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Abstract Self-repairing systems are those that are able to reconÞgure themselves
following disruptions to bring them back into a deÞned normal state. In this paper
we explore the self-repair ability of some cellular automata-like systems, which
differ from classical cellular automata by the introduction of a local diffusion
process inspired by chemical signalling processes in biological development. The
update rules in these systems are evolved using genetic programming to self-
assemble towards a target pattern. In particular, we demonstrate that once the update
rules have been evolved for self-assembly, many of those update rules also provide
a self-repair ability without any additional evolutionary process aimed speciÞcally
at self-repair.

Keywords Cellular automata� Robustness� Repair� Self-repair�
Self-assembly

1 Introduction

Self-repairing systems are those that are able to reconÞgure themselves when
damage occurs to a part of the system, to bring the functioning of the system back to
some deÞned normal state. This paper investigates the ability of systems that have
been evolved toself-assembleto alsoself-repair without any additional learning
stage speciÞcally aimed at self-repair; self-repair comes ÔÔfor freeÕÕ as aside-effect
of self-assembly. These experiments are carried out using a form of cellular
automata (CA), with the update rules evolved using a form ofgenetic programming
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called Cartesian Genetic Programming (CGP), guided by a Þtness function that
promotes self-assembly of the states on a grid to a target pattern.

We show that these behaviours can be obtained for some kinds of cellular
automata-like systems, which we term developmental cellular models (DCMs), as
they are inspired by the notion of development in biology. The main way in which
these systems differ from classical CAs is that the change of state at a particular cell
also affects the state in neighbouring cells.

Furthermore, these experiments demonstrates a particular kind of self-repair
behaviour where there is no symbolic-level distinction between thedetectionof a
fault and therepair of that fault. Instead, the usual behaviour of the system is able to
demonstrate its robustness by providing self-repair as part of the regular functioning
of the system.

This paper is divided into four main sections. In Sect.2 a number of relevant
areas of the literature are reviewed: self-repair, developmental systems, and genetic
programming. Section3 explains the model used in the experiments, whilst Sect.4
gives details of the experimental methods used. The results of the experiments
themselves, consisting of testing the self-repair ability of evolved self-assembling
structures, are detailed and discussed in Sect.5 This is then followed by a
conclusion and suggestions for future work.

2 Literature review

A number of areas of the research literature are relevant to this paper. In this section,
we review three areas: the general idea of self-repairing systems, the use of
biological development as an inspiration for building self-repairing systems, and a
particular techniqueÑCGPÑthat is used to evolve update rules in our work below.

A self-repairingsystem is a system that is able to reconstruct a faulty part so that
function is restored when a fault occurs. This is a stronger concept than that offault-
tolerance, which is where a system is able to carry on functioning normally despite
faults (perhaps within a tolerance level in terms of amount of time spent in a non-
functioning state). In a self-repairing system the original system is reconstructed by
modiÞcation of the system, usually whilst it is still active. Hence, self-repairing
systems are, by deÞnition, fault-tolerant.

Existing self-repairing systems in computer science (e.g. [11, 13Ð17, 19, 33]) do
not physically reconstruct, but they rather reconÞgure available parts to reconstruct
the original circuit/logic/etc. In a computational system such as those studied below,
this will consist of modifying the state of components in the system to bring the
system back to its original state. Another approach would be to reconstruct around
the fault, e.g. in a hardware system where a fault might be a physical fault that
cannot be reconÞgured.

Fault detectionand faultrepair are two distinct activities [32], and a simplistic
view is that detection is a precondition for repair: Þrst a fault is detected, then it is
repaired. However, the approach that we will explore later in this paper does not
involve an explicit detection step; instead, fault repair occurs by the reconstruction
of a pattern, and every unit is constantly ready to reconÞgure itself depending on
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changes to its neighbouring states. In such systems, there is no need for an explicit
fault-detection step.

There are a number of methods used for the explicit detection of faults. One of
the most well-established methods is to run a number of designed-identical systems
in parallel and use a majority voting system to decide which output to trust (as in
triple module redundancy [12] and pair-and-spare [8] methods). Another is to carry
out regular ofßine testing against a test pattern [7]. These existing approaches have
problemsÑresource overhead in the voting system, and downtime in the ofßine
testing approach. Furthermore, these systems run into the problem that the voting/
testing system might itself develop a fault. By contrast, the framework that is
presented here avoids these weaknesses through a continuous growth and
maintenance process.

2.1 Self-repair in developmental systems

As noted above, the detection of faults is a difÞcult problem; one method to solve
this problem is to use a system that is continuously renewing itself, that is, a system
that is stable in the desired working state, and unstable in any other state. After
suffering damage, this system in theory should redevelop, re-stabilize, reconstruct
into the desired stable working state [23]. This approach, though still rather
undeveloped, has been hinted at to a greater or lesser extent in a certain number of
previous studies [2, 4, 13, 14, 18, 36].

Indeed, the idea of a self-repairing system goes back to the early days of
cybernetics. AshbyÕs Homeostat [3, 6] was a hardware device where a number of
systems interacted, with the behaviour of each system changing to another
behaviour if inputs varied beyond a threshold value, with the aim of producing
dynamic stability. Interestingly, this was later described as being able to ÔÔsurvive
something that no computer program, however adaptive, could surviveÑan attack
with a pair of wire cuttersÕÕ [29]. Another early system was that of Pask [27], where
conductive threads were ÔÔgrownÕÕ on a surface, potentially avoiding faults in the
substrate and perhaps capable of being developed into a system that could rewire
itself as new faults emerged.

One source of inspiration for such systems is the process ofdevelopmentin
biology; that is, the growth of an organism from a single cell to maturity [38]. This
is a complex process controlled by various chemical signalling processes between
cells, where cells behave in a different manner according to the signalling context in
which they Þnd themselves. Much of development is concerned withpattern
formationÑthe creation of stable patterns of cells from undifferentiated masses.

A number of computational systems have been created that draw on ideas from
development. In particular, development is often combined with a learning process
such as an evolutionary algorithm. This provides the learning algorithm with a large,
structured search space to explore, without the need to evolve every Þne detail of the
Þnal system. Developmental systems have been used in a number of applications,
from creating realistic-looking biological structures in computer graphics systems
[31] to learning neural network topologies [9]. A good overview is the edited book
by Kumar and Bentley [10].
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One key idea in developmental systems is that they areself-regulating; that is,
there is a stable state (or states) of the system, and the system is continually
regulating itself to bring itself to that stable state. This is achieved in an emergent
manner by local interactions between cells and between cells and signalling
gradients.

In summary, some of the characteristics of developmental systems of relevance
to computer systems are as follows. The system should be sufÞciently rich to allow
the development ofcomplexstructures, though this does not usually mean that the
individual components are themselves complex, indeed this is usually an emergent
property of interactions. Biological developmental systems are based around
interactions betweendiscrete cells; in the biological system these will have some
degree of movement, whereas in computational systems it is more likely that the
cells will be in a Þxed position with respect to each other [e.g. cells in a cellular
automaton, circuit elements in an Þeld programmable gate array (FPGA)]. The main
communication islocal; that is, interactions between neighbouring cells, though in
some developmental processes larger chemical gradients across the mass of cells are
important [38].

Another problem with self-repair is the difÞculty of designing the
reconstruction process. If the system uses development to construct itself in
the Þrst place, reconstruction after errors might be easier [24]. It may be
possible to use developmentÕs modular, self-assembling structure to have self-
repair built-in. Most approaches to self-repair utilize principles from develop-
mental systems. We are now going to review some of the important
contributions within this Þeld.

A very interesting approach to self-repair came from Macias and Durbeck [13]
where they represented the design of a special kind of FPGA called the cell matrix.
The system is designable ÔÔby handÕÕ just as with a normal FPGA; the part that
separates it from a regular FPGA based system is its capability of reconÞguring
itself on spare parts upon encountering faults. While a regular FPGA can only be
conÞgured from outside, the cells in the cell matrix can conÞgure themselves and
their neighbours. Any circuit with higher functions can be constructed from these
cells. Using this system Macias and Durbeck created higher entities they termed
supercells from a collection of these cells. The supercells were designed to be
capable of testing nearby regions of the cell matrix for faults and conÞguring more
supercells in those regions. Using this technique the entire chipÕs surface can be
mapped, and only the non-faulty regions are rendered active. During the normal
operation of the system, whenever a fault is detected, this process is repeated to
build yet another functioning system. However, Macias and Durbeck did not give
any details on how the faults are recognized after the circuit becomes operational.
Faults will have to be determined from the input output patterns, and the self-repair
process will have to be manually triggered. Furthermore, this process is carried out
and the entire chipÕs surface is re-evaluated even if only one of the cells becomes
faulty, resulting in an inefÞcient self repair process. Nevertheless, Macias and
DurbeckÕs research represents a signiÞcant contribution to the self-repair Þeld as it
involves the self-repair operation on the hardware level, unlike many other
software-only approaches.
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Another self-repairing hardware-based system is that of Mange et al. [14, 15].
This uses a hierarchical set of reconÞgurable hardware components. Self-repair in
this system is triggered by the explicit detection of a fault. Once a fault is detected in
a system, the functionality of connected components is moved elsewhere on the
hardware, the connections remade, and a new, functioning soft-copy of the faulty
component remade in the appropriate location. Interestingly, this has a hierarchical
aspect. For example, initial attempts at repair will just be concerned with
reconstructing the faulty component, and the components that immediately connect
to it, somewhere on the same hardware component. If it proves impossible to Þnd a
location on the current component, e.g. because there is physical damage in many
locations on the component, then the entire functionality of that component can be
moved to a different component. This system has been built and tested at scale. In
most applications of it, the individual components were hand-designed, and so this
cannot be used to test the hypotheses that we are putting forward that evolved
systems have self repair as an epiphenomenon, rather than being built in explicitly.
Furthermore, explicit fault detection is required, which contrasts with the emergent
reconstruction explored in this paper.

Liu et al. [11] have managed to evolve a stable ÔÔFrench ßagÕÕ pattern on a
hardware simulation similar to an FPGA. The evolved ßag pattern is shown to have
some self-repair capabilities in one sample experiment. This result illustrates the
potential, but is a long way from demonstrating the self-repair property, being based
on only one experiment on one evolved system.

Miller [ 19] has managed to evolve CGP programs running inside cells of cellular
automata to generate French ßag patterns. His model involved a chemical diffusion
mechanism that allows the cells to gain positional information. Miller performed
some limited self-repair experiments with the French ßag pattern, where the evolved
system continued to grow and Þxed some of the errors, however some scarring was
left in the end. The regeneration capabilities of the model were further investigated
in another paper [17] where they also had a separate experiment investigating the
behaviour of evolved German ßags that have been joined together, a process likened
to grafting. They showed that some cells dominate others and indicated that this
might have implications for future work on software immunity utilizing develop-
mental systems. Although Miller obtained interesting results in terms of morpho-
genesis and self-repair, he did not try to evolve stability. As we will detail in the
description of the model used in this paper, self-repair is easier to achieve if the
evolved systemsÕs growth stabilizes after reaching an adult size, and the
developmental process continues only for self-regulation or maintenance. Miller
later tried to evolve stability with the French ßags but he could not achieve a
perfectly stable ßag although some improvement could be seen [16].

Roggen and Federici [33] made a comparison of three different systems based on
their scalability and robustness. The systems that were compared included a directly
mapped model, a morphogenetic system, and a model based on cell chemistry. The
morphogenetic system was described in a previous paper [34]. and the model based
on cell chemistry is an extension to the system in MillerÕs French ßag paper [18].
Unlike MillerÕs system where he evolved CGP, they evolved artiÞcial neural
networks (ANN) running inside cells in a cellular grid. The problem they chose to
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perform the comparison with was the evolution of visual patterns. They found that
while directly mapped system was superior to others with pattern sizes up to
32 9 32, the developmental approaches scaled much better due to the reduction in
search space. It is important to note here that, while they did not speciÞcally select
for the ability of it, the developmental approaches exhibited a good level of self-
repair behaviour and thereby provided further evidence that it may be possible to
achieve self-repair for free with developmental systems.

Other research in developmental self-repairing systems include works by
Streichert et al. [36], who studied growth regulation and self-repair in artiÞcial
embryology, and Prodan et al. [30] who discussed the degree of bio-inspiration
attained within the Þeld so far.

2.2 Cartesian genetic programming

Genetic Programming (GP) [28] is a well-known technique for automatically
generating computer programs (and other executable structures) from a description
of the desired behaviour, which draws on inspiration from biological evolution. A
population of programs is generated at random, the performance of the programs
evaluated, the best-performing ones mutated or crossed-over, and this process of
evaluate-select-modify repeated until a sufÞciently high-quality program is
discovered.

The form of GP used in this paper isCartesian GP[20]. This system uses nodes
in a directed graph to represent the program. These nodes are encoded as a string of
numbers, each tuple of numbers in the string representing one node, i.e. which
function is represented by that node and which other nodes/inputs it obtains its
information from. Therefore, the population of programs can be represented simply
by lists of numbers, and the standard machinery of genetic algorithms [5] applied to
this problem, rather than devising particular GP-speciÞc operators.

An overview of the CGP method can be found in the recent book edited by Miller
[20], and details of how CGP has been applied to this problem can be found in our
earlier work [25, 26].

3 The developmental cellular model

The DCM is a cellular automata-like model that takes its inspiration from biological
development. The key difference from classical CAs is that the update rule can also
inßuence neighbouring cells. In this section we give a description of the model and
various variants on it. A detailed description of this model can be found in our
earlier work [25, 26].

The aim of the DCM and similar systems ispattern development. That is, the
system will, through interactions between cells, form a speciÞc pattern from an (in
this case uniform) starting conÞguration. This provides a simple prototype for
investigations in this area, where Þtness evaluation is fairly quick. If a cellular
system on this kind of problem can be shown to have the properties that we are
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interested in, then it provides someprima facieevidence that it is worth exploring
more complex developmental systems, such as developmental circuits or programs.

This section of the paper is split into two subsections. The Þrst of these, Sect.3.1
explains the DCM idea and gives details of how a DCM system is speciÞed and
executed. Section3.2 details how the update rule in DCM systems can be evolved
using the CGP method.

3.1 Specifying and running a DCM system

Each DCM system is based on ann 9 m grid of cells, each of which contains anx-
bit stateÑthese can be divided intoxstatestatebits that are relevant to the problem at
hand andxspare sparebits that are used during the assembly and repair phases but
which are not part of the problem deÞnition as such. These states can be read by the
eight neighbouring cells in the grid (theMoore neighbourhood).

The states are changed over a number of discrete timesteps according to an
update ruler, which is the same for each cell in the grid. The 9x ? 1 inputs tor are
the x-bit states of the eight neighbours, the state of the cell itself, and a Þxed bit
(similar to the bias unit in neural networks) which supplies a constantfalsevalue.
The aim of this additional bit is to allow the evolutionary value ready access to a
constant where needed. Importantly, and in contrast to the classical CA model, the
output is a 9x-bit vector that changes the state of both the cell itself and its eight
neighbouring cells (see Fig.1). This is where we take inspiration from development,
where local chemical interactions give rise to larger scale patterns. This is not, of
course, the whole story of developmentÑfor example, larger scale chemical
diffusion gradients play a role in overall structure [38]Ñbut, similar processes have
the potential to evolve in the spare bits of our system. As such, our system is
somewhat different to the related system of Miller and Thomson [17] which uses an
explicit representation of such gradients (see also [23]). The capacityfor gradient-
like structure to evolve in the spare bits remains, but the potential for other, richer
structures to evolve is also available.

Classical CA use a so-calleddemocraticmethod for updating the cells, where the
state of all cells at timet is used to pre-calculate the new state at timet ? 1, and
then all cells are overwritten with this new set of states. In the DCM this is not
possible, as states overwrite neighbouring states. As a result we use a serial ÔÔraster
scanÕÕ model of update, where the state in the upper-left hand corner is calculated
Þrst, and the subsequent changes made to the neighbouring cells, before moving on
to the next cell along in a horizontal direction until the end of the line, then along the
next line, and so on, as illustrated in Fig.2a. As a result there is a priority of update
within the grid, with the lower-right hand cells in a local 29 2 area having the Þnal
inßuence on the neighbouring cells in a particular time-step (Fig.2b). The aim of
this is to provide the system with a Þxed order of update, so that multi-step
sequences can be evolved; the choice of the raster scan as the way of achieving this
update is somewhat arbitrary. If an alternative method were to be usedÑfor
example, a random bit-by-bit updateÑthen it would beprima facieharder for multi-
step sequences of actions to evolve, as they could be disrupted by updates
happening from other directions in the grid.
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Two different methods are available to process the cells at the edge of the grid.
The Þrst method is called the Þxed-bordered model, where the grid is assumed to be
surrounded by a set ofvirtual cells that retain a constant 0x state, and which cannot
be over-written (Fig.3). The second variant is atoroidal model where the
neighbours of an edge cell include the corresponding cells on the opposite edge of
the grid, i.e. the edges of the grid have been identiÞed to turn the rectangle into a
torus (this is also known asperiodic boundary conditions).

We have now described the key components of a DCM system. To summarize,
we now formalise this. A DCM system is speciÞed by a 5-tuple consisting of
€ Whole numbersn andm specifying the size of the grid.
€ A whole numberx specifying the number of bits in each cell.
€ The update ruler, which is a binary function from 9x ? 1 bits to 9x bits.
€ A speciÞcation of whether the system is Þxed bordered or toroidal at the edges.
€ A limit tmax on the number of timesteps allowed for development.

Fig. 1 The structure of the update rule:a shows the structure of the update rule that is evolved using the
CGP system, whilstb shows the mapping of the input/output bits to thex-bit state of the cell

Fig. 2 The application of update rules.a Shows the update priority that is deÞned implicitly by the
update method, whilstb shows the raster scan method by which the update rule is applied over the course
of one timestep
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To execute the DCM system, the following process is carried out
1. Initialise ann 9 m grid of cells, each of which hasx binary states, all of which

are initially set to 0.
2. Apply the raster scan method illustrated in Fig.2 to update the states of the

cells, using the update ruler.
3. Repeat step 2 until the pattern is stable or until it has been repeatedtmax times.

In control experiments we will contrast the DCM with aClassical CAmodel.
This is similar to the above, but uses the traditional democratic update method and
an update rule that only updates the current cell rather than also affecting the
neighbours.

3.2 Evolution of DCM systems using CGP

In the experiments below, CGP is used to evolve a population of DCM systems
towards a system that self-assembles into a given target pattern. We refer to this as
CGP/DCM. In practice, everything but the update ruler is Þxed during a particular
experiment; therefore, this could be seen as evolving a population of binary functions.

The CGP system creates individuals from the elementary binary functions. It has
been shown [20] that CGP works well with a very small population and large
numbers of generations. Therefore, in these experiments the population size is 5,
and the population is allowed to evolve over 100,000 generations (Table1). In each
generation, only the best individual is selected and 4 mutants created from it to form
the next population; this is commonly known as a 1? k evolution strategy [5]. A
small mutation rate is usedÑthis is common in CGP experiments because the
inßuence of single mutations is often substantial. Recombination was not used. Full
details can be found in our earlier paper [26] and experiments with differing
population sizes have been given in [25].

4 Experimental methods

In a recent paper [26] we demonstrated that CGP/DCM is capable of evolving
systems thatself-assemble. That is, the Þnal evolved update rule will, given a
uniform n 9 m grid, develop into the desired pattern.

Fig. 3 In the Þxed bordered
model virtual cells are Þxed
edge cells that retain a 0x state
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In the experiments in this section we will revisit these experiments from the point
of view of self-repair. In particular, we are interested to see whether the DCM
systems evolved by CGP using a Þtness function based solely on self-assembly. The
prima faciereason for believing that this might be the case draws on the closeness
of the development and wound-repair systems in biological systems. These two
systems make use of related components and work in similar ways. It therefore
seems reasonable to assume that there is some hope that system based on
development and initialassemblyof patterns might also contain the kind of
robustness that would allow those patterns torepair themselves in the event of
damage.

The self-assembly experiments are detailed in our earlier paper [26]. In short, the
CGP/DCM algorithm was used with a Þtness function that measures the Hamming
distance between the current grid and target grid in the Þnal two developmental
timesteps. Perfect Þtness is therefore present when the Þnal pattern is identical to the
target and stable. To ensure robustness of results, each experiment was run 100
times on three cases: Þxed bordered, toroidal and the classical CA control case.

4.1 Fault model

In any study that wishes to assess the robustness and the self-repair qualities of a
system, a precise fault model should be deÞned to make the scope of validity of the
study clear. The fault model that is used in this work is simple and at the same time
rather exhaustive. First, we only test here the self-repair abilities concerning the
conÞguration process of the developmental cellular model. In fact, it could be said
that we only test the self reconÞgurability process. Therefore, we are not concerned
with the faults that may occur in the function that maps the outputs of the evolved
program to cellular states, and assume that this mapping is perfect. Within the scope
of our study, the main limitation of our fault model is that it is a strike-once model,
meaning, after a fault occurs, the reconÞguration of the pattern or the circuit, the
repair phase, is done in a safe environment. Again, such a model is perfectly
reasonable as long as this reconstruction process is fast and perfect. Fast here means
that the model repairs itself within a few time steps, and the system is considered
perfectly repaired when all conÞguration bits, including the spare bits are restored to
their original states.

The fault model simply consists of choosing a certain number of cells to be
affected by faults. Depending on the experiment, a cell can be affected by two types
of faults:

Table 1 Parameters for the
CGP/DCM experiments Parameter Value

Population size 5

Number of generations 100,000

Selection strategy 1? k

Mutation rate 1 % per node

Number of nodes per CGP individual 100
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Reset disruption: The state of the cell is reset to 0x wherex is the total number of
bits each cell has.

Random disruption: The state of the cell is set to a random value.
These disruptions may seem over simpliÞed; however, they encompass many

different faults. Firstly, obviously they model a fault in the workings of the internal
cell program that would entail writing the wrong state for itself and/or for its
neighbours. Secondly, they also model a reading error. In effect if a cell misreads its
environment, it makes a wrong decision (in interesting cases), and therefore at the
next time step, the circuit has one or more cells in the wrong state. Finally, they also
model writing errors.

It could be argued that the ability to carry out reset disruption is trivial, as the
system is evolved to self-assemble from an initially blank state. However, this reset
disruption is not applied to the entire cell grid, but only to a sample of points.
Therefore, there is still interest in experiments using these disruptions, as they
examine whether the system can recover from local resets as well as assembling
from a complete reset of the whole cellular grid.

According to our fault model, the number of cells that are affected by the two
types of disruptions can be randomly chosen. In this paper, each successfully
evolved program can be separately subjected to Þve major kinds of disruptions: a
one-cell reset, a Þve-cell reset, a Þve-bit random fault, a Þve-cell random fault,
and a 29 2 block random fault. While the one-cell and the Þve-cell reset
disruptions are applied exhaustively to all possible combinations, the random
disruptions are applied 1,000 times. Therefore, while gentle time-wise; this error
model can be considered as rather complete space-wise and working-wise. We
also predict that since reset type faults are less disruptive to the patterns than
random type faults, we expect that the evolved systems would be more resistant to
them.

The fault is applied after a number of development timesteps; this will be referred
to as thedisruption timestepbelow. The self-repair is considered a success if the
grid is restored (perfectly) back to the original state after a certain number of
timesteps: this is referred to astimesteps allowed for recoverybelow. Experiments
with different settings of these values can be found in [25].

4.2 Notes on experimental results

We should note that, as we have stressed while describing the fault model, in all
self-repair experiments we are looking for perfect recovery. This means that an
evolved system has to go through all error experiments, in some cases thousands of
times and recover fully in each one without exception before it is declared perfect
recovery. Although in some experiments (particularly those on random patterns) the
number of tested systems is limited, even if a few of them manage to recover
perfectly, it will still be an important indication to the modelÕs abilities.

The conÞdence intervals have been calculated using the methods described by
Agresti and Coull [1] and Newcombe [22].
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5 Experimental results and discussion

In this section we present the results of the self-repair experiments. Each section
takes the successful evolved systems from our earlier work on self-assembly [26]
and carries out self-repair experiments on them using the fault model above.

5.1 Experiment 1: self-repair experiments on 125-bit random patterns

The CGP/DCM was applied to evolving the self-assembly of 125-bit random
patterns with the settings indicated in Tables1 and2. The results [26] showed that
six of the Þxed bordered experiments were successful in generating a self-
assembling DCM system, whilst none of the toroidal or classical CA experiments
were.

We applied the Þve different disruptions from our fault model to these six
systems, with numbers of repeats given in Table2. The results from these
experiments are given in Table3.

Table 2 Setup for 125-bit
random pattern experiment
(experiment 1)

Grid size (n 9 m) 5 9 5 = 25 cells

Cell state bit-length (x) 5 bits

Total conÞguration bit-length 259 5 = 125 bits

CGP node size 100 Nodes

Disruption timestep 8th timestep

Time steps allowed for recovery 20

One-cell reset disruption Performed exhaustively

Three-cell reset disruption Performed exhaustively

Five-bit random disruption Performed 1,000 times

Five-cell random disruption Performed 1,000 times

2 9 2 Block random disruption Performed 1,000 times

Table 3 The table displays the number of perfectly recovered patterns for each disruption experiment in
experiment 1

Disruption type No. of successes
Fixed bordered (6)

One-cell reset disruption 3 (13.9Ð86.0 %)

Three-cell reset disruption 3 (13.9Ð86.0 %)

Five-bit random disruption 1 (0.8Ð63.5 %)

Five-cell random disruption 1 (0.8Ð63.5 %)

2 9 2 Block random disruption 1 (0.8Ð63.5 %)

The numbers inside the brackets indicate the success rates with 95 % conÞdence. Except for the reset
disruption experiments which are exhaustive, all experiments are repeated for 1,000 times to ensure that a
success represents the the system being very likely to recover under any conditions
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Overall, these results are inconclusive. Some repair is occurring, but there is such
a small set of initial successful evolved systems that it is hard to conclude whether
this is a strong effect or not.

5.2 Experiment 2: self-repair experiments on 125-bit random patterns
with spare bits

This experiment uses exactly the same parameters as the earlier one except that for
each cell there are two added spare bits. However, we should note that since we are
looking for perfect recovery after errors, the added spare bits actually make the task
harder. This is because according to our fault model, we are looking for perfect
recovery meaning each bit of each cell including the spare bits has to recover its
target state within the time given. In essence this task is equivalent to the self-repair
experiment of 175-bit random patterns.

The settings are given in Tables1 and4. The results [26] showed that 22 of the
Þxed bordered experiments were successful in generating a self-assembling DCM
system, whilst none of the toroidal or classical CA experiments were.

We applied the Þve different disruptions from our fault model to these 22
evolved systems, with numbers of repeats given in Table4. The results from these
experiments are given in Table5. The evolved systems are more resistant to reset
type faults. The reason for this result is due to the self-assembling nature of our
model; it is speciÞcally evolved to conÞgure an empty cellular layer which is
equivalent to resetting every cell in the grid. Even though the system is not
accustomed to the random type errors, more than half of them still managed to self-
repair perfectly in all 3,000 random disruption experiments.

5.3 Experiment 3: self-repair of a simple pattern

The remaining experiments work with regular patterns. Our recent paper [26]
showed that self-assembly was much more effective on patterns with some degree
of regularity. We would like to examine whether this follows through to self-repair.

Table 4 Setup for 125-bit
random pattern experiment with
two spare bits (experiment 2)

Grid size (n 9 m) 5 9 5 = 25 cells

Cell state bit-length (x) 7 bits

Total conÞguration bit-length 259 7 = 175 bits

CGP node size 100 Nodes

Disruption timestep 8th timestep

Time steps allowed for recovery 20

One-cell reset disruption Performed exhaustively

Three-cell reset disruption Performed exhaustively

Five-bit random disruption Performed 1,000 times

Five-cell random disruption Performed 1,000 times

2 9 2 Block random disruption Performed 1,000 times
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The Þrst target pattern used is the simple pattern on a 49 4 grid illustrated in
Fig. 4. The settings are given in Tables1 and6. The results [26] showed that all 100
of the Þxed bordered and toroidal experiments were successful in generating a self-
assembling DCM system, whilst only 3 of the classical CA experiments were.

The results from this set of self-repair experiments are given in Table7. This
continues to show that that reset disruption faults are a lot gentler than random
faults. The classical CA model unfortunately provided us with a very limited sample
set and although none of the three systems managed to pass any self-repair
experiment, numbers are too small to draw any conclusions here.

Apart from providing us with a larger sample size, the cellular developmental
cycle of regular patterns are also easier to analyse visually compared to random
patterns. Therefore at the end of this experiment we will now present an analysis of
a sample evolved system that is subjected to self-repair tests. This was picked from
one of the perfect evolved systems that successfully repaired itself under every self-
repair test. For the visual analysis, we will subject the system to three different types
of faults, a Þve-bit random fault, a Þve-cell random fault, and a Þve-cell reset fault
which was found to have been gentler in our earlier experiments. Figure5 shows the
developmental cycle of the system on the Þxed bordered model that is subjected to
the three types of faults which are shown as a separate column each. The cells that
are indicated by the red square and a cross at time stept = 7 are the ones that are
affected by the introduced faults.

Figure5 shows that while the reset disruption takes three time steps to heal, the
random disruptions take four. The reasons for this effect are quite clear on the third
column of the Þgure where only two cells are altered whereas on the random

Table 5 The table displays the
number of perfectly recovered
patterns for each disruption
experiment in experiment 2

The numbers inside the brackets
indicate the success rates with
95 % conÞdence

Disruption type No. of successes
Fixed bordered (22)

One-cell reset disruption 18 (58.9Ð94.0 %)

Three-cell reset disruption 18 (58.9Ð94.0 %)

Five-bit random disruption 12 (32.6Ð74.9 %)

Five-cell random disruption 12 (32.6Ð74.9 %)

2 9 2 Block random disruption 12 (32.6Ð74.9 %)

Table 6 Setup for simple
pattern evolution experiment
(experiment 3)

Grid size (n 9 m) 4 9 4 = 16 cells

Cell state bit-length (x) 1 bits

Total conÞguration bit-length 169 1 = 16 bits

CGP node size 100 Nodes

Disruption timestep 8th timestep

Time steps allowed for recovery 20

One-cell reset disruption Performed exhaustively

Three-cell reset disruption Performed exhaustively

Five-cell random disruption Performed 1,000 times

2 9 2 Block random disruption Performed 1,000 times
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disruption tests, three cells are altered. This is due to the random selection of cells;
since some of the cells that are selected already have state 0, nothing happens to
them under the reset fault. However, we cannot expect this effect to occur in more
complex patterns where each cell has multiple-bit states. The single-bit state also
results in the Þve-bit and Þve-cell random disruption tests to be equivalent in this
case. Interestingly, in all three cases, we see that the pattern moves further away
from the target pattern, before making a full recovery. This is probably due to the
update priorities, and the propagation of the positional information from the borders
(speciÞcally the south eastern corner) of the grid. However, we will further examine
this theory on a larger, more complex pattern before making any conclusions.

Another important issue that we should note before moving on to the next
experiment is that the four time steps that it has taken to fully recover these patterns
is not speciÞc to these sample experiments. In fact the vast majority of the
experiments conducted on perfect systems resulted with self-repair processes that
concluded within four time steps. Similarly, the majority of the systems that were
evolved for this pattern managed to stabilize within four time steps too. At this point
we would like to point out that there might be a correlation between how quickly a
pattern stabilizes during development to how quickly and more importantly how
successfully it heals after faults are introduced. This also merits further investiga-
tions on larger cellular grids and more complex patterns. To that end, in the next
experiment we will conduct self-repair tests on more complex patterns.

5.4 Experiment 4: self-repair experiments on diamond patterns

This experiment is similar to experiment 3, but the pattern being evolved is
different, consisting of a diamond shape (see Fig.6). The settings are given in

Fig. 4 The simple target
pattern from experiment 3

Table 7 The table displays the number of perfectly recovered patterns for each disruption experiment in
experiment 3

Disruption type No. of successes

Fixed bordered (100) Toroidal (100) Classical CA (3)

One-cell reset disruption 84 (75.0Ð90.3 %) 80 (70.5Ð87.0 %) 0

Three-cell reset disruption 84 (75.0Ð90.3 %) 80 (70.5Ð87.0 %) 0

Five-cell random disruption 41 (31.4Ð51.3 %) 11 (5.8Ð19.2 %) 0

2 9 2 Block random disruption 41 (31.4Ð51.3 %) 14 (8.1Ð22.7 %) 0

The numbers inside the brackets indicate the success rates with 95 % conÞdence
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Tables1 and 8. The results [26] showed that all 100 of the Þxed bordered and
toroidal experiments were successful in generating a self-assembling DCM system,
as were 74 of the classical CA experiments. Therefore, this gives a large sample size
going into the self-repair experiments.

The results from this set of experiments are given in Table9. The effects of the
gentler reset type disruptions are more apparent in the results of this experiment
compared to the previous one as can be seen. In this case only about 30, 3, and 18 %
of the systems on the Þxed bordered, toroidal, and the classical CA model that
recovered fully for the reset disruptions perfectly healed after each random
disruption experiment. Again, similarly all systems that fully recovered after the
Þve-cell random disruption experiment fully recovered in all other disruption
experiments, which clearly indicates that this speciÞc disruption is the hardest to
recover from. A very interesting and important result to name here is that while the
toroidal model performed almost as well as the Þxed bordered model on the reset
type disruptions, it failed to show the same ability for the random type disruptions.
Furthermore, unexpectedly the classical CA model also showed self-repair
capabilities with two systems able to recover from all disruption experiments.

Since we have established from the results of this and the previous experiment
that the Þve-cell random disruption is the hardest to recover from, we have decided

Fig. 5 The developmental
cycle of an example system on
the Þxed bordered model that is
separately subjected to three
different types of faults att = 8.
The cells that are indicated by
the red squareand a cross are
the ones that are affected by the
introduced faults. The time steps
are shown fromtop to bottomfor
each experiment (Color Þgure
online)
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to conduct our visual analysis using only this type of disruption. The large sample
set provided by the successful evolution experiment for each developmental model
allowed us to conduct self-repair experiments that produced at least a couple of fully
perfect evolved systems for each model. Therefore, the visual analysis shown in
Fig. 7, shows the developmental cycle of three evolved systems that are subjected to
the Þve-cell random disruption att = 8, on the Þxed bordered, toroidal and classical
CA models respectively. The cells that are indicated by the red square and a cross at
time stept = 7 are the ones that are affected by the introduced faults.

Similar to the simple pattern experiment, the patterns generated by the sample
systems shown in Fig.7 also move further away from the target patterns before
making a full recovery. In the case of the Þxed bordered model, the sample indicates
the pattern starts to reorganize itself based on the positional information gathered
from the borders and the correct pattern starts to form at the south eastern corner of
the grid. However, this observation still needs more supporting evidence and it will
be further investigated in the next experiment.

We also see from the Þgure that the classical CA model takes longer to recover
from this fault. It does not mean that it is Þnding it more difÞcult, since this system
has passed all self-repair experiments without a ßaw. It just means that the
stabilization and recovery process is more complicated for this model.

Another result that is worth noting here before moving on to the next experiment
is that similar to the simple pattern experiment, the four time steps that it takes to
fully conÞgure the pattern in the Þxed bordered model is not speciÞc to this sample
experiment. Similarly the vast majority of the experiments conducted on the perfect
evolved systems resulted with self-repair processes that concluded within four time

Fig. 6 The diamond target
pattern from experiment 4

Table 8 Setup for diamond
pattern evolution experiment
(experiment 4)

Grid size (n 9 m) 5 9 5 = 25 cells

Cell state bit-length (x) 2 bits

Total conÞguration bit-length 259 2 = 50 bits

CGP node size 100 Nodes

Disruption timestep 8th timestep

Time steps allowed for recovery 20

One-cell reset disruption Performed exhaustively

Three-cell reset disruption Performed exhaustively

Five-cell random disruption Performed 1,000 times

2 9 2 Block random disruption Performed 1,000 times
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steps. Looking at the formations of this pattern in the evolution experiment
conducted in our earlier paper [26], we have found that majority of them managed to
stabilize within four time steps too. This Þnding provides further evidence of the
correlation between how quickly a pattern stabilizes during development to how
quickly and more importantly how successfully it heals after faults are introduced.
However, we cannot see the same correlation with our toroidal model which leads to
the tentative conclusion that our Þxed bordered model in general is more resilient to
faults. The next and Þnal experiment of this subsection will now investigate the
validity of these conclusions in a more complex, and larger developmental cellular
grid.

5.5 Experiment 5: self-repair experiments on French ßag patterns

The biological developmental process and the differentiation of cells and thus the
formation of tissue layers have been likened to the formation of striped patterns such
as those found in French ßags, and since then they were used as a benchmark
experiment for both evolvability and self-repair in a number of previous studies [19,
23]. In our experiment here, we will investigate the self-repairability of the systems
that were evolved in the French ßag pattern evolution experiment in our earlier
paper [26].

The bit-length for the French ßags is 4 bits per cell. The Þrst two are used to
represent the different colours of the cells; the remaining two are left free for the
developmental process during evolution. However, as with the previous experi-
ments, the spare bits are considered part of the target pattern, and the system has to
recover their correct values as well to achieve a perfect Þtness. That essentially
makes this experiment the recovery of 256-bit patterns.

The settings are indicated in Tables1 and 10. The target image is shown in
Fig. 8.

The evolution experiments resulted in a lower number of successfully evolved
systems than the earlier experiments of this subsection. With 77 systems for the
Þxed bordered model, and 83 systems for the toroidal model, it still allows us to
draw strong conclusions for these two models. For the classical CA model there
were only 5 systems, not enough to present us with any meaningful results.

Table 9 The table displays the number of perfectly recovered patterns for each disruption experiment in
experiment 4

Disruption type No. of successes

Fixed bordered (100) Toroidal (100) Classical CA (74)

One-cell reset disruption 69 (58.8Ð77.6 %) 65 (54.7Ð74.1 %) 13 (10.1Ð28.5 %)

Three-cell reset disruption 68 (57.8Ð76.7 %) 63 (52.7Ð72.2 %) 11 (8.0Ð25.5 %)

Five-cell random disruption 21 (13.7Ð30.5 %) 2 (0.3Ð7.7 %) 2 (0.4Ð10.3 %)

2 9 2 Block random disruption 22 (14.5Ð31.6 %) 4 (1.2Ð10.5 %) 2 (0.4Ð10.3 %)

The numbers inside the brackets indicate the success rates with 95 % conÞdence
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Fig. 7 The developmental cycle of three evolved systems that are subjected to the Þve-cell random
disruption att = 8, on the Þxed bordered, toroidal and classical CA models respectively. The cells that are
indicated by thered squareand a cross are the ones that are affected by the introduced faults. The time steps are
shown fromtop to bottom, and the spare bits of each model is shown on theright columns(Color Þgure online)
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Similarly, as with the previous self-repair experiments, they were all tested with the
four different types of fault experiments, as given in Table10

The results are given in Table11. We can see that as in the previous experiments,
the reset type disruptions were a lot gentler than the random disruptions. We can
also easily see that while it has shown similar self-repair ability with the reset
disruptions, the toroidal model was a lot less successful compared to the Þxed
bordered model in random disruptions. Although the classical CA model had no
systems that perfectly self-repaired in all tests, it is hard to generalize this result as
the sample size is only Þve. Furthermore, since this model has shown that it is
indeed capable of self-repair (however limited) in the previous experiment, and
since when we take a closer look at the self-repair results, we see that on 30.5 % of
the Þve-cell random disruption tests the systems were able to fully recover, we can
still conclude that the classical CA model, being a stabilizing, developmental model,
is capable of emergent self-repair.

Figures9, 10 and 11 display the self-repair processes for a sample evolved
system for each three developmental models. For all three Þgures, the left column
displays the combined and colour coded two state bits of the cell, and the middle
and right columns display the rest of the bits of the system. The colour-to-state
mappings are as follows: 00: black, 01: red, 10: blue and 11: white. Similar to the
previous visual examples of self-repair, they all start with a fully developed and
stabilized pattern, in this case the French ßag pattern at time stept = 7, and the Þve-
cell random fault strikes at the 8th time step. The cells that are indicated by the red
square and a cross at time stept = 7 are the ones that are affected by the introduced
faults.

Fig. 8 The French ßag target
pattern from experiment 5
(Color Þgure online)

Table 10 Setup for French ßag
pattern evolution experiment
(experiment 5)

Grid size (n 9 m) 8 9 8 = 64 cells

Cell state bit-length (x) 4 bits

Total conÞguration bit-length 649 4 = 256 bits

CGP node size 100 Nodes

Disruption timestep 8th timestep

Time steps allowed for recovery 20

One-cell reset disruption Performed exhaustively

Three-cell reset disruption Performed exhaustively

Five-cell random disruption Performed 1,000 times

2 9 2 Block random disruption Performed 1,000 times
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The sample self-repair process for the Þxed bordered model can be seen in Fig.9.
The Þve-cell random disruption strikes att = 8 and affects 4 cells on the ßag
pattern, and several other cells on the spare bits. As we recall from our earlier
discussions, we have predicted that for the Þxed bordered model, the south east
corner usually provides a strong anchor to the pattern where positional information
is gathered and propagated towards the north east of the grid. When we look at this
sample Þgure, it can be clearly seen that this process works as predicted. Att = 9
most of the errors on the cells that make up the pattern are not just Þxed, but rather
pushed towards the north east of the grid. The process continues att = 10 and the
pattern stabilizes successfully att = 11. The same process can also be observed in
the spare bits.

In Fig. 10, we can see the self-repair process after the fault strikes att = 8 on the
toroidal model. Indicated by the red squares and crosses, the affected bits are mostly
the spare bits. Although the French ßag pattern is affected in a limited way, the
pattern takes a lot longer to recover compared to the Þxed bordered model. This is
because the spare bits are as important as the rest when it comes to stabilizing the
pattern. The alterations in the spare bits immediately cause further, more extensive
disruptions in the ßag pattern in the following time steps. The French ßag pattern
starts to heal only after the spare bits recover their original state, and become useful
in providing positional information. Since there are no border cells in this model,
and the ßag pattern does not wrap around and touch from the sides, establishing
positional information is harder, and in this case mostly taken care of by the spare
bits which are free to do just that.

In Fig. 11, we can see another sample self-repair experiment, this time performed
on the classical CA model. However, as we recall from the experimental results,
none of the systems managed to fully recover under every self-repair experiment. In
this sample, we have picked the most resilient one of the Þve systems that were
successfully evolved. Even so, this system did not manage to achieve a perfect
recovery. As can be seen in the Þgure, although the general shape is more or less
preserved through many time steps, the pattern never stabilizes.

Finally, from the sample experiment with the Þxed bordered model, we see that
the system manages to stabilize within three time steps. However after taking a
closer look into the experimental data gathered from the 1,000 Þve-cell random

Table 11 The table displays the number of perfectly recovered patterns for each disruption experiment
in experiment 5

Disruption type No. of successes

Fixed bordered Toroidal Classical CA

One-cell reset disruption 59 (65.3Ð85.2 %) 52 (51.3Ð72.8 %) 0

Three-cell reset disruption 59 (65.3Ð85.2 %) 50 (48.9Ð70.6 %) 0

Five-cell random disruption 27 (24.8Ð46.9 %) 1 (0.1Ð7.5 %) 0

2 9 2 Block random disruption 28 (25.9Ð48.2 %) 1 (0.1Ð7.5 %) 0

Perfect patterns 27 (24.8Ð46.9 %) 1 (0.1Ð7.5 %) 0

The numbers inside the brackets indicate the success rates with 95 % conÞdence
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Fig. 9 The developmental cycle of an evolved system that is subjected to the Þve-cell random disruption
at t = 8, on the Þxed bordered model. The Þrst two bits of the cells are mapped to a colour and displayed
on theleft column. The time steps are shown fromtop to bottom, and the spare bits are shown on the
middleandright columns. The cells that are indicated by thered squareand a cross are the ones that are
affected by the introduced faults (Color Þgure online)
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Fig. 10 The developmental
cycle of an evolved system that
is subjected to the Þve-cell
random disruption att = 8, on
the toroidal model. The Þrst two
bits of the cells are mapped to a
colour and displayed on theleft
columnand the spare bits are
shown on themiddleandright
columns. The cells that are
indicated by thered squareand
a cross are the ones that are
affected by the introduced faults
(Color Þgure online)
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Fig. 11 Figure shows the
developmental cycle of an
evolved system that is subjected
to the Þve-cell random
disruption att = 8, on the
classical CA model. The Þrst
two bits of the cells are mapped
to a colour and displayed at the
left column. The time steps are
shown fromtop to bottom, and
the spare bits are shown on the
middleandright columns. The
cells that are indicated by the
red squareand a cross are the
ones that are affected by the
introduced faults (Color Þgure
online)
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disruption experiments that were repeated for each of the 27 fully perfect patterns,
we have seen that for this model the system were able to recover within Þve to six
time steps in majority of the cases. This provides further evidence in the case of the
Þxed bordered model to the correlation between how quickly a pattern stabilizes
during development to how quickly and more importantly howsuccessfullyit heals
after faults are introduced. However, it is now evident that the same correlation
cannot be found with the toroidal case.

5.6 Overall discussion of experiments

To investigate the emergence of the self-repair ability with our model, we have set
up and ran a number of error experiments. Knowing that in any study that wishes to
assess the robustness and the self repair qualities of a system, a precise fault model
should be deÞned to make the scope of validity of the study clear, we have described
our fault model in detail prior to presenting our experiments. The fault model that
we have used in the experiments that we have seen so far is simple and at the same
time rather exhaustive. It consisted of two types of disruptions that we have named,
reset and random type disruptions. We have Þrst started our experiments on the
successfully evolved systems of the random pattern evolution experiments. Since
these experiments produced only a limited number of systems and although the
indications were good, we have refrained from drawing conclusions and continued
the self-repair experiments with systems evolved during regular pattern evolution
experiments. With the large sample sets provided by these experiments, we were
able to make a number of observations.

Based on the experiments that were run in this section, there are a few important
outcomes. Firstly, to some degree, our developmental cellular system always
exhibits a self-repair ability. Within a few evolutionary runs, it is possible to Þnd,
with a high probability with our Þxed bordered developmental model, a fully perfect
system that is stable even under the worst conditions. This is even true to some
extent, for the less successful toroidal and classical CA developmental models.

Secondly, it is clear from the self-repair experiments that our Þxed bordered
model should be adopted within a framework that has resilience as an aim. While
the results for the toroidal model are not bad in themselves, they do not bear
comparison with the Þxed bordered case, especially when it comes to the Þve-cell
random disruption which is shown to be the hardest type of fault to recover from.
The reasons for this difference are hard to spot at Þrst. Obviously, the Þrst idea that
springs to mind is that borders favour stability, thereby favouring self-repair.
However, the results in terms of evolvability seen in our previous paper [26],
somehow contradict this hypothesis as the toroidal modelÕs performance in general
was only slightly worse than the Þxed bordered model. In effect, evolution is
considered successful if the system develops into the required target pattern, but
only if it does so in a stable manner. Here, unlike in many other works, there is no
explicit growth phase with a stopping time. The process stops itself by reaching a
conÞguration that is stable. If the toroidal model was truly more unstable than its
Þxed bordered counterpart, similarly its evolution should also prove a lot harder,
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which is not the case. Besides, becoming stable fast yet not achieving the target
pattern is not better either.

In our recent paper [26] we have seen that larger cellular grids such as the one
used with the French ßag experiment make the signal ßow and the gathering of the
positional information harder. In the case of the French ßag evolution experiment,
we have found that the toroidal model was more evolvable, and concluded that the
increased cellular connectivity introduced by the toroidal model greatly reduces the
maximum distance between any two cells thereby making the propagation of the
signals quicker. However, the toroidal model did not show any increased self-repair
ability on the French ßag pattern regardless of its evolvability performance thereby
conÞrming the superiority of the Þxed bordered model in both evolvability and self-
repair ability.

Upon closer investigation of the developmental system both with the Þxed
bordered and the toroidal models, we have found that it was indeed easier for the
Þxed bordered model to gather positional information. In almost all cases the border
cells determined their outputs from the virtual cells, thereby guaranteeing that they
will always conÞgure the grid into the correct state after a perturbation. Although
the evolvability of the toroidal and the Þxed bordered models are similar, and on
average they each stabilize in the correct conÞguration within the same number of
time steps; because of the high likelihood of the cells in the Þxed bordered model to
deliver correct outputs even after faults occur, this model is shown to be the most
resilient in all self-repair experiments. Furthermore, this investigation has also
revealed that for the Þxed bordered model, there is a correlation between how
quickly a pattern stabilizes to how resilient it is to the introduced faults.

Apart from these more general conclusions, we can also make an observation
speciÞc to our framework. During our investigations of the developmental process
after the introduction of errors, we have seen that in most cases the pattern Þrst
moved further away from the target pattern before restabilizing into the Þnal, correct
conÞguration. This peculiarity is tied to the overwriting property of our model
which results in cell state update priorities. As the cell at the south eastern corner of
the grid has the highest update priority, the fault recovery is most likely to start from
there which also results in the disruptions to be pushed northeast of the grid as we
have seen with the sample French ßag self-repair experiment on the Þxed bordered
model.

6 Conclusions and future work

In this paper we have demonstrated that a DCM with an update rule learned by
Genetic Programming for self-assembly can produce self-repair behaviour without
any additional learning steps aimed speciÞcally at self-repair. This has been
demonstrated on a number of problem types within the broad area of cellular pattern
formation.

There are a number of areas for future work. Firstly, it would be of interest to see
if this could be applied to other evolved patterns, for example self-assembled
circuits in FPGAs. In particular, it would be useful to explore self-reconÞguration
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around cells in the system that were permanently Þxed in one conÞguration or not
functioning, which would more closely model hardware faults.

There is clearly a lot of work to be done to bridge the gap between the self-
assembly and self-repair of simple patterns on a grid and the repair of complex
circuits. However, a rough analogy can be drawn between the different colours in
the patterns with individual component types or with input-output behaviours of
components.

One contrast between these simple pattern-assembly systems and circuits is that
the Þtness measure used to learn the assembly of circuits is indirectÑthe Þtness of a
circuit is based on its behaviour, whereas that of the pattern is direct. It is possible
that new methods based on so-called ÔÔsemantic operatorsÕÕ[21, 37]Ñwhich
facilitate the exploration of spaces of program/circuit behaviourÑmay be of help
here.

Another problem is to tease out how much of thepotential self-repair ability is
obtained ÔÔfor freeÕÕ from the self-assembly evolution. For example, it might be of
interest to repeat the experiments above with an explicit self-repair based Þtness
function and measure the marginal beneÞts of this over the results already obtained.

Another area to explore is changes to the fault model. In particular, it would be
interesting to explore the consequences of faults that can change the update rule as
well as the cells in the system. Another variant on this system would be to train the
rules so that they are learned from random patterns rather than all-zero patternsÑwe
might expect such rules to be more robust still.

The DCM is a sequential modelÑthe updates are carried out in a Þxed sequence.
It would be interesting to explore how important this is to the model, how effective a
developmental model based e.g. on random updates (which would be more similar
to the biological developmental process that this work takes its inspiration from)
would be.

Another kind of alternative model is the Data-and-Signals cellular automaton
[35], which is designed to provide a CA-type structure but with more similarity to
traditional digital electronic components. In such an automaton, rather than it
transmitting its state to its neighbours, a pair of computational units within each
cellÑthe processing unit and control unitÑprocess respectivelydata (the
information that is relevant to the problem at hand) andsignals(information that
aids with the processing of the data and the growth of the activity in the automaton).
It would be interesting to apply learning techniques of the kind outlined in this paper
to such models and see if the robustness still obtains. This is particularly interesting
as this would be taking us closer to the long-term aim of evolving robust circuits and
related executable structures.

A different kind of comparative experiment would be to compare the self-repair
ability of evolved systems with those systems that are written by hand. This would
be hard to achieve with the current system because of the challenge of crafting the
update rules by handÑit is difÞcult for a human programmer to grasp the
implications of a change to the update rule to the emergent behaviour of the system
as a whole. However, in other domains this might be possible. This is of particular
importance because it would allow us to investigate the cause of the self-repair
ability. Is the free self-repair ability a consequence of thedevelopmentalsystem or
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is it a consequence of the fact that those programs have beenevolved (or a
combination of the two)? These are interesting questions with important
consequences both for self-repairing systems and also for an abstract understanding
of developmental and evolutionary biology.

References

1. A. Agresti, B. Coull, Approximation is better than ÔexactÕ for interval estimation of binomial pro-
portions. Am. Stat.52, 119Ð126 (1998)

2. M.S. Capcarrere, An evolving ontogenetic cellular system for better adaptiveness. BioSystems76,
177Ð189 (2004)

3. P.A. Cariani, The homeostat as embodiment of adaptive control. Int. J. Gen. Syst.38(2), 139Ð154
(2009)

4. H. de Garis, ArtiÞcial embryology and cellular differentiation. In: P.J. Bentley (eds)Evolutionary
Design by Computers., (Morgan Kauffmann, Los Altos, 1999), pp. 281Ð295

5. A. Eiben, J. Smith,Introduction to Evolutionary Computing. (Springer, Berlin, 2003)
6. S. Franchi, Life, death and resurrection of the homeostat. In: S. Franchi, F. Bianchini (eds)The

Search for a Theory of Cognition: Early Mechanisms and New Ideas., (Editions Rodopi, Amsterdam,
2011), pp. 3Ð52

7. M. Garvie, A. Thompson, Evolution of self-diagnosing hardware. In:Evolvable Systems: From
Biology to Hardware: Proceedings of the 5th International Conference, vol. 2606, Lecture Notes in
Computer Science, (2003), pp. 238Ð248

8. J. Gray, D.P. Siewiorek, High-availability computer systems. Computer24(9), 39Ð48 (1991)
9. F. Gruau,Neural Network Synthesis Using Cellular Encoding and the Genetic Algorithm. Ph.D.

thesis, Ecole Normale Superieure de Lyon, 1994
10. S. Kumar, P.J. Bentley (eds),On Growth, Form, and Computers. (Academic Press, New York, 2003)
11. H. Liu, J.F. Miller, A.M. Tyrell, An intrinsic robust transient fault-tolerant developmental model for

digital systems. In:Workshop on Regeneration and Learning in Developmental Systems at the 2004
Genetic and Evolutionary Computation Conference (GECCO 2004), 2004

12. R.E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve computer reliability.
IBM J. 6, 200Ð209 (1962)

13. N.J. Macias, L.J.K. Durbeck, Self-assembling circuits with autonomous fault handling. In: A. Stoica,
J. Lohn, R. Katz, D. Keymeulen, R.S. Zebulum (eds)Proceedings of the 2002 NASA/DoD Confer-
ence on Evolvable Hardware, (IEEE Computer Society, Los Alamitos, 2002), pp. 46Ð55

14. D. Mange, M. Sipper, A. Stauffer, G. Tempesti, Towards robust integrated circuits: the embryonics
approach. Proc. IEEE88(4), 516Ð541 (2000)

15. D. Mange, A. Stauffer, Introduction to embryonics: towards new self-repairing and self-reproducing
hardware based on biological-like properties. In: N. Mangenat, D. Thalmann (eds)ArtiÞcial Life and
Virtual Reality, (Wiley, London, 1994), pp. 61Ð72

16. J.F. Miller, W. Banzhaf. Evolving the program for a cell: from French ßags to boolean circuits. In: S.
Kumar, P.J. Bentley (eds)On Growth, Form, and Computers, chap. 15. (Academic Press, New York,
2003)

17. J.F. Miller, P. Thomson, Beyond the complexity ceiling: evolution, emergence, and regeneration. In:
Workshop on Regeneration and Learning in Developmental Systems at the 2004 Genetic and Evo-
lutionary Computation Conference (GECCO 2004), 2004

18. J.F. Miller, Evolving developmental programs for adaptation, morphogenesis and self-repair. In: W.
Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, J. Ziegler (eds)Advances in ArtiÞcial Life: 7th
European Conference(Springer, 2003), pp. 256Ð265

19. J.F. Miller, Evolving a self-repairing, self-regulating French ßag organism. In: K. Deb, R. Poli, W.
Banzhaf, H.G. Beyer (eds)Proceedings of the 2004 Genetic and Evolutionary Computation Con-
ference (GECCO 2004)vol. 3102. Lecture Notes in Computer Science, (Springer, 2004),
pp. 129Ð139

20. J.F. Miller (eds),Cartesian Genetic Programming. (Springer, Berlin, 2011)

340 Genet Program Evolvable Mach (2014) 15:313Ð341

123



21. A. Moraglio, K. Krawiec, C.G. Johnson. Geometric semantic genetic programming. In:Parallel
Problem Solving from Nature: PPSN XIIÑLecture Notes in Computer Science, vol. 7491, (Springer,
2012), pp. 21Ð31

22. R.G. Newcombe, Two-sided conÞdence intervals for the single proportion: comparison of three
methods. Stat. Med.17, 857Ð872 (1998)

23. C. O¬ztu¬rkeri, M.S. Capcarrere, Emergent robustness and self-repair through developmental cellular
systems. In: J. Pollack, M. Bedau, P. Husbands, T. Ikegami, R. A. Watson (eds),ArtiÞcial Life IX:
Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Sys-
tems, (MIT Press, Cambridge, 2004), pp. 26Ð31

24. C. O¬ztu¬rkeri, M.S. Capcarrere, Self repair ability of a toroidal and non-toroidal cellular develop-
mental model. In: M. Capcarrere, A.A. Freitas, P.J. Bentley, C.G. Johnson, (eds)Advances in
ArtiÞcial Life: 8th European Conference on ArtiÞcial Life, vol. 3630, Lecture Notes in ArtiÞcial
Intelligence, (Springer, 2005), pp. 138Ð148

25. C. O¬ztu¬rkeri, Investigation of Developmental Methods for Growing Self-repairing Programs. Ph.D.
thesis, University of Kent, Canterbury, 2008

26. C. O¬ztu¬rkeri, C.G. Johnson, Evolution of self-assembling patterns in cellular automata using
development. J. Cell. Autom.6(4), 257Ð300 (2011)

27. G. Pask,An Approach to Cybernetics. (Harper and Brothers, New York, 1961)
28. R. Poli, W. B. Langdon, N.F. McPhee,A Field Guide to Genetic Programming. Published viahttp://

lulu.com and freely available athttp://www.gp-Þeld-guide.org.uk, 2008. (With contributions by J.
R. Koza)

29. W. Powers,Behavior: The Control of Perception. (Aldine, New York, 1973)
30. L. Prodan, G. Tempesti, D. Mange, A. Stauffer, Embryonics: Electronic stem cells. In: R.K. Standish,

M.A. Bedau, H.A. Abbass, (eds)ArtiÞcial Life VIII: Proceedings of the Eight International Con-
ference on the Simulation and Synthesis of Living Systems, (2002), pp. 101Ð105

31. P. Prusinkiewicz,A. Lindenmayer. (Springer, Berlin, 1990)
32. B. Randell, P. Lee, P.C. Treleaven, Reliability issues in computing system design. ACM Comput.

Surv.10(2), 123Ð165 (1978)
33. D. Roggen, D. Federici, Multi-cellular development: is there scalability and robustness to gain? In: X.

Yao, E. Burke, J.A. Lozano, J. Smith (eds),Proceedings of PPSN VIII 2004: The 8th International
Conference on Parallel Problem Solving from Nature, vol. 3242, Lecture Notes in Computer Science,
(Springer, 2004) , pp. 391Ð400

34. D. Roggen, D. Floreano, C. Mattiussi. A morphogenetic evolutionary system: phylogenesis of the
POEtic circuit. In: A.M. Tyrell, P.C. Haddow, J. Torresen, (eds)Evolvable Systems: From Biology to
Hardware: 5th International Conference, ICES 2003, (Springer, 2003), pp. 153Ð164

35. A. Stauffer, M. Sipper, The data-and-signals cellular automaton and its application to growing
structures. Artif. Life10, 463Ð477 (2004)

36. F. Streichert, C. Spieth, H. Ulmer, A. Zell, Evolving the ability of limited growth and self-repair for
artiÞcial embryos. In: W. Banzhaf, T. Christaller, P. Dittrich, J.T. Kim, J. Ziegler (eds)Advances in
ArtiÞcial Life: 7th European Conference, (Springer, 2003), pp. 289Ð298

37. L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic GP
and its application to problems in pharmacokinetics. In:16th European Conference on Genetic
Programming, (Springer, 2013), pp. 205Ð216

38. L. Wolpert,Principles of Development. (Oxford University Press, Oxford, 1998)

Genet Program Evolvable Mach (2014) 15:313Ð341 341

123


