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Abstract

In this paper, we design a fast background subtraction algorithm and deploy this algorithm on a monitoring system
based on NAO humanoid robot. The proposed algorithm detects a contiguous foreground via a contiguously weighted
linear regression (CWLR) model. It consists of a background model and a foreground model. The background model
is a regression based low rank model. It seeks a low rank background subspace and represents the background as the
linear combination of the basis spanning the subspace. The foreground model promotes the contiguity in the foreground
detection. It encourages the foreground to be detected as whole regions rather than separated pixels. We formulate
the background and foreground model into a contiguously weighted linear regression problem. This problem can be
solved efficiently via an alternating optimization approach which includes continuous and discrete variables. Given an
image sequence, we use the first few frames to incrementally initialize the background subspace, and we determine
the background and foreground in the following frames in an online scheme using the proposed CWLR model, with
the background subspace continuously updated using the detected background information. The proposed algorithm is
implemented by Python on a NAO humanoid robot based monitoring system. This system consists of a control station
and a Nao robot. The Nao robot acts as a mobile probe. It captures image sequence and sends it to the control station.
The control station serves as a control terminal. It sends commands to control the behaviour of Nao robot, and it
processes the image data sent by Nao. This system can be used for living environment monitoring and form the basis for
many vision-based applications like fall detection and scene understanding. The experimental comparisons with most
recent algorithms on both benchmark dataset and NAO captures demonstrate the high effectiveness of the proposed
algorithm.
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1. Introduction

The position of moving objects is an important knowl-
edge for many algorithms and applications based on the
humanoid robot. For example, in path planing, it helps the
robot to avoid potential obstacles; in navigation, it allows5

the robot to adjust its velocity; in scene understanding,
motion can be a useful prior to distinguish between some
objects in the scene; in fall detection, it provides the po-
tential position where the fall can happen. Therefore, a
fast and accurate algorithm for moving object detection is10

desirable in robotic based systems.
A widely used solution for moving object detection on

robots is to equip the robot with a video camera, view the
moving object as the foreground in image sequence and
perform background subtraction algorithms on the cap-15

tured frames. Generally, the framework of background
subtraction algorithms includes two components: a back-
ground model and a foreground model. The background

∗Corresponding author
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model estimates the potential background in image se-
quences, and the foreground model detects foreground re-20

gions by comparing between captured frames and the es-
timated background. Currently, although a large number
of algorithms have been proposed for background subtrac-
tion [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
some problems remain open for a background subtrac-25

tion algorithm designed for robots. One main challenge
is the varying working environment. The working envi-
ronment of robots changes more frequently compared to
static cameras in fixed positions, since a robot can be de-
ployed to any possible positions for monitoring, and the30

environment like lighting condition, size of moving object
and background dynamic can vary in different positions.
Therefore, it is a challenging problem to design a back-
ground subtraction algorithm for a robot to distinguish
between the foreground motion and background changing35

in varying environment. Another problem is the mem-
ory and computational cost. Most of recent algorithms
like [13, 14] use a batch scheme to handle the background
changing. They model the background using the infor-
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mation from the whole image sequence. It improves the40

detection accuracy at the cost of more memory and com-
putation requirement. However, in a robot based monitor-
ing system, the background subtraction algorithm needs to
run in an online scheme with the speed satisfying the re-
quirement of specific applications. It is difficult to reduce45

the computational and memory cost of the algorithm while
preserving a high accuracy.

Recently, low rank model has shown its potential to
address the above challenges. The representative algo-
rithms are Principal Component Pursuit (PCP) based al-50

corithms [13, 14] and PCP-like online algorithms [17, 18,
19, 20, 21, 22]. PCP [13] assumes the potential background
images of an image sequence lie in a low rank subspace, and
the moving objects (foreground) is spatially sparse. It de-
composes the image sequence into a low rank component55

as the background and a sparse component as the fore-
ground, achieving an impressive perform. Also, recent re-
search has shown that a contiguous foreground prior can be
incorporate with the low rank background model, achiev-
ing a promising performance for foreground detection [14].60

Furthermore, to speed up these PCP-based algorithms, a
large number of PCP-like [17, 18, 19, 20, 21, 22] online al-
gorithms have been proposed. Some of these PCP-like on-
line algorithms have achieved a real time speed [19, 21, 22].

The above PCP-based and PCP-like algorithms have65

shown their power in background subtraction. This is due
to several advantages of low rank model. First, the as-
sumption for background in low rank model is simple yet
effective. The only assumption of low rank model for back-
ground is that the background with local and global vari-70

ations can be represented by a low rank matrix [13]. The
effectiveness of this simple assumption has been demon-
strated by the success of batch methods using low rank
model to estimate background [13, 14, 23].

Second, low rank model is a frame level model which75

can better capture background variation. In comparison to
pixel level models which consider the pixels in each frame
independently [1, 2, 3, 4, 5, 7, 8, 9], low rank model views
the pixels in a frame as a whole, hence it is able to capture
the inner correlations between frames, better modelling80

the background variation.
Third, low rank model can be integrated with other

models, combining the advantages of different models. Typ-
ical examples are some PCP-like online algorithms [17, 18,
19, 20]. These algorithms incorporate representative back-85

ground model [6, 10, 11, 12] into low rank model [13, 14],
achieving excellent performance.

The aforementioned advantages make low rank model
an excellent foundation to develop algorithms for back-
ground subtraction in challenging environments. However,90

some problems still exist and restrict the application of
low rank based background subtraction algorithms in real
robotic systems. First, it has been shown that the contigu-
ous foreground prior contributes significantly to the accu-
racy of foreground detection [14, 20], but using this prior95

also induces heavy computational burden. It influences

the speed of algorithm, even in an online scheme [20]. Sec-
ond, currently, little research examines the low rank model
based background subtraction algorithm in real robotic
systems. Little knowledge and study exist for the perfor-100

mance of these algorithms in real applications.
In this paper, we propose a fast online background sub-

traction algorithm with contiguous foreground prior for
background subtraction, and we implement the proposed
algorithm in a Nao humanoid robot [24, 25] based moni-105

toring system to examine its performance in real applica-
tions1. The algorithm includes a background model and
a foreground model. For background modelling, we use
a regression based low rank model. We assume that the
potential background images lie in a low rank subspace, so110

we expect that the background of one frame can be repre-
sented as the linear combination of the basis spanning the
subspace. Therefore, we represent the background of the
current frame as the linear combination of the estimated
background of previous frames. In foreground model, we115

use a contiguity constraint encouraging the foreground to
be detected as contiguous regions rather than separated
pixels. The proposed algorithm can be solved cheaply in
terms of computational load.

The proposed Nao based monitoring system consists120

of two parts: Nao robot and a control station. Nao robot
works as a mobile probe. It can move to a specific posi-
tion, capturing image sequence using the equipped camera
and sending the captures back to the control station for
further processing. The control station serves as a con-125

trol terminal. It sends commands to Nao robot to control
its behavior, and it processes the image data sent by Nao
robot. We implement the proposed background subtrac-
tion algorithm on the control station to detect the moving
objects in the images sent by Nao. The proposed monitor-130

ing system can be used for living environment monitoring
and form the basis for many vision-based applications like
fall detection.

The rest of this paper is organised as follows. In sec-
tion 2, we introduce the related algorithms. We revisit135

the state-of-the-art PCP-based and PCP-like algorithms
for background subtraction. In section 3, we describe
our background subtraction algorithm. In section 4, we
present the details of the proposed Nao humanoid robot
based monitoring system and the implementation of the140

proposed background subtraction algorithm on this mon-
itoring system. In section 5, we report the experimental
results. Finally, in section 6, we conclude the paper.

2. The related algorithms

The related algorithms to the proposed algorithm are145

PCP-based and PCP-like algorithms [13, 14, 17, 18, 19, 20,
21, 22, 23]. PCP [13] is a batch method. It assumes the po-
tential background of images sequences lies in a low rank

1This is an extension of our algorithm in [26]
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subspace, and the foreground region is spatially sparse.
Therefore, it decomposes image sequences into a low rank150

component as background and a sparse component as the
foreground. However, due to its batch scheme, PCP has
high computational cost and memory requirement, and it
is difficult to apply PCP in robot based monitoring sys-
tems.155

Since low rank background assumption has shown its
power in background modelling, lots of PCP-based and
PCP-like algorithms are proposed to detect moving objects
in an online scheme to improve the efficiency [17, 18, 19, 20,
21, 22]. Some algorithms perform PCP incrementally to160

reduce the computational cost of computing the low rank
component. Representative algorithms are [21, 22]. These
algorithms rewrite batch PCP algorithm into an incremen-
tal form, and this incremental form can be well solved
using some rank-1 SVD operations including increment,165

downdate and replacing. Other algorithms use a repre-
sentative low rank background model to reduce the com-
putation cost. That is, instead of directly computing the
low rank component of image sequence, these algorithms
seeks some basis spanning a low rank background sub-170

space, using the linear combinations of these basis to rep-
resent the background, and updating these basis frame by
frame to capture the background dynamic. ReProCs [17]
is a recursive robust PCP algorithm with the assumption
of a known model for the trajectories of moving objects.175

GRASTA [19] constraints the background subspace to be a
Grassmannian manifold and updates it on the Grassman-
nian. A `1 norm based cost function is used to achieve
a robust representation. pROST [18] is similar to [19].
It uses `p norm (p < 1) instead of `1 norm in the cost180

function to better model dynamic backgrounds.
The above works show that the background can be

well-modelled using the low rank assumption in PCP, but
the assumption of sparse foreground in PCP is sometimes
not enough to model the moving objects. Usually, the185

moving objects are not only sparse in pixel-level but also
are contiguous regions. Therefore, some researches [14, 20]
incorporate a contiguity foreground prior into the frame-
work of PCP or PCP-like algorithms. DECOLOR [14] is
a PCP-based batch algorithm. It imposes a Markov ran-190

dom field (MRF) based model on the sparse component of
PCP, promoting the contiguity in the foreground detection
result. GOSUS [20] is an online PCP-like algorithm using
a representative background model. Similar to [19, 18], it
constraints the background subspace on a Grassmannian195

manifold, and it uses a group sparsity model to encour-
age the contiguity in the foreground detection. It is shown
that the contiguity prior is able to significantly improve
the accuracy of foreground detection, but heavy computa-
tional cost is also induce by this prior, leading to a reduced200

speed.
Also, although the aforementioned PCP-based and PCP-

liked algorithms demonstrate impressive performance and
illustrate the power of low rank models in background sub-
traction, little research studies the performance of these205

algorithms in a real system in real applications.

3. The proposed online background subtraction al-
gorithm

3.1. Problem formulation

The problem of online background subtraction can be210

posed as follows. In a video sequence, given a current input
frame y = [y1, y2, ..., yn]

T ∈ Rn and the background model
estimated using the previous frames, we aim to compute a
foreground mask s = [s1, s2, ..., sn]

T ∈ {0, 1}n for y, where
si = 1 if yi is detected as foreground, otherwise si = 0.215

In background model, we assume the potential back-
ground images of a sequence lie in a low rank subspace.
Therefore, we represent the background of current frame
using the basis spanning the subspace. Specifically, denote
the estimated background of the nearest k frames prior to220

the current frame by B = [b1, b2, ..., bk] ∈ Rn×k (bi ∈ Rn

is a column vector of the estimated background of one of
the frames), we represent the background of the current
frame by Bx, where x ∈ Rk is a column vector of coeffi-
cients.225

In foreground model, we use two priors for s. The first
one is the sparsity prior, as generally used in many low
rank based background subtraction algorithms [13, 17, 18,
19, 20, 21, 22]. The sparsity prior assumes that s is sparse
(most of the elements in s are 0). It means the foreground230

region is small comparing to the background. The other
prior is the contiguity prior. It restricts that in s, the ele-
ments with the same value should be distributed as groups.
It promotes the contiguity of the detected foreground re-
gions.235

We formulate the above background and foreground
model into three terms: a background fidelity term, a fore-
ground sparsity term and a foreground contiguity term.

Background fidelity term. The background fidelity
term is defined as follows:

f1 (x, s) =
1

2
‖(1− s)⊗ (y −Bx)‖22 (1)

where 1 ∈ Rn is a column vector of ones and ⊗ is element-
wise multiplication operator. Minimizing f1 (x, s) restricts240

that all background pixels are represented as the linear
combination of the basis in low rank background subspace
(B).

Foreground sparsity term. The foreground sparsity
term is defined as follows:

f2(s) = ‖s‖1 (2)

As shown in literature [13, 14], `1-norm is able to induce
sparsity. Hence, minimizing f2(s) leads to a sparse s.245

Foreground contiguity term. The foreground con-
tiguity term is defined as follows:

f3(s) =
∑

i

∑

j∈Ni

|si − sj | = ‖Gs‖1 (3)
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where N i denotes the neighboring pixels of pixel i, and
G is a matrix indicating the neighborship of all pixels.
Minimizing f3(s) encourages neighboring pixels in s to
have the same value. Thus, the detected foreground will
be distributed as groups of pixels.250

Combining the three terms, our formulation has the
following form:

arg min
s,x

1

2
‖(1− s)⊗ (y −Bx)‖22 + α‖s‖1 + β‖Gs‖1 (4)

where α and β are penalty parameters. We call it a con-
tiguously weighted linear regression (CWLR), because the
first term is a weighted linear regression, and the third
term constrains the weights to be spatially contiguous.

It can be seen that the model in Eq. 4 essentially con-255

sists of several state-of-the-art techniques used in existing
low rank models for background subtraction. The first
term of Eq. 4 is a regression based low rank background
model (please also see section 3.3). It is inspired by re-
cent algorithms in [17, 18, 19, 20] which combine low rank260

background model [13, 14] with representative background
model [6, 10, 11, 12] for background modelling. The sec-
ond term of Eq. 4 uses `1-norm to induce the sparsity in
foreground detection. The effectiveness of this sparse fore-
ground prior has been demonstrated by batch low rank265

models in background subtraction [13, 14, 23]. The third
term promotes contiguity in foreground detections. This
term is motivated by [14, 20] which show that the perfor-
mance can be improved by promoting the detected fore-
ground to be contiguous. By combining these state-of-the-270

art techniques, we expect that the proposed model is able
to achieve an improve performance compared to existing
low rank models.

3.2. Algorithm

Eq. 4 has discrete variables in s and it is not convex275

in both s and x. As a result, it is difficult to solve s and
x jointly. Instead, we seek a solution by optimizing over
s and x alternatively. It leads to a x-subproblem and a
s-subproblem.

x-subproblem. Let s̄ = 1−s ∈ {0, 1}n. With s fixed,
minimizing Eq. 4 leads to the following problem:

arg min
x

‖s̄⊗ (y −Bx)‖22 (5)

s̄ is binary, so we remove from y and B the rows cor-280

responding to the zero elements of s̄, and solve a linear
system to seek x.

s-subproblem. Let e = [e1, e2, ..., en]T = y −Bx ∈
Rn. With x fixed, we rewrite the objective function in
Eq. 4:

1
2 ‖(1− s)⊗ (y −Bx)‖22 + α‖s‖1 + β‖Gs‖1

= 1
2

∑
i

(α− e2i )si + β
∑
i

∑
j∈Ni

|si − sj |+ 1
2

∑
i

e2i
(6)

where the third term can be ignored since it is a con-
stant with x fixed. Eq. 6 is a first order Markov random
field with binary labels [27]. It can be solved using graph285

cuts [28].
Convergence analysis. With the parameters α and

β fixed, the algorithm will converge to a local minimum.
This is demonstrated as follows. Let f (x, s) be the objec-
tive function in Eq. 4. Let xi be the x obtained in the ith

iteration. Let si be the s obtained in the ith iteration. We
have:
(1) alternating between x-subproblem and s-subproblem
leads to a sequence of monotonically decreasing objective
function values. As a proof, f

(
xi, si

)
≤ f

(
xi, si−1

)
≤

f
(
xi−1, si−1

)
can be obtained as follows:

f
(
xi, si−1

)
= arg min

x
f
(
x, si−1

)
≤ f

(
xi−1, si−1

)
(7)

f
(
xi, si

)
= arg min

s
f
(
xi, s

)
≤ f

(
xi, si−1

)
(8)

(2) f (x, s) is lower bounded (f (x, s) ≥ 0).
Therefore, according to above (1) and (2), the conver-

gence of proposed algorithm is guaranteed. Furthermore,
since f (x, s) is not convex in both x and s, we can obtain290

that the proposed algorithm will converge to a local mini-
mum. In our experiment, the algorithm usually converges
in 5-10 iterations.

Parameter setting. There are 3 parameters in the
proposed algorithm: k which is the basis number in B, α295

and β in Eq. 4. We set k to 10 empirically (see Section 5.2).
As for α and β, borrowing an idea from [14], we update

them as follows. In the first iteration, α is set to a large
value, α = 0.5σ2 where σ is the standard deviation of the
current frame. The reason is that Bx is an inaccurate300

background estimation at the beginning of the algorithm
(foreground is not fully masked). It will lead to an inaccu-
rate estimation of s. Therefore, we apply a large penalty
resulting a conservative estimation of s. In each iteration,
α is reduced by a factor of 0.5, since, along with more fore-305

ground region is found, Bx becomes more accurate and we
relax the penalty to encourage more foreground detection.
β is set to 5α in each iteration.

3.3. Background updating

After the foreground of the current frame y is detected,310

a key problem to achieve an online scheme is how to update
the low rank background subspace B for the detections in
the following frames. In this paper, we update B based
on an incremental PCP algorithm. Let Y

′ ∈ Rn×k be a
matrix including the nearest k frames to y with each of315

its column being a frame. Assuming we have the low rank
approximation of Y

′
, we seek the low rank approximation

of [Y
′
,y] by the incremental PCP algorithm in [21, 22].

After the low rank approximation of y is computed, we
estimate the background of y as a new basis for B by pre-320

serving the detected background pixels in y and replacing
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the detected foreground pixels by their low rank approxi-
mations. Then, we use this new basis to replace the basis
corresponding to the oldest frame in B.

Now, the problem becomes how to find an initial low325

rank background subspace so that we can update it frame
by frame using the above described method. We employ
the incremental initialization algorithm in [21, 22] to seek
this subspace as well as the low rank approximation of
some initial frames (i.e. initial Y

′
). This algorithm works330

in an incremental scheme so it is much faster than the
batch initialization.

We note that a more efficient way to update the back-
ground is to use Bx. We do not choose this way because
it exploits little new information additional to the current335

background subspace. In our experiment, we find that
updating B via the former method leads to a better per-
formance.

4. Implementation of the proposed algorithm on a
Nao humanoid robot based monitoring system340

In this section, we present a Nao humanoid robot based
monitoring system where the proposed algorithm is imple-
mented. We firstly give a brief introduction of Nao hu-
manoid robot. Then, we describe the hardware design of
the monitoring system and the software implementation.345

4.1. Introduction of Nao humanoid robot

Nao [24, 25] is the product of Aldebaran Robotics -
SAS (Limited Company). It has a medium size with a
height of 57.3cm, a width of 27.3cm and a weight less than
4.3kg. A wide class of sensors locates around the body of350

Nao. These sensors allow Nao to capture the around envi-
ronment, making it a powerful medium to develop applica-
tions. An illustration of Nao’s shape and sensor equipment
is shown in Fig. 1. In this subsection, we introduce some
key modules of Nao related to our implementation. We355

refer the readers with interest to [24, 25].
Motherboard. The motherboard of Nao locates in

the head. This motherboard is equipped with an Intel
ATOM 1.6GHz CPU with 1GB RAM, and additional 2GB
flash memory and 8GB micro SDHC are available. The360

CPU runs a Linux kernel. It manages the commination,
vision and other sensor modules of Nao.

Motion. The body of Nao has 25 degrees of freedom
(DOF), 11 DOF for the lower body part and 14 DOF for
the upper body part. All body parts are driven by elec-365

tric motors and actuators. One ARM microcontroller lo-
cates at the chest distributes information to all the actu-
ator module microcontrollers. The ARM microcontroller
communicates with the motherboard via a USB-2 bus.

Vision. NAO has two cameras. One locates in the370

forehead and the other one locates at the month level.
The forehead camera scans the horizontal direction, while
the month camera focuses on the floor. The two cameras
use MT9M114 image sensor. They support a wide range

Figure 1: An illustration of the shape and structure of Nao humanoid
robot [25].

of resolution up to 960 × 1280 with a focus range from375

30cm to infinity. In video capture, the highest frame rate
is 30fps.

Connectivity. Nao supports Wi-Fi IEEE 802.11 b/g/n
standard and Ethernet connection. Therefore, it is possi-
ble to send command to Nao and retrieve the data cap-380

tured by the sensors on Nao through a control station
within the same network.

Battery. The battery locates at the back of Nao. It
is a Lithium ion battery with a charge duration less than
3 hours. The fully charged battery can support around 60385

minutes of use.

4.2. System overview

The Nao humanoid robot based monitoring system con-
sists two components: a control station and the Nao robot.
The Nao robot works as an adaptive mobile monitor. It390

is able to walk to the target monitoring point, adapt its
camera towards target area, capture image sequence us-
ing it camera, and send the captured images to the con-
trol station for further processing. The control station
accounts for control and image processing task. It sends395

commands to Nao, controlling Nao to walk to the monitor-
ing point, adjusting its camera direction and beginning to
capture images sequences. Also, the control station runs
the background subtraction algorithm to analysis the im-
age sequence sent back by Nao. The position of moving400

objects can be used as the foundation for many applica-
tions like fall detection and scene understanding.

4.3. Hardware configuration

In the current implementation, we use a Samsung lap-
top as the control station. This laptop has Intel i5-3210M405

quad-core 2.50GHz CPU and 6GB RAM. It runs a Linux
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64 bit system. As for Nao, we use its top camera for im-
age capture. The Nao robot and the control station can
be connected by either Ethernet or Wi-Fi to transmit the
commands and images.410

4.4. Algorithm implementation

The algorithm in this system has two parts. The first
part is the algorithm for the functionality of Nao, including
walking, adjusting camera direction and capturing image.
The second part is the algorithm of background subtrac-415

tion as described in section 3. For the first part, we em-
ploy the NAOqi framework [29] developed by Aldebaran
robotics. NAOqi includes a set of APIs which controls
the behavior of Nao, including walking, turning head and
capturing image sequence.420

As for the background subtraction part, we write and
run the proposed background subtraction algorithm in Python.
The code consists of two parts: initialization and back-
ground subtraction. The function call map of our imple-
mentation is shown in Fig. 2, and we explain each function425

as follows.
initIncPCP: this function implements the fast initial-

ization algorithm described in [21, 22] and used in sec-
tion 3.3.

bgSubtraction: this function implements the back-430

ground subtraction algorithm described in section 3.
contiguousDetection: this function solves the con-

tiguously weight linear regression problem using the algo-
rithm in section 3.2 for contiguous foreground detection.

rank1IncSVD: this function implements the rank 1435

SVD increment algorithm.
rank1DwnSVD: this function implements the rank 1

SVD downdate algorithm.
rank1RepSVD: this function implements the rank 1

replacing algorithm.440

shrink: this function implements the soft-thresholding
shrinkage operation, shrink (x, ε) = sign (x) max (|x| − ε).

We would like to note that in the background sub-
traction part (bgSubtraction), the rank 1 SVD increment
(rank1IncSVD), downdate (rank1DwnSVD) and replacing445

algorithm (rank1RepSVD), and soft-thresholding shrink-
age operation (shrink) are used in the algorithm in [22, 21],
and they are employed for the background updating in the
proposed algorithm (see section 3.3).

5. Experiment450

We perform experiments on both benchmark dataset
and Nao captured data. The experiment on benchmark
dataset studies the effect of the proposed CWLR model
as a general method for background subtraction, while the
experiment on Nao data investigates on the performance455

of CWLR on the Nao humanoid robot based monitoring
system.

Figure 2: Function call graph of our implementation.

5.1. Evaluation

We evaluate the performance of algorithms by accu-
racy and speed. The accuracy is evaluated by F-measure
defined as follows:

F =
2× precision× recall

precision + recall
(9)

where precision = TP
TP+FN and recall = TP

TP+FP ; TP, FN and
FP are the number of true positive, false negative and false460

positive pixels, respectively.
Generally, the F-measure is used to evaluate the pixel-

level accuracy of foreground detection. It is reasonable for
some applications requiring a pixel-level accuracy like mo-
tion segmentation. However, in some applications like fall465

detection [30], the moving objects are sometimes extracted
at a region level using a bounding box for the following
processing. Although the detection result of different al-
gorithms varies at the pixel level, such differences at the
pixel-level may have little influence on the bounding box.470

Therefore, we also use a block-wise F-measure to evaluate
the accuracy of the bounding box found by each algorithm.
Specifically, we use the bounding box of the connected
components in the ground truth image as ground truth
bounding box. We use the bounding box of the connected475

components in the foreground mask computed by each al-
gorithm as the detected bounding box. The block-wise
F-measure calculates the F-measure between the ground
truth bounding box and the detected bounding box using
similar way to Eq. 9.480

We use frames per second (FPS) to evaluate the speed.

5.2. Experiment on benchmark data

Dataset. We use the I2R dataset2 [31] as the benchmark
dataset. It includes 9 challenging videos: Bootstrap (120×
160×3057 frames, crowd scene), Campus (128×160×1439485

frames, waving trees), Curtain (128 × 160 × 2964 frames,
waving curtain), Escalator (130×160×3417 frames, mov-
ing escalator), Fountain (128 × 160 × 523 frames, foun-
tain water), hall (144 × 176 × 3548 frames, crowd scene),

2http://perception.i2r.a-star.edu.sg/bk_model/bk_index.

html
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Lobby (128×160×1546 frames, switching light), Shopping-490

Mall (256×320×1286 frames, crowd scene), WaterSurface
(128× 160× 633 frames, water surface). Ground truth of
some frames is provided in the dataset. On each sequence,
we use the first 200 frames for training (initialization) and
perform background subtraction on the remaining frames.495

Comparison methods. We report comparisons with the fol-
lowing algorithms: mixture of Gaussian (MoG) [2] as the
baseline; GRASTA3 [19], GOSUS4 [20] and incPCP5 [21,
22] as recent online low rank based algorithms. Moreover,
we compare with two batch low rank methods: PCP6 [13]500

as a traditional low rank batch algorithm; DECOLOR7 [14]
as an improved PCP with the foreground contiguity prior.

Most of the comparison methods need a threshold to
produce foreground mask. For these algorithms, we use
the first image with ground truth in each video as the505

training image; we choose the threshold to maximize the
F-measure on the training image, and fix this threshold
for the other images. For other parameters in different
algorithms (including k in ours), we find an optimal option
using the training images and fix it for all the videos. We510

use fixed parameters for all the videos, since it is closer to
the scenario of real applications, especially for a robotic
based vision system working in varying environment.

Results and discussions. We run all the algorithms on a
desktop with Intel i5-3470 quad-core 3.20GHz CPU, 16GB515

RAM, WIN7 64 bit system. Since all the algorithms for
comparison to ours are implemented in Matlab, we also im-
plement CWLR in Matlab for a fair comparison in terms
of speed. Moreover, to study the speed of CWLR in the
real system in section 4, we report the speed of the CWLR520

implemented in Python and running on the control station
as described in section 4.3 and section 4.4 using the same
images sequences as input (the accuracy will be similar
since it is the different implementation of the same algo-
rithm). We refer to CWLR implemented in Python on the525

control station as CWLR&.
We report the mean F-measure, mean block-wise F-

measure and FPS of all the methods on each video in
Tab. 1, Tab. 2 and Tab. 3, respectively. We show some
example results in Fig. 3. Among the online methods, the530

one with the highest F-measure is marked red in Tab. 1
and Tab. 2, and the second highest is marked green. It can
be seen that our algorithm achieves the highest overall F-
measure and block-wise F-measure among all the online
methods. We note that GOSUS reports a promising per-535

formance with tuned parameters for each video as in [20],

3http://sites.google.com/site/hejunzz/grasta
4http://pages.cs.wisc.edu/~jiaxu/projects/gosus/
5https://sites.google.com/a/istec.net/prodrig/Home/en/

pubs/incpcp
6http://perception.csl.illinois.edu/matrix-rank/sample_

code.html
7http://fling.seas.upenn.edu/~xiaowz/dynamic/wordpress/

?p=144

but when uniform parameter setting (closer to real sce-
nario of a robotic system) is used, its performance varies
on each video and the overall performance drops.

Comparing the accuracy between the online and batch540

methods, we find that in terms of pixel-level accuracy
(F-measure in Tab. 1), incPCP achieves a comparable F-
measure to the original PCP, and GRASTA, GOSUS and
our algorithm outperform the original PCP. However, in
terms of region-level accuracy (block-wise F-measure in545

Tab. 2), PCP performs better than all the online meth-
ods excepting CWLR. It means that on the benchmark
dataset, a batch scheme can better capture the region
of moving object, despite of lower accuracy at the pixel
level. Such a result shows that on the benchmark data,550

the existing PCP-based and PCP-like online algorithms
without the foreground contiguity prior (GRASTA, GO-
SUS, incPCP) are preferable to the task requiring a high
pixel-level accuracy like motion segmentation, but they are
less effective for the region-level detection, compared to555

the batch algorithms. CWLR addresses this problem. In
comparison to the online methods and batch PCP, CWLR
achieves better accuracy in both pixel-level and region-
level. This result suggests that the foreground contiguity
prior is able to improve the performance of background560

subtraction in both pixel-level and region-level. On the
other hand, DECOLOR outperforms all other methods.
The reason is the combination of a contiguity foreground
prior and the batch scheme.

As for speed, incPCP is the fastest algorithm. Our565

algorithm is an online algorithm but it is not real time,
because additional computational cost is induced by the
foreground contiguity prior modeling a pixel-wise neigh-
boring information. However, compared to the algorithms
using this prior, our algorithm is approximately 7.5 times570

faster than batch DECOLOR algorithm and 6 times faster
than online GOSUS algorithm on the desktop. Also, we
find that CWLR runs slower on the control station than
the desktop. We think the reason is that the hardware con-
figuration of our desktop is better than the control station575

(recall that the hardware of control station: Intel i5-3210M
quad-core 2.50GHz CPU and 6GB RAM; the hardware
of desktop: Intel i5-3470 quad-core 3.20GHz CPU, 16GB
RAM).

5.3. Experiment on Nao Data580

Dataset. To investigate the performance of CWLR in the
Nao humanoid robot based monitoring system, we con-
duct experiment on the image sequences captured by Nao
robot8. We capture 6 sequences using the monitoring sys-
tem described in section 4. 3 of the sequences are captured585

indoor environment in a lab, and 3 of the sequences are
captured outdoor in a campus. The sequences mainly suf-
fer from indoor or outdoor illumination changing. The

8https://www.dropbox.com/s/s67w7ba8vb15546/NaoVideos.

zip?dl=0.
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Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR#

Bootstrap 0.5964 0.6248 0.4240 0.6017 0.6599 0.5289 0.5443
Campus 0.3405 0.7652 0.2115 0.2152 0.1669 0.2092 0.7911
Curtain 0.4927 0.8342 0.4186 0.7816 0.8700 0.6182 0.7615

Escalator 0.6039 0.7183 0.2744 0.4265 0.4058 0.3747 0.6137
Fountain 0.5226 0.8618 0.3875 0.6620 0.6778 0.6502 0.7958

Hall 0.4840 0.5597 0.3603 0.5355 0.4644 0.4744 0.4807
Lobby 0.5833 0.5654 0.3441 0.4059 0.1856 0.4460 0.6375

ShoppingMall 0.5739 0.6800 0.5407 0.6724 0.7152 0.6809 0.6279
WaterSurface 0.3392 0.8873 0.2280 0.7725 0.7873 0.5258 0.5612

Mean 0.5041 0.7219 0.3543 0.5635 0.5481 0.5009 0.6460
∗batch (off-line) method #online method

Table 1: F-measure of all methods compared on I2R dataset.

Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR#

Bootstrap 0.8092 0.7754 0.7356 0.8189 0.6224 0.8329 0.6197
Campus 0.4340 0.8277 0.2631 0.2516 0.1235 0.2449 0.8376
Curtain 0.8087 0.8777 0.7733 0.9799 0.9600 0.8700 0.8479

Escalator 0.7091 0.6992 0.5207 0.6020 0.3517 0.4649 0.6440
Fountain 0.4954 0.8894 0.6177 0.5630 0.9014 0.6106 0.9111

Hall 0.8474 0.5245 0.5081 0.8304 0.6473 0.8292 0.5482
Lobby 0.8852 0.9393 0.5905 0.6550 0.5671 0.7965 0.6868

ShoppingMall 0.7580 0.6849 0.7805 0.7730 0.7005 0.7613 0.6718
WaterSurface 0.8668 0.8880 0.6107 0.7813 0.9789 0.7326 0.6464

Mean 0.6547 0.7679 0.5168 0.6240 0.5679 0.5961 0.7126
∗batch (off-line) method #online method

Table 2: Block-wise F-measure of all methods compared on I2R dataset.

Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR# CWLR&#

Bootstrap 1.36 0.17 2.98 21.4 0.81 27.8 5.30 4.04
Campus 3.37 2.55 2.77 21.8 0.97 26.9 7.41 4.54
Curtain 1.29 0.27 2.65 21.8 1.24 28.1 5.74 6.06

Escalator 1.12 0.26 2.83 27.0 0.83 36.2 6.00 3.22
Fountain 4.20 1.63 2.84 18.5 1.31 22.0 7.35 3.85

Hall 0.93 0.14 2.19 17.2 0.67 26.7 4.49 4.23
Lobby 1.69 0.79 2.64 19.1 1.13 26.2 6.03 5.59

ShoppingMall 0.73 0.14 0.71 11.8 0.18 14.4 1.65 1.21
WaterSurface 4.65 0.72 2.83 21.3 1.02 26.5 6.40 5.28

Mean 2.15 0.74 2.49 20.0 0.91 26.1 5.60 4.22
∗batch (off-line) method #online method

Table 3: FPS of all methods compared on I2R dataset.

number of frames in each sequence is between 1000 and
3000. The resolution of all the sequence is set to 120×160.590

For each sequence, we manually segment some ground
truth images for performance evaluation. Some example
images of each sequence are shown in Fig 4(a).

Results and discussions. We make comparison with the
same methods in section 5.2 using the same evaluations.595

Similar to the experiment on the benchmark data (sec-
tion 5.2), for a fair comparison of speed, we report frames
per second (FPS) as the speed of proposed CWLR in the
Matlab implmentation running on the desktop. Also, to
evaluate the speed of CWLR in the proposed monitoring600

system, we report FPS of CWLR implemented in Python

on the control station (referred as CWLR&).
We report the mean F-measure, mean block-wise F-

measure and FPS of all the methods on each video in
Tab. 4, Tab. 5 and Tab. 6, respectively. We show some605

example results in Fig. 4. Similar to the results on bench-
mark data, the method with the highest F-measure among
the online methods is marked red in Tab. 4 and Tab. 5,
and the second highest is marked green. We find that on
Nao data, the accuracy of all the algorithm is generally610

higher than that on benchmark data. We think a possible
reason is that the background changing is less dramatic in
our working environment of Nao.

Also, it can be seen that different from the results on
the benchmark data, on the Nao data, batch PCP out-615
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3: Example results of comparison methods. (a) The original video frame (from top to bottom: Bootstrap, Curtain, Fountain, Lobby);
(b) the ground truth; (c) PCP; (d) DECOLOR; (e) MoG; (f) GRASTA; (g) GOSUS; (h) incPCP; (i) CWLR.

performs all the online low rank based methods excepting
CWLR in terms of both pixel-level and region-level accu-
racy. CWLR has a better accuracy than PCP in pixel level,
and the accuracy is also comparable between CWLR and
PCP in region level. On the other hand, similar to the re-620

sults on benchmark data, batch DECOLOR still achieves
the highest accuracy in both pixel level and region level.

In terms of speed, the results on Nao captures are
similar to that on the benchmark data. incPCP is the
fastest algorithm. CWLR algorithm has the highest speed625

among the algorithms using foreground contiguity prior
(DECOLOR and GOSUS). It can be seen from Tab. 6 that
CWLR is approximately 12.5 times faster than batch DE-
COLOR algorithm and online GOSUS algorithm on Nao
captures.630

5.4. Influence of the size of background subspace

In the proposed CWLR algorithm, the background sub-
space B is constructed using the nearest k frames prior to
the current frame. In other words, k is a parameter that
determines the size of background subspace. Therefore, it635

is necessary to investigate the influence of k on the perfor-
mance of proposed algorithm.

To make this investigation, we report the F-measure
and Block-wise F-measure of CWLR on I2R dataset and
Nao captures, with k varied from 3 to 70. The results are640

reported in Fig. 5.
It can be seen that, when k < 10, the performance im-

proves with k for most sequences on both datasets. This
is because, when k is small, the background subspace in-
cludes too little information to represent the background;645

in this case, increasing k will include more background
information into the background subspace, enabling the
background subspace to better represent the background
in sequences, hence leading to an improved performance.

On the other hand, when k ≥ 10, the performance650

remains stable or fluctuates for most sequences on both

datasets. The reason is that, when k is sufficiently large,
the background subspace contains sufficient information to
represent the background in sequences; as a result, adding
more background information by increasing k leads to little655

improvement.
Finally, investigating the influence of k on the mean

performance, we find that, for I2R dataset, the mean per-
formance remains stable for all k; for Nao dataset, the
mean performance improves with k when k < 10, and it is660

stable when k ≥ 10.
Therefore, based on the above observations, we con-

clude that, (1) when k is small (lower than 10 in our
experiment), a larger k leads to generally better perfor-
mance; (2) when k is sufficiently large (larger than 10 in665

our experiment), changing this parameter has little influ-
ence on the performance of proposed algorithm. Based on
the above conclusions, given an arbitrary image sequence,
we may vary k around 10 to seek a good setting of this
parameter.670

5.5. Result summarization

Analysing all the experimental results on both bench-
mark data and Nao data, we can see a clear trade-off be-
tween the performance and speed. Without foreground
contiguity prior, some online methods including GRASTA675

and incPCP are able to achieve a real time speed, but the
accuracy is unstable. It can be seen that although on the
benchmark data these methods outperform batch PCP in
accuracy, PCP is still more accurate on the Nao data.

On the other hand, the accuracy can be significantly680

improved by incorporating the foreground contiguity prior
into the low rank based model. It can be seen that on both
Nao data and benchmark data, DECOLOR and CWLR
have a generally better accuracy than the methods without
the foreground contiguity prior. For GOSUS, although685

its performance is unstable in our experiment due to a
fixed parameter setting, it is still able achieve a promising

9



Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR#

video1 0.7387 0.8396 0.5994 0.7772 0.6630 0.7604 0.8176
video2 0.7762 0.9091 0.6593 0.7461 0.6941 0.7187 0.8638
video3 0.6966 0.8980 0.6831 0.7844 0.6829 0.6873 0.7913
video4 0.8181 0.8655 0.3662 0.6113 0.6024 0.6749 0.8615
video5 0.7376 0.8040 0.3341 0.6248 0.5780 0.6387 0.7669
video6 0.8586 0.8817 0.4219 0.8049 0.8453 0.7693 0.8800
Mean 0.7710 0.8663 0.5107 0.7278 0.6776 0.7082 0.8302

∗batch (off-line) method #online method

Table 4: F-measure of all methods compared on Nao captured data.

Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR#

video1 0.8720 0.8896 0.7083 0.8705 0.7926 0.8375 0.8536
video2 0.8629 0.9369 0.7051 0.7836 0.7652 0.7304 0.8793
video3 0.9189 0.9389 0.8286 0.8529 0.7857 0.7319 0.8261
video4 0.8643 0.8690 0.4087 0.7544 0.7087 0.7947 0.8645
video5 0.7565 0.8148 0.4597 0.7596 0.6801 0.7519 0.7844
video6 0.8499 0.8897 0.5087 0.9016 0.8746 0.8068 0.8838
Mean 0.8541 0.8898 0.6152 0.8204 0.7678 0.7755 0.8486

∗batch (off-line) method #online method

Table 5: Block-wise F-measure of all methods compared on Nao captured data.

Video PCP∗[13] DECOLOR∗[14] MoG#[1] GRASTA#[19] GOSUS#[20] incPCP#[21, 22] CWLR# CWLR&#

video1 4.35 0.51 3.02 34.9 0.53 42.5 7.20 4.56
video2 3.64 0.77 2.91 33.9 0.53 55.0 7.19 3.93
video3 2.63 0.43 3.01 36.6 0.51 52.3 6.72 3.14
video4 1.27 0.61 2.84 30.0 0.61 38.7 7.44 7.01
video5 1.93 0.62 2.52 33.0 0.53 37.6 6.77 5.29
video6 1.03 0.39 2.90 37.4 0.68 48.5 7.56 4.20
Mean 2.48 0.56 2.87 34.3 0.57 45.8 7.17 4.69

∗batch (off-line) method #online method

Table 6: FPS of all methods compared on Nao captured data.

performance with fined-tuned parameters according to the
results in [20]. However, such performance is at the cost of
more computational burden. Among the methods using a690

foreground contiguity prior, the fastest one is CWLR, but
the speed is still slower than the fastest algorithm without
the contiguity prior.

Finally, focusing on the performance of CWLR, we can
see that it achieves the highest overall accuracy among695

the low rank based online background subtraction algo-
rithms on both benchmark data and Nao data. Also, on
the proposed Nao robot based monitoring system, CWLR
achieves a speed of 4.69 fps. It means that the delay caused
by detection using the proposed algorithm is lower than700

220ms on the proposed monitoring system. This speed
enables the proposed algorithm to be used for some appli-
cations based on the result of background subtraction like
scene understanding, human-robot interaction and anomaly
detection.705

Therefore, we conclude that CWLR achieves a high
accuracy and an acceptable speed in a Nao robot based
monitoring system. This result demonstrates the effective-
ness of CWLR. It also shows that low rank based model

and the foreground contiguity prior are effective methods710

for background subtraction, and it has the potential to be
applied in real robotic systems.

6. Conclusion

In this paper, we propose a background subtraction al-
gorithm and implement it on a Nao humanoid robot based715

monitoring system. The proposed algorithm uses a con-
tiguous foreground prior. It includes a regression based
low rank background model and a foreground model pro-
moting the foreground contiguity. We formulate the back-
ground and foreground model as a contiguously weighted720

linear regression problem which can be solved efficiently.
Also, we study the performance of the proposed back-
ground subtraction algorithm in a real robotic system by
designing a Nao humanoid robot based monitoring system
which runs our algorithm for background subtraction. Ex-725

perimental results show that CWLR achieves an improved
accuracy compared to current low rank model based online
algorithms, and the accuracy of CWLR is also compara-
ble to the best batch method in our experiment. In terms
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 4: Example results of comparison methods on Nao captured Data. (a) The original video frame (from top to bottom: video1, video2,
video3, video4, video5, video6); (b) the ground truth; (c) PCP; (d) DECOLOR; (e) MoG; (f) GRASTA; (g) GOSUS; (h) incPCP; (i) CWLR.

of speed, CWLR is able to run at 5.60/7.17 fps (bench-730

mark data/nao data) on a desktop and 4.22/4.69 fps on
the designed monitoring system. This speed is much faster
than the recent low rank model based background sub-
traction algorithms using similar contiguous foreground
prior. Also, this speed means that the delay of detec-735

tion is lower than 150ms on our desktop and lower than
220ms on the proposed monitoring system. This delay is
small and it enables the proposed algorithm to be used
for some applications based on the result of background
subtraction like scene understanding, human-robot inter-740

action and anomaly detection. Thus, we conclude that
the proposed background subtraction algorithm is able to
improve the accuracy of background subtraction, and the
algorithm achieves a fast speed that enables it to be used
for applications in a real robotic system. Future work may745

consider a parallel implementation to further improve the
speed, achieving a real time background subtraction sys-
tem with high accuracy.
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• A online background subtraction algorithm detecting contiguous foreground

• A weighted linear regression formulating background model and foreground detection

• A Nao humanoid robot based monitoring system

• Implement the background subtraction algorithm on the monitoring system

• Experiments on both benchmark data and Nao robot data


