recognition system.

The input arrangement of chapter 4 is systematic while statistical arrangaetéod
is utilised in chapter 5. The bias problem was solved here via the implemerdbthe
statistical arrangement method.

The overloading and saturation problems associated with-téage databases were
solved by the subetting strategy ofnput, and appropriate selection of number of base
classifier that participated in the Multtlassifier systems.

A combiner unit was employed in chapter 4 while a combiner engine is utifised
chapter 5. Results show that the combiner engine accommodates largerasges.cl

Area of further research and development includes the application of thisnation

strategy to a wider range of largkass problem domains.
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6. AN FPGA-BASED WEIGHTLESS NEURAL
NETWORK HARDWARE

This chapter explores the significant practical difficulties inherent in mapping largfecial
neural structures onto digital hardware. Specifically, a class of weightless neuraleatcing, the
Enhanced Probabilistic Convergent Network, is exanhidae to the inherent simplicity of the
control algorithms associated with the architecture. The advantages for such an approaeh follo
from the observation that, for many situations for which an igtti machine requires very fast,
unmanned, and unimeipted responses, a PGased system is unsuitable, especially in
electronically harsh and isolated conditions, The target architecture for thgrdissan FPGA, the
Virtex-1l pro which is statically and dynamically reconfigurable, enhancing its suitabdityah
adaptive weightless neural networks. This hardware is tested on a benchmark ofraimauhs
handwritten numbers from the National Institute of Standards and Technoldgjl)(NISA

This chapter also examines the potential offered by adapdixewvare configurations of a class
of the weightless neural architecture Enhanced Probabilistic Convergent Netavgekedd on a
Virtex-1l pro FPGA which is reconfigurable. The reconfiguration and adaptive céipabf the
Enhanced Probabilistic Conveegt Network is a highly adaptive architecture offering a very fast
automated, uninterrupted resporisepotentially electronically harsh and isolated conditions. The
reconfiguration and adaptive potential of EPCN is explored by the employment of a bdnohma
unconstrained handwritten numerals from the Centre of Excellence for Document faalkysi
Recognition (CEDAR).

6.0 Introduction

Early years of neural network hardware research involve multiple parallel girages
elements (PE). Amsdahwas one of the main early researchers into neural network
hardware. He showed that a task is worth parallelizing only when it is possible for about
50% of the task. “If about 50% of the task is parallelize, the total speed increase is only
twofold; when nore than 90% of the task can be parallelize could a speed increase of
tenfold or greater occur.”. This is now known as Amsdahl’s law. Amsdahl law is a good
guide as to when parallelizing leads to speed increase. Generally, only whé8@#boof
the proceses constituting the task could be parallelized is parallelizing wontig.d

For a neural network to be implemented in hardware, adequate consideratbbe
given to floatingpoint, and recurrence decimal. Generally, precision is limited toicerta

number of significant figure. Since most neural network could not bkemgmted wholly
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in hardware, different variety of hardware neural network has emerged and are categorised

as:

1) Off-chip learning:- Off-chip learning occurs when learning the neuraiwork is
done on a computer using high precision. Weights/results of the learning process is
downloaded onto a chip where the classification or recognition occurs.

2)  Chip4n-thedoop learning:- Chip-4n-thedoop learning is a situation whereby the
forward propagation part of the learning algorithm occurs in the chip, but update and
calculation of new weight value occurs on a computer.

3) Onchip learning:- On-chip learning and classification occurs entirely on chip. The
EPCN is implemented echip, leading tolimited precision of calculations. The
EPCN implementation oeohip is also due to the fact that small amount of
calculations are involved, thus discretization of values have very litgbetesh its
performance because numerical errors are very small.

Previous chapters have implemented and applied neural networks, algorthdhs
multi-classifiers for various purposes. In this chapter, the algorithms of EPCN will be
considered in a hardware implementation. There are situations andnements that
require the usage of neural network and do not demand urgency; these conditions are
suitable for softwardased EPCN. The conditions of emergencies (speed) and adverse
surroundings motivate the consideration of EPCN algorithms in hardware.

Largeclass databases and large artificial neural structure requires more time as
compared to small ones. So that the hardware implementation of EPCNhatgorg
motivated by the need to save time and resources while maintaining the saimef lev
performance as compad to the software equivalent.

In the process of implementing the hardware equivalent of EPCN, use wilide oh
the learning and recognition algorithms of chapter 3. Learning and reasoning [25], in a
digital hardware, may lead to adaptation aecbnfiguration. Neural networks have shown
to be well suited to learn from examples and adapt telinear environments, but many
variants are rather resource intensive and therefore prohibitive in prachbaideed
applications [118]. However, one classf neural networks is more suited to
implementation in hardware the secalled weightless neural networks can be well
matched to RAM (Random Access Memory) because their learning and recognition
algorithms are mainly associated with reading from and writing to memory

The aims and objectives of this chapter is to present the architecturehand t

implementation of an adaptiRAM-based neural network, called Enhanced Probabilistic
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Convergent Network (EPCN) [36] areconfigurable FPGAHardware impementations

of EPCN are attractive for the following reasons:

1) Compact size and low power consumption compared to a PC based implementation
(i.e. it becomes deployable in areas where a PC may not)

2) The binary weights of RAMbased neural networks are contained in RAM, and
functions are converted to simple logic gates (AND, NOT, and OR). The logic
combinations required to operate the EPCN are of lesser computationsitynifesn
calculus operations.

3) Regular structure: Generally, RAMased Artificial NeuralNetwork (ANN) are
easier to implement on hardware due to their regular structure.

4) The use of reconfigurable IC like FPGA to implement neural network allagts f
prototyping and lends itself to modifications at low cost. This matkassuitable
testbed pdor to largevolume production.

5) A well designed VHDL based hardware will allow a significant increase in
processing thouroughput compared to a software based execution on a general
processor.

Some authors envisaged thisltachine Intelligent Quotient (MIQ) may also be a
measure of its performance. Chalfant [22] introduced a MIQ and proposes the analysis of
system architecture and configuration as the criteria for its measurementnutigi25]
maintains that architecture of adaptation and learning &\als of hierarchy simplifies
the measurement of MIQ. Learning of a neural network by reconfiguratie@merdtrated
in [124] using a Virtexdl 6000 FPGA. In [122], Simoes employs ALTERA MAX +
PLUS Il in the implementation of Goal Seeking neuron (G&N[Eraseable Programming
Logic Device (EPLD). The EPLD is used in classification of British mastgloaddresses.
Spaanenburg [124] implements two neural networks, one is afdeedrd network to
solve the problem of spatial and temporal computing. The second is impddioerof
Cellular Neural Networks (CNN) for image processing. The FPGA used is Wir6200
and the learning of these networks were made to depend on reconfigueqadnlity of
this FPGA. Freemar8p], designed a eprocessor based on a binary neural unit known as
Correlation Matrix Memory (CMM) which is used for approximate Fegeed search and
match operations on large datasets. Botelho [14] implements Goal SeekirapnNGSN),

a RAM-based neural network, on Khepera mobile robot for control and navigation. The

RAM-based neural networks in [124],[14], designed on FPGA were deployed in

autonomous systems. Most of these systems are application dedicdgadssyoften for
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one purpose only. Howevehe principled EPCN system is generic and highly scaleable.
The EPCN when implemented on FPGA could be employed both for prediction and
recognitionlt would thus become suited to a multitude of applications. In thistehap
however,the hardware is testesh a benchmark of unconstrained handwritten integers
from National Institute of Standards and Technology (NIST), USA.

The possibility of reconfiguration and adaptability of FR@#sed EPCN will be
introduced. The motives for the exploration of its reconfiguration andtaubly are
significant and beneficial these will be explained in subsequent paragraph.

Research into reconfiguration of artificial neural networks (ANN) is an asingly
significant area of investigation. This arises partly due to the improvampetformance
possibilities offered in that it becomes possible for an ANN, whetemmgnted irdigital
hardware, to be capable of adaptation and reconfiguration during learning [25]. Adaptation
may also be in response to nonlinear environment. However, adaptation and
reconfiguration may incur a high computation overhead, more so in practicalaéippkc
[115]. This high computation overhead is however minimised in the class of neural
network investigated in this chapter, the weightless neural network fdllaws from the
observation that the less the computation requirement, the faster an AN respond to
new input. This reduction in response time becomes very large when the ANN is
implemented in hardware.

ANNs may also be grouped depending on the principle behind their iraplation.
Those whose behaviour closely mimics the intelligence of natural being e.getietic
algorithm, and those designed from mathematical concepts. Weightlea$ metworks,
also called RAM based neural networks [7], are a subgroup of those designed from
mathematical concept, in this case mathematicat logncept. Bledsoe and Browning in
their pioneering work [10] (around 1959) made the first attempt to base their design of
neural network on mathematical logic concept. More sophisticated netiar&anaturally
been developed subsequently. These inclidemplementation of Enhanced probabilistic
Convergent Networks (EPCN). The EPCN is an enhanced form of PCN [55]. The specific
enhancements are as detailed in [85]. EPCN is a feed forward neural networks
incorporating supervised learning with the addition that the mathshdbgic is
minimised even further when EPCN is implemented in a hardware.

A harware implementation of ANN offers significant advantages to a purkilyase
implementation due to increased speed. For a weightless NN, the mathlelogiticis of

a reduced complexity than is the case with alternative NN when implemented ita& digi
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intergrated circuit (IC)} this allows an increase in speed. These advantages, amongst
others, motivate the work of this chapter.

The aims and objectives of this chapter are two fold. One is to present the amzhitect
and implementation of an adaptiR&M-based neural network, the Enhanced Probabilistic
Convergent Network (EPCN) [85], in a reconfigurable FPGA. The second is to explore the
reconfiguration and adaptive properties of the FPGA-based neural network.

The remainder of this chapter is organized as follows. Section 6.1 presents an overview
of the EPCN, while section 6.2 introduces its hardware configurations. The experiments to
test the configuration possibilities of FPGA based Hardware archiéectlEPCN and its
results are presented in section 6.2. The experiments and results obtaimederteg in
section 6.3. The experiments and results efaefigurability (or adaptive behaviour) of
EPCN is presented in section 6.4. Analyses of results asemiesl in section 6.5. The

chapter concludes with areas of further research and development in section 6.6

6.1 The Enhanced Probabilistic Convergent Network

The architecture of EPN consiss primarily of four component layeras explained is
section 5.21t includes an optionaleedbak path (represented by dashed arrofwejn

the merge lagr of the main groupto the man-group. E&h layer consists ocomponent
neuions which are themselvesade upof storagdocatons known as RAMocationsas
shown in Figure 5.2 of chapter 5. Details of the learning and recognition algoritams ar

contained in chapter 3.

6.1.1 Other similar weightless Neural networks

Almost all hardware implemented weightless NN are derived from either of thiése u

X  WISARD discriminator [5]

x  Correlation matrix memory [74]

To date, these units are used in various combinations to design weightiegsatuorks.

A typical stateof-the-art design is employed by Bin Azar [47] who utilizes a WISARD
discriminator to design a weéigess NN for robot navigation. Azar [47] states that
WISARD discriminator does not exhibit generalisation inherenthhisnimplementation,
memorization and generalisation abilities were achieved by setting 120hsenamually.
The CMM relies on bitwis€OR of input space during learning, and-gadduct during
recall phase. This find application in the design éfilSAP [74].
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Following is a comparison between EPCN designed in this chapter and a syateaf-

the-art design of FPGA based neural neksor

Having compared various FPGA based neural network, the architecture of &P Gdwv

be presented.

6.2 The FPGA-based hardware architecture of EPCN

In this section, the architecture of EPCN is proposed, by the thesis author that forms a
complex hierarchical system. The design is-divided into preprocessing input data,
core modules of EPCN, hashing function (unit), reconfiguration, and memory

management.

6.2.1 Pre-processing

The EPCN’s preorocessing steps include the reading in of the input data, or querying a
terminal of input source. The EPCN expects the input values to be expressadrin
number. A compression algorithm, the Lempélalgorithm [68] is included in the pre
processing steps. Most of the common identical data points in the cladesnremoved

by Lempeizif algorithm in order to permit redime rescaling of input pattern as and
when required. For example, the input, Figure 6.1(a), igppmeessed resulting in Figure

6.1(b) during input processing.
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(b)
(@)

Figure 6.1: The preprocessing(a) is preprocessed resulting {iv).

6.2.2 The EPCNHardware

The EPCN is here described using the hierarchical system of design. The design i
synthesised by Xilinx ISE during which EPCN is analysed and converteddigital
circuit components. Figure 6.2 shows the main block modules constitutingP@Gal E
architecture. In Figure 6.2, the trébfock and the recogniddock are both connected to
the input preprocessing block via the control unit and the hashing function that produces
the addresses. The control unit initiates@cessing when data aaeailable at the input.
After the completion of prprocessing of the input training data, it initiates the training
processes (section 3.2.1). The tralack signals a finish flag when training completes. On
reception of leanflag-complete, the contralinit checks the recognition input for data.
When data is present, ppeo cessing is done for the pattern meant for recognition. When
the preprocessingstop flag is detected by the control unit, the recognition block starts the
recognition processes (section 3.2.2). The output block is monitored by the control unit
through a feedback system. Iteration of the recognition processes stops when values in the
output block are stable, by querying the output block, or after -alginreed number of
iteration step.

The overriding majority of the EPCN block architecture consists of menitay
functional behaviour is concentrated on data flow from and to these méocations.
The memory location in EPCN is described as sipgie block RAM driven by a
registeed read address and a synchronous wpiéeation.
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Figure 6.2: The blockdiagram of EPCN FPGA architecture.

6.2.3 Hashing

A hashing function is often used to search and retrieve information from memory. Such
a hashing function as employed by Freeman [39] is based daldiitg, XOR, and
pseudo-random number generator.

In this chapter however the hashing function implemented is based on XOR and
Maximumtlength Shift-register [67] cod& maximumlength shiftregister code generates

a systematic code with desired output length;

(6.1)
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Where m is the information bit derived from input patteiirhe code words are normally
generated by rstage digital shift register withdelbback. The generation of the code words

depend on parity polynomials h(p) given by equation (6.2);

h(p) P h,o" . P (6.2)

The maximumength shiftregister codes (MLSR) are dual of cyddamming codes. Bits
in the pattern become the information bits. The hashing is used for address (connectivity)
formation. Data will be written to or retrieved from the LA®RAM location whose address

is so formed. Examples to illustrate this are givenwelo

Example | when m = 3; equation (6.1) becomes
n=2"-1=2-1=7,
This means that 7 addresses are required. In equation (6.2) the parity polynomial h(p)

becomes;

h(p) P he .. KP (6.3)

Figure 6.3 Formation of addresses by hashing from input patterns.
is prior to the learning process.

In equation (6.3) it is seen that the coefficient bispl. h, (i = 0,1,2,...7) is such thaih
1p“tis an integer betweenahd 0. This is a constraint to be satisfied. Most of the values of
hk.lp"‘1 will be zero. Looking at Figure 6.3, it is seen that non of the valuegnasisto

“ttuple” is greater than 7, the corresponding RAM location will be read fsowritten to
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as he case may be. The RAMcation is found in a layer whose address is also generated
by hashing, as values assigned to “tcol” variable, where “tcol” representsaddra
layer. There it is seen that all values between 0 and 3 have been generatetihdlostis
between wanted zeros and unwanted zeros, wherever h(p) has values greater ks 3 or

than 0, this is set td'2and this make the location inaccessible.

Example II: Suppose ten connectivity are required none of which should be greater than

107.

Answer: Recall that 2> 10 > 2. So that when m = 4; equation (6.1) becomes
n=2"-1=2-1=15;

and in equation (6.2), the parity polynomial h(p) becomes;

h(p) p° hp* .. BP (6.4)

In equation(6.4) it is seen that the coefficient df s 1. And h, (i = 0,1,...15) is such that
h.ap“*is an integer between 15 and 0. Since no connectivity should be greater than 10,
h(p) is set to 2for those values that are not required. An example is shoWigime 6.4,
here the variable “rclas” shows all addresses derived lies between 0 and 1i0andlos
“rclas” represents addresses of a neuron in the recognition phase.

To distinguish between wanted zeros and unwanted zeros, wherever h(p) has values
greater than 10 or less than 0, this is sef'@n2l this make the location inaccessible.

Other addresses are derived similar to example | and Il. Recall that inforrhasion a

pattern characterise that pattern, and thus the connectivity is repieducib
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Figure 6.4: Formation of addresses by hashing from input patterns.
is prior to the learning process.

6.2.4 Memory management

As indicated previously, the memory location in EPCN is described as-pmglblock
RAM driven by a registered read address and a synchronous write operation in Xilinx’s
LUT-RAM. The memory management is monitored by ¢batrol unit see Figure @.
During a read operation from a location, a write operation is disablédr@gpect to that
location. During a write operation to a location, any read operation frainsdime location
is disabled.

As concerning the buses, a read/write enable/disa@peration depends on the
addresses formed from the pattern. The FPGA consists of configurable logic blocks
(CLBs). These CLBs are inteponnected by buses. Activating a bus, and which bus is
being activated depends on if its address is formed. Activating a bus is ngpessao a
read/write operation; otherwise a read/write operation is not pessibthat bus. A read
and write addresses, with respect to one bus will not be formed at thetisemét is
either a read address or a write address. It ensures that values are notavattémead

from the same bus at the same time. This is commonly referred to as bus contention
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6.2.5 Reconfiguration

The structural architecture of EPCN and the size of its neuron are adaptivginghan
with learning and classification. During learning and classificationnssger number
called thedivisionis required foradjustmenpurposes, [85]. The teradjustmentrefers to
multiplying the integer value in a RAM location by thkévision and dividing by the
number of training patterns per class. Tddustmentis necessary for all classes to be
treated equivalently when the number of pattern per class varies between Glagkes.
sizeis the number of bits sampled from input data (at once) that characterizedeaitu
that data. For tuplesizeof n, 2' —1 bit are sampled.

In practice the maximum size and structure of EPCN is naturally lintitedhe
available hardware resources. The numberefgroup layersthe number omaingroup
layers thetuplesize and thedivision are often referred to as system parame®@rs.size
of pregroup layer and the size of magnoup layers are modifiable alongside the reconfiguration
process.

The numbemwivision used during variouadjustmeniphases could be chosen within a
value from 1 to 2. This is the binary address ranthat fits in memory on FPGA. The
possibility of the variability in system parameters is vital toicstand dynamic
reconfiguration. Modification to the value assigned digision is done by prefixing
“constant divisn” with a “generic” statement. Thisnisrmally done before training and a
recognition session pair.

The EPCN reconfiguration file is stored in Programmable Read Only Memory
(PROM). Since the golden configuration is stored in revision 0 for FPGA'sest|fthe
EPCN reconfiguration file is stored in revision 1. The sogelect switch is used to select
any of the revision at any time required.

The FPGA is pregorogrammed with various possible configuration options. The config
select, SW8, is a group of three switches, the combinafievhich gives the selection of
one of eight possible configurations of EPCN. The sesetect, SW9, is a group of two
switches, the combination of which gives the selection of source of configuration for
EPCN.

Using the configselect switches in cgunction with configsource switches it was
found that it supports to a maximum of:

X  Tuplesize = 4;

X  Pregroup layers = 5;
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X  Main-group layers = 5;

x  Class = 15;

X Number of neuron per layer 28+-15;

The detection of pattern boundaries is automatically and dynamically done tyniinel
unit (figure 6.2).

The functional activities of the pqgocessing unit and the hashing function (unit) are
monitored by the control unit to ensure that the size of the pattern used within the EPCN
fall within the maximum neuron size possible. Secondly, it is alwagsilple to adjust
every pattern size appropriately before hashing. This solves the boundary problems. The
solution to the boundary problems increases the range and type of input sources and
reconfiguration flexibility of EPCN, which will be experimented on in section 6.3 and
section 6.4.

6.3 Experimentations

The EPCN was designed and implemented using Xilinx ISE 9.21i. The NIST data base
has been used for testing the functionality of EPCN and has been found doitalsde.
Testing was done by instantiating the EPCN in aliesth and associating the NIST
handwritten data set with its input.

The prototyping board is linked to the computer via a USB programming cslie.
recognition of the programming cable bylixx ISE enables the download of the bit file
generated from EPCN, as shown in figure 6.5, and configuration of the board by impact
(component of Xilinx ISE) using PROM file generated from EPCN.

Figure 6.5: This shows that EPCN fits Virtel pro.

! National Institute of Standards and Technology (NIST) in Gastheg USA. NIST provide the
handwritten simple form (HFS) of numerals, which were binarégatiresize to 3by-32.
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To display the output of EPCN on board the FPGA, RS232 cable is connected via the
com port and linked to the HyperTerminal at a baud rate of 249600. Recognition

results are displayed on the HyperTerminal in a PC. Internal to the Mipex FPGA is a

2MB SDRAM. External SDRAM at 2GB is also attached. This makes possible an
increased number of LUTS generated and utilized during learning and recognition of
EPCN in FPGA.

An example of the FPGA resource utilisation of EPCN is shown in Tablelbese are

the resource requirements for the following EPCN architecture:

X

X

X

Tuplesize = 3;

Pregroup layers = 3;

Main-group layers = 2;

Class = 10;

Number of neuron per layer 2+15;

Table 6.2: An extract of resource utilisation showing the conversion of EPCldt® g
level components.

From Table 6.2, it is seen that the resource utilisation is relatlgalyfor the given

example network.

Using the NIST handwritten integers, the EPCN is trained on 0 to 9, and during

recogniton requested to recognise “1”. Data for training are selected from the tragting
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while patterns for recognition were selected from recognition seh 8aining set and

recognition set form disjoint sets

Figure 6.6: Wrong recognition: A recognition result from EPCN
when trained on “0” to “9”, and shown “1” in recognition phase.

Result of type figure 6.6 shown above is obtained when a pattern is shown to the network
for recognition. Figure 6.6 shows the result when one input pattern is shown to the
network for recognition. In this figure, the numbers 1,2,3,...,9, on thehdeitiside
represents the classes while the binary numbers to thehaghiside represents the
probability (scaled bdivision) with which the

Figure 6.7: Ambiguous state: A recognition result from EPCN when
trained on “0” to “9”, and shown “1” in recognition phase.
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Figure 6.8: Correct recognition: A recognition result from EPCN
when trained on “0” to “9”, and shown “1” in recognition phase.

pattern belong to that class. By varying the configuration of EPCN lamdirgg it the

same pattern for recognition, different other results are obtainable as shown in Figures 6.7
and 6.8. Three possibilities exist in recognition processes of EPCN. They are correct
classification (Figure 6.8), ambiguous classification (Figure 6.7), and wrong clagsificat
(Figure 6.6). The binary numbers in Figure 6.7 and 6.8 has same meaning as in Figure 6.6.

6.4 Reconfiguration/Adaptive Experimentations

.The experimentation carried out here explores various configurations of EPCN. The
EPCN was designed and implemented using Xilinx ISE. It was then testefiware by
simulations prior to these experiments. The Source of database used in tleesreekp

is:-

x The centre of Excellence for Document Analysis and Recognition (CEDAR),
University at Buffalo, State University of New York, USA. Department of Computer
Science. Unconstrained handwritten numbers from CEDAR were resizéd a
binarised to 163y-24 in dimension.

The configselect switch consists of three switches while the sesefset switch is made

up of two switches. In any session, learning or recognition, a combination of the three
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switches on SW8 yields eight possible configurations which enableatioariof
configuration and system parameters of EPCN architecture. The-sonfige, consist two
switches which are used to select sources of configuration. The various configurations of
EPCN in these experiments resioe PROM (in Revision 1) and are fetched during
reconfiguration automatically.

Preliminary investigations, that includes the available size of both thenah and
external synchronous dynamic random access memory (SDRAM), has revealed that
hardware resources supports maximum of 5 layers efnog and maximum of 5 layers
of maingroup. Guided by these hardware resource constraints, the experimenipaim
explore various configuration possibility of EPCN and to deternfiegobssible optimum
configuration of EPCN. To this end, three experiments were performed on FPGA based
EPCN using the database mentioned above. They are:

X A case where division = 1000; magmoup layers = 3; prgroup layer increase from
1 through to 5.

X A case where division = 1000re-group layer = 3; maugroup layer increase from 1
through to 5.

x In the third experiment, the magroup layers = 3; prgroup layer = 3; division is
increase from 100 through 7@0.

Results of these experiments were recorded. They are graphicalfyddm Figures 6.9,

6.10 and 6.11.

These same experiments have been performed on the software version of EPCN [85], by

employing the same CEDAR database.
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Figure 6.9: A plot of % recognition against number of ggeup layer; division =
1000; maingroup layers = 3; prgroup layer increase from 1 through to 5.

Figure 6.10: A plot of % recognition against number of mgjroup layer;
division = 1000; pregroup layers = 3; maigroup layer increase from 1
through to 5.
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Figure 6.11: A plot of % recognition againgtivision the main
group layers = 3pre-group layer = 3; division is increase from 100
through to 700.

6.5 Analysis

From the design and the example resource utilisation, Table 6.2, it could be inferred that
static and dynamic variation both of precision (word length) and systeametersra
possible. As these are fully supported by available resources, up to awertamum (see
the sub-section 6.2.4).

Figures 6.6, 6.7 and 6.8 are result types obtainable from EPCN. Figure 6.6 is a case of
wrong classification, while Figure 6.7 is amlaiguous state. Figure 6.8 shows correct
recognition. These results are obtained when character “1* is shown to EPCN. The
different outputs, due to changes in system parameters, are indicatinee pssibility of
changes in decision due to changes virenment.

A pattern of 18by-20 in size infers 300 neurons per layer. And there are many of such
layers in any instance. This demonstrates the possibility of implergeanti advanced and
large weightless neural network, the EPCN, wholly on FPGA, thenoaessing steps

inclusive.
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6.6 Adaptive/Reconfiguration Analysis

The advantages of the FPGA implementation are that it is able to exploit the
reconfiguration and adaptive capability of the EPCN which is advantageousafoy
situations for which an intelligent machine requires very fast, automateaterrupted
respnses, and in potentially electronically harsh and isolated conditions.

Figure 6.9 shows that the maximum percentage recognition occurs wheie-tireypr
layer is 3. Figure 6.10 shows that the maximum percentage recognitiors @duen the
maingrouplayer is 4. Figure 6.11 shows that the maximum percentage recogmtiors o
when the division is 300.

Comparing Figures 6.9, 6.10 and 6.11, it may be observed that the performance is least
dependent ordivision and that performance is most dependentnain-group layers
These results are identical to the result obtained from thbaB&d EPCN when same
input databases are used hence demonstrating the validity of the FPGA émialéom.
Further investigation and experimentation shows that the optimstensyparameters are:
Main-group layers = 4;

Pregroup layers = 3;
Division = 300;

These values are naturally dependent on the database employed and the number of classes.
Also it is noteworthy that the hardware is of the order of fa6ter than an equivalent
software implementation. A comparison between the speed of the-bR§&d EPCN, an
optically enhanced Multilayer perceptron (MLP) [86][87], and a software based EPCN is
shown in Table 6.4There is clearly a substantial gain pesd by the FPGAased EPCN

over a software implementation. The EPCN is employed on human eye iris databhase an
compared with other neural networks in table 6.5. Table 6.5 shows how different databases

may give rise to different results (in Table 6.5). Tasults in Table 6.5 also depend on
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configuration complexity and on source of database employed. The order of magnitude
appears more general and thus more reliable.

Hardware constraints has been considered, and compared to equivalent softwdre EPC
These are tabulated in Table 6.4.

Experimental results further show that on comparing the software parfoe® with the
hardware performances:

1) Figure 3.5 is very similar in behaviour to figure 6.9.

2) Figure 3.6 is very similar in behaviourfigure 6.10.

3) Figure 3.7 is very similar in behaviour to figure 6.11

The FPGAbased EPCN may give the same result for exactly the same system parameters.

Table 6.5: Comparison of hardware EPCN with other neural networks implemented
other platforms. The database employédlisian eye Iris
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Table 6.5 compares EPCN with other neural networks when employed in leymums.
From Table 6.5 and Figures 6.9, 6.10 &L, it is deductible that the possibility of-ti
worddength has a great effect on the identical result obtainable both from theahar
and the software EPCN

6.7 Summary

The EPCN has been shown to be portably and wholly impleaidaton FPGAPre
processing steps have been included in this design. The results deteahst possibility
of implementation of a large, advanced, and adaptive weightless EPCN in a re
configurable FPGA. The FPGA based EPCN has been shown to be adaptive and
reconfiguable. The results obtained here are comparable in performance terms to that of
softwarebased EPCN. This is significant since hardware implementations of wegghtles
classifiers are rare.

A shortcoming of these experiments is that interaction effects of themmgtars were
not investigated. This may be considered as an area of further experimentation and
development. Other areas for further research include introduction of meaaokelligent
quotient (MIQ) as a means of seldsessment, and dynamic graeter tuning of the

network.
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/. CONCLUSION

7.1 Introduction

The advantages of RAMased neural networks were enumerated in different places
within the thesis. Introduction to weightless neural network afterwards focuses on EPCN
whereby it was introduced. Modifications were made to configurationc@muectivity
depending on areas of applications.

Chapter 3 reveals that other connectivity formation methods are possshileisAorms
the basis of two types of PCN herein namedPiGN and randPCN. We were able to
explore various configuration possibilities for this neural network and, using handwritten
characters, obtain a maximum performance of about 85% there. The levels of performance
obtainable in this chapter could be improved upon.

This prompts investigations into possible mulassifier systems. lohapter 4, a parallel
multi-classifier was designed. Performances in excess of 85% were achievable. Further
areas of study might be other forms of arrangement such as serial or hybrid arrangement of
component classifiers. It is noteworthy that these depmm objectives of application.

Low performance is not suitable for sensitive applications and also unsuitable in areas such
as identification and security. In these areas, a very high % correct remogsitequired.
Secondly, a single PCN may be unable to cope withdscgked multiclass databases due

to problems among which are bias and saturation effects. A biometric datadrasies gl

itself with identification and security. Using PCN in a MCS in chaptdrig now possible

to rapidly (andwith high accuracy) classify larggcaled multiclass biometric databases.
Though only fingerprint database was used in this chapter, there is no reason to suggest
that it is not applicable to other largass databases.

A novel advanced combination strategies were introduced in chapter 5. These
combination methods were tested on fingerprint classification. Affamisation of the
combination methods, performances of about 92% were obtained. Using PCN in a MCS
with these combination methods, it is now possible to rapidly (atid high accuracy)
classify largescaled multiclass biometric databases. Its suitability for application todarge
scaled multiclass database depends on the fact that external feature extraction procedures
for input data wer@aot required for correct classification. The MCS is capable of detecting

144



features of input database, autonomously, for their classificatiors. i$han intrinsic
property of this MCS, and applies to any input databases. Industrial application might be a
good further step.

Accelerated character recognition and avoidance of collision may be required in
electronically harsh and isolated conditions. Such conditions fiself itin space
exploration or in deep sea. Also, there are conditions for which an intelligent machine
requires very fast, unmanned, and uninterrupted responses. These conditions make PC
based software very unsuitable, and form the content of chapter 6. Uihsyitaib
conditions conceived the idea of a hardware implementation. Attemptsheerenaide in
chapter 6 into a hardware design of EPCN. An FPGA based PCN was then applied to
unconstrained handwritten character. This chapter demonstrates the lipossibi
implementation of an advanced RAb&sed neural network wholly in FPGA. Following
this is a questn of its wider applicability, and also question of configuration issues.

Issues such as the advantages of a hardware implementation, when appliedive sensit
and difficult area, were addressed in chapter 6. In chapter 6, system paramBeh$ o
and its various possible configurations were investigated. Resuldsieddtwere compared
with other neural network systems. Hardware PCN was found suitable and applicable in
areas mentioned in the previous paragraph. This is with a considerabl@ apé

performance advantage asmpared to many other systems.

7.2 Handwritten characters — Utilisation of a single Neural

Network

The results of chapter 3 are obtained by the employment of a single essghdural
network, fixEPCN and randEPCN independently, in turn on unconstrained handwritten
characters. Filling of form by hand is still much in place in officesnoiustries and
academics. The performance of EPCN in chapter 3 is at 87% maximum.

Application areas: - The advantage of EPCNs implemented in chapter 3 is that they
could find application in offices where automated recognition of uneonst
handwritten charers, e.g. in bank cheques, in application forms etc., are required. An
example application is given in section 3.4 which coincide with recognati handwritten
(hand writing of every day life) numerals. The EPCN in this chapter is unsuitable for
applications that are security or health based.

Areas of further development The coding of this EPCN is done in Matlab.
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x The coding could be improved upon
X An optimisation algorithm could be introduced

x A multi-classifier could be constructed so as to imptbeeperformances.

7.3 A Discussion on weightless MultClassifier Systems

Chapter 4 implements a muttiassifier system consisting only of weightless
component classifiers. And performance rates of over 93% are obtainable. Though the
multi-classifierdoes not utilize any of the classical improvement method such as Bagging
or Boosting, the error rate of less than 10% has been obtained consistently.

Application areas: - The multiclassifier may be applied in low level security sector
such as verification of absence or presence of materials in bulk. The disadvantage is
inapplicability in highlevel security sectors. The muttiassifier is capable of
accommodating more classes, and has a higher (about 20% more) percentaggorecogni
rate as compared to a single EPCN. This Mul#ssifier is suitable in recognition of
handfilled forms and handwritten characters. In addition to thisuitglsility in biometric
verification purposes is suggested.

Areas of further research: - This may includemproving the coding to the combiner.

7.4 Classification of Large-Scale Multi-Class Databases

Also in chapter 4, the multlassifier is tested on larggass databases (fingerprint
databases). The component classifiers each were assigned ten classes. This arrangement
does solve the problem of saturation, but does not solve the problem of bias. The
performances of the multiassifier on each class vary greatly. Such that for the multi
classifier to be very useful on largealed multiclass database, provement on the
MCS performances is required. Nevertheless, the performances of thelaggiiier on
many classes were substantially above 62.5%. What has been achieved in the gfroject
this chapter are:

X  The removal of saturation
x  The utilisation of the muliclassifier on biometric databases serves as a pointer to
the nextline-of-action, should it be required to utilizermally the multiclassifier

on largescaled multiclass databases.
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Application areas: - It is suitable to mediudevel securitysectors such as biometric
identification in industries. It is also suitable for character reitognsuch as found in
(hand-filled) forms.
Areas of further research and developmenare:-
X The removal (or minimisation) of bias.
X Improvement in performance of the mwdtassifier on largelass databases.
X  Instead of employing a traditional method of boosting and/or baggiwgs decided
to employ a novel method by replacing the gating function with a more advance

gating functim so as to improve performance.

7.5 On Combination Strategy for Large-Scaled Multi-Class

Database of Multi-Classifier

In chapter 5,

X A statistical arrangement method is introduced to solve the biagprobl
X A subsetting strategy is introduced to solve theisztion problem
X A novel gating function is introduced to solve the problem of high mgemand,

and increase speed.
These steps achieve a performance of 92% on average, owtlEsgealatabases, which in
this case is a fingerprint database.
Potential Application areas. - An error rate of less than 10% implies that it may be used
on medium to very large databases. The result obtained here is very good peti tes
the database on which it is applied. It indicates that it may be used in iedltistrrequire
low to medium level security, e.g. for human fingerprint recognitibandwritten
recognition, level of alcohol in blood, etc. Generally, it is applicablsituations where
the risk of false recognition is low.

The disadvantage is the low percentage recognition (average is 92%) when it comes to
“high-level security” databases such as database of national security, databases related to
health and hazards, etc. The reason is because the risk of false recognigbnabdve
1%). It may be used on “higlevel security” database only as an advisor since the output
of the multiclassifier is a probability output.

Areas of further research: - Industrial deployment of the developed system.
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7.6 Hardware-based EPCN
In chapter 6, the EPCN is ported toG#. The portability of EPCN to FPGA is significant

and widens the areas where it may be applied. Though at an early stage of development
results shows that EPCN could be deployed in hardware for possible pattern recognition
and prediction.

A significant achievement of the projects contained in chapter 6 is that it has become
possible to implement an advanced and complex Palsed neural network of this type,
wholly in FPGA, which paves the way for other new areas of application of EPCN. The
FPGA based EBEN is tested for adaptability and for reconfiguration. The results obtained
(section 6.5) is good, and signifies:

x That FPGA based EPCN may be employ in offices of industries and academics

where automated recognition of unconstrained handwritten characters is required.

X Wholly portable to hantteld equipment.

X May be employed in harsh surroundings.
Areas of application: - The hardwardased EPCN is highly adaptive and automatic with
respect to its surrounding and to data. This implies its suitabilgyeictronically isolated
situations; e.g. in space exploration. It is also suitable for portableraechbedded
applications.

Areas of further research: An enhancement of the robustness of EPCN to vagaries of

hardware is in order.

7.7 Summary

Chapter 7 has réawed the achievement of previous chapters, the merits, and the demerits.
Each weightless neural network and each nuldtssifier implemented in each chapter is
independently developed, and may be applied or used as such.

The results of projects deled in this thesis have the following consequences for
weightless neural systems. It means that (a) more connectivity methodsrap®ssible
for weightless neural networks; (b) a novel gating function is introduced for neural
networks; (c) It is the fst attempt at utilizing a weightless neural network as a trained
comhbner in a multiclassifier frameworkwvith a considerable success; (d) The EPCN is
ported to FPGA. It signified that it may be possible dtreradvanced weightless neural

networks to be ported also to FPGA.
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Though a definition for intelligence may not be universally acceptable,ttemdpd has

been made to define ANN as an intelligent system, it has nevertheless lead to
achievements enumerated so far.résearchextension to EPCN kch will carry over to
any MCS in which it is a component, it is suggested to include the foljowsearcheat
project level:

X An attention mechanism;

X A consciousness mechanism.
These two modules are considered essential area of future researchijpessibibrder
move EPCN toward an intelligent ANN system. Any other research extensiens ar

possible and may be considered optional.
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