
Downloaded from
https://kar.kent.ac.uk/53248/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1096/fj.1530-6860

This document version
Publisher pdf

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).
A novel role for GABA and glutamate in pericyte-mediated regulation of medullary blood flow

Kadeshia Natasha Dunn, Stephen P Kelley, Carol Crawford, Scott S P Wildman and Claire M Peppiatt-Wildman
Medway School Of Pharmacy, Universities of Kent and Greenwich, Kent, United Kingdom

GABA and its synthesising enzyme, glutamate decarboxylase, have been detected in the rat kidney [1–2]. GABA has also been found in human plasma and urine [3–4] and most recently, a renoprotective role for GABA has been suggested [5]. We are systematically investigating functional roles for GABA and glutamate in the mammalian kidney.

Contractile pericytes regulate vasa recta diameter in response to a number of endogenous vasoactive agents and in doing so regulate medullary blood flow (MBF) [6]. We have utilised the live kidney slice model [6] to demonstrate GABA-mediated constriction of vasa recta that was significantly greater at pericyte sites than at non-pericyte sites (p< 0.01). Conversely, the GABA substrate glutamate (100 μM) caused a significantly greater vasodilation of vasa recta at pericyte sites compared to non-pericyte sites (p< 0.05).

Data presented here identifies a novel role for GABA and glutamate in pericyte-mediated regulation of vasa recta diameter and thus MBF.

- Goodyer, et al, 1982 Biochimica et Biophysica Acta 716 348, 357
- Parducz, et al, 1992 J Histochem Cytochem 40 675, 680
- Ferkany, et al, 1978 Life Sciences 22 2121, 2128
- Sarang, et al, 2008 JPET 324 376, 382
- Crawford C, et al, 2012 Nephron Physiol 120 17, 31