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“Big data” has become a major area of research and associatedfunding, as well as a focus of utopian
thinking. In the still growing research community, one of the favourite optimistic analogies for data
processing is that of the oil refinery, extracting the essence out of the raw data. Pessimists look for
their imagery to the other end of the petrol cycle, and talk about the “data exhausts” of our society.

Obviously, the refinement community knows how to do “refining”. This paper explores the extent
to which notions of refinement and data in the formal methods community relate to the core concepts
in “big data”. In particular, can the data refinement paradigm can be used to explain aspects of big
data processing?

1 Introduction

“Big data” has been a topic of great interest internationally for a few years now, and the UK government
has declared it to be one of the “eight great technologies1”. As a consequence, it is opportune for
researchers and institutes to consider how they can engage or, more cynically: rebrand, in order to
further the research agenda and profit from available funding opportunities.

The Open Data Insititute in the UK presents2 two definitions of big data:

(i) data that you cannot handle with conventional tools, or
(ii) a term used as a vague metaphor for solving problems withdata.

The refinement community could engage with the big data research field along the lines of either of those
definitions.

The first, more technical, definition is the one the UK government was mainly looking at, considering
problems that require “petabytes” of data to be processed. Typical descriptions of big data in this context
refer to three (or more!) ‘V’s [7]: volume, velocity and variety. The first two highlight that not only
there will be a lot of data, but it may also be produced at a persistently high rate. The last of these refers
to the possible lack of uniform structure in the data. Research communities in networks, databases,
programming languages, and precursor bandwagon areas like“grid computing” and “cloud computing”
have already moved into this technical field of “big data”, leading to a substantive research effort on the
side of “engineering” of big data. From a formal methods perspective, the application of big data tools
like Hadoop and MapReduce comes with its own verification requirements. Indeed, some research has
already been done to explore this [11], e.g. using CSP [12], Coq [9] or QuickCheck and VDM [6]. It is
so far less clear whether there are formal methods challenges in this area which fundamentally relate to
theparadigmrather than to the verifiability of the use of big data programming tools.

In this paper, however, we concentrate on the second definition. It is arguably the one with a wider
public appeal. It shares a lot of its promise, attraction, and even substance with ideas about “artificial

1https://www.gov.uk/government/publications/eight-great-technologies-big-data
2Seehttps://github.com/theodi/data-definitions, also for considerations on how “big data” relates to “open

data” and “personal data”.
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intelligence” that have been part of popular science for some sixty years now. More to the point, it is
also the one that asks the most interesting questions of refinement. In this view, “big” does not refer to
the size of the data so much as to its perceived potential.

There are two metaphors which are commonly used for big data processing - both of them inspired
by the fossil fuel cycle. In what follows, we will show that each naturally leads to a different refinement
perspective. First, in Section 2 we discuss thedata exhaustanalogy, and how it relates to the idea of
output refinement. Then, in Section 3 we consider thedata refineryanalogy. An understanding of this in
refinement terms, related to the simplified stance that big data is “just” statistics, requires probabilistic
notions of refinement. Following this realisation, we take asecond look at the “data exhaust” view, in
Section 4. In Section 5 we reflect on the relevance of this paper’s attempts to relate data refinement and
big data.

2 The data exhaust and output refinement

The data exhaust scenario is one that is causing some software producers and many commercial and
governmental organisations serious anxiety. The line of reasoning goes: our systems (or our apps) are
generating so much data – location data, usage logs, maybe all the way to full-fledged digital surveillance
– but we are not extracting any information from this. Such information would allow us to increase our
knowledge and subsequently improve our processes or effectiveness, so this must be a problem.

This was phrased explicitly using the traditional3 distinction in information science between “data”,
“information”, and “knowledge”, where information adds aninterpretative meaning to data, and knowl-
edge is about productive use of information. The data “exhaust” acknowledges the gap between big data
and the elusive “big information”. Data is being produced asa side effect of the core process, but its
information content is not uncovered let alone exploited.

A complete modelling of the exploitation of the data exhaustwould be in two steps: first, information
would need to be extracted from the data, and then likely thiswould need to be fed back into the system
somehow in order to improve its performance. The first step isessentially a notion ofoutput refinement.

Using the standard Z schema representation of operations, the simplest definition of output refine-
ment is as follows. (This is a simplification of [5, Def 10.10], IO-downward simulation. It considers a
single operation with no inputs before nor after refinement (a trivial input transformer) and the identity
retrieve relation on the state.)

Definition 1 (Plain Output Refinement) The operation AOp on state State is output refined by COp
operating on the same state if an IO transformer4 OT exists such that:

• OT is a total injective output transformer for AOp;

• ∀State• preAOp⇒ preCOp

• ∀State; State′; !COp• preAOp∧COp⇒ AOp>>OT

3So traditional that there does not seem to be a definitive reference.
4See [5] for full detail, in summary: the signature of a schemaS is defined asS∨¬S, effectively replacing any predicates of

Sby true. The input signature ?Sand output signature !Sare restrictions of the signature ofSto inputs and outputs, respectively.
Any schemaS with only inputs and outputs, i.e. one such thatΣS=?S∧!S, is an IO-transformer. Its converseS swaps all
inputs and outputs, so e.g.a! in S is consistently substituted bya? in S, and more generally ?S=!S. A schemaT is an output
transformer forS if it its inputs match exactly the outputs ofS, i.e. !S= ?T. In that case, post-composition using the standard
>> operator has the intuitive meaning that it hidesS’s original output as well as the inputs ofT that they are identified with.
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The semantic justification for this (see the derivation of IO-refinement in [5]) is from the standard as-
sumption for Z refinement, namely that inputs and outputs arevisible to the outside world, as well as the
operations that are executed – but the internal state is not observable directly.

Due to this visibility of outputs in the semantics, implicitly in the context there has to be an “original
output transformer” which records how the output actually produced in a specification that has undergone
output refinement can be transformed into the output (type) stated in the original specification. This
transformer needs to be functional from modified to originaloutput: for any modified output value, we
need to establish unambiguously which original output value it represents. (Consider for example a
concrete output of a display screen made up of pixels, and an abstract output type of a single digit.) In
[5] we also called this the “every sperm is sacred” principleto ensure we had a Monty Python reference
in an academic textbook. The injectivity requirement of theoutput transformer in Definition 2 follows
from this, see the derivation of IO refinement in [5].

So does this definition help us to validate use of the data exhaust? Well,creating a data exhaust
is captured by output refinement. The transformation which adds extra outputs satisfies the criteria of
Definition 2, using a trivial output transformer which copies all existing outputs while not constraining
any additional ones. The intuition that it corresponds withis: implementing a component with another
that provides extra output wires which we then just do not connect to anything.

On the other hand, if the data exhaust is already present as anoutput, replacing it with some useful
value derived from it is not normally an injective operation, and so output refinement does not hold in
general. Thus, we have to conclude that “big data” processing in the “data exhaust” perspective isnotan
instance of refinement.

In fact, output refinement likely holds in the opposite direction. Going from the extracted information
to the data exhaust is likely to be injective (i.e., its converse is functional). Thus, the data exhaust view of
big data representsoutput abstraction(in the semantic sense – rather than the syntactic sense [1]). This
makes perfect sense, but does not do full justice to the “exhaust” analogy. More on that later.

3 The data refinery and probabilistic refinement

The data refinery metaphor is of a much more optimistic nature. In this case, the narrative is that when
we have or collect so much “raw” data, it will certainly contain the answers to all questions we might
want to ask.

Political interlude.This has significant political consequences [10], in areas like communications surveil-
lance, targeted marketing [14], and medical and genomic data. In particular, collecting the data is im-
mediately justified by the promise of all the questions it will answer, and big data, even personal data,
becomes a resource in and by itself. If only we collect enoughcommunications data, we will be able to
identify all terrorists and thwart their evil plans. Similarly, any sizable health database will have embed-
ded in it the cure for cancer, just waiting for the clever big data techniques to extract it. Google’s Larry
Page has been making this kind of case for health data [3].End political interlude.

If we view this as a refinement scenario, the “raw data” is thestateof the system. This means that we
need not worry, as we did in the data exhaust scenario, about throwing any of it away, as none of it is
visible to the outside world to start with. So what does the data refinery achieve? It starts out in a world
where we have the data but not the answer to the question. To simplify the picture, let us assume that the
question is a binary one. Thus, our “abstract” specificationis
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RawIgnorance
b,b′ : BigData
a! : Answer

b′ = b
a! = yes∨a! = no

Modelling ignorance as non-determinism may not be sophisticated, but at least it is simple!
The transformed specification, making use of clever big dataprocessing techniques, might look as

follows. Let’s assume thatStructuredData⊆ BigData5.

MachineLearn
b : BigData
b′ : StructuredData
a! : Answer

b′ = cleverprocessing(b)
a! = answer(b′)

Assuming the functionanswerreturnsyesor no, this transition is a trivial data refinement, given that
RawIgnoranceis the weakest possible specification for a yes-or-no answer, and ignores the state. But it
does not do big data processing much justice, and as a corollary this modelling process cannot be very
enlightening.

A frequently expressed view is that big data is “just” the application of statistics – and indeed many
machine learning methods produce outputs with a degree of confidence, a statistical indication of how
“right” the answer is felt to be. To model this, we could assume that the functionanswerreturns a
probability distribution over the values “yes” and “no”. This would represent a probabilistic refinement,
e.g. in the framework developed by McIver and Morgan [8], as non-determinic choice is refined by
probabilistic choice. Our modelling of ignorance becomes less naive in that context, as non-determinism
(“possibilism”) fairly describes all possible probabilistic outcomes.

However, there is still a mismatch that way. For example, if our confidence in the conclusion that the
answer isyesis 93%, what probability distribution describes that best?A first cut is this:

yes0.93⊕0.07 no

which returnsyeswith probability 0.93 andnowith probability 0.07. It isnot the right answer – because
it suggests a certainty over the remaining 7% that we do not actually possess.

The mixture of probability and non-determinism in the McIver and Morgan framework would allow
us to specify a non-deterministic choice (represented by⊓) of yesandno for the remaining 7%:

yes0.93⊕0.07(yes⊓no)

Maybe that is a correct encoding of a belief inyeswith 93% confidence, but as a specification it is getting
clumsy.

5Thanks to Mark Utting for suggesting to reflect the clever processing in a change of type of state as well as a more precise
output. The technical constraint thatStructuredDatais included inBigData is justifiable in the interpretation, and avoids
complex arguments about retrieve relations and multiple executions of theMachineLearnoperation.
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A cleaner solution to this, which associates the confidence with therefinement judgementitself rather
than with the outcome of the judgement, is presented in Mingsheng Ying’s probabilistic logic for proba-
bilistic programs [13]. This does not only associate probabilities with program behaviours, but also with
judgements of correctness and refinement. In such a framework, statistical machine learning is modelled
as a refinement away from ignorance – with any degree of confidence attached as an attribute of the
refinement step itself. So rather than refining to a probabilistic specification, we would e.g. have

Result
b : BigData
b′ : StructuredData
a! : Answer

b′ = cleverprocessing(b)
a! = yes

presented as a “93% refinement” ofRawIgnorance.
So, good news: big data processing has been successfully modelled as data refinement. Except, of

course, that normally when we talk of data refinement we consider different data representations, related
by some retrieve relation or coupling invariant. In this model of “big data”, that played no role to speak
of. How come? When we talk of “data types” and “data refinement” in formal methods, it seems we
don’t actually mean “data” in the sense of the data-information-knowledge hierarchy. The role of data is
as a way of representing information, formal methods “data”is already “useful”. (In algebraic data type
theory, we even explicitly talk about “junk”, values in the model that we would like to keep outside our
considerations.) To fall in line with the common usage of “data” and “information”, maybe we should in
the future be talking of “information refinement” or “information representation refinement” instead of
“data refinement”.

4 The data exhaust, revisited

The perspective that data-as-in-big is not the same as data-as-in-refinement, in combination with proba-
bilistic refinement ideas, invites a return to the data exhaust analogy. In particular, another way to look at
the failing injectivity criterion for output refinement is that it stops us from throwing away information.
(Or from reducing entropy, if you like.) But actually, reducing some of the data exhaust should then not
be forbidden: the data exhaustwas never information in the first place.

So how can we take a more sophisticated view of this? The data exhaust could be viewed as data that
hides a little bit of information in a cloud of noise. Lookingat machine learning in reverse, the exhaust
forms a statistical obfuscation of the relevant information. In the world of information (refinement),
we’re not interested in the exact value after obfuscation – different obfuscations of the same data should
be considered equal. This leads into all kinds of interesting directions.

We could imaginenoisy refinement, where output values are constructed from typesSIGNALand
NOISEusing an operation

out : SIGNAL×NOISE→ SIGNAL

∀x,y : NOISE; a : SIGNAL• ∃z : NOISE• out(out(a,x),y) = out(a,z)

(adding noise is idempotent), where observations are of typeSIGNALwith an original output transformer
(see the discussion on IO refinement in Section 2)
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OOT
ot?,oo! : SIGNAL

∃x : NOISE• ot?= out(oo!,x)

i.e., the concrete output is the original output with added noise. All refinement would then be “modulo
addition of noise to outputs”.

An interesting question would be whether this then could be related to “noisy channels” in theoretical
and quantum cryptography [4], as these allow cryptographicconstructions that are impossible on perfect
channels.

A final wild thought would be to look not just at yes-no questions, but at discovering relations in the
big data. Machine learning and regression analysis to determine which relations hold between values of
different variables could be seen as “reverse engineering”, or: if these are the values of inputs and outputs,
what is the abstract data type that produces these? If this also happens with degrees of confidence, we
could either use approximate refinement relations [2] in contexts where we know how to arbitrarily
increase precision, or otherwise quantified refinement à laMingsheng Ying as mentioned above.

5 Conclusions

This paper was trying to understand a large, popular, and vaguely defined bandwagon topic from the
perspective of a very well-defined and well-established butnarrow research niche. A differing lack in
precision of terminology was always likely to trip that effort up. Now, is there such a topic as “big data
refinement”? Probably not, as the two areas really mean different things when they use the word “data”.
However, looking at the two areas side by side was useful in clarifying where the difference between
“data” and “information” really lies in both areas.

Finally, an interesting conclusion from this analysis is that, with the right probabilistic generalisations
in place, refinement can be seen to subsume machine learning:going from a situation where we have raw
data and an unanswered question to one where we have achievedan answer with a degree of confidence.
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