Citation for published version

DOI

Link to record in KAR

https://kar.kent.ac.uk/53635/

Document Version

UNSPECIFIED

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
THE USE OF GYROMETRY TO CORRECTLY INTERPRET ACCELEROMETRY IN DYSPHAGIA

M. Henderson¹; D. Smithard¹,²; S. Kelly¹; G. Marcelli¹

¹University of Kent, UK; ²King’s College Hospital NHS Foundation Trust

Introduction
Use of accelerometry for dysphagia assessment and treatment was first proposed in 1991 and has been developed in many studies since, but has yet to gain wide acceptance in a clinical setting[1].

Recent studies[2,3] attempting to build systems using accelerometers which measure larynx movement fail to report how the inevitable rotation of the sensor during measurement is accounted for.

Accelerometry has enormous potential to be the basis for a portable, low-cost, safe and non-invasive dysphagia assessment tool, if it can be properly understood.

Materials and Methods
Sensors which combine an accelerometer with a gyrometer (which measures rotational velocity) were placed on a group of healthy subjects. Tri-axial accelerometer data was collected simultaneously with gyrometer data during swallowing.

The data was examined for evidence of a rotational component. The gyrometer output is used to calculate the true Anterior-Posterior and Superior-Inferior axis acceleration of the larynx.

Results
A significant sagittal rotation can be observed during swallowing.
Gyrometer and accelerometer data show high correlation, which would not be the case if rotation had little influence on the accelerometer output.

A significant correlation between the shape of the gyrometer signal and speed, height and hold duration of larynx elevation can also be observed.

Conclusions

Our study shows that rotation of the sensor in response to larynx movement is a large contributing factor to the accelerometry signal.

This has important implications for the interpretation of the accelerometry signal: a gyrometer is essential for the correct interpretation of accelerometry of the throat.

With our approach, several characteristics of a patient’s swallow can be distinguished, such as speed of larynx elevation, height of elevation, duration and strength of hold at maximum elevation. Viewing these characteristics separately can provide the clinician with a far clearer understanding of an individual’s swallowing physiology.

References

