

Kent Academic Repository

Went, Michael J., Blower, Philip J., Tocher, Derek and Brown, Oliver (2015) *Crystal structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato](pyridine)zil* Acta Crystallographica Section E: Crystallographic Communications, E71 (11). pp. 1349-1351. ISSN 2056-9890.

Downloaded from <u>https://kar.kent.ac.uk/51083/</u> The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1107/S2056989015019234

This document version Publisher pdf

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Full text upload complies with journal regulations

Versions of research works

Versions of Record

If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in *Title of Journal*, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact <u>ResearchSupport@kent.ac.uk</u>. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our <u>Take Down policy</u> (available from <u>https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies</u>).

Received 27 September 2015 Accepted 12 October 2015

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; bis(thiosemicarbazone); copper; zinc; hypoxia; PET

CCDC reference: 1430734 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato)- $\kappa^4 S, N^1, N^{1'}, S'$]-(pyridine- κN)zinc(II)

Oliver C. Brown,^a Derek A. Tocher,^b Philip J. Blower^c and Michael J. Went^a*

^aUniversity of Kent, School of Physical Sciences, Canterbury CT2 7NH, England, ^bDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and ^cKing's College London, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, England. *Correspondence e-mail: m.j.went@kent.ac.uk

In the structure of the title complex, $[Zn(C_8H_{14}N_6S_2)(C_5H_5N)]$, the Zn^{II} ion has a pseudo-square-pyramidal coordination environment and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate) N_2S_2 donor atoms. Chains sustained by intermolecular $N-H\cdots N$ and $N-H\cdots S$ hydrogen-bonding interactions extend parallel to $[10\overline{1}]$.

1. Chemical context

Bis(thiosemicarbazonato)copper complexes labelled with ^{60/62/64}Cu isotopes are useful radiopharmaceuticals for imaging blood flow and hypoxic tissues in vivo (Dearling et al., 2002). Bis(thiosemicarbazonato)zinc complexes can act as precursors for bis(thiosemicarbazonato)copper complexes by reaction with copper acetate in water (Holland et al., 2007). This synthetic approach can be very useful in the quick, clean synthesis of radio-copper complexes, particularly if the copper isotope has a short half live. A solid-phase synthesis has been developed based on the attachment of a bis(thiosemicarbazonato)zinc complex to 4-(dimethylamino)pyridine functionalized polystyrene resin and elution of the desired radiocopper complex by the addition of a [64Cu]copper acetate solution (Betts et al., 2008). A number of different polymers for zinc-copper bis(thiosemicarbazonato) transmetalation reactions have been tested and a pyridyl system was found to be optimal (Aphaiwong et al., 2012). This communication reports the crystal structure of a zinc bis(thiosemicarbazonato) pyridine complex, $[Zn(C_8H_{14}N_6S_2)(C_5H_5N)].$ Comparison of the infra-red and Raman spectra indicates that [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) coordinates to poly(4-vinylpyridine) (Brown 2015).

OPEN d ACCESS

research communications

Figure 1 The molecular structure of the title complex.

2. Structural commentary

The molecular structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato)]pyridinezinc is shown in Fig. 1. The Zn^{II} ion lies in a pseudo-square-pyramidal coordination and is displaced by 0.490 Å from the plane of best fit defined by the bis(thiosemicarbazonate) N₂S₂ donor atoms. In the related 4-(dimethylamino)pyridine complex, the displacement is 0.517 Å (Betts et al., 2008). The Zn-pyridine bond is shorter [2.0900 (18) Å] than the other two bonds to atoms N3 and N4. It is apparent that the ligand cavity is too small to fit the Zn^{II} ideally, resulting in an N–Zn–N angle of only 74.45 $(7)^{\circ}$ which may contribute to the ready transmetalations that result in Cu^{II} complexes with angles of approximately 80° (Blower et al., 2003). A comparison of the vibrational spectroscopy of poly(4-vinylpyridine), [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) and [butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc(II) on poly(4-vinylpyridine) can be found in the supporting information.

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1\cdots N5^{i}$ $N6-H6\cdots S1^{ii}$	0.86 0.86	2.21 2.65	2.988 (3) 3.500 (2)	150 167

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x - \frac{3}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Table 2Experimental details.

Crystal data	
Chemical formula	$[Zn(C_8H_{14}N_6S_2)(C_5H_5N)]$
M _r	402.84
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	150
a, b, c (Å)	10.1466 (2), 13.9076 (3), 12.7775 (3)
β (°)	104.756 (2)
$V(Å^3)$	1743.64 (7)
Ζ	4
Radiation type	Cu Ka
$\mu (\text{mm}^{-1})$	4.27
Crystal size (mm)	$0.26 \times 0.04 \times 0.02$
Data collection	
Diffractometer	Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
T_{\min}, T_{\max}	0.775, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12050, 3445, 3020
R _{int}	0.041
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.622
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.031, 0.074, 1.04
No. of reflections	3445
No. of parameters	212
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.36, -0.42

Computer programs: (CrysAlis PRO; Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

3. Supramolecular features

The molecules form a chain *via* N6–H6···S1 (2.65 Å) and N1–H1···N5 (2.21 Å) hydrogen bonds (Table 1), as has been

seen previously in related Cu^{II} bis(thiosemicarbazonate) complexes (Blower *et al.*, 2003), with weaker interactions between the chains [H6 $A \cdots$ S2($\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$) = 2.88 Å and H12 \cdots N5(-x, 1 - y, 1 - z) = 2.67 Å] (see Fig. 2).

The chain structure of the title complex formed by $N-H\cdots N$ and $N-H\cdots S$ hydrogen bonds. The chain direction is parallel to [101].

4. Synthesis and crystallization

[Butane-2,3-dione bis(4-methylthiosemicarbazonato)]zinc (0.194 g, 0.60 mmol) was dissolved in DMSO (2 ml). Pyridine (0.06 ml, 0.059 g, 0.70 mol) was added to the solution and left to stir overnight. Water (5 ml) was added to solution. The crystalline precipitate was recovered *via* filtration, washed with ethanol (1 \times 10 ml) and diethyl ether (5 \times 10 ml). The solid was dried in air. A yellow solid (0.125 g) was recovered (52% yield).

5. Spectroscopic data

¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.49 (2H, *m*, H_(2,6) pyridyl), 7.79 (2H, m, H₍₄₎ pyridyl), 7.39 (2H, m, H_(3,5) pyridyl), 7.18 (2H, s, H₃C-NH), 2.79 (6H, m, HN-CH₃), 2.26 (6H, s, N=C-CH₃). ¹³C {¹H} NMR (DMSO-*d*₆, 100 MHz): δ 149.72 (C_(2.6) pyridyl), 137.57 (C₍₄₎ pyridyl), 124.90 (C_(3,5) pyridyl), 29.81 $(HN-CH_3)$, 14.47 $(N=C-CH_3)$. IR (cm^{-1}) 3273 (w), 3217 (w), 3001 (w), 2938 (w), 1603 (w), 1530 (m), 1510 (m), 1476 (m), 1447 (m), 1396 (m), 1337 (m), 1250 (s), 1213 (s), 1157 (m),1072 (s), 1040 (s), 1013 (m), 974 (m), 839 (m), 760 (m), 694 (s), 648 (m), 635 (m), 590 (m), 446 (s). Raman (632.81 nm): cm⁻¹ = 3285 (w), 1613 (w), 1544 (s), 1513 (s), 1478 (m), 1377 (w), 1337 (w), 1285 (m), 1254 (m), 1217 (w), 1190 (w), 1037 (w), 1013 (w), 989 (w),841 (w), 795 (w), 726 (w), 592 (w), 538 (w), 448 (w), 375 (w), 334 (w), 289 (w). Found for Zn₁C₁₃H₁₉N₇S₂: C, 38.8; H, 4.6; N, 24.3. Calculated for Zn₁C₁₃H₁₉N₇S₂: C, 38.8; H, 4.75; N, 24.3%. UV–Vis: λ_{max}/nm (DMSO) 314 ($\varepsilon/dm^3 mol^{-1}$ cm^{-1} 12 600) and 434 (12 800).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were included in idealized positions and refined as riding: N-H = 0.86 Å, C-H = 0.93 (aromatic) or 0.96 (methyl) Å; $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C_{methyl})$. Methyl H atoms were generated in idealized positions and refined as rotating groups. [please check added text]

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Aphaiwong, A., Moloney, M. G. & Christlieb, M. (2012). J. Mater. Chem. 22, 24627–24636.
- Betts, H. M., Barnard, P. J., Bayly, S. R., Dilworth, J. R., Gee, A. D. & Holland, J. P. (2008). Angew. Chem. Int. Ed. 47, 8416–8419.
- Blower, P. J., Castle, T. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E., Sowrey, F. E., Teat, S. J. & Went, M. J. (2003). *Dalton Trans.* pp. 4416–4425.
- Brown, O. C. (2015). PhD thesis, University of Kent, England.
- Dearling, J. L. J., Lewis, J. S., Mullen, G. E. D., Welch, M. J. & Blower, P. J. (2002). J. Biol. Inorg. Chem. 7, 249–259.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Holland, J. P., Aigbirhio, F. I., Betts, H. M., Bonnitcha, P. D., Burke, P., Christlieb, M., Churchill, G. C., Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Green, J. C., Peach, J. M., Vasudevan, S. R. & Warren, J. E. (2007). *Inorg. Chem.* 46, 465–485.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

Acta Cryst. (2015). E71, 1349-1351 [doi:10.1107/S2056989015019234]

Crystal structure of [butane-2,3-dione bis(4-methylthiosemicarbazonato)- $\kappa^4 S, N^1, N^1, S'$](pyridine- κN)zinc(II)

Oliver C. Brown, Derek A. Tocher, Philip J. Blower and Michael J. Went

Computing details

Data collection: (*CrysAlis PRO*; Agilent, 2014); cell refinement: (*CrysAlis PRO*; Agilent, 2014); data reduction: (*CrysAlis PRO*; Agilent, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

[Butane-2,3-dione bis(4-methylthiosemicarbazonato)- $\kappa^4 S$, N^1 , N^1 , S'] (pyridine- κN)zinc(II)

```
Crystal data
```

```
[Zn(C_8H_{14}N_6S_2)(C_5H_5N)]

M_r = 402.84

Monoclinic, P2_1/n

a = 10.1466 (2) Å

b = 13.9076 (3) Å

c = 12.7775 (3) Å

\beta = 104.756 (2)°

V = 1743.64 (7) Å<sup>3</sup>

Z = 4
```

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source Mirror monochromator Detector resolution: 5.2031 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2014)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.074$ S = 1.043445 reflections 212 parameters 0 restraints F(000) = 832 $D_x = 1.535 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 6492 reflections $\theta = 4.8-73.0^{\circ}$ $\mu = 4.27 \text{ mm}^{-1}$ T = 150 KNeedle, clear yellow $0.26 \times 0.04 \times 0.02 \text{ mm}$

 $T_{\min} = 0.775, T_{\max} = 1.000$ 12050 measured reflections 3445 independent reflections 3020 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{\max} = 73.6^{\circ}, \theta_{\min} = 4.8^{\circ}$ $h = -7 \rightarrow 12$ $k = -16 \rightarrow 17$ $l = -15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.032P)^2 + 1.1359P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$

 $\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$

$$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$$

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.34 (release 22-05-2014 CrysAlis171 .NET) (compiled May 22 2014,16:03:01) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Znl	0.30020 (3)	0.73515 (2)	0.47000 (2)	0.01926 (9)
S1	0.44685 (5)	0.79566 (4)	0.36852 (4)	0.02284 (12)
S2	0.14259 (6)	0.85069 (4)	0.50133 (4)	0.02449 (13)
N1	0.68465 (19)	0.71828 (14)	0.37359 (15)	0.0248 (4)
H1	0.6813	0.7600	0.3233	0.030*
N2	0.59011 (19)	0.65189 (13)	0.50031 (15)	0.0235 (4)
N3	0.47831 (18)	0.65526 (13)	0.54215 (14)	0.0203 (4)
N4	0.26884 (18)	0.68075 (13)	0.61711 (14)	0.0213 (4)
N5	0.15519 (18)	0.70523 (13)	0.65027 (14)	0.0215 (4)
N6	-0.02309 (19)	0.80647 (14)	0.62535 (15)	0.0257 (4)
H6	-0.0411	0.7758	0.6785	0.031*
N7	0.17142 (18)	0.64416 (13)	0.35929 (14)	0.0213 (4)
C1	0.8028 (2)	0.65595 (18)	0.4039 (2)	0.0301 (5)
H1A	0.8662	0.6725	0.3624	0.045*
H1B	0.7748	0.5903	0.3898	0.045*
H1C	0.8457	0.6638	0.4796	0.045*
C2	0.5800(2)	0.71402 (15)	0.42040 (17)	0.0214 (4)
C3	0.4771 (2)	0.60479 (15)	0.62697 (16)	0.0211 (4)
C4	0.5913 (3)	0.54130 (19)	0.6841 (2)	0.0344 (6)
H4A	0.5647	0.4752	0.6712	0.052*
H4B	0.6127	0.5542	0.7604	0.052*
H4C	0.6700	0.5537	0.6575	0.052*
C5	0.3557 (2)	0.61910 (15)	0.66955 (16)	0.0200 (4)
C6	0.3438 (2)	0.56830 (17)	0.76987 (17)	0.0251 (4)
H6A	0.4086	0.5947	0.8314	0.038*
H6B	0.3618	0.5010	0.7639	0.038*
H6C	0.2533	0.5766	0.7788	0.038*
C7	0.0907 (2)	0.78126 (15)	0.59668 (17)	0.0215 (4)
C8	-0.1183 (2)	0.88087 (17)	0.57441 (18)	0.0269 (5)
H8A	-0.1695	0.8591	0.5046	0.040*
H8B	-0.0689	0.9381	0.5662	0.040*
H8C	-0.1794	0.8946	0.6188	0.040*
С9	0.1317 (2)	0.67116 (17)	0.25522 (18)	0.0264 (5)
H9	0.1650	0.7287	0.2350	0.032*
C10	0.0434 (2)	0.61722 (18)	0.17651 (19)	0.0313 (5)

H10	0.0177	0.6381	0.1050	0.038*
C11	-0.0057 (2)	0.53150 (17)	0.2068 (2)	0.0301 (5)
H11	-0.0652	0.4937	0.1558	0.036*
C12	0.0346 (2)	0.50294 (17)	0.3136 (2)	0.0301 (5)
H12	0.0030	0.4455	0.3356	0.036*
C13	0.1226 (2)	0.56104 (16)	0.38725 (18)	0.0247 (4)
H13	0.1492	0.5417	0.4592	0.030*

Atomic displacement parameters $(Å^2)$

U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
0.01595 (15)	0.02595 (15)	0.01686 (14)	0.00116 (10)	0.00599 (10)	0.00201 (10)
0.0201 (3)	0.0283 (3)	0.0226 (2)	0.00170 (19)	0.0101 (2)	0.00528 (19)
0.0234 (3)	0.0268 (3)	0.0264 (3)	0.0057 (2)	0.0122 (2)	0.0057 (2)
0.0194 (9)	0.0345 (10)	0.0227 (9)	0.0000 (7)	0.0097 (7)	0.0049 (7)
0.0193 (9)	0.0316 (10)	0.0219 (8)	0.0020 (7)	0.0095 (7)	0.0024 (7)
0.0158 (9)	0.0268 (9)	0.0191 (8)	0.0023 (7)	0.0060 (7)	0.0020 (7)
0.0202 (9)	0.0270 (9)	0.0186 (8)	0.0011 (7)	0.0081 (7)	0.0002 (7)
0.0149 (9)	0.0318 (9)	0.0201 (8)	0.0022 (7)	0.0088 (7)	0.0010 (7)
0.0182 (9)	0.0365 (10)	0.0246 (9)	0.0064 (8)	0.0098 (7)	0.0051 (8)
0.0159 (9)	0.0259 (9)	0.0221 (8)	0.0001 (7)	0.0050 (7)	-0.0005 (7)
0.0169 (11)	0.0405 (13)	0.0358 (12)	0.0037 (9)	0.0118 (9)	0.0010 (10)
0.0176 (10)	0.0268 (10)	0.0209 (10)	-0.0029 (8)	0.0069 (8)	-0.0028 (8)
0.0178 (10)	0.0270 (10)	0.0192 (9)	0.0017 (8)	0.0060 (8)	0.0019 (8)
0.0292 (13)	0.0448 (14)	0.0331 (12)	0.0165 (11)	0.0149 (10)	0.0157 (11)
0.0179 (10)	0.0257 (10)	0.0165 (9)	-0.0013 (8)	0.0047 (8)	-0.0002 (8)
0.0185 (11)	0.0355 (12)	0.0210 (10)	0.0003 (9)	0.0047 (8)	0.0051 (9)
0.0183 (11)	0.0295 (11)	0.0171 (9)	-0.0006 (8)	0.0055 (8)	-0.0036 (8)
0.0209 (11)	0.0346 (12)	0.0263 (11)	0.0062 (9)	0.0077 (9)	-0.0014 (9)
0.0230 (12)	0.0300 (11)	0.0247 (11)	-0.0010 (9)	0.0034 (9)	0.0025 (9)
0.0255 (12)	0.0408 (13)	0.0242 (11)	0.0011 (10)	0.0004 (9)	0.0004 (9)
0.0203 (11)	0.0334 (12)	0.0346 (12)	-0.0013 (9)	0.0032 (9)	-0.0096 (10)
0.0240 (12)	0.0258 (11)	0.0410 (13)	-0.0018 (9)	0.0094 (10)	-0.0021 (10)
0.0197 (11)	0.0274 (11)	0.0280 (11)	0.0017 (9)	0.0080 (8)	0.0037 (9)
	U^{11} 0.01595 (15) 0.0201 (3) 0.0234 (3) 0.0194 (9) 0.0193 (9) 0.0158 (9) 0.0158 (9) 0.0120 (9) 0.0149 (9) 0.0149 (9) 0.0159 (9) 0.0169 (11) 0.0176 (10) 0.0178 (10) 0.0178 (10) 0.0292 (13) 0.0179 (10) 0.0185 (11) 0.0209 (11) 0.0209 (11) 0.0230 (12) 0.0255 (12) 0.0240 (12) 0.0197 (11)	U^{11} U^{22} $0.01595(15)$ $0.02595(15)$ $0.0201(3)$ $0.0283(3)$ $0.0234(3)$ $0.0268(3)$ $0.0194(9)$ $0.0345(10)$ $0.0193(9)$ $0.0316(10)$ $0.0193(9)$ $0.0268(9)$ $0.0202(9)$ $0.0270(9)$ $0.0149(9)$ $0.0315(10)$ $0.0149(9)$ $0.0365(10)$ $0.0159(9)$ $0.0259(9)$ $0.0169(11)$ $0.0405(13)$ $0.0176(10)$ $0.0268(10)$ $0.0178(10)$ $0.0270(10)$ $0.0292(13)$ $0.0448(14)$ $0.0179(10)$ $0.0257(10)$ $0.0185(11)$ $0.0355(12)$ $0.0183(11)$ $0.0295(11)$ $0.0209(11)$ $0.0346(12)$ $0.0230(12)$ $0.0300(11)$ $0.0255(12)$ $0.0408(13)$ $0.0203(11)$ $0.0258(11)$ $0.0240(12)$ $0.0274(11)$	U^{11} U^{22} U^{33} $0.01595(15)$ $0.02595(15)$ $0.01686(14)$ $0.0201(3)$ $0.0283(3)$ $0.0226(2)$ $0.0234(3)$ $0.0268(3)$ $0.0264(3)$ $0.0194(9)$ $0.0345(10)$ $0.0227(9)$ $0.0193(9)$ $0.0316(10)$ $0.0219(8)$ $0.0158(9)$ $0.0268(9)$ $0.0191(8)$ $0.0202(9)$ $0.0270(9)$ $0.0186(8)$ $0.0149(9)$ $0.0318(9)$ $0.0201(8)$ $0.0159(9)$ $0.0259(9)$ $0.0221(8)$ $0.0169(11)$ $0.0405(13)$ $0.0358(12)$ $0.0176(10)$ $0.0268(10)$ $0.0209(10)$ $0.0178(10)$ $0.0270(10)$ $0.0192(9)$ $0.0292(13)$ $0.0448(14)$ $0.0331(12)$ $0.0179(10)$ $0.0257(10)$ $0.0165(9)$ $0.0185(11)$ $0.0346(12)$ $0.0263(11)$ $0.0209(11)$ $0.0346(12)$ $0.0247(11)$ $0.0230(12)$ $0.0300(11)$ $0.0242(11)$ $0.0203(11)$ $0.0334(12)$ $0.0346(12)$ $0.0240(12)$ $0.0258(11)$ $0.0410(13)$ $0.0197(11)$ $0.0274(11)$ $0.0280(11)$	U^{11} U^{22} U^{33} U^{12} 0.01595 (15)0.02595 (15)0.01686 (14)0.00116 (10)0.0201 (3)0.0283 (3)0.0226 (2)0.00170 (19)0.0234 (3)0.0268 (3)0.0264 (3)0.0057 (2)0.0194 (9)0.0345 (10)0.0227 (9)0.0000 (7)0.0193 (9)0.0316 (10)0.0219 (8)0.0020 (7)0.0158 (9)0.0270 (9)0.0186 (8)0.0011 (7)0.0202 (9)0.0270 (9)0.0186 (8)0.0011 (7)0.0149 (9)0.0318 (9)0.0201 (8)0.0022 (7)0.0182 (9)0.0365 (10)0.0246 (9)0.0064 (8)0.0159 (9)0.0259 (9)0.0221 (8)0.0001 (7)0.0169 (11)0.0405 (13)0.0358 (12)0.0037 (9)0.0176 (10)0.0268 (10)0.0209 (10) -0.0029 (8)0.0178 (10)0.0270 (10)0.0192 (9)0.0017 (8)0.0292 (13)0.0448 (14)0.0331 (12)0.0165 (11)0.0179 (10)0.0257 (10)0.0165 (9) -0.0013 (8)0.0183 (11)0.0255 (12)0.0210 (10)0.0003 (9)0.0230 (12)0.0300 (11)0.0247 (11) -0.0010 (9)0.0255 (12)0.0408 (13)0.0242 (11)0.0011 (10)0.0203 (11)0.0334 (12)0.0346 (12) -0.0013 (9)0.0240 (12)0.0258 (11)0.0410 (13) -0.0018 (9)0.0197 (11)0.0274 (11)0.0280 (11)0.0017 (9)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Zn1—S1	2.3635 (6)	C1—H1C	0.9600
Zn1—S2	2.3718 (6)	C3—C4	1.491 (3)
Zn1—N3	2.1218 (18)	C3—C5	1.482 (3)
Zn1—N4	2.1241 (17)	C4—H4A	0.9600
Zn1—N7	2.0900 (18)	C4—H4B	0.9600
S1—C2	1.760 (2)	C4—H4C	0.9600
S2—C7	1.738 (2)	C5—C6	1.495 (3)
N1—H1	0.8600	С6—Н6А	0.9600
N1-C1	1.450 (3)	С6—Н6В	0.9600
N1—C2	1.347 (3)	С6—Н6С	0.9600
N2—N3	1.372 (3)	C8—H8A	0.9600

N2—C2	1.321 (3)	C8—H8B	0.9600
N3—C3	1.294 (3)	C8—H8C	0.9600
N4—N5	1.369 (2)	С9—Н9	0.9300
N4—C5	1.288 (3)	C9—C10	1.385 (3)
N5—C7	1.337 (3)	C10—H10	0.9300
N6—H6	0.8600	C10—C11	1 385 (4)
N6-C7	1344(3)	C11—H11	0.9300
N6-C8	1.577(3) 1.452(3)	C11-C12	1 379 (4)
N7C9	1.452(3) 1 341(3)	C12_H12	0.9300
N7 C13	1.341(3)	C12 $C12$ $C13$	1.382(3)
N = C13	1.341(3)	$C_{12} = C_{13}$	1.582 (5)
	0.9000	С15—н15	0.9300
СІ—НІВ	0.9600		
S1—Zn1—S2	113.40 (2)	C5—C3—C4	120.98 (18)
N3—Zn1—S1	80.75 (5)	C3—C4—H4A	109.5
N3—Zn1—S2	144.85 (5)	C3—C4—H4B	109.5
N3—Zn1—N4	74.45 (7)	C3—C4—H4C	109.5
N4—Zn1—S1	150.39 (5)	H4A—C4—H4B	109.5
N4— $Zn1$ — $S2$	80.36 (5)	H4A - C4 - H4C	109.5
N7 - Zn1 - S1	10252(5)	H4B-C4-H4C	109.5
N7 - Zn1 - S2	102.52(5) 101.09(5)	N4-C5-C3	114 89 (18)
N7— $7n1$ — $N3$	107.07(7)	N4-C5-C6	12451(19)
N7— $7n1$ — $N4$	107.07(7) 100.05(7)	C_{3} C_{5} C_{6}	124.51(19) 120.51(18)
$C_2 = S_1 = Z_{n1}$	100.05(7)	C_{5} C_{6} H_{6A}	100 5
$C_2 = S_1 = Z_{111}$	95.58(7)	C_{5} C_{6} H_{6} H_{6}	109.5
$C_1 = S_2 = Z_{111}$	94.37 (7)	C_{5} C_{6} $H_{6}C$	109.5
$C_1 = N_1 = H_1$	110.4		109.5
$C_2 = N_1 = C_1$	110.4		109.5
$C_2 = N_1 = C_1$	123.10 (19)	H6A - C6 - H6C	109.5
C_2 —N2—N3	111.07 (18)	$H_0B - C_0 - H_0C$	109.5
$N_2 - N_3 - Z_{n_1}$	123.07 (13)	N5 - C7 - S2	127.03 (16)
C3—N3—Zn1	117.35 (14)	N5-C/-N6	114.16 (19)
C3—N3—N2	119.53 (18)	N6—C7—S2	118.75 (17)
N5—N4—Zn1	120.87 (13)	N6—C8—H8A	109.5
C5—N4—Zn1	117.43 (14)	N6—C8—H8B	109.5
C5—N4—N5	121.53 (18)	N6—C8—H8C	109.5
C7—N5—N4	112.29 (17)	H8A—C8—H8B	109.5
C7—N6—H6	117.1	H8A—C8—H8C	109.5
C7—N6—C8	125.71 (19)	H8B—C8—H8C	109.5
C8—N6—H6	117.1	N7—C9—H9	118.5
C9—N7—Zn1	118.66 (15)	N7—C9—C10	122.9 (2)
C13—N7—Zn1	123.45 (15)	С10—С9—Н9	118.5
C13—N7—C9	117.86 (19)	C9—C10—H10	120.8
N1—C1—H1A	109.5	C11—C10—C9	118.4 (2)
N1—C1—H1B	109.5	C11—C10—H10	120.8
N1—C1—H1C	109.5	C10-C11-H11	120.4
H1A—C1—H1B	109.5	C12-C11-C10	119.1 (2)
H1A—C1—H1C	109.5	C12—C11—H11	120.4
H1B—C1—H1C	109.5	C11—C12—H12	120.6

N1—C2—S1	114.89 (16)	C11—C12—C13	118.9 (2)
N2—C2—S1	127.89 (17)	C13—C12—H12	120.6
N2-C2-N1	117.2 (2)	N7—C13—C12	122.8 (2)
N3—C3—C4	124.0 (2)	N7—C13—H13	118.6
N3—C3—C5	114.89 (18)	С12—С13—Н13	118.6
Zn1—S1—C2—N1	173.89 (15)	N4—N5—C7—N6	178.74 (18)
Zn1—S1—C2—N2	-7.9 (2)	N5—N4—C5—C3	-176.54 (18)
Zn1—S2—C7—N5	17.1 (2)	N5—N4—C5—C6	-0.1 (3)
Zn1—S2—C7—N6	-165.88 (16)	N7—C9—C10—C11	-0.1 (4)
Zn1—N3—C3—C4	177.10 (18)	C1—N1—C2—S1	-179.04 (17)
Zn1—N3—C3—C5	-6.8 (2)	C1—N1—C2—N2	2.6 (3)
Zn1—N4—N5—C7	-15.4 (2)	C2—N2—N3—Zn1	8.8 (2)
Zn1—N4—C5—C3	8.2 (2)	C2—N2—N3—C3	-174.17 (19)
Zn1—N4—C5—C6	-175.37 (16)	C4—C3—C5—N4	175.3 (2)
Zn1—N7—C9—C10	-178.02 (18)	C4—C3—C5—C6	-1.3 (3)
Zn1—N7—C13—C12	178.17 (17)	C5—N4—N5—C7	169.43 (19)
N2—N3—C3—C4	-0.1 (3)	C8—N6—C7—S2	7.9 (3)
N2—N3—C3—C5	175.95 (18)	C8—N6—C7—N5	-174.7 (2)
N3—N2—C2—S1	1.0 (3)	C9—N7—C13—C12	0.2 (3)
N3—N2—C2—N1	179.17 (18)	C9—C10—C11—C12	0.0 (4)
N3—C3—C5—N4	-0.9 (3)	C10-C11-C12-C13	0.2 (3)
N3—C3—C5—C6	-177.50 (19)	C11—C12—C13—N7	-0.4 (3)
N4—N5—C7—S2	-4.1 (3)	C13—N7—C9—C10	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H1···N5 ⁱ	0.86	2.21	2.988 (3)	150
N6—H6…S1 ⁱⁱ	0.86	2.65	3.500 (2)	167

Symmetry codes: (i) x+1/2, -y+3/2, z-1/2; (ii) x-3/2, -y+1/2, z-1/2.