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ABSTRACT 

Influenza viruses represent an important public health burden since they cause 

annual epidemics associated with severe illness and mortality in high-risk populations. 

Additionally, zoonotic influenza virus infections have potential to produce intermittent 

pandemics, which have led to millions of deaths globally. However, strategies to prevent 

influenza severity and spread can be implemented. It is known that antibodies against the 

haemagglutinin play a key role in protection from influenza virus infection, thus both 

seasonal and pandemic influenza vaccines aim to elicit such antibodies. Generally, they are 

directed against haemagglutinin globular head epitopes and are able to neutralize closely 

related influenza strains, but recently antibodies able to neutralize multiple influenza 

strains and subtypes have also been described. The discovery of these antibodies, primarily 

directed against the haemagglutinin stalk, has generated interest in understanding how they 

are generated and how widespread they are in the human population. Furthermore, eliciting 

such antibodies has become the aim of many ‘universal’ vaccine approaches. However, the 

study of these cross-reactive antibodies using classical serological assays is problematic 

since the current assays have been shown to be relatively insensitive in detecting them. 

The main objective of this thesis was to study the presence and breadth of 

cross-reactive neutralizing responses in human populations. To overcome the limitations of 

current serological tests in detecting these responses, lentiviral pseudotype particles 

bearing the haemagglutinins of different influenza A subtypes and influenza B strains were 

used as surrogate antigens in neutralization assays. After the generation of these novel 

tools and the establishment of appropriate controls, pseudotype particle neutralization 

assays were employed to investigate cross-reactive antibody responses in pre- and 

post-vaccination sera. Next, the use of chimeric haemagglutinins, in which the globular 

head was substituted with the head of a different subtype, was incorporated into the 

pseudotype system. This allowed the differentiation between haemagglutinin head-directed 

and stalk-directed antibody responses. The ability to efficiently detect broadly neutralizing 

antibody responses, including those directed against the haemagglutinin stalk, shows that 

pseudotype particles are tools that should be further characterised and implemented to be 

used in sero-epidemiological studies and for ‘universal’ vaccine immunogenicity studies. 
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CHAPTER 1  
Introduction 

1.1 Classification and nomenclature system of influenza viruses 
Influenza viruses belong to the Orthomyxoviridae family as classified by the 

International Committee on Taxonomy of Viruses (International Committee on Taxonomy 

of Viruses ICTV 2013) and to the Group/Class V of the Baltimore 

classification (Baltimore 1971) since their genome is negative sense single-stranded 

segmented ribonucleic acid (RNA). Furthermore, considering the virion structure, 

influenza viruses are classified within the single enveloped viruses and their nucleocapsid 

has helical symmetry. 

On the basis of internal protein antigenic and phylogenetic characteristics, three 

influenza virus genera/types, A, B and C, can be distinguished and are officially 

recognised (International Committee on Taxonomy of Viruses ICTV 2013). Recently, 

however, viruses homologous to influenza C viruses, but distinct from other 

Orthomyxoviridae influenza viruses were isolated and could represent a new genus/type, 

possibly Influenza D, when the official classification/nomenclature is implemented (Collin 

et al. 2014; Hause et al. 2014; Hause et al. 2013; Sheng et al. 2013). 

Influenza A viruses are further classified into subtypes using antigenic 

characteristics (historical classification (Tumová and Schild 1972)) and phylogenetic 

characteristics (modern classification (Röhm et al. 1996)) of the envelope glycoproteins 

haemagglutinin (HA) and neuraminidase (NA). Currently 18 different HA subtypes are 

recognised and are divided into two lineages (Figure 1A): Group 1 (H1, H2, H5, H6, H8, 

H9, H11, H12, H13, H16, H17, H18) and Group 2 (H3, H4, H7, H10, H14, H15) (Tong et 

al. 2013; Tong et al. 2012; Fouchier et al. 2005). The NAs are also classified as 11 

subtypes divided into two groups (Figure 1B) (N2, N3, N6, N7, N9 belong to one group; 

N1, N4, N5, N8 belong to the other group; N10 and N11 are not included in the 

classification) (J. Xu et al. 2012). However, there are doubts about considering N10 and 

N11 subtypes in the classical NA classification, since these proteins do not show the 

characteristic sialidase activity (Tong et al. 2013; García-Sastre 2012). 
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A 

 

B 

 
Figure 1: Phylogenetic tree of influenza HA and NA subtypes 
A. HA phylogenetic tree (prepared using Molecular Evolutionary Genetics Analysis, MEGA); 
B. NA phylogenetic tree (adapted from Wu et al. 2014). 

For influenza A viruses that infect the avian host, a further classification on the 

basis of the pathological phenotypes and biological properties is employed (Pantin-

Jackwood and Swayne 2009): Highly Pathogenic Avian influenza (HPAI) and Low 

Pathogenic Avian influenza (LPAI) (clarification about this categorisation will be further 

discussed in Sections 1.2.1.1 and 1.4). Furthermore for HPAI H5N1 viruses (briefly 

discussed in Section 1.4.2) a clade nomenclature system based upon the phylogenetic 

characterisation of the H5 HA is employed (WHO/OIE/FAO H5N1 Evolution Working 

Group 2008). 

The current nomenclature of influenza virus strains requires that the influenza type, 

the common or scientific name of the host species (if not human), the geographical origin, 

the isolate number, and the year of isolation are reported separated by slashes (e.g. 

B/Brisbane/60/2008, B/seal/Netherlands/1/1999, C/Johannesburg/1/1966). Furthermore, 

for influenza A virus, the HA and NA subtypes are also reported in brackets (e.g. A/Puerto 

Rico/8/1934 (H1N1), A/swine/Taiwan/1/70 (H3N2)) (World Health Organization 1980). 

Finally, to minimise confusion, the World Health Organization (WHO) advises on 

the use of standardised terminologies in the case of influenza pandemics or outbreaks (e.g. 

A(H1N1)pdm09, A(H3N2)v) (World Health Organization, Food and Agriculture 

Organization, World Organization for Animal Health 2014; World Health Organization 

2011). 
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1.2 Structure of influenza viruses 
The intrinsic pleomorphic nature of influenza virions, determined by specific viral 

genes and by possible experimental ‘artifacts’, do not permit a straightforward description 

of native virus morphology (Noda 2012). The majority of influenza laboratory-adapted 

strains are pleomorphic particles of spherical (Figure 2) or elliptical shape with 

120 nm (80-170 nm) average diameter (Noda 2012; Harris et al. 2006). Conversely, 

clinical isolates show a filamentous morphology with cylindrical shape reaching 20 µm in 

length (Elton et al. 2013; Seladi-Schulman, Steel and Lowen 2013; Calder et al. 2010). 

Irregular-shaped virions are also observed during negative-staining electron microscopy 

and cryoelectron microscopy experiments, but this is probably due to artefacts generated 

by sample preparation, such as air drying, 4°C storage, and ultracentrifugation (Sugita et al. 

2013; Noda 2012). 

Influenza virions are surrounded by an envelope acquired during viral budding and 

composed of a single lipid bilayer of cellular origin containing lipid rafts, enriched in 

sphingolipids and cholesterol, and depleted of glycerophospholipids (e.g. 

phosphatidylcholines), but not of phoshatidylserine (Gerl et al. 2012). In the envelope, the 

influenza virus harbours three different proteins: two spike glycoproteins, HA (Hirst 1942) 

and NA (Gottschalk 1957), and the transmembrane ion-channel M2 (Zebedee and Lamb 

1988; Lamb, Zebedee and C. D. Richardson 1985). In influenza A virus it was estimated 

that each spherical or elliptical virion presents between 300-400 HAs, 38-50 NAs and 

14-68 M2 (Harris et al. 2006; Zebedee and Lamb 1988) with a non-random distribution: 

protein clusters and single NA molecules surrounded by the more abundant HAs can be 

observed on the virion surface (Harris et al. 2006). In filamentous particles, the NA and 

M2 clusters are also positioned characteristically at one of the virion ends (the proximal 

end during the budding process) (Rossman and Lamb 2011; Calder et al. 2010). 

Furthermore HAs and NAs are usually localised in lipid rafts (Leser and Lamb 2005; M. 

Takeda et al. 2003), while M2 is not strictly associated with them (Rossman et al. 2010; 

Leser and Lamb 2005). 

In the influenza C virus the two major glycoprotein functions are substituted by a 

single one, the haemagglutinin–esterase-fusion (HEF) protein, which possesses HA and 

NA activity (Rosenthal et al. 1998; Nakada et al. 1984). In influenza B and influenza C the 

transmembrane ion-channel is named B/M2 and C/M2 respectively (Kollerova and 

Betakova 2006). Furthermore, in influenza B virus, an additional transmembrane protein, 

denominated NB, is present on the envelope surface (Betakova, Nermut and Hay 1996). 

In the internal core of influenza virus, there are the matrix proteins M1 (Baudin et 

al. 2001; Ruigrok, Calder and Wharton 1989), the nuclear export proteins (NEPs), and the 
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viral ribonucleoprotein complexes (vRNPs) in which the segmented negative sense RNA 

genome is associated with the nucleoproteins (NPs) and the polymerase complexes (each 

of them constituted by the polymerase acidic protein (PA), the polymerase basic 

protein 1 (PB1) and the polymerase basic protein 2 (PB2) (Area et al. 2004; Compans, 

Content and Duesberg 1972). The M1 protein, which principally but not exclusively 

determines the virus morphology, is in contact with the internal lipid layer, and is 

associated with small quantities of NEP. M1 interacts directly with the envelope proteins 

and with the NP of the vRNPs, connecting the two protein structures. The vRNPs are 

flexible, twisted rod-like structures (Compans, Content and Duesberg 1972). They differ in 

length depending on the molecular weight of the genome segment that they contain: the 

NPs surround each RNA strand which is folded then coiled in a regular double-helical 

arrangement forming a hairpin (Compans, Content and Duesberg 1972). Additionally a 

single polymerase complex associates with the 5’ and 3’ viral RNA (vRNA) ends, which 

partially complement with themselves. The vRNPs are arranged with a central vRNP 

surrounded by the others with the polymerase complexes that are differently orientated 

within virions (Sugita et al. 2013). In the filamentous particles, the vRNPs are opposite to 

the NA cluster in the distal end during viral budding, whilst the rest of the filament is 

empty as only one set of vRNPs is packed (Calder et al. 2010). 

 
Figure 2: Influenza virus structure 
The image was generated with Swiss PDB viewer, POV-Ray 3.7 and Microsoft® Power 
Point (Microsoft®). 
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The number of negative sense vRNA segments (and correspondingly vRNPs) in the 

virion varies depending on the influenza type. Influenza A and B viruses contain eight 

different segments, whereas influenza C has only seven segments (in relation to the 

presence of HEF glycoprotein instead of HA and NA). Each negative sense vRNA segment 

encodes one or more proteins through alternative splicing, leaky ribosomal scanning, 

re-initiation, and ribosomal frame-shifting mechanisms (Vasin et al. 2014). At the present 

time, 17 proteins have been mapped in the influenza A genome (Table 1), 10 in influenza 

B and 9 in influenza C (Vasin et al. 2014; Bouvier and Palese 2008). 

The following sub-sections will be focused on the detailed description of the 

envelope proteins of influenza A, especially HA. The internal structural, the non-structural, 

and the accessory proteins will not be reviewed in detail, as they do not form an integral 

part of the work in this thesis. Details regarding influenza B envelope proteins will also be 

provided. 

Table 1: Influenza A genome and proteome 
Table adapted from Vasin et al. 2014 and Bouvier and Palese 2008. Genome segments were 
re-designed and adapted from ViralZone database (Swiss Institute of Bioinformatics). 

 

 

Genome 
Segment 

Organization of the 
protein-coding open 

reading frames 

Encoded 
protein(s) Protein function 

1  PB2 Component of vRNPs 
mRNA cap recognition 

2 
 

PB1 
Component of vRNPs 

RNA elongation 
Endonuclease activity 

PB1-F2 Pro-apoptotic activity 
Virulence factor 

PB1-N40 Balance between PB1 and PB1-F2 
expression 

3 

 

PA Component of vRNPs 
Protease 

PA-X Modulation of the host response  

PA-N155 ? 

PA-N182 ? 

4  HA Receptor binding 
Fusion activity 

5  NP 
Component of vRNPs 

RNA binding 
Nuclear import of vRNP 

6  NA Sialidase activity 

7 
 

M1 Nuclear export of vRNPs 
Budding 

M2 Ion-channel 
Budding 

M42 Ion-channel 
Replace M2 in M2-null viruses 

8 
 

NS1 
(non-structural 1) 

Multifunctional 
Interferon antagonist 

NEP 
(non-structural 2) Nuclear export of vRNPs 

NS3 
(non-structural 3) Adaptation to mouse host (?) 
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1.2.1 Haemagglutinin 

The HA, a type I envelope glycoprotein, is crucial for biological activities during 

the viral life cycle (described in Section 1.3): receptor binding and envelope-endosome 

fusion. These two functions are mediated by the two regions that can be distinguished in 

the HA rod-like shaped structure: a globular head and a stalk region (Figure 4(A and C)). 

Besides the two regions that can be distinguished, the HA is composed of 3 identical 

polypeptide chains forming an homotrimer (Wilson, Skehel and Wiley 1981); in each 

monomer, the globular head is formed by loops, antiparallel β-sheets and small α-helixes, 

whereas the stalk is composed almost exclusively by α-helixes (Figure 4B). 

The globular head is the region responsible for viral attachment to the cellular 

receptor, sialic acid (Weis et al. 1988). Sialic acids are a family of carboxylated sugars that 

constitute the terminal monosaccharides of animal protein glucidic residues (A. Varki 

1992). They differ for the chemical substituents of their nine-carbon sugar ring and they 

are usually connected with other glucidic residues via α-glycoside linkage (Figure 3) (M. 

N. Matrosovich, Klenk and Kawaoka 2006; A. Varki 1992). 

 
Figure 3: The sialic acids 
The common sialic acid carbon ring is shown in the figure. R are the chemical substituents. The 
N-acetylneuraminic acid, possessing an N-acetyl in position 5 and hydrogen in all other 
substituents, is the most common sialic acid and a biosynthetic precursor of other sialic acids. R3 is 
the α-glycoside linkage through which other sugars (D-galactose, N-acetyl-D-galactosamine, 
N-acetyl-D-glucosamine, and sialic acid) are attached, usually via their carbon 3 (α-2,3), 6 (α-2,6), 
and 8 (α-2,8) (M. N. Matrosovich, Klenk and Kawaoka 2006). Image adapted from (M. N. 
Matrosovich, Klenk and Kawaoka 2006) and (A. Varki 1992) using ChemBioDraw Ultra 
14 (Perkin Elmer®). 

The receptor binding site (RBS) is positioned in a pocket in the distal part of the 

HA head with the residues buried in the pocket tending to be conserved between different 

strains and subtypes (M. N. Matrosovich et al. 1997; Nobusawa et al. 1991; Weis et al. 

1988). In contrast, residues forming the side of the pocket were shown to be responsible 

for receptor binding specificity, and can discriminate between different sialic acids 

(Gambaryan, Robertson and M. N. Matrosovich 1999; Govorkova et al. 1999; Vines et al. 

1998; Rogers et al. 1983). 

Usually the HA of avian origin viruses have higher affinity for α-2,3 sialic acids, 

whilst human viruses preferentially bind α-2,6 sialic acids (Meng, Marriott and Dimmock 
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2010; M. Matrosovich, J. Stech and Klenk 2009; Shinya et al. 2006; C. I. Thompson et al. 

2006; M. N. Matrosovich, T. Y. Matrosovich, Gray, Roberts and Klenk 2004a; M. N. 

Matrosovich et al. 1997). This sialic acid HA specificity has important implications for 

influenza infection of human respiratory epithelial cells. In fact, in humans α-2,6 sialic 

acids are found in ciliated and non-ciliated cells, whereas ciliated cells present also α-2,3 

sialic acids; additionally α-2,6 sialic acids are typical of the upper respiratory system (e.g. 

bronchi) cells, whereas α-2,3 sialic acids are found in alveoral cells (Shinya et al. 2006; M. 

N. Matrosovich, T. Y. Matrosovich, Gray, Roberts and Klenk 2004a). The virus binding 

affinity and specificity for sialic acid influences the infection site and the host range: avian 

origin viruses tend to infect non-ciliated cells and the lower respiratory system of humans 

(Shelton et al. 2011), whereas human viruses infect predominantly the upper respiratory 

system. 

A 

 

B 

 

C 

 
Figure 4: The influenza A HA 
Three-dimensional structures were generated with Swiss PDB viewer and POV-Ray 3.7 using the 
structure of the recombinant virus A/Hong Kong/1/1968 X-31 H3 (PDB ID: 2VIU (Fleury et al. 
1998)). 
A. Three-dimensional structure of the influenza HA trimer, showing the HA surface of the 
head (blue) and stalk (red) regions; B. Three-dimensional ribbon structure of the influenza HA 
monomer showing HA1 (blue) and HA2 (light blue) subunits; C. Schematic of the HA polypeptide. 
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A second sialic acid binding site can be found in the central part of the HA head but 

the biological importance of this site is not clear since it does not seem to bind α-2,6 sialic 

acid (N. K. Sauter et al. 1992). 

The role of HA in receptor binding and host specificity has been discussed, 

however, the property of binding sialic acid is not a feature common to all influenza A HA 

subtypes and strains. In fact, some strains were reported to be able to infect cells even in 

the absence of sialic acids where other proteins could mediate or facilitate the entry process 

instead (Londrigan et al. 2011; Reading, J. L. Miller and Anders 2000; Stray, Cummings 

and Air 2000). Furthermore, surprisingly, the HAs of the H17 and H18 subtypes show a 

putative RBS with different properties: the RBS base is relatively conserved with aromatic 

amino acids, but the other surrounding residues are substituted, resulting in a negatively 

charged region (Xiaoman Sun et al. 2013; Tong et al. 2013; Zhu et al. 2013). As a 

consequence H17 and H18 are not able to bind the canonical negatively charged receptors 

(α-2,3 and α-2,6 sialic acids), and other glycans (Xiaoman Sun et al. 2013). For these 

reasons, it was speculated that H17 and H18 could bind a protein receptor as the same 

switch is observed in viruses of the Paramyxoviridae family (Zhu et al. 2013). 

Together with the receptor binding property, the HA mediates envelope-endosome 

fusion during infection, since a pH-mediated structural change exposes a α-helix fusion 

peptide present in the stalk region, and highly conserved between all influenza 

strains (Figure 5A) (X. Lin et al. 2014; Cross et al. 2001; C. Böttcher et al. 1999; Skehel 

et al. 1982). During this process (reviewed in Hamilton, Whittaker and Daniel 2012 and 

Skehel and Wiley 2000), the α-helices that compose the HA stalk rearrange and the stalk 

acquires the three dimensional structure of a rod-shaped α-helical bundle (Bullough et al. 

1994). This structure is a common feature of other viral proteins that possess fusion 

activity, and also of the Soluble N-ethylmaleimide-sensitive factor Attachment Protein 

Receptors (SNARE) that mediate vesicle-membrane fusion (Skehel and Wiley 2000). The 

rod-shaped α-helical bundle is anchored by the C-terminal to the virus envelope membrane 

and the fusion peptide is free to insert itself into the endosome membrane, becoming 

anchored to it. Additional conformational changes to this structure permit to further bring 

together the two membranes, dehydrate the space between them and cause lipid mixing in 

a process called ‘hemifusion’. Subsequentially, the membranes rupture forming a fusion 

pore, from which the internal proteins are released into the cytoplasm (Figure 5B) 

(Hamilton, Whittaker and Daniel 2012; Skehel and Wiley 2000). 

Studies have now shown that a cluster of several HAs is necessary to mediate and 

complete the fusion process and HA amino acid residues can determine at which pH the 

conformational changes take place (Markovic et al. 2001). 
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A 

 

B 

 

Figure 5: HA conformational change and fusion pore formation 
A. Influenza HA (PDB ID: 2VIU (Fleury et al. 1998)) undergoes conformational changes (PDB 
ID: 1HTM (Bullough et al. 1994)) triggered by the low-pH environments of the endosome; B. The 
conformational change and fusion peptide permit the viral envelope and endosome membrane to be 
brought together and fuse (Figure adapted from Horimoto and Kawaoka 2005). 

1.2.1.1 Haemagglutinin cleavage 

To permit the conformational change at low pH, it is necessary that the HA is 

cleaved and the fusion peptide is exposed (Kido et al. 2008; J. Chen et al. 1998). The HA 

monomer is synthesised as a polypeptide precursor named HA0 (78kDa) which, after 

removal of a signal transport sequence in the N-terminal region, is cleaved into two 

subunits HA1 (50-58 kDa) and HA2 (28-22 kDa) during its maturation in the endoplasmic 

reticulum (ER), in the Golgi network or at the level of the plasma membrane. After 

cleavage, the two subunits remain connected with each other via a disulphide bond (Segal 

et al. 1992). 

The HAs of influenza strains usually possess an arginine or a lysine immediately in 

front of the stalk fusion peptide. These residues are recognised by cellular proteases which 

then cleave the peptide bond between the arginine and the fusion peptide glycine, freeing 

the fusion peptide and activating the HA (Figure 6A) (J. Chen et al. 1998). The list of 

proteases that could be involved in HA cleavage is continuously expanding and it is 
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difficult to determine if only one protein is principally involved in HA 

activation (Böttcher-Friebertshäuser, Klenk and Garten 2013; Bertram, Glowacka, Steffen, 

et al. 2010). The soluble plasmin, tryptase Clara, and metalloproteases were described as 

able to activate HA, but other intracellular proteases, at the plasma membrane, or even 

secreted were described to be able to mediate the same process (Beaulieu et al. 2013; 

Hamilton and Whittaker 2013; Tse et al. 2013; Hamilton, Gludish and Whittaker 2012; Y. 

Chen et al. 2000; Kido et al. 1992). The cellular localisation of the proteases has important 

repercussions on HA activation. In fact, if the proteases have an intracellular expression, 

the HA cleavage occurs during HA synthesis; if the proteins are secreted or bound to the 

plasma membrane, HA activation can occur either during HA production or viral entry 

(Zmora and Pöhlmann 2014; Böttcher-Friebertshäuser et al. 2010). Proteins of the type II 

transmembrane serine proteases family, that have intracellular and plasma membrane 

expression, and also secreted forms, were extensively studied recently: especially the 

human airway trypsin-like protease (HAT, also known as type II Transmembrane Protease 

Serine 11D, TMPRSS11D), type II Transmembrane Protease Serine 2 (TMPRSS2), and 

type II Transmembrane Protease Serine 4 (TMPRSS4) were shown to be able to activate 

HA efficiently (Sakai et al. 2014; Tarnow et al. 2014; Baron et al. 2013; Bertram, 

Glowacka, Blazejewska, et al. 2010; E. Böttcher et al. 2006). 

Furthermore, proteases of bacterial origin have been shown to be able to cleave 

HA, and this could have important implications for influenza morbidity related to 

secondary bacterial infection (Böttcher-Friebertshäuser, Klenk and Garten 2013). The HA 

cleavage site thus represents an important virulence determining factor (Steinhauer 1999). 

Although it was noted above that influenza viruses usually possesses a single 

arginine at its cleavage site, during adaptation in poultry hosts they can develop a 

polybasic cleavage site characterised by several arginines and lysines and by a R-X-R/K-R 

consensus sequence (Horimoto et al. 1994). The proteases involved in the cleavage of a 

monobasic site have, in general, tissue-specific expression and influenza infection is 

usually restricted to the respiratory tract (in humans and avian species) and gastrointestinal 

tract (in avian species) (Bertram et al. 2012). However, the acquisition of a polybasic 

cleavage site results in a severe systematic infection since the virus is activated instead by 

ubiquitously expressed proteases such as furin and subtilisin-related protein convertase 5/6, 

and in certain cases, when a non-canonical site is present, by type II Transmembrane 

Protease Serine 13 (TMPRSS13) (Okumura et al. 2010; Stieneke-Gröber et al. 1992). 

Avian viruses that possess a polybasic cleavage site are usually named HPAI, whereas 

those that possess a single arginine (or lysine) are named LPAI (see Section 1.1) (Figure 

6B). Nevertheless it should be noted that viruses harbouring HAs with a polybasic 
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cleavage site but showing a low pathogenic phenotype have been described (O. Stech et al. 

2009). 

A 

 

B LPAI 

 
HPAI 

 

 

Figure 6: The HA cleavage 
A. The HA0 monomer (PDB ID: 1HA0 (J. Chen et al. 1998)) is cleaved in the HA active 
form (PDB ID: 2VIU (Fleury et al. 1998) ) by proteases; B. Differences in organ HA activation in 
HPAI and LPAI viruses. Image adapted from Horimoto and Kawaoka 2005. 

The process by which the polybasic cleavage site is generated, and why only some 

HA subtypes efficiently support it are not yet clear. Recently, however, it was shown that it 

can result from recombination of the HA gene sequence with the viral NP gene or the even 

host ribosomal RNA (Orlich, Gottwald and Rott 1994; Khatchikian, Orlich and Rott 1989). 

1.2.2 Neuraminidase 
The NA (Figure 7A) is a mushroom-shaped homotetramer, a protein composed of 

four identical subunits; each monomer is anchored through the N-terminal transmembrane 

region to the viral envelope with a stalk region of variable length and a globular head 

domain, containing the active site (Shtyrya, Mochalova and Bovin 2009). Only the 

structure of the globular head has been resolved by crystallography (Figure 7B), since this 

region can be released and purified from the rest of the protein thanks to a cleavage site 

immediately after the stalk domain and before the globular head (Varghese et al. 1988). 

In the influenza A NA a conserved N-terminal cytoplasmic tail is present in all NA 

subtypes, whilst in the influenza B NA it differs (Shtyrya, Mochalova and Bovin 2009). 
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The length of the NA stalk of influenza A viruses was recently shown to be 

associated with viral pathogenicity. Indeed upon transmission of virus from the avian wild 

bird reservoir to domestic poultry, NA short stalks are preferentially selected. Short NA 

stalks are also associated with enhanced replication and shedding of the virus in chickens 

but not in other animals (Hoffmann et al. 2011). 

A 

 
B 

 
Figure 7: The structure of influenza A NA 
A. Three-dimensional schematic of influenza NA; B. Three-dimensional structure of the NA head 
from A/Tokyo/3/1967 H2N2 (PDB ID:1NN2 (Varghese et al. 1988)). The image was obtained 
using Swiss PDB viewer and POV-Ray 3.7. 

The NA globular head is a β-propeller in which six antiparallel β-sheets of four 

strands each are arranged around a nearly central symmetrical axis, with the active site 

positioned in a deep pocket near this region, at the side of the protein. The active site 

structure is generally conserved in all influenza A and B NAs but there are differences in 
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amino acid orientation near the active site cavity between the two influenza A NA groups 

(R. J. Russell et al. 2006). 

The NA (Gottschalk 1957) is a sialidase that cleaves sialic acid from influenza 

infected cells to facilitate viral progeny release (Lentz and Air 1986; Palese et al. 1974). 

The NA was also shown to have a role in limiting influenza superinfection once expressed 

on the cell surface (I.-C. Huang et al. 2008). 

For many years the activity of NA was exclusively associated with viral progeny 

release, and it was not clear if it could also influence viral binding to the receptor (Ohuchi 

et al. 2006). Only more recently was NA associated clearly with the viral entry process. In 

fact, in vivo its activity is also necessary to permit virus penetration of the mucus layer to 

arrive at the lung epithelia level (M. N. Matrosovich, T. Y. Matrosovich, Gray, Roberts 

and Klenk 2004b; Cohen et al. 2013). In addition, a more direct role of NA in receptor 

binding was also highlighted: circulating human H3N2 strains possess an NA mutation, 

D151G, near the active site that confers a remarkable sialic acid receptor-binding activity 

(Y. P. Lin et al. 2010). Recently other NA mutations have also been shown to mediate the 

same effect (Hooper and Bloom 2013). 

As observed for the recently identified H17 and H18 subtypes, the associated NAs, 

N10 and N11, differ from the other influenza A NA subtypes since they do not possess 

sialidase activity, while maintaining three-dimensional structures similar to the other NAs 

(Tong et al. 2013; García-Sastre 2012; Qing Li et al. 2012; Zhu et al. 2012). However, the 

putative catalytic site is wider compared to the other NAs, and with largely substituted 

amino acid residues. It is possible that N10 and N11 possess a function not related to sialic 

acid cleavage or even viral progeny release (Tong et al. 2013; García-Sastre 2012). 

The NA is extremely important, not only for its role in the viral replication cycle 

but also because it is the target of one of the influenza antiviral classes: the NA inhibitors 

(Moscona 2005; Gubareva, Kaiser and Hayden 2000). 

NA inhibitors, osaltamivir and zanamivir, are sialic acid analogs that were designed 

on the basis of the NA globular head structure. They are able to block NA sialidase activity 

since they mimic the transition of the sialic acid structure during the cleavage reaction 

permitting the NA to be in a favourable energy state. Unfortunately the virus, through 

mutation of the NA, can develop resistance to NA inhibitors (Ferraris and Lina 2008). 

Another mechanism of resistance is mediated by mutation on HA to reduce affinity for the 

cellular receptor, enhancing viral particle release (Zambon, Hayden and Global 

Neuraminidase Inhibitor Susceptibility Network 2001). 
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The fact that HA mutations confer resistance to NA inhibitors indicates that the HA 

and NA are in a functional equilibrium that is necessary to permit viral entry and viral 

progeny release (Mitnaul et al. 2000; Kaverin et al. 1998). 

1.2.3 The M2 ion channel 
The M2 protein is a homotetramer in which four monomers of 96 amino acids are 

connected through disulphide bonds. Three domains can be identified: an N-terminal 

ectodomain of 23 amino acids, a 19 amino acid transmembrane domain, and a cytoplasmic 

tail of 54 amino acids (Lamb, Zebedee and C. D. Richardson 1985). 

The M2 protein is an ion channel that permits the conductance of protons in an 

inward direction (from the extracellular domain to the intracellular) across the viral 

envelope (Pinto, Holsinger and Lamb 1992). Mutagenesis studies have shown that two 

residues present on the transmembrane region facing the internal surface of the channel 

pore, histidine 37 and tryptophan 41, are essential for proton selectivity and channel 

conductance (Tang et al. 2002; C. Wang, Lamb and Pinto 1995). 

The M2 channel has numerous functions during the influenza virus replication 

cycle; some of these functions are mediated by its channel activity, others through its 

cytoplasmic tail (Pielak and J. J. Chou 2010b). Firstly, the M2 permits viral particle 

acidification after viral membrane-endosome fusion initiating viral uncoating, and release 

of vRNP (Pielak and J. J. Chou 2010b). Then it permits regulation of the pH of the Golgi 

network and the stabilisation of the native conformation of the HA during its transport 

through the network (Ciampor et al. 1992; Grambas and Hay 1992). Through its 

cytoplasmic tail, the M2 interacts with M1 and mediates the assembly of viral particles, 

especially in their filamentous form (Rossman et al. 2010). Furthermore, the M2 

cytoplasmic tail, or to be precise, the amphipathic α-helix that permits cholesterol binding 

and localisation of the protein at the side of lipid rafts, was recently associated with viral 

membrane scission from the cellular membrane during virus release (Rossman et al. 2010). 

The M2 it also important since it is the other viral protein targeted by antiviral 

drugs: amantadine and rimantadine. These two drugs are able to obstruct the ion channel 

pore, and they are effective in blocking viral replication (Cady et al. 2010). However, their 

use has been be discouraged since resistance arises quickly and tends to predominate in the 

viral population (Pielak and J. J. Chou 2010a). 

Interestingly the M2 channel inhibitors do not have activity on the influenza B/M2, 

which is analogous and has similar functions to A/M2, demonstrating that the drug binding 

site differs between the two proteins (Pielak and J. J. Chou 2010a). 
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1.2.4 The NB ion channel 

Influenza B virus possesses another ion channel on its envelope, in addition to 

B/M2, an ion channel called NB (Betakova, Nermut and Hay 1996; Brassard, Leser and 

Lamb 1996). NB is encoded by segment 6 of the influenza genome, along with NA (M. W. 

Shaw, Choppin and Lamb 1983). It has activity as a proton channel, but its conductance is 

lower than M2 and dependent on its oligomerisation (Kollerova and Betakova 2006; 

Fischer et al. 2000). NB appears unnecessary for viral replication but could have a role in 

determining replication efficiency (Hatta and Kawaoka 2003). 

1.2.5  The M1 protein 

The M1 protein is the most abundant protein in the virion, and mediates different 

but essential roles in the influenza replication cycle. Firstly it forms a matrix layer around 

the vRNPs and below the envelope, interacting with NEP, NP, HA, NA, M2, and the lipid 

bilayer. Only the N-terminal structure of the M1 is fully characterised, however, it has 

been shown that the M1 structure and oligomerisation properties are dependent on the pH 

of the biological environment (K. Zhang et al. 2012). This is not surprising since for the 

uncoating of the virus and the transport of the vRNPs into the nucleus (Section 1.3), it is 

necessary that the M1 dissociates from the vRNP, and this is mediated by the acidification 

of the internal viral environment. 

In the cell nucleus, M1 is responsible for stopping RNA replication and, interacting 

with NEP, regulates the nuclear export of the vRNPs (Akarsu et al. 2003). 

Furthermore, M1 allows viral particle assembly and shape, and it is the driving 

force of the budding process: its transfection into cells allows formation of virus-like 

particles (VLPs), particles harbouring the original envelope viral proteins and original viral 

core proteins but without genomic material (Gomez-Puertas et al. 2000). 

1.2.6 The ribonucleoprotein complex 

As explained earlier (Section 1.2), a vRNP is composed of the vRNA associated 

with the NPs and the polymerase complex. 

The NP is a basic protein of 498 amino acids, arginine, serine and glycine-rich that 

confer a net positive charge at neutral pH (Ng, J. H. Wang and P. C. Shaw 2009). Each NP 

binds to the backbone of 25 nucleotide single-stranded vRNAs in a non-sequence-specific 

manner (Ortega et al. 2000; Baudin et al. 1994). Additionally NPs can also oligomerise 

with themselves and interact with PB1 and PB2 (Poole et al. 2004; Biswas, Boutz and D. P. 

Nayak 1998). Thanks to the presence of three nuclear localisation signals and to the fact 

that it interacts with filamentous actin and importins, NP is able to mediate the import of 

vRNP in the nucleus (Gabriel et al. 2011; Ng, J. H. Wang and P. C. Shaw 2009; Bullido et 
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al. 2000; Weber et al. 1998). Furthermore NP is also implicated in the regulation of vRNA 

transcription and replication (Momose et al. 2001). 

Three different proteins, PB1, PB2, and PA, which interact with each other to 

mediate the transcription and replication of the vRNA, constitute the viral polymerase 

complex (Fodor 2013; Area et al. 2004). PB1 and PB2 interact via their N-terminal 

domains. PB1 interacts with PA through its C-terminal domain. Each protein has its 

specific function in vRNA replication and transcription (Fodor 2013). PB2 has a role in the 

vRNA replication process (Gastaminza et al. 2003) but also a fundamental function in the 

transcription of the viral messenger RNA (mRNA), because it binds the 5'-methylated cap 

of host cell RNAs that are then cut and utilised by the PB1 for elongating the viral 

transcript. In fact, PB1 is the protein that is homologous to other segmented 

negative-strand RNA-dependent polymerases and possesses polymerase activity catalysing 

the addition of ribonucleotides (Biswas and D. P. Nayak 1994; Poch et al. 1989). PB1 also 

mediates the interaction between the vRNA 5’ and 3’ terminii, permitting the initiation of 

transcription and replication (Gonzalez and Ortin 1999). On the other hand, the specific 

role of PA is not yet completely understood. It does however have a role in the 

‘cap-snatching’ of the host mRNA (Dias et al. 2009). 

The proteins of the polymerase complex are also associated with pathogenicity. For 

example, the amino acid in position 627 of PB2 is associated with viral replication 

efficiency in different hosts. Viruses possessing a lysine in this position are able to 

replicate more efficiently in mammalian cells at 33°C while viruses with a glutamic acid 

replicate better in the avian host (Massin et al. 2010; E. K. Subbarao, London and Murphy 

1993). 

1.2.7 Non-structural proteins 

1.2.7.1 Non-structural protein 1 

The non-structural protein 1 (NS1) is expressed at high levels in infected cells 

where it exhibits nuclear localisation (Krug and Etkind 1973). NS1 is multifunctional 

during viral replication (Hale et al. 2008). The main function is to antagonise the antiviral 

response mediated by interferon (IFN) especially by directly recognising the IFN induced 

MxA protein (see Section 1.6.1). The IFN antagonistic effect was discovered through 

studies with an influenza virus lacking the NS1 gene: this mutant virus was characterised 

by an attenuated phenotype, and could replicate efficiently only in absence of IFN (García-

Sastre et al. 1998). The other functions in which NS1 is involved are the control of viral 

splicing, temporal regulation of vRNA synthesis, and enhancing translation of viral mRNA 

(Hale et al. 2008). 
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1.2.7.2 Nuclear export protein 

The NEP, also known as non-structural protein 2 (NS2) was originally considered 

to be a non-structural protein, but it is now known that it is associated with M1 in the 

virion (J. C. Richardson and Akkina 1991). In infected cells, the subcellular localisation of 

NEP is both nuclear and cytoplasmic (Greenspan et al. 1985). In fact, NEP possesses a 

nuclear export signal that contains a region rich in leucine allowing the interaction with 

esportine protein family members, which are responsible for the transport from the nucleus 

to the cytoplasm (O'Neill, Talon and Palese 1998). Through interaction with M1, NEP 

allows the export of newly formed vRNP from the nucleus to the cytoplasm to permit 

virion assembly (Akarsu et al. 2003; Cros and Palese 2003; O'Neill, Talon and Palese 

1998). 

1.2.8 Accessory proteins 
Among the recently identified accessory proteins only two are characterised in any 

detail: PB1-F2 and PA-X. 

1.2.8.1 PB1-F2 

PB1-F2 is encoded by the second segment of the influenza virus genome in a 

reading frame alternative to PB1. It is a protein of 87 amino acids produced early during 

the viral life cycle (W. Chen et al. 2001). It can be found in many avian and human 

isolates, although in viruses of swine origin the sequence coding for PB1-F2 is interrupted 

by a stop codon (W. Chen et al. 2001). 

PB1-F2 induces apoptosis by depolarising the mitochondrial membrane due to a 

C-terminal mitochondrial localisation sequence composed of an amphipathic and 

positively charged α-helix (Chakrabarti and Pasricha 2013; Yamada et al. 2004; Gibbs et 

al. 2003). It was shown that occasionally, PB1-F2 can also have nuclear localisation and 

can regulate polymerase activity (Chakrabarti and Pasricha 2013). Furthermore PB1-F2 

appears to be an important factor contributing to influenza virus pathogenicity (Chakrabarti 

and Pasricha 2013; Conenello and Palese 2007). Using mouse models, increasing 

pulmonary inflammation, higher incidence of secondary pneumonia, and increasing 

mortality rate were observed when a PB1-F2 expressing influenza virus was used 

compared to an influenza virus modified to reduce the expression of PB1-F2 (McAuley et 

al. 2007; Zamarin, Ortigoza and Palese 2006). 

1.2.8.2 PA-X 

PA-X was recently identified as the protein encoded by the second reading frame 

present in segment 3 (Jagger et al. 2012). PA-X is expressed during virus replication but it 
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does not possess a significant role in viral growth. PA-X is important in host mRNA 

degradation regulation and thus host gene expression, especially genes related to 

inflammation, immune response, apoptosis, cell differentiation, and tissue remodelling 

(Jagger et al. 2012). 

1.3 Viral life cycle 

 

Figure 8: Influenza viral life cycle 

A. Influenza virus binds the cellular receptor and its HAs can be activated by cellular proteases 
present on the cellular membrane; B. Influenza virus is endocytosed by cells and the low 
endosomal pH triggers HA conformational changes leading to envelope-endosome fusion; 
C. Uncoating of the virus with release of RNPs; D. The viral genome is transported to the nucleus; 
E. Transcription of viral protein genes take place; F. Transcripts are translated by ribosomes to 
produce viral proteins; G. Envelope proteins follow the endoplasmatic reticulum/Golgi pathway 
where post-translational modifications take place and HAs can be activated by proteases; H. NPs, 
polymerases, and NS2 proteins are instead translocated into the nucleus; I. Negative-sense viral 
genome is replicated through the synthesis of an RNA positive intermediate; J. NP, polymerases 
and NS2 assemble with the genome and RNPs are exported into the cytosol; K. Viral assembly 
takes place at the level of the cellular membrane and during this process HAs can be activated by 
cellular proteases. L. New virions are released thanks to M2 scission activity and NA sialidase 
activity. 
The image was generated using ChemBioDraw Ultra 14 and Microsoft® Power Point. 
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The influenza virus binds, via the HAs, to the sialic acid residues on the surface of 

host cell glycoproteins (Hidari et al. 2013). Following binding to sialic acid, the influenza 

virus enters cells by receptor-mediated endocytosis usually by using clathrin-coated 

vesicles and dependent on dynamin (Edinger, Pohl and Stertz 2014; Lakadamyali et al. 

2003). Recently, however it was shown that influenza virus can enter host cells also in a 

clathrin-independent manner as well as via macropinocytosis (Sieczkarski and Whittaker 

2002; de Vries et al. 2011). After internalisation, the vesicle containing the virus fuses with 

primary endosomes, characterised by a mild acidic environment, which then progress to 

the late endosomes (Lakadamyali et al. 2003; Sieczkarski and Whittaker 2002). In general, 

the macromolecular complexes internalised by endocytosis, after crossing the endosomal 

compartment, are transported to lysosomes where they undergo degradation mediated by 

hydrolytic enzymes (Sieczkarski and Whittaker 2002). The influenza virus escapes 

degradation through the fusion of its envelope with the endosomal membrane. In fact, the 

low pH of the endosomes (5-6) promotes the start of the HA conformational 

changes (Doms, Helenius and J. White 1985; Yoshimura and Ohnishi 1984; Skehel et al. 

1982) and the HA fusion peptide is inserted into the endosome membrane. In this way the 

HA becomes anchored to the viral membrane via the HA2 C-terminal, and to the 

endosomal membrane via the N-terminal part of HA2 (Hamilton, Whittaker and Daniel 

2012; Skehel and Wiley 2000). This juxtaposition of the membranes involving a 

hemifusion process permits a pore to be generated and the genetic material is released into 

the cytoplasm (Hamilton, Whittaker and Daniel 2012; Skehel and Wiley 2000). The release 

of vRNP is also facilitated by the acidification of the interior of the virus particle mediated 

by the M2 ion channel (Bui, Whittaker and Helenius 1996), which weakens the 

interactions of M1 with the viral envelope and the vRNPs (Martin and Helenius 1991). 

Since the processes of replication and transcription of vRNA occur in the nucleus, it 

is necessary for the vRNPs to be transported into the nucleus (Martin and Helenius 1991). 

This process, given the size of the complex vRNP, requires active transport: the vRNPs are 

recognised by the α-importin that by interacting with β-importin makes contact with the 

nuclear pore (Gabriel et al. 2011; P. Wang, Palese and O'Neill 1997; O'Neill et al. 1995). 

At this point other cellular proteins allow the transport of each vRNP through the nuclear 

pore complex, expending energy in the form of adenosine triphosphate (ATP) (Cros and 

Palese 2003). 

In the host cell nucleus the processes of transcription and replication of the vRNA 

take place (Fodor 2013). The vRNA-dependent RNA-polymerase uses the negative sense 

RNA as template to synthesise the mRNAs, which are then transported into the cytoplasm 

to be used for the production of viral proteins. Transcription starts with the complex of the 
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viral polymerase bound to vRNA (Fodor, Pritlove and Brownlee 1994). This causes a 

conformational change that activates PB2. PB2 recruits cellular mRNA (M. L. Li, Ramirez 

and Krug 1998; Cianci, Tiley and Krystal 1995) of which the 5’ cap is cleaved by PB1 and 

PA to be used as primer during transcription (Dias et al. 2009). This process is called ‘cap 

snatching’. Subsequently, the PB1 starts to elongate the cap structure using the vRNA as 

template starting from the 3’ end until the polymerase finds 5-7 uracils present at the 5’ 

end of the vRNA: the polymerase transcribes these bases into a string of adenosines which 

forms the poly-adenosine tail (Robertson, Schubert and Lazzarini 1981). When splicing of 

mRNA is necessary to derive more mRNAs, such as for the production of the proteins 

encoded by segments 7 and 8, host cell proteins are usually exploited, but viral factors can 

also play a role (Lamb and C. J. Lai 1984; Lamb and C. J. Lai 1982). Since the mRNA 

synthesised is polyadenylated and possesses the cellular 5' cap, it can be exported out of 

the nucleus to allow the synthesis of viral proteins. The new polymerase proteins, the NPs, 

the M1, and the NEP are produced and imported into the nucleus. In fact, the replication of 

the vRNA starts only after an initial phase of transcription of mRNA and protein 

synthesis (Fodor 2013). 

During replication, the viral polymerase copies the vRNA into complementary 

RNA (cRNA) that is then used as a template for the synthesis of new vRNA. Since, unlike 

the mRNA, the cRNA is exactly a positive polarity copy of the vRNA genome, the 

replication mechanism differs from transcription (Fodor 2013). It starts with the production 

of dinucleotide structures by the viral polymerase itself or by cellular enzymes. These 

dinucleotide structures are then exploited by the viral polymerase to start replication 

(Fodor 2013). It appears that newly synthesised NPs have a role in the transition from the 

synthesis of mRNAs to the primer-independent production of cRNA (Biswas, Boutz and D. 

P. Nayak 1998). Furthermore, recent studies have shown that the vRNA replication process 

is mediated by newly synthesised polymerases (Fodor 2013). When the replication of the 

vRNA is finished, new vRNP assemble in the nucleus and their nuclear export is mediated 

by the newly synthesised M1 and NS2 (D. P. Nayak et al. 2009; O'Neill, Talon and Palese 

1998). 

In the meantime, the envelope proteins are also synthesised by ribosomes 

associated with the membrane in the ER. This occurs outside the nucleus starting from the 

mRNA produced during the transcription phases. The envelope proteins then undergo 

maturation and folding, travelling through the Golgi network in which post-translational 

modification takes place (Doms et al. 1993). Since the three envelope proteins have a 

sorting signal in the transmembrane domain, they are directed, via the exocytosis 
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mechanism, towards the apical surface of the cell membrane (Rodriguez-Boulan, Paskiet 

and Sabatini 1983). 

Once in the cytoplasm, all the internal components of the virion assemble, with the 

M1 acting as an adaptor between the cytoplasmic membrane, the envelope proteins, and 

the vRNP (D. P. Nayak et al. 2009). The new virions, in order to be infectious must 

contain all the eight genomic segments (Sugita et al. 2013). Evidence now suggests that the 

packaging is dependent on specific signals presented on all vRNA (Y.-Y. Chou et al. 

2012). This enables the entire genome to be incorporated into most of the viral particles. 

The mechanism of viral budding initiation is not yet clear, however, the final 

membrane scission is better understood (Rossman and Lamb 2011; D. P. Nayak et al. 

2009). It seems that the envelope proteins permit the curvature of the membrane initiating 

the process (Rossman et al. 2010). Conversely, in the final budding steps, it is only M2 

that, localising on the lipid raft borders, changes the curvature of the budding membrane 

and, due to its cytoplasmic tail, permits the membrane scission (Rossman et al. 2010). 

Finally, to release the progeny viruses from the cell surface, the action of NA is 

required to remove sialic acid from the cell surface. This process prevents new virions 

sticking to the membrane or aggregating on the cell surface (Wagner, M. Matrosovich and 

Klenk 2002). 

1.4 Ecology and epidemiology of influenza viruses 
The three influenza virus types (A, B, and C) infect different mammalian and avian 

species. Influenza A viruses are disease-causing agents in mammals and birds, and the 

viruses harbouring the first sixteen HAs have a reservoir in wild birds, especially 

Charadriiformes (gulls) and Anseriformes (ducks) (Olsen et al. 2006; Webster et al. 1992). 

To date, viruses harbouring H17 and H18 have only been isolated in bats (Tong et al. 

2013; Tong et al. 2012). In humans only influenza A viruses that harbour H1 or H3 HA in 

their envelope routinely circulate during winter seasons, causing annual 

epidemics (Graham-Rowe 2011; Monto 2008). 

Influenza B infects humans causing seasonal epidemics (R. Chen and Holmes 

2008). Influenza B has also been reported to infect other mammalian species, such as 

seals (Osterhaus et al. 2000). 
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Influenza C infects appears to exclusively1 infect humans and, even if its spread is 

limited in the human population, it can cause severe disease (e.g. pneumonia) (Principi et 

al. 2013). 

In wild avian species LPAI virus was believed to be avirulent. Recently, however, it 

has become clear that virus infection, even if it does not routinely cause an increase in 

mortality rates, can be associated with reduced body weight and slight increase of the body 

temperature. Histological findings of tissue damage at the level of the gastrointestinal or 

the respiratory tracts are also described. In contrast, chickens can show symptomatology 

such as diarrhoea, coughing, sneezing, and ocular discharge (Kuiken 2013; Pantin-

Jackwood and Swayne 2009). 

HPAI viruses in domestic poultry produce high mortality rates, associated with 

systemic disease comprising oedema, haemorrhage, and multiple organ failure (Swayne 

2000). When transmitted to wild birds or other avian species they can occasionally be 

associated with mortality in these hosts (Swayne 2000). 

In humans, influenza viruses cause respiratory disease with variable severity of 

clinical symptoms. The infection can be asymptomatic, limited to the respiratory tract or 

can be associated with extremely severe complications (e.g. pneumonia, myocarditis, 

influenza-associated myositis, rhabdomyolysis, encephalitis, Reye syndrome, and 

Guillain–Barré syndrome). Classic influenza symptoms includes: fever, cough, sore throat, 

runny or stuffy nose, muscle or body aches, headaches, fatigue (Centers for Disease 

Control and Prevention (CDC) n.d.; Monto et al. 2000). The sudden onset and presence of 

fever, myalgia, headaches, and fatigue allows differential clinical diagnosis and permits 

distinguishing influenza from the common cold (rhinoviruses) or from respiratory disease 

caused by other viral pathogens (e.g. coronaviruses, respiratory syncytial virus) (Eccles 

2005). The clinical course of infection depends on the virulence and the infected 

individual: age (children or elder people), presence of previous morbidity affecting the 

heart (cardiopatic disease and/or hypertension) or lungs (e.g. asthma), diabetes, pregnancy, 

and immunosuppression are risk factors for influenza complications (Junge 2011; Monto 

2008). Some genetic determinants can also play a role in the development of severe 

disease (T.-Y. Lin and Brass 2013; Horby et al. 2012). 

                                                
1 As mentioned in Section 1.1 the influenza virus distantly related to human influenza C 

virus isolated in swine and cattle, provisionally named C/swine/Oklahoma/1334/2011, could 
represent a new influenza genus/type (Collin et al. 2014; Hause et al. 2014; Hause et al. 2013; 
Sheng et al. 2013). 
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1.4.1 Antigenic shift and antigenic drift 

The epidemiological success of influenza viruses is probably related to their two 

mechanisms of evolution of the two surface glycoproteins, HA and NA. 

Due to the low replication fidelity of the vRNA dependent RNA polymerase, 

influenza A viruses and influenza B viruses undergo frequent mutations leading to the 

continuous appearance of new virus variants (Zambon 1999). When the virus variants are 

replication-competent and the mutations do not influence viral protein functions, they can 

be naturally selected, if due to these changes the virus can escape the host immune 

response, especially the antibody response. Since the antibodies are primarily directed 

against the envelope proteins these antigenic changes are found especially on the two 

surface glycoproteins, HA and NA. This evolutionary mechanism is referred to as 

antigenic drift, to indicate the progressive nature of the antigenic changes (Figure 9A). 

A Antigenic drift B Antigenic shift 

 

 

 

 

Figure 9: Antigenic drift and antigenic shift 
A. A part of the human population possesses antibodies against the influenza virus; however the 
virus can escape this immune response via envelope protein mutations, leading to an epidemic in 
the humans now mostly naïve for the new antigenic variant virus; B. Avian and swine viruses that 
possess envelope proteins antigenically distinct from the ones circulating in the human population 
can infect humans directly or after recombination with human viruses in an intermediate host. 

 

The ability of influenza viruses to undergo antigenic drift has particular 

implications for influenza vaccination in humans. Every year the WHO changes the 

seasonal vaccine composition on the basis of surveillance data in order to match the 

predicted circulating strain (Gerdil 2003). This choice is made twice each year: for the 

northern hemisphere in February (for the next winter), the other for the southern 

hemisphere in October (Gerdil 2003). The strains to be included in the vaccine are selected 
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in advance since for vaccine production, clinical trials, and stock piling, at least 6 months 

are necessary (Gerdil 2003; Wood and Levandowski 2003). Since the strain selection is 

made months before the onset of seasonal epidemics, occasionally the virus that circulates 

during the seasonal epidemic does not match the vaccine strains, impairing vaccine 

coverage. 

It is now becoming evident, however, that even in the presence of a drift variant, 

the population is not completely immunologically naïve. This is due mainly to the presence 

of cross-reactive immune responses. These cross-reactive responses, mediated by T and B 

memory cells (see Section 1.6.2), are able to protect from or, at least, mitigate influenza 

infection. How widespread and how broad this cross-reactivity immunity is in the human 

population is however still unclear and numerous studies are now focusing on 

understanding its biological basis. 

In addition to antigenic drift, influenza A viruses are subjected to a second 

evolution mechanism, named antigenic shift (Figure 9B). Since influenza viruses have a 

segmented genome, recombination between human, avian and/or swine virus, can occur if 

these viruses infect the same host (Freidl et al. 2014). Often these ‘mixing vessels’ are pigs 

since the swine respiratory epithelium possesses both α-2,6 and α-2,3 sialic acids, thus 

avian and human virus can infect them with similar efficiency (Trebbien, Larsen and Viuff 

2011). Furthermore, the swine host also represents a way by which human strains are 

‘archived’ and can re-emerge (Tharakaraman et al. 2013). Since swine are usually the host 

in which the original avian virus has adapted, this virus tends to circulate within the swine 

population (Tharakaraman et al. 2013). The virus then can re-infect humans, if it comes in 

contact with an immunologically naïve human population. 

In certain cases, however, avian viruses are also able to directly infect the human 

host. This is due primarily to the fact that the human respiratory epithelia also possess the 

avian virus receptor, as previously mentioned (Section 1.2.1). 

Often to permit efficient transmission and replication in the new host, influenza 

viruses need to undergo additional mutations, usually involving the HA RBS, and 

polymerase genes (see Section 1.2.6). This was recently highlighted by ‘gain-of-function’ 

experiments (Herfst et al. 2012; Imai et al. 2012). In these experiments, viruses, which 

have been shown previously to replicate in humans, were modified and passaged in the 

ferret animal model, acquiring efficient replication and transmission. This has permitted 

the identification of possible viral characteristics and molecular markers related to efficient 

replication and transmission in the human host (Tejeda and Capua 2013; C. A. Russell et al. 

2012). 
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Since different antigenic envelope protein subtypes of influenza A circulate in the 

animal reservoirs, a virus with a new combination of HA and NA, if able to efficiently 

replicate, could spread in a completely immunological naïve human population, potentially 

causing a pandemic. In fact, the antigenic shift mechanism was the basis of the emergence 

of past influenza pandemics (G. J. D. Smith et al. 2009). 

1.4.2 Influenza pandemics and pandemic preparedness 
In 1918 an avian-like human-adapted H1N1 virus started to circulate in the human 

population causing the first pandemic of the twentieth century (Taubenberger and Morens 

2006; Reid, Taubenberger and Fanning 2004). Subsequently the 1918 virus underwent 

antigenic drift mutations and then circulated as a seasonal strain until 1957 when a 

reassortment with an avian virus occurred (G. J. D. Smith et al. 2009). This new virus had 

acquired the avian origin envelope proteins of H2 and N2 subtypes. H2N2 viruses 

circulated for 10 years until, in 1968, they disappeared from the human population after a 

further reassortment event occurred and the H3N2 pandemic strain emerged (G. J. D. 

Smith et al. 2009). After the pandemic, H3N2 strains have continued circulating even after 

the reappearance of an H1N1 virus in 1976 (Scholtissek et al. 1978). This virus has 

subsequently become a seasonal strain (Both et al. 1983). 

In addition to viruses with H1, H2 and H3 HA, viruses of avian origin from other 

HA subtypes (e.g. H5, H7, H9, and more recently H6 and H10) have been shown to 

directly infect humans (H. Chen et al. 2014; Gao et al. 2013; Yuan et al. 2013; 

Apisarnthanarak et al. 2004; Koopmans et al. 2004; Claas, de Jong, et al. 1998; Claas, 

Osterhaus, et al. 1998). If these viruses were to acquire efficient human-to-human 

transmission they could potentially cause pandemics. 

At the start of the 21st century it was believed that the next pandemic could emerge 

either from a reassortment between human viruses and viruses belonging to HPAI H5 or 

H7 subtypes (predominantly circulating in poultry) or from an adaptation of these HPAI 

H5 or H7 viruses to the human host (Katz 2003; Horimoto and Kawaoka 2001). For this 

reason active surveillance, collaborative networks, vaccines and pandemic plans were 

developed to monitor and block the circulation of these subtypes in poultry populations 

around the world (Bogner et al. 2006). This in part led to the surveillance of other virus 

subtypes being neglected: for example, the emergence of new avian or swine-origin H1 or 

H3 viruses was believed not to be of particular concern since previously pandemics have 

originated from viruses with HA subtypes different from the subtype already circulating in 

the human population (Peiris, Poon and Guan 2012; Capua et al. 2009). Eventually a 

quadruple H1N1 reassortant virus emerged causing the first pandemic of the 21st century 
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after reassortment between two swine viruses: one was a Eurasian avian-like swine virus, 

the other originated previously through reassortment of north American avian, classical 

swine and human (H3N2) viruses (Neumann, Noda and Kawaoka 2009; Novel Swine-

Origin Influenza A H1N1 Virus Investigation Team  et al. 2009; Zimmer and Burke 2009). 

In China, at the start of 2013, a recombinant LPAI H7N9 virus emerged (Gao et al. 

2013). This can easily infect humans causing severe respiratory syndrome but does not 

have the capacity for efficient human-to-human transmission (Qun Li et al. 2013). Studies 

have shown that this virus and similar viruses have been circulating undetected in the avian 

reservoir and probably in poultry, and that this was ongoing for at least one year prior to 

the emergence of the human strains (Kageyama et al. 2013; Liu et al. 2013; Van Ranst and 

Lemey 2013). More recently, viruses belonging to the H10 and H6 subtypes have also been 

shown to infect humans creating concerns for possible diffusion (García-Sastre and 

Schmolke 2014; Montomoli and Maria 2014; G. Wang et al. 2014). 

All these instances have shown that, to carry out effective pandemic preparedness 

of zoonotic viruses such as influenza, it is necessary to implement continuous surveillance. 

For example HPAI H7 and H5 viruses are symptomatic and are included in the diseases 

that need to be notified to the authorities; for this reason when outbreaks are registered, 

culling of poultry is rapidly implemented to block the spread of the disease and this has 

permitted a straightforward way to monitor the spread of this viruses (Peiris, Poon and 

Guan 2012). However, LPAI influenza and swine influenza are sometimes asymptomatic 

and they require the monitoring of both ill and healthy animals (especially live-stock) since 

these viruses can infect undetected for long periods of time (Peiris, Poon and Guan 2012). 

For this reason it is necessary to monitor the viruses circulating in all animal 

reservoirs through virus isolation and identification (with classical and molecular biology 

methods reviewed in Belák, Kiss and Viljoen 2009, Cattoli and Terregino 2008, and 

Cattoli and Capua 2007), and with sero-epidemiology studies in animals and in humans to 

predict possible emerging viruses (Capua and Cattoli 2010). Another important monitoring 

aspect is the collection of viral gene sequences (Squires et al. 2012; Liu et al. 2009; Bao et 

al. 2008) since with bioinformatic analyses it is now possible to identify molecular markers 

that can help to recognise viruses that pose pandemic risks (Tejeda and Capua 2013; D. 

Smith 2003). This “One Health” approach (“To improve health and well-being through the 

prevention of risks and the mitigation of effects of crises that originate at the interface 

between humans, animals and their various environments” (One Health Global Network 

n.d.)) is now widely accepted by the international community and applied with common 

effort by Food and Agricultural Organization of the United Nations (FAO), and World 
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Organization for Animal Health (OIE), WHO, and Centers for Disease Control and 

Prevention (CDC). 

1.5 Influenza virus pathogenicity: an equilibrium between viral 

diversity, host genetics and adaptive immunity 
The pathogenicity of influenza virus in humans and in animals is primarily related 

to genetic factors of the virus. In Sections 1.2.1.1 and 1.4 it was previously shown how the 

property of the HA cleavage site can influence the pathogenesis and can cause systemic 

infection. Other factors, such as mutations in the polymerase proteins, in the HA RBS and 

related to the NA stalk length are known to determine a higher efficiency of viral 

replication in one host compared to another (Gambaryan, Robertson and M. N. 

Matrosovich 1999; E. K. Subbarao, London and Murphy 1993). Furthermore, the 

expression of accessory genes (or their variants) can be associated with increased disease 

severity (McAuley et al. 2007; Zamarin, Ortigoza and Palese 2006) . 

However, recently, thanks to the use of animal models and genome-wide 

association studies in infectious disease research, it is becoming clear that host genetic 

factors play a role in determining influenza pathogenicity (T.-Y. Lin and Brass 2013). For 

example, the presence or absence of certain genes (some associated with the innate 

immune system) can confer resistance to influenza in animal models (Horby et al. 2012). 

Furthermore a polymorphism in a protein, interferon-induced transmembrane protein 

3 (IFTIM3), which can interfere with influenza virus entry, was associated with increased 

influenza severity in humans (Everitt et al. 2012). 

Nevertheless, host genetic characteristics are not the only host factors that can 

influence viral pathogenicity. The adaptive immune system of an individual is in fact 

shaped by the pathogens recognised during his/her lifetime, and its efficiency varies 

according to the age of the subject (Y.-C. Tan et al. 2014; Kucharski and Gog 2012). The 

presence of antibodies that can cross-neutralize, or T lymphocytes that can recognise 

different influenza strains is an important factor in determining protection from influenza 

virus infection and/or attenuation of pathology (Greenbaum et al. 2009; Hancock et al. 

2009). On the contrary, abnormal immune responses (e.g. cytokine storms) are associated 

with mortality following influenza infection and are characteristics in pandemic influenza 

and in human infection with avian influenza virus, especially if HPAI (Morens and Fauci 

2007; Chan et al. 2005). 

It is for this reason essential to understand how the immune system in general, 

especially in humans, interacts with the influenza virus. 
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1.6 Immunological response to influenza virus 
Influenza virus infection activates both the innate and adaptive components of the 

immune system. In fact, the virus is firstly detected and destroyed by the mechanisms of 

the innate immune response and secondly by specific adaptive immune responses (S.-I. 

Tamura and Kurata 2004). 

The innate immunity is necessary to limit the initial influenza virus replication and 

to stimulate lymphocyte specific components (reviewed in Tripathi, M. R. White and 

Hartshorn 2014). Similarly, the adaptive immune response plays an important role in the 

containment and the elimination of the virus. The adaptive response, consisting in 

cellular (reviewed in Woodland, Hogan and Zhong 2001) and humoral immunity, is 

needed to establish the ‘memory’ response that results in long-term protection to infection 

with homologous virus, and sometimes also to drifted viruses. 

1.6.1 Innate immune response 
The respiratory mucosa is both the primary site of influenza infection and the first 

defense mechanism, as the mucous layer of the respiratory tract contains molecules that act 

as decoy receptors limiting the infection of the epithelium. 

When the virus enters into cells and viral infection takes place, single-stranded and 

double-stranded RNA (produced during vRNA replication) act as pathogen-associated 

molecular patterns and can activate pattern recognition receptors, in particular the retinoic 

acid-inducible gene 1, the toll-like receptor 3, the toll-like receptor 7, and the Protein 

kinase RNA-activated (PKR) (Guillot et al. 2005). These receptors through signal 

pathways are able to activate the expression of IFN and pro-inflammatory cytokines. 

Among the cytokines produced, IFNs play the major role in resistance to influenza 

infection. In fact, IFNs have a direct antiviral effect: they increase the expression of PKR, 

oligoadenylate synthetase, IFTIM3, and the MxA protein (Sadler and Williams 2008; 

Julkunen et al. 2000). IFTIM3 is able to interfere with viral membrane–endosome 

fusion (Desai et al. 2014). MxA directly interferes with influenza virus replication, 

preventing post-transcriptional processes that take place in the cytoplasm of infected cells 

and interacting with the polymerase subunits and NPs (Haller, Staeheli and Kochs 2009; 

Pavlovic, Haller and Staeheli 1992). IFN also plays a role in the activation of key 

components of the innate and adaptive immunity (K. Takeda and Akira 2004). 

Alveolar macrophages constitute the first line of cellular defence, as they reside in 

the place of infection. They have an active role in clearance of influenza virus and infected 

cells, but also secrete chemokines and cytokines recruiting components of the innate and 

adaptive response (Tripathi, M. R. White and Hartshorn 2014). 
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Neutrophils are recruited in the first phase of influenza infection and play an 

important role in clearance via phagocytosis of influenza virus and other proteins, and also 

in activating the adaptive immune system. However, as they produce reactive oxygen 

species (ROS) they can also contribute to lung tissue damage (Tripathi, M. R. White and 

Hartshorn 2014). 

Natural Killer (NK) cells have direct cytotoxic activity as well as playing a role in 

the activation of cytotoxic T lymphocytes and regulating the production of IFN-γ and of 

IL-2 (He et al. 2004). Further studies have also shown that the HAs expressed on infected 

cells are bound by NKp46 and NKp44 receptors expressed on NK cells resulting in the 

activation of the NK effector function (Mandelboim et al. 2001; T. I. Arnon et al. 2001). 

Other classes of innate immune cells, such as NKT cells, γδ T cells, and T helper 17 

cells, influence influenza infection and epithelial damage (Tripathi, M. R. White and 

Hartshorn 2014). 

1.6.2 Adaptive immune response 

Dendritic cells (DCs) represent the point of contact between the innate and the 

adaptive immune systems. They come into contact with influenza virus in two ways: by 

direct infection, or after phagocytosis of infected cells. These two processes, together with 

the mechanism of antigen cross-presentation, allow the presentation of viral antigens on 

the class I and II major histocompatibility complexes (MHCs). Upon uptake of the viral 

antigens, DCs mature, migrate to regional lymph nodes, and by interacting with CD8+ T 

cells, CD4+ T lymphocytes, and B lymphocytes, activate the adaptive immune response. 

Influenza-specific, naïve or memory CD8+ T cells are activated after recognition of 

the viral antigen presented by MHC class I, and subsequently migrate to the site of 

infection and inflammation (Cerwenka, Morgan and Dutton 1999). There they eliminate 

virus-infected cells by exocytosis of granules containing perforin and granzyme, which 

have cytolytic activity. 

Memory CD8+ T cells have the important role of mediating the protective cellular 

response following re-infection. These cells are able to respond to virus infection and 

mediate viral clearance more quickly compared to naïve T cells (S.-I. Tamura and Kurata 

2004). 

Virus-specific CD4+ T cells also play an essential role in influenza defence since 

they induce the proliferation of CD8+ T cells and B cells (Sant et al. 2007). The CD4+ T 

cell component is essential since it was noted that their deficit can lead to a defect in the 

memory CD8+ T cell response (Joseph C Sun and Bevan 2003). CD4+ cells, once activated 

in the lymph nodes, tend to change toward a T helper 1 phenotype and migrate into the 
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lung. The T helper 1 cells contribute to viral clearance with the production of IFN that, as 

shown in Section 1.6.1, is able to limit the replication of the virus. Furthermore, the 

presence of cytokines such as IL-4 in infected lung tissues suggests that CD4+ T cells 

acquire also a T helper 2 phenotype (S.-I. Tamura and Kurata 2004). 

Influenza-specific B cells that are activated to become plasma cells, produce 

immunoglobulins (Ig, or antibodies) that are able to recognise influenza proteins, such as 

HA, NA, M2 and NP, and can neutralize the virus. Virus neutralization is the ability of an 

antibody to bind and inactivate the infectivity of a virus in vitro and in vivo. The majority 

of neutralizing antibodies are able to protect also in vivo, however, the mechanism by 

which they mediate the immune defence in vivo may involve the interaction with cells and 

molecules of the innate immune system to activate complement activation or Fragment 

crystallizable (Fc)-mediated processes. The mechanisms by which antibodies can 

neutralize influenza virus are now well characterised and explained in detail in Han and 

Marasco, 2011 review (Han and Marasco 2011). 

The antibody response that develops following infection of Influenza A virus was 

initially studied by analysing and measuring the antibodies in sera, nasal and 

broncho-alveolar washes (Murphy et al. 1981). The mucosal B cell-mediated immune 

response is mainly characterised by the production of secretory IgA (Renegar et al. 2004). 

However, IgG isotope is primarily responsible for the protection of the lower respiratory 

tract. The mucosal levels of IgG correlate with serum levels, indicating passive diffusion 

from the systemic compartment. In contrast, IgA is produced locally and transported to the 

upper airways through the epithelium of the mucosa (Renegar et al. 2004; Palladino et al. 

1995). 

Antibodies directed against HA (see Section 1.6.2.1) are the major mediators of 

influenza neutralization since they can directly interfere with the virus entry 

process (Brandenburg et al. 2013). 

Ig that recognise influenza NA are able to block viral replication and specifically to 

inhibit the release of new progeny virions from infected cells reducing shedding (reviewed 

in Wohlbold and Krammer 2014, and Marcelin, Sandbulte and Webby 2012). Antibodies 

directed against NA were associated with some degree of protection from influenza virus 

infection (Marcelin et al. 2011), and a recently isolated monoclonal antibody (mAb) was 

shown to inhibit the NA activity of different influenza subtypes (Doyle, Hashem, et al. 

2013; Doyle, Li, et al. 2013). 

Antibodies directed against M2 are elicited during natural infection and seasonal 

vaccination but until recently they were believed to be not long-lasting and present at low 

level (B. Nayak et al. 2010; Treanor et al. 1990). However, it was shown that since the M2 



 

31 

ectodomain region is conserved between different influenza subtypes, antibodies directed 

against this region confer heterosubtypic protection (Schotsaert et al. 2009). 

During influenza infection antibody directed against NP can also be generated. 

These antibodies do not possess neutralizing activity but are able to augment cellular 

responses, via a mechanism not yet completely understood (Carragher et al. 2008). 

In general the establishment of a memory B cell population has a crucial role in 

influenza re-infection since antibodies represent the first mechanism of protection from 

influenza virus (K. Y. A. Huang et al. 2014; Ellebedy and Ahmed 2012). This principle is 

the basis of the current influenza vaccines that aim to induce virus specific antibodies, 

especially directed against HA. 

1.6.2.1 Influenza antibody response: from anti-haemagglutinin head to 

anti-haemagglutinin stalk antibodies 

From the first studies on influenza antibody response, it was clear that antibodies 

against HA were able to prevent viruses binding to the cellular receptor, blocking viral 

infectivity (Jackson et al. 1982; Wiley, Wilson and Skehel 1981). Initially, considering the 

characteristic antigenic drift of influenza virus, haemagglutination inhibition (HI) assay2 

results, and isolation and characterisation of mAbs from human and animal models, it was 

thought that antibodies against HA were directed exclusively against immunodominant 

regions present in the HA head. In addition, it was believed that minimal mutation in this 

region could block the Ig binding and that antibody cross-reactivity between closely related 

strains was absent (Archetti and Horsfall 1950). 

In the 1990s it became clear that antibodies able to neutralize different HA strains 

and subtypes could be generated in vivo and in vitro (Hoag presents an interesting 

historical perspective of this discovery (Hoag 2013)). Recently, mAbs showing a pan- and 

hetero-subtypic neutralization activity conferred by their ability to bind conserved regions 

on the HA stalk have been isolated, firstly from animal models and subsequently from 

humans (C179, CR6261, F10, CR8020, FI6v3, CR9114, CR8043) (Friesen et al. 2014; 

Dreyfus et al. 2012; Corti et al. 2011; Ekiert et al. 2011; Sui et al. 2009; Throsby et al. 

2008; Okuno et al. 1993). These mAbs were shown to neutralize the virus, especially 

interfering with viral envelope-endosome membrane fusion but are also able to interfere 

with the HA activation process. Furthermore, it was highlighted that in vivo they are also 

able to mediate their neutralizing function by engaging the Fcγ receptor, explaining their 

high potency in protecting animal models from influenza infection (DiLillo et al. 2014). 

 

                                                
2 Explained in Section 1.8.1. 
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Figure 10: Immunodominant sites and mAb epitopes mapped on HA 
The site and epitopes are reported using Swiss PDB viewer and POV-Ray 3.7 on the basis of 
Friesen et al. 2014; Dreyfus, Ekiert and Wilson 2013; Dreyfus et al. 2012; Corti et al. 2011; Ekiert 
et al. 2011; R. Xu et al. 2010; Ekiert et al. 2009; Sui et al. 2009; Berton, Naeve and Webster 1984; 
Both et al. 1983; Krystal et al. 1983; Caton et al. 1982; Underwood 1982; Wiley, Wilson and 
Skehel 1981. 
A. Immunodominant sites and mAb epitopes on influenza A H1 HA (PDB ID: 1RU7 (Gamblin et 
al. 2004)); 
B. Immunodominant sites and mAb epitopes on influenza A H3 (PDB ID: 2VIU (Fleury et al. 
1998)); 
C. Immunodominant sites and mAb epitopes on influenza B HA (PDB ID: 4FQM (Dreyfus et al. 
2012)). 

HA stalk-directed antibodies were believed extremely rare in the human population 

(Grebe, Yewdell and Bennink 2008). Only recently is it becoming clear that these 

antibodies could be widespread in humans (M. S. Miller, Gardner, et al. 2013; Wrammert 

et al. 2011). It is however still unclear if the levels found have an active role in protection 

against influenza infection. Understanding precisely if these HA stalk-directed antibodies, 

which can neutralize multiple influenza subtypes, are widespread in the human population 

and comprehend how they are generated, elicited, and augmented is of essential interest for 

pandemic preparedness and ‘universal’ influenza vaccination (see Section 1.7.4). 

1.7 Influenza vaccines 
Vaccines are considered the only tools that can prevent disease and death associated 

with influenza virus infection in humans. 

In Section 1.4.1 it was explained that due to the influenza antigenic drift, different 

strains are selected each year to be included in seasonal vaccines. A trivalent vaccine 

containing one influenza A H1N1 strain, one influenza A H3N2 strain, and one influenza B 

strain is usually employed, but recently a quadrivalent vaccine containing an additional 

influenza B strain was also developed and is being used in the United States (Belshe 2010). 
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At the present time, two vaccine types, all containing three or four influenza strains, 

are available for administration to the human population: an inactivated virus vaccine and 

an attenuated virus vaccine. However, new vaccine approaches are being developed to 

overcome vaccine side effects and allergies, and to broaden the vaccine immunogenicity 

against viruses not included in the vaccine formulation (Wong and Webby 2013). 

1.7.1 Inactivated virus vaccine 
There are three different formulations of inactivated virus vaccine: whole virus, 

split virion, and subunit. 

The inactivated whole virus vaccine was the first to be developed: originally 

influenza virus was grown in the allantoic cavity of embryonated chicken eggs and was 

subsequently purified using erythrocytes, then inactivated using formaldehyde or 

β-propiolactone. Nowadays, reassortant viruses that possess the envelope protein of the 

influenza strains of interest are used instead of native viruses, to obtain a high yield of 

antigen. Furthermore viruses are now purified using centrifugation and appropriate filter 

membranes, instead of erythrocytes (Wong and Webby 2013). The whole inactivated virus 

vaccine is immunogenic in children and adults; unfortunately it is sometimes associated 

with reactogenicity, especially in young children. For this reason split vaccines, in which 

virions are disrupted using detergents, and subunit vaccines, in which the HA and NA are 

purified and sometimes inserted on lipid micelles (virosomes), were developed (Moser et 

al. 2007). These vaccines can induce good responses in adults, but in naïve individuals and 

elderly they could require additional administrations after the first priming to induce 

adequate responses (Tricco et al. 2013; Lambert et al. 2012). 

Inactivated influenza vaccines are generally administered intramuscularly, although 

presently other routes of administration, such as intradermal and mucosal (nasal), are being 

studied (Wong and Webby 2013; Sullivan et al. 2010). 

1.7.2 Attenuated virus vaccine 

In contrast to the inactivated virus vaccine, attenuated influenza vaccines can 

induce mucosal immunity since they are intranasally administered and they are able to 

replicate in a limited manner in the upper respiratory tract. Furthermore, they are able to 

induce not only antibody mediated responses but also cellular immunity. They were 

originally developed by growing the virus under suboptimal conditions, resulting in virus 

attenuation (Wong and Webby 2013). The attenuation, due to stable mutations of the 

polymerase-, NP-, and M1-encoding genes, permits the virus to replicate only at low 

temperatures (25°C-35°C), and for this reason the virus is usually termed cold-adapted. 

Nowadays the vaccine is developed using reassortment or reverse genetic systems, with the 
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envelope proteins (HA and NA) of the selected vaccine strains added to the genetic 

backbone of cold-adapted master donor viruses. The cold-adapted viruses are stable and 

are not able to revert back to their original phenotype (Buonagurio et al. 2006). 

Furthermore they do not induce influenza-like symptoms when administered, and they 

cannot be transmitted from vaccinated subjects to other people (Glezen 2004). 

1.7.3 Vaccine adjuvants 
Adjuvants are sometimes used in influenza vaccines to enhance their 

immunogenicity, especially if they are administered to high-risk groups, such as the elderly 

and children. Adjuvants are also dose-sparing since they are useful in reducing the quantity 

of antigen used in the vaccine (Even-Or et al. 2013). For example, the use of adjuvants 

during the 2009 pandemic enabled reduction in the quantity of antigen used in the single 

dose. Considering that the H1N1 pandemic virus did not propagate efficiently in eggs, this 

permitted the pandemic vaccine to become available in a relatively short period of time for 

a larger number of individuals (Robertson et al. 2011). 

There are different types of adjuvants used in the commercial vaccine formulation: 

aluminium-based, virosome, and oil-in water emulsions. Other adjuvants are however 

being evaluated (Even-Or et al. 2013). 

The use of adjuvants, especially of the oil-in water emulsion type, were also shown 

to increase the breath of immunological response against influenza viruses, permitting 

antibodies that are able to neutralize multiple influenza strains to be elicited (Vogel et al. 

2009). 

1.7.4 Future influenza vaccine and ‘universal’ influenza vaccine approaches 
A major issue associated with current influenza vaccination is related to the fact 

that the vaccine is produced in eggs. In fact, certain human influenza viruses do not grow 

well in eggs, and in case of a shortage of eggs it will not be possible to produce the antigen 

quantities needed. Furthermore, people that have allergies to egg proteins cannot be 

vaccinated with egg-produced vaccine, as they can contain traces of these proteins 

(Hannoun 2013). For these reasons, different methods of vaccine production involving 

either the use of the reverse genetic system, VLPs or the production of recombinant 

proteins in mammalian, avian, insect cells, and plant systems are being developed (S.-M. 

Kang, M.-C. Kim and Compans 2012; Chichester, Haaheim and Yusibov 2009; Genzel and 

Reichl 2009; Neumann et al. 2005). 

Vaccines to stimulate cellular immunity are being developed. These permit the 

expression and the presentation of viral proteins together with MHC class I, and are based 

either on plasmid deoxyribonucleic acid (DNA) or on vector expression systems (such as 
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adenoviruses, Modified Vaccinia Ankara (MVA) virus and Newcastle Disease 

Virus) (Kopecky-Bromberg and Palese 2009). These approaches are also used to stimulate 

immunity against more conserved influenza proteins such as NP, M1 and M2 and represent 

one of the ways by which protection against most subtypes (‘universal’ vaccination) could 

be achieved (Pica and Palese 2013). 

‘Universal’ vaccines are vaccines that are able to induce an immune response 

against multiple, if not all, influenza subtypes. They will be useful since they will probably 

remove the necessity of annual vaccination and will also protect if a new pandemic arises. 

‘Universal’ vaccines targeting the HA are at the moment being assessed using an 

epitope-based approach: specific epitopes in the influenza HA-stalk are recognised by 

antibodies that are able to neutralize multiple influenza subtypes (Section 1.6.2.1) and can 

be exploited to generate broad-neutralizing antibody responses (Pica and Palese 2013). 

Different approaches to present such epitopes efficiently to the immune system are being 

developed: some are based on the use of fragments of HA stalk, other use headless HAs, 

and more recently the use of HA nanoparticles and chimeric HAs was also 

described (Mallajosyula et al. 2014; Kanekiyo et al. 2013; Margine, Hai, et al. 2013; Steel 

et al. 2010). 

1.8 Influenza serology and haemagglutinin antibody testing 
The detection of serum antibodies directed against the HA is usually associated 

with the presence of protective immunity. For this reason, serological assays are commonly 

used to assess if such antibodies are present in the serum of a subject, for epidemiological 

purposes and to evaluate the immunogenicity of influenza vaccines, before their approval 

and licensing. However, routinely used serological assays present several issues when 

applied to the evaluation of the immunogenicity of ‘universal’ influenza vaccines that aim 

to elicit stalk-directed HA-responses. 

The following sections will focus on the state-of-the-art of serological 

assays (comprehensively reviewed in Trombetta et al. 2014 and Katz, Hancock and X. Xu 

2011) but also new assays that can be used to study antibody responses directed against 

influenza HA, and that could be useful to assess the immunogenicity of ‘universal’ 

HA-directed influenza vaccines. 

1.8.1 Haemagglutination inhibition assay 
The haemagglutination inhibition (HI) assay (Salk 1944; Hirst 1941) is based upon 

the principle that antibody binding to the HA globular head can inhibit the HA’s ability to 

agglutinate red blood cells (RBCs). Since the agglutination process (Hirst 1941) is 
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mediated through the attachment of the HA RBSs to the erythrocytes’ sialic acid residues 

creating a virus-RBC lattice, the ability of antibodies to block this binding is an indirect 

measure of the ability to block viral attachment to target cells and in this way inhibit viral 

infectivity. 

In the HI assay two-fold serial dilutions of sera are prepared and a fixed amount of 

recombinant or viral origin HA antigen (previously measured through haemagglutination 

assay) are added. After 15 minutes incubation, RBCs (0.5% chicken and turkey, 0.75% 

guinea-pig and human type O or 1.0% horse RBCs) are added. Erythrocyte agglutination 

indicates absence of virus specific antibodies (negative, Figure 11D), and RBC 

precipitations show the presence of antibodies (positive, Figure 11C). Positive and 

negative reference antisera controls are always appropriately added to ensure a correct 

interpretation of the results and assay consistency: RBC in absence (Figure 11A) and in 

presence of HA antigens/viruses (Figure 11B) (Klimov et al. 2012; WHO Global 

Influenza Surveillance  Network 2011). 

A No haemagglutination B Haemagglutination 

 

 

= 
 
 

 

= 
 

    

C Inhibition of haemagglutination D No inhibition of haemagglutination 

 

 

= 
 
 

 

= 
 

Figure 11: The haemagglutination inhibition assay 
A-D show possible results with controls and test samples. In the left hand part of each figure the 
molecular mechanism is shown; in the right the assay results as they appear in a plate well are 
shown. 
A. In absence of the virus/antigen, the RBCs precipitate and they appear at the bottom of the well; 
B. In presence of the virus, RBCs and virus form a lattice; C. The presence of antibodies directed 
against the virus HA head, inhibit the lattice formation and the RBCs precipitate; D. In absence of 
antibodies able to recognise the virus HA, the virus-RBCs lattice forms. 

The major advantage of the HI assay is that correlation with protection against 

influenza has been determined. Different studies have shown that HI titers >40 are 

associated with at least 50% protection from infection in human adults (R. J. Cox 2013; 
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Al-Khayatt, Jennings and Potter 1984; Potter and Oxford 1979; Hobson et al. 1972). 

However, studies performed on children have shown that higher HI titers are necessary to 

attain 50% protection (Black et al. 2011; J R Davies 1989). Even if the complexity of 

influenza antibody response in humans is difficult to summarise using cut-off values, the 

correlates are widely accepted and recognised, and this has enabled its use as the preferred 

assay in vaccine evaluation studies (European Medicines Agency 2010). 

However, as shown in different mAb studies, a disadvantage is that the HI assay 

cannot detect Ig that do not bind near the RBS, such as those binding to the HA stalk 

region (Corti et al. 2011; Ekiert et al. 2011; Ekiert et al. 2009; Sui et al. 2009; Okuno et al. 

1993) and, for this reason, it cannot be effectively used in the evaluation of vaccines that 

aim to elicit these antibodies. 

Another disadvantage is the fact that sera can contain non-specific inhibitors of 

haemagglutination that need to be inactivated using different chemical or enzymatic 

methods prior to the testing procedure (E. K. Subbarao et al. 1992). 

Furthermore, the classic HI assay is less sensitive than microneutralization (MN) in 

detecting antibodies against avian influenza viruses (Rowe et al. 1999). This becomes a 

problem when the assay is applied for evaluating H5 pre-pandemic vaccines. For this 

reason a modified HI assay that uses horse instead of turkey erythrocytes was developed 

(Stephenson et al. 2003). Horse RBCs are richer in α-2,3 sialic acid and, for this reason, 

are bound with greater efficiency by avian influenza viruses. This modified version has 

shown good correlation with the MN assay for a vast range of avian influenza viruses 

(Kayali et al. 2008). 

Even if the assay is widely used and easy to perform, problems with standardisation 

and inter-laboratory reproducibility/agreement still exist. In different collaborative studies 

(Wood et al. 2012; Stephenson et al. 2009; Stephenson et al. 2007; Wood et al. 1994) it 

was observed that the assay intra-laboratory variability is low, but the inter-laboratory 

variability is high. Nevertheless the same studies show that the use of an internal reference 

standard can improve the inter-laboratory results (Wood et al. 2012; Stephenson et al. 

2009; Stephenson et al. 2007; Wood et al. 1994). 

1.8.2 Single Radial Haemolysis Assay 

The Single Radial Haemolysis (SRH) assay (S. M. Russell, McCahon and Beare 

1975; Schild, Pereira and Chakraverty 1975) was developed as an antigen sparing 

modification of the single radial immunodiffusion test to offer an alternative to the more 

commonly used HI (Schild, Pereira and Chakraverty 1975). In this assay, virus-coated 

RBCs are mixed with agarose and guinea-pig complement to form gel immunoplates in 
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which, after cutting out circular wells, it is possible to add the de-complemented sera to be 

tested, usually undiluted. During the overnight incubation step if anti-HA antibodies are 

present, they can bind to the virus and, in the presence of complement, erythrocyte lysis 

occurs (Schild, Pereira and Chakraverty 1975). In this way the presence of the antibodies is 

indicated as as a zone of haemolysis around the well, the diameter of which is positively 

correlated to the quantity of antibody present (S. M. Russell, McCahon and Beare 1975; 

Schild, Pereira and Chakraverty 1975) (Figure 12). 

 
Figure 12: Single Radial Haemolysis reactions 
Obtained from Schild, Pereira and Chakraverty 1975. The clear areas are zones of haemolysis 
produced by the presence of HA-directed antibodies in presence of guinea pig complement and 
A/Port Chalmers/1/1973 (H3N2) virus. 

The SRH assay is robust and shows little intra-laboratory variation (S. M. Russell, 

McCahon and Beare 1975); also in inter-laboratory studies it has shown less variation than 

HI when results are expressed in the same format (e.g. surface area) (Stephenson et al. 

2009; Wood et al. 1994). Furthermore it was observed that a >25 mm2 SRH area usually 

correlates with protection (Al-Khayatt, Jennings and Potter 1984). Together with the fact 

that it does not require wild-type viruses, this makes the SRH one of the assays of choice 

for vaccine evaluation studies, especially for Influenza B since the HI assay is relatively 

insensitive compared to MN for this virus (European Medicines Agency 2010). 

Disadvantages of SRH in detecting antibodies exist: the assay detects only Ig 

subclasses (IgG1, IgG3, and IgM) that bind the complement complex (the first protein in 

the complement cascade, C1q complement protein, to be precise) (Schroeder and Cavacini 

2010) and, since Ig of class A do not bind C1q, applying this assay to study the mucosal 

IgA-mediated response is not possible (S. M. Russell, McCahon and Beare 1975). In 

addition, when performed against H5 viruses to test human sera, the samples should be 

pre-adsorbed against H1 and H3 viruses to remove possible cross-reactivity against viral 

internal proteins (Wood et al. 2001). 

1.8.3 Plaque-reduction neutralization test and microneutralization 
The plaque-reduction neutralization test (PRNT) and microneutralization (MN) are 

functional assays that directly evaluate the neutralizing antibody activity (Klimov et al. 

2012). 
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Figure 13: Overview of ELISA-MN assay 
In step 1 and 2, serially-diluted sera are pre-incubated with a fixed amount of virus, previously 
determined by virus titration. In step 3, after 1 h incubation Madin-Darby canine kidney 
cells (MDCK) are added to each well and the plate is incubated overnight. In step 4, the plate is 
washed and fixed to perform the ELISA (step 5A-B) using a primary antibody directed against NP 
and a secondary antibody conjugated with horseradish peroxidase. In step 6 the plate absorbance is 
read using a spectrophotometer after addition and incubation of an appropriated horseradish 
peroxidase substrate (usually o-phenylenediamine). 
Image adapted from Klimov et al. 2012 using ChemBioDraw Ultra 14 and Microsoft® Power Point. 
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In the PRNT, sera are diluted and incubated with virus. After incubation to permit 

antibody attachment, the antibody-virus mixture is added to a target cell monolayer. After 

1 hour incubation in which the unbound virus can enter cells, which are covered with 

agarose to block the spreading of the viral progeny that will be produced after infection. In 

this way, instead of a generalised cytopathic effect (CPE), clear lysis plaques will appear 

after removing the agarose and staining with crystal violet. The neutralization is then 

evaluated as the reduction of the number of plaques in comparison to the virus infection 

control (in absence of antibodies) (Klimov et al. 2012). 

The MN assay is performed in 96-well plates (Okuno et al. 1990). Since the 

plate-format does not permit the counting of the viral plaques, agarose is not used and the 

general viral CPE is evaluated. The neutralization activity is measured as the ability of the 

sera to reduce the CPE due to inhibition of viral entry and subsequent replication (World 

Health Organization 2002). 

A more sensitive and quantitative approach is represented by the Enzyme-Linked 

Immunosorbent Assay (ELISA)-MN (Figure 13). In this assay (described in detail in 

World Health Organization International Avian Influenza Investigative Team 2010 and 

Klimov et al. 2012) the readout is quantitative: an ELISA to measure influenza NP is 

performed, and this correlates directly with viral infection. 

Another approach (Martinez-Sobrido et al. 2010) is the use of recombinant viruses 

in the neutralization assay. This recombinant virus contains a Green Fluorescent 

Protein (GFP) gene instead of the HA gene in its genome and is produced by exploiting the 

reverse genetic system (in this case an HA-expressing plasmid is also necessary). Using 

this method it is unnecessary to use an extra detection step since the read-out is the GFP 

signal that is produced after viral infection. Furthermore the system is also safe since, 

lacking a proper HA genome segment, the recombinant virus cannot replicate in cells that 

do not express HA (Martinez-Sobrido et al. 2010). 

Neutralization assays can detect antibodies that are able to inhibit/prevent viral 

attachment and viral entry and, for this reason, they are able to detect also antibodies 

binding to the HA stalk region (Okuno et al. 1993). Thus MN should represent the assay of 

choice to evaluate in its entirety the HA-directed antibody response. However, the main 

disadvantage of MN is the use of wild-type virus, which can require Biosafety Level 3 

laboratories if HPAI or potentially pandemic strains are used. Furthermore, at the present 

time, a correlation of protection is not yet established. However, the WHO usually 

indicates the 1:80 titre as cut-off, or a 4-fold or greater increase in the neutralization titre 

between paired pre- and post-vaccination/infection as possible correlates of 

protection (European Medicines Agency 2010). 
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1.8.4 Cell-cell fusion inhibition assay 

Infection with viruses harbouring proteins with fusion activity (such as 

Paramyxoviridae viruses) is usually evaluated by observing syncytia formation (Horvath et 

al. 1992). In its native state, influenza virus HA does not possess fusion activity but, when 

exposed to acid pH, it undergoes conformational changes and acquires fusion 

activity (Skehel and Wiley 2000). Since this function is mediated by the rearrangement of 

the stalk region, it is possible to evaluate antibodies that can bind to the HA stalk and block 

this conformational change. All the broadly neutralizing mAbs have been shown to inhibit 

this step, thus this assay (or its modification) represents a direct approach to assess stalk 

antibody function activity (Dreyfus et al. 2012; Corti et al. 2011; Ekiert et al. 2011; 

Friesen et al. 2010; Ekiert et al. 2009; Sui et al. 2009; Okuno et al. 1993). 

Nevertheless, the assay (Okuno et al. 1993; J. White, Helenius and Gething 1982) 

is not easy to perform. Cells need to by transfected with HA or infected with influenza 

virus. After incubation to permit HA expression, cells are treated with 

L-tosylamido-2-phenyl ethyl chloromethyl ketone treated trypsin (TPCK-Trypsin) 3  to 

enable the HA cleavage necessary to trigger the conformational change and exposure of 

the fusion peptide. Cells are then incubated in the presence of mAbs or sera. After 

incubation, media is removed and low pH media added. Subsequentially formation of 

polykaryons (cells that possess more nuclei) is observed by microscopy; sometimes using 

tissue/cell staining can facilitate their visualisation (Vanderlinden et al. 2010; Sui et al. 

2009). The presence of polykaryons indicates the absence of antibodies that block cell-cell 

fusion. Alongside the difficulty in reproduction of the technique, another complication is 

the fact that some HA mutations have been shown to change the HA fusion pH (Cotter, Jin 

and Z. Chen 2014; Reed et al. 2009), and fusion pH variations also exist between avian 

and human viruses (Shelton et al. 2013). Different groups (M. Takeda et al. 2003; Paterson, 

C. J. Russell and Lamb 2000) have tried to simplify the fusion assay using dyes or reporter 

gene systems, however the use of the assay is still not widespread. 

1.8.5 Other functional assays 
To study HA-directed antibody responses the application of the enzymatic VLP 

assay is a valid approach (Tscherne, Manicassamy and García-Sastre 2010). This assay is 

used to evaluate viral entry and performed using VLP in which the M1 protein is modified 

as a fusion protein with the β-lactamase enzyme. In this way when these particles enter into 

cells, a signal can be detected after adding the appropriate substrate. This assay is very 

                                                
3 The L-tosylamido-2-phenyl ethyl chloromethyl ketone removes possible chymotrypsin 

activity present in the trypsin preparation 
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rapid, since the incubation time is only required to permit viral entry and it is not necessary 

to wait for the expression of reporter genes. Furthermore Tscherne, Manicassamy and 

García-Sastre also showed that VLPs can be used as surrogate antigen in a HI assay 

(Tscherne, Manicassamy and García-Sastre 2010). 

1.8.6 Haemagglutinin Enzyme-Linked Immunosorbent Assay 

ELISAs are commonly used to detect antibodies against a protein of interest. In the 

influenza field, they are applied to detect antibody responses against HA and other 

influenza proteins in sample sera. The focus here is on ELISA for HA antibody detection. 

In the most widely used approach (indirect ELISA) the HA is coated onto a 96-well 

plate. After a blocking step, dilutions of the sera to be tested are added and the plate is 

incubated. Then a labelled secondary antibody that can recognise the test antibodies is 

added. After further incubation, the assay is developed using an appropriate substrate and 

measured using a plate reader instrument. An advantage of the assay is that by using 

specific secondary antibodies it is possible to differentiate antibody subclasses and test 

other sample types (Madhun, R. J. Cox and Haaheim 1999), such as nasal washes. This is 

particularly useful for the detection of mucosal antibodies. The assay has high sensitivity 

but specificity needs to be improved. For example to distinguish between anti-head or 

anti-stalk responses other approaches, such as competitive ELISA (Corti et al. 2011; Postel 

et al. 2011; Throsby et al. 2008), need to be used. Furthermore, since ELISA detects only 

antibody binding, it cannot give information about the neutralizing activity of the 

antibodies detected (Plotkin 2008). 

1.8.7 Other binding assays 
Western blotting and immunofluorescence represent two classical methods to detect 

antibody response (Qiu et al. 1992). As with the ELISA assay, these assays can only detect 

the presence of binding antibodies and they do not give information about neutralization 

activity (Plotkin 2008). 

Western blotting can be also used in the characterisation of epitopes recognised by 

antibodies: during electrophoresis in presence of reducing agents, the two HA 

subunits (HA1 and HA2) can be separated and antibodies against HA2 and HA1 can be 

distinguished. Antibodies that recognise stalk conformational epitopes can detect only the 

full HA protein (Corti et al. 2011; Throsby et al. 2008; Okuno et al. 1993). 

Recently microarrays in which HAs of different influenza strains and subtypes are 

spotted on nitrocellulose coated slides or on activated glass surfaces were developed and 

they permit the evaluation of the breath of the antibody response (Baas et al. 2013; 

Desbien et al. 2013; Price et al. 2013; Koopmans et al. 2012). 
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1.8.8 Influenza pseudotype particles and their use in neutralization assays 

In the past decade, to overcome the issues discussed different groups have tried to 

develop new assays that possess the advantages and characteristics of classical 

neutralization assays but without the risk associated with using native viruses. For this 

purpose surrogate recombinant pseudotype particles can be used. Pseudotypes or 

pseudotype particles (pp) are replication defective viruses that harbour on their envelope a 

protein of one virus, but their core is constituted of the internal proteins of another virus, 

and in their genome a reporter gene is encoded (Figure 14) (Temperton and Wright 2009). 

The use of pp in serology for emerging and re-emerging viruses was recently 

reviewed in Mather et al. 2013. For influenza specifically, Garcia and J. C. C. Lai 2011 

have reviewed their use in detail. Here, after explaining the history of influenza pp we will 

focus on the use of influenza lentiviral pp in neutralization assays, especially the detection 

of stalk-directed neutralizing antibody responses. 

 
Figure 14: Influenza HA lentiviral pp structure 
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1.8.8.1 Influenza pseudotype particles: history 

Different viral cores are commonly used to generate influenza pp: vesicular 

stomatitis virus (VSV) (Závada and Rosenbergová 1972), gammaretroviruses (e.g. murine 

leukaemia virus, MLV) (Hatziioannou et al. 1998), and lentivirus (e.g. human 

immunodeficiency virus type-1, HIV-1) (Ferrara et al. 2013; Molesti et al. 2013; Scott et 

al. 2012; Nefkens et al. 2007). Lentiviral cores are particularly popular and useful since 

lentiviruses can integrate in the cellular genome of dividing and non-dividing cells and this 

has led to their use in gene therapy. The application of lentiviral vectors to gene therapy 

has resulted in the development of many lentiviral vectors and packaging systems with 

different safety profiles (reviewed in Sakuma, Barry and Ikeda 2012). In Figure 15 the 

different types of packaging systems and lentiviral vectors available are reported. The 

principle that has influenced the development of different generations of lentiviral system 

aimed to avoid the native virus being generated through accidental recombination 

(Schambach et al. 2013). For this reason, the packaging system viral elements and 

pathogenicity factors (if possible) were removed. When this was not possible, the gene was 

positioned in an additional plasmid (Figure 15D). For the production of lentiviral vectors 

expressing the transgene or the reporter gene of choice, viral genes were removed, just 

maintaining the viral elements necessary for vector packaging and integration (Figure 15 

(E-G)). 

Lentiviral pp are produced utilising highly transfectable cell lines (usually Human 

Embryonic Kidney (HEK) 293 cells or derivative cell lines) and introducing the plasmid 

constructs to produce the core proteins, the lentiviral genome encoding a reporter gene, and 

one encoding the envelope protein of the virus of interest. The pp generated acquire the 

cellular tropism of the virus that donated the envelope protein and the lentiviral capacity to 

integrate the genome into the target cell line (Cronin, X.-Y. Zhang and Reiser 2005). The 

reporter gene permits measurement of the virus transduction of target cells and 

quantification of the viral particles. 

Since pp bear foreign proteins in their envelope, they are a useful tool to study viral 

entry and antibody response (Garcia and J. C. C. Lai 2011; Temperton and E. Wright 

2009). Another major advantage associated with the use of pp is that, since they are 

replication defective viruses, they can be used in a low biosafety level laboratory (Garcia 

and J. C. C. Lai 2011; Temperton and Wright 2009). 
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A HIV-1 provirus 

 
 

  

B First generation packaging construct 

 
 

  

C Second generation packaging construct 

 
 

  

D Third generation packaging construct 

 
 

  

E Non self-inactivating lentiviral vector 

 
 

  

F Self-inactivating lentiviral vector 

 
 

  

G Advanced self-inactivating lentiviral vector 

  

Figure 15: Lentiviral packaging systems and vectors 
The figure is adapted from Escors et al. 2012 and Sakuma, Barry and Ikeda 2012. 
A. The genome structure of the HIV-1 provirus is reported as guide; 
B. In the first generation packaging system, the HIV-1 long terminal repeats (LTRs), composed of 
U3, R and U5, are removed. A strong constitutive promoter sequence (indicated by the sky blue 
arrow), and a polyadenylation signal (polyA) are introduced instead to permit the expression of the 
genes. The packaging signal Ψ is mutated, and the envelope gene deleted with the exception of the 
part of the gene encoding rev, tat, and vpu. The rev response element (RRE), which permits nuclear 
export, is also maintained; 
C. In the second generation the accessory proteins encoded by nef, vpr, and vpu genes are removed. 
D. In the third generation, tat is removed. Using an additional plasmid rev is expressed. The RRE is 
maintained in the gagpol-expressing plasmid; 
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E. In contrast to the packaging constructs, in the lentiviral vector, the LTRs and the Ψ are 
maintained, whilst the HIV-1 encoding genes are removed to be substituted by a transgene or 
reporter gene under the control of a promoter; 
F. In self-inactivating lentiviral vectors the enhancer/promoter sequence in the 3’ U3 is deleted as 
well as the 5’ U3. It is thus necessary to add a strong constitutive promoter, to permit the 
expression of the lentiviral vector in the producer cell line. Subsequent to the deletion of the 3’ U3 
enhancer/promoter sequence, when integrating into the target cell line the lentiviral vector will not 
possess a functional U3 at the 5’ end, since the 3’ end region is copied at the 5’ end during 
integration. This increases the safety of the construct by reducing the frequency of vector 
mobilisation; 
G. Self-inactivating lentiviral vectors can be further modified to include enhancer elements for 
nuclear import and expression (purple). 

1.8.8.2 Pseudotype particle neutralization assay 

Pp can be used as surrogate antigens for MN assays. Serial dilutions of sera are 

incubated with pp. The mixture is subsequently tested for transduction activity on target 

cells. If the pp are not neutralized they will enter into cells, the viral genome will integrate 

and the reporter gene will be expressed. If neutralizing antibodies are present in test sera, 

the viral entry is reduced and the reporter gene signal will be lower. In other words, 

neutralization is indicated by absence of reporter gene signal (Figure 16). 

Different groups have shown good correlation between the pseudotype particle 

neutralization (pp-NT) assay and the other serological assays described here using sera of 

different origins (Temperton et al. 2007; Molesti et al. 2013; Scott et al. 2012; Garcia et al. 

2010; W. Wang, Xie, et al. 2010; Alberini et al. 2009; Garcia et al. 2009; Nefkens et al. 

2007; Temperton et al. 2007). Furthermore, Alberini et al. have used the correlation 

between an H5 pp-NT assay and MN to infer a possible cut-off titre associated with 

protection in the pp-NT assay, which is 1:357. Similar studies are yet to be performed 

using other influenza pp strains. 

As shown in different studies the pp-NT assay shows higher sensitivity in detecting 

HA stalk-directed antibodies, probably due to the lower HA density on pp surface in 

comparison with native influenza virus (Corti et al. 2011; Corti et al. 2010), thus removing 

some steric hindrance to antibody access to the stalk. 
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A 

 
B 

 
Figure 16: Pseudotype particle neutralization assay 
Images were made using ChemBioDraw Ultra 14 and Power Point. 
A. The protocol of a pp-NT assay performed using HA pp expressing firefly luciferase is 
shown (see Section 2.3.4 for detailed description); B. Representation of the principle at the basis of 
pp-NT assay. 
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1.8.8.3 Post-attachment pseudotype particle neutralization assay 

Using pp as surrogate viruses Oh et al. 2010 have modified the post-attachment 

neutralization assay for influenza developed by Edwards and Dimmock 2001. 

In this assay pp are incubated at 4°C with cells to permit the synchronisation of the 

virus binding to the cell surface and to block viral endocytosis. Diluted sera are then added, 

and following another 4°C incubation, plates are transferred to 37°C to permit transduction 

(Oh et al. 2010). 

In the post-attachment pp-NT, neutralization is observed only when the antibody is 

blocking the endocytosis step and subsequent HA conformational changes necessary for 

virus-endosome fusion (Oh et al. 2010; Edwards and Dimmock 2001). Antibodies that 

have neutralizing activity through impeding viral attachment will produce negative results 

in this assay. For this reason the assay is useful for evaluation of stalk-directed antibodies 

that do not inhibit viral attachment (Oh et al. 2010). 

1.8.8.4 Chimeric HA pseudotype particle neutralization assay 

To study the antibody response directed against the HA stalk, the Palese group has 

developed pp and influenza viruses exhibiting a chimeric HA on their envelope. This 

chimeric HA has stalk region and globular head deriving from two different HA 

subtypes (or strains) (Hai et al. 2012). To create this chimeric construct they have 

exploited the presence in the influenza A HA of two cysteines, Cys52 and Cys277, that are 

engaged in a disulphide bond and separate the head and stalk regions (Figure 4C) (Hai et 

al. 2012). In fact the HA gene portion between the codons of Cys52 and Cys277 encodes 

for the amino acids that constitute the HA globular head and, for this reason it was possible 

using DNA recombinant technology to exchange the HA head of one virus with the HA 

head of another influenza strain (Hai et al. 2012). Additionally the same cysteines have 

been used to construct headless HAs used as a vaccine to induce stalk-directed antibodies 

(Steel et al. 2010). 

The concept behind the idea of using these modified HAs to detect exclusively HA 

stalk-directed antibodies is that since the antibody response is principally directed against 

the HA head, testing sera against an HA that has a different head will permit easy detection 

of antibodies against the more conserved stalk region instead of the antibodies generated 

against the original HA globular head since they will not recognise an antigenically 

unrelated head. Furthermore these chimeric HAs can also be used as candidate vaccines to 

elicit stalk-directed antibodies (Krammer et al. 2013; Margine, Krammer, et al. 2013). 

Table 2 lists the reported chimeric HA and their use in the pp system, 

neutralization assays, ELISA, and as vaccine candidates. 
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Table 2: Chimeric HAs described in the current literature 
Head Stalk References 

A/California/04/2009 H1 A/Puerto Rico/8/34 H1 (Hai et al. 2012) 

A/Vietnam/1203/2004 H5 A/Puerto Rico/8/34 H1 

(Hai et al. 2012) 
(Krammer et al. 2012) 

(Goff, Eggink, et al. 2013) 
(Krammer et al. 2013) 

(M. S. Miller, Tsibane, et al. 2013) 
(Krammer, Hai, et al. 2014) 

(Ryder et al. 2014) 
A/Singapore/1-MA12E/1957 H2 A/Puerto Rico/8/34 H1 (Goff et al. 2015) 

H9 A/Puerto Rico/8/34 H1 

(Pica et al. 2012) 
(Goff, Eggink, et al. 2013) 

(Krammer et al. 2013) 
(Krammer, Hai, et al. 2014) 
(Nachbagauer et al. 2014) 

A/mallard/Sweden/81/02 H6 A/Puerto Rico/8/34 H1 

(Krammer et al. 2012) 
(Pica et al. 2012) 

(Goff, Eggink, et al. 2013) 
(Krammer et al. 2013) 

(M. S. Miller, Gardner, et al. 2013) 
(M. S. Miller, Tsibane, et al. 2013) 

(Sangster et al. 2013) 
(Krammer, Hai, et al. 2014) 
(Nachbagauer et al. 2014) 

(Ryder et al. 2014) 

A/mallard/Alberta/24/2001 H7 A/Perth/16/2009 
H3 

(Hai et al. 2012) 
(Margine, Hai, et al. 2013) 

(Margine, Krammer, et al. 2013) 
(Goff, Krammer, et al. 2013) 

(Klausberger et al. 2014) 
(Krammer, Albrecht, et al. 2014) 

A/Shanghai/1/13 H7 A/Perth/16/2009  
H3 (G. S. Tan et al. 2014) 

A/Vietnam/1203/2004 H5 A/Perth/16/2009  
H3 

(Hai et al. 2012) 
(Margine, Krammer, et al. 2013) 

(M. S. Miller, Gardner, et al. 2013) 
(Krammer, Margine, et al. 2014) 

(G. S. Tan et al. 2014) 

A/duck/Czech/56 H4 A/Perth/16/2009  
H3 

(Margine, Hai, et al. 2013) 
(Margine, Krammer, et al. 2013) 
(Krammer, Margine, et al. 2014) 

 

In different studies (M. S. Miller, Gardner, et al. 2013; Hai et al. 2012) the chimeric 

HA, even if not applied in the pp platform but in ELISA, has been demonstrated to be a 

useful approach to study and detect exclusively cross-reactive antibody responses directed 

against the stalk. 
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Thesis aims and structure 

The primary purpose of this study is to assess the presence of influenza 

heterosubtypic neutralizing antibody in the human population before and after seasonal 

vaccination. Since classical serological assays are relatively insensitive for the detection of 

antibodies against the HA-stalk that are believed to be one of the main effectors of the 

heterosubtypic neutralizing immunity, pp-NT assays were exploited. 

Since only H1, H3, H5, and H7 influenza pp were described in the literature at the 

start of the study, it was necessary firstly to generate pp harbouring different HA 

subtypes (Chapter 3), and then to evaluate their performance as surrogate antigens in 

neutralization and to establish appropriate controls (Chapter 4). Once pp-NT assays have 

been established, they were be used to assess the human antibody responses directed 

against human and non-human influenza virus (Chapter 5). The use of chimeric HA pp was 

also exploited to be able to discriminate the presence of HA stalk-directed antibodies. 

Lastly (Chapter 6), influenza B HA pp were also generated and investigated, to 

establish if they could be used in pp-NT and if they represented a tool to study the 

heterotypic influenza neutralizing response. 
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CHAPTER 2  
Materials and Methods 

Detailed methodologies will be reported within each results chapter, whereas in this 

chapter common basic molecular biology, cell culture and protein detection techniques, 

reaction theory, reagents, and materials will be described. Furthermore, standard influenza 

pp protocols and reagents will be reported. 

Throughout this thesis, when available, catalogue numbers (cat.no.) of materials 

and reagents used will be presented the first time they are mentioned, unless necessary for 

clarity. 

2.1 Molecular biology reagents, materials and techniques 

2.1.1 Plasmids 

pI.18 (Figure 17) and phCMV1 plasmids (Figure 18) were used to clone HA 

genes (Chapters 3 and 6) used in this thesis. 

 
Figure 17: Plasmid map of pI.18 
The plasmid map was designed with DNA Dynamo Sequence Analysis Software (Blue Tractor 
Software Ltd) with the sequence provided by Dr. Eleonora Molesti (Universities of Greenwich and 
Kent, Medway, UK). The expression of genes is permitted by the presence of the human 
cytomegalovirus immediate-early promoter (hCMV IE Pr) with the enhancer activity of the hCMV 
Intron A. The terminator sequence permits polyadenylation of the mRNA enhancing stability. The 
restriction enzyme sites in the multiple cloning site (MCS), in which the gene to be expressed 
needs to be cloned, are shown in red. In dark khaky yellow the pUC origin of replication (ori) 
necessary for plasmid amplification in bacterial cells is highlighted. β-lactamase, which mediates 
the resistance to ampicillin, is encoded by the ampicillin gene (green) driven by its own 
promoter (Amp Pr). Annealing region of sequencing primers (Table 3) are also reported. 
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pI.18 is an high-copy ampicillin resistant pUC-based plasmid that permits robust 

mammalian gene expression in various cell types by virtue of the human 

cytomegalovirus (hCMV) immediate-early gene promoter and the enhancer 

hCMV Intron A (R. J. Cox et al. 2002). 

phCMV1 (Genlantis) is a 4.2 kb constitutive mammalian gene expression vector 

driven by a modified hCMV immediate-early promoter and enhancer/intron. Additionally, 

it possesses kanamycin and neomycin resistance that allows selection of plasmid-positive 

prokaryotic and eukaryotic cells, respectively. 

 
Figure 18: Plasmid map of phCMV1 
The plasmid map was designed with DNA Dynamo Sequence Analysis Software (Blue Tractor 
Software Ltd) with the sequence downloaded from the Addgene 
database (http://www.addgene.org/). The modified hCMV promoter and the Simian Vacuolating 
virus 40 (SV40) polyadenylation signal (pA) permit the expression of the gene that is cloned in the 
multicloning site. The restriction enzyme sites in the multicloning site are reported in red. In dark 
khaky yellow is highlighted the pUC ori necessary for plasmid amplification in bacterial cells. The 
resistance to kanamycin and neomycin is encoded by the respective genes (green) under control of 
the ampicillin promoter (for bacterial expression) and the SV40 promoter (SV40 Pr, for mammilian 
cell expression). The expression of the resistance gene in the mammalian cell lines is also permitted 
by the polyadenylation signal of the of human Herpes Simplex Virus (HSV) type 1 thymidine 
kinase. Annealing regions of sequencing primers (Table 3) are also reported. 

2.1.2 Antibiotic stocks, liquid and solid media 
Ampicillin sodium salt (Fisher Scientific, cat.no. BP1760) and kanamycin 

sulphate (Fisher Scientific, cat.no. BP906) were dissolved in UltraPure™ DNase/RNase 

Free Distilled Water (Gibco®, Invitrogen™, cat.no. 10977-049) to produce a stock 

concentration of 100 mg/ml and 10 mg/ml respectively, and filtered through 0.22 µm 

filter (Merk Millipore®, cat.no. SLGP033RS). Ampicillin was used in a working solution 
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of 100 µg/ml in liquid medium and 200 µg/ml in solid medium, whereas kanamycin was 

always used at 50 µg/ml. 

Ready-to-dissolve Luria Bertani (LB) Agar (Fisher Scientific, cat.no. BP1425, or 

Sigma-Aldrich, cat.no. L3147) and LB Broth (Fisher Scientific, cat.no. BP1426) were used 

for preparing bacterial liquid and solid media, dissolved in double distilled water following 

manufacturer’s instruction (LB Agar: 16 g in 400 ml water; LB Broth: 12.5 g in 500 ml 

water) and autoclaved. 

Super Optimal Broth with catabolite repression (SOC; Invitrogen™, cat.no. 

15544-034) containing 2% tryptone (w/v), 0.5% yeast extract (w/v), 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose was used as recovery 

medium in bacterial transformation to maximise the efficiency of the procedure. 

2.1.3 Transformation of chemically induced competent Escherichia coli cells 
Subcloning efficiency chemically induced competent Escherichia coli DH5α 

cells (Invitrogen™, cat.no. 18265-017) were used in a classic heat-shock transformation 

protocol when transformation was necessary for plasmid amplification or cloning 

purposes (ligation reactions). 

An aliquot containing 12.5 µl or 25 µl of DH5α competent cells was defrosted 

from -80°C on ice. Then 1-2.5 µl (0.5-10 ng) of DNA was added to the cells that were 

further incubated on ice for 20 min. The aliquot was heat-shocked at 42°C in a water 

bath (Jouan, cat.no. 41093014) or in an AccuBlock™ Digital Dry Bath (Labnet 

International, cat.no. D1100-230 V) for 20 seconds and then placed for 2 min on ice. 

Subsequentially, 200-400 µl of SOC medium was added before recovery incubation. After 

1 h incubation in a New Brunswick™ Scientific C25KC Incubator Shaker (Eppendorf) at 

37°C shaking at 225 revolutions per minute (rpm), 100-200 µl was plated on LB Agar 

plates with the appropriate antibiotic selection and incubated in a laboratory 

incubator (Genlab, cat.no. INC/75) overnight at 37°C. 

2.1.4 Isolation of plasmid DNA from bacterial culture 
Amplification and purification of plasmid DNA for further analysis, sequencing or 

transfection of eukaryotic cells was performed using the commercial kits QIAprep Spin 

Miniprep Kit (QIAGEN, cat.no. 27104 or 27106) and HiSpeed Plasmid Midi 

Kit (QIAGEN, cat.no. 12643) that use a modified alkaline lysis with sodium dodecyl 

sulphate (SDS) method. Plasmid isolation was performed following manufacturer’s 

instructions (QIAGEN 2012b; QIAGEN 2012a) and the protocol in brief is reported here. 

For miniprep scale, a single colony transformed with the high-copy plasmid of 

interest was inoculated in 5 ml LB Broth with the addition of the appropriate antibiotic 
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solution and incubated overnight at 37°C, with shaking at 225 rpm. For low-copy plasmids 

a starting culture of 10 ml was used instead. 16 h later, the culture was pelleted using a 

table-top microcentrifuge (Thermo Fisher Scientific, cat.no. 10524723) for 3 min at 

6800 gravity (g) or a standard Sorvall™ Legend™ RT centrifuge (Thermo Fisher 

Scientific, cat.no. 75004373) for 10 min at 2500 g. The pellet was then resuspended in 

250 µl of Buffer P1 containing 100 µg/ml RNase A to remove the RNA during lysis. Next, 

250 µl of a sodium hydroxide and SDS containing solution (Buffer P2) was added and 

incubated for 5 min before 350 µl of neutralization buffer (Buffer N3) was added. The 

neutralized and adjusted to high-salt binding conditions lysate was cleared via 

centrifugation for 10 min at 17000 g. Supernatant was added to the QIAprep Spin Column 

containing a silica membrane, which binds exclusively to DNA, and centrifuged for 1 min 

at 17000 g. Centrifugation flow-through was discarded and 750 µl of PE buffer containing 

ethanol was added to ensure salt removal. After 1 min of 17000 g centrifugation and 

discarding of the flow-through, an additional 2 min centrifugation at the same speed was 

performed to remove possible ethanol residue. Plasmid DNA was then eluted from the 

column using 50-100 µl of DNase/RNase free water previously warmed at 70°C, 

incubating for 1 min and centrifuged to elute in a clean 1.5 ml microtube (Greiner 

Bio-One, cat.no. 616201) at 17000 g for 1 min. 

When a higher quantity of plasmid than the one obtained via miniprep protocol was 

necessary a midiprep scale was used instead. A single colony was inoculated into 5 ml LB 

Broth containing the appropriate antibiotic for plasmid selection and incubated for 8 h at 

37°C shaking at 225 rpm. Then 100 µl of culture was sub-inoculated in 100 ml of LB 

Broth with antibiotic and incubated overnight at 37°C with shaking at 225 rpm. Growth 

culture was then pelleted in a Sorvall™ Legend™ RT centrifuge. After pelleting and 

resuspension with Buffer P1, cells were lysed with Buffer P2, then immediately neutralized 

with chilled Buffer P3. After 10 min incubation in a QIAfilter Cartridge, the lysate was 

cleared into a HiSpeed Midi tip, previously equilibrated with Buffer QBT. Once the 

cleared lysate entered the HiSpeed tip, washing with QC Buffer was performed, then DNA 

eluted using QF Buffer. Eluate containing DNA was precipitated using isopropanol in the 

QIAprecipitator. Using again the QIAprecipitator, DNA was washed with 70% ethanol and 

then eluted with pre-warmed TE Buffer. 

2.1.5 Determination of nucleic acid concentration 
DNA concentration and purity (260 nm/280 nm absorbance ratio) was measured by 

ultraviolet spectrophotometry using a NanoDrop™ 2000 Spectrophotometer (NanoDrop™ 
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Products, Thermo Fisher Scientific) following manufacturer’s instruction (Thermo Fisher 

Scientific 2009). 

2.1.6 Oligonucleotide primers for molecular biology applications and 

sequencing 

Primers were ordered from Eurofins MWG Operon or Invitrogen™ desalted in a 

25 nmol synthesis scale and were delivered lyophilised. They were then reconstituted in 

DNase/RNase free water to a final concentration of 100 pmol/µl. When necessary primers 

were further diluted in DNase/RNase free water. 

2.1.7 Sanger sequencing 
Plasmids were sent for Sanger sequencing at GATC Biotech AG using the 

SUPREMErun™ sequencing or LIGHTrun™ sequencing options. For SUPREMErun™ 

sequencing 20 µl of 80 ng/µl plasmid were sent together with 20 µl (at 10 pmol/µl) of 

appropriate sequencing primers (with the exception of T7 that was a free universal primer 

offered at GATC Biotech AG), reported in Table 3. For LIGHTrun™ 5 µl of 80 ng/µl 

plasmid were mixed with an equal volume of 5 pmol/µl forward (Fw) or reverse (Rev) 

primer. 

Table 3: Sequencing primer names, sequences, and descriptions 
Nucleotide positions are referred to the 1 reported on the maps in Figure 17 and Figure 18. 

Primer name Primer sequence (5’ to 3’) Primer description 

pI.18 Fw GGTGGAGGGCAGTGTAGTCT 

Permits sequencing the gene cloned 
into the MCS of pI.18 plasmid in 
Fw direction, annealing at position 
1134-1153. 

pI.18 Rev GCGAGGATGTCACCTGATGG 

Permits sequencing the gene cloned 
into the MCS of pI.18 plasmid in 
Rev orientation, annealing at 
position 1430-1449. 

Int_pI.18 Fw TTCTGCAGTCACCGTCCTTGACA Anneals upstream of the MCS, 
closer to the insert than pI.18 Fw. 

Int_pI.18 Rev GTATACAATAGTGACGTGGG Anneals downstream of the MCS, 
closer to the insert than pI.18 Rev. 

T7 TAATACGACTCACTATAGGG 

Anneals to phCMV1 vector at 
position (759-778), permitting 
sequencing of the gene cloned into 
the MCS in Fw orientation. 

phCMV1 Rev TATGTTTCAGGTTCAGGG 

Anneals to phCMV1 vector at 
position (986-1003), permitting 
sequencing of the gene cloned into 
the MCS in Rev orientation. 
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Resulting electropherograms were checked and edited using 4Peaks 

software (Nucleobytes.com); nucleotide and amino acid sequences were then aligned with 

the reference sequences using Jalview (Waterhouse et al. 2009) and the MUSCLE 

algorithm (Edgar 2004). 

2.1.8 Polymerase chain reactions 
Polymerase chain reaction (PCR) was used to amplify HA genes to be cloned into 

expression plasmids. Initially PCR using AccuPrime™ Pfx SuperMix was performed, 

however after problems with DNA amplification, such as low yield, it was decided to 

perform gradient PCRs. 

Amplification of the DNA template was always verified by DNA gel 

electrophoresis before proceeding to other steps. 

2.1.8.1 Polymerase chain reaction using AccuPrime™ Pfx SuperMix 

For cloning it is necessary that the gene is amplified with maximum sequence 

accuracy and, for this reason, high-fidelity DNA polymerases with proofreading 

activity (3’ end to 5’ end exonuclease activity) were used. AccuPrime™ Pfx 

SuperMix (Invitrogen™, cat.no. 12344-040) is a ready-to-use mixture of DNA 

polymerase, accessory proteins, salts, magnesium, and deoxyribonucleotides (dNTPs) and 

has fidelity 26 times higher than Taq DNA polymerase, so it is suitable for amplification of 

genes that need to be cloned, expressed, and functionally studied. 

To perform the amplification, a 25 µl reaction was set-up by adding to 22.5 µl of 

AccuPrime™ Pfx SuperMix, 2 µl of DNA template, and 0.3 µl of each Fw and Rev 

primers to have a final primer concentration of 200 nM. Then 0.2 ml microtubes (VWR 

International Ltd, cat.no. 732-0548) were transferred to the Mastercycler 

ep Gradient S (Eppendorf) or to the Mastercycler ep Gradient (Eppendorf) thermal cycler, 

and the PCR program reported in Table 4 was run. 

Table 4: PCR program used with AccuPrime™ Pfx SuperMix 

Cycles Temperature Time Step 

 95°C 5 min Initial denaturation 

35 cycles 

95°C 15 seconds Denaturation 

51°C 30 seconds Annealing 

68°C 2 min Extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 
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2.1.8.2 Gradient polymerase chain reaction using PfuUltra High-Fidelity DNA 

Polymerases 

To achieve high levels of specific and sensitive amplification it is important to use 

an appropriate annealing temperature, which is usually 3-5°C less than the primer melting 

temperature. There are different formulae based on the nucleotide content that can be used 

to calculate the melting temperature of the primer sequence that anneal to the template; 

however other factors, such as the possibility of secondary structure in the sequences and 

primer-dimer formation between the Fw and Rev primers, should be considered when an 

annealing temperature is chosen. For these reasons, evaluation of appropriate annealing 

temperature using gradient PCR was employed. This method permits the testing of 

different annealing conditions simultaneously to determine empirically the best annealing 

temperature to have high levels of DNA amplification. 

For gradient PCRs, PfuUltra High-Fidelity DNA Polymerase (Agilent 

Technologies, cat.no. 600382) was used and reactions were performed according to 

manufacturer’s instruction: a 200 µl mix (50 µl/reaction) was prepared with 20 µl of 10X 

PfuUltra High-Fidelity reaction buffer containing Mg2+ (Agilent Technologies, cat.no. 

600382), dNTPs (Thermo Fisher Scientific, cat.no. R0181) so that each was at a final 

concentration of 250 µM, 400 ng of Fw and Rev primers, complementary DNA (cDNA) 

template or DNA template (~10 ng), and 4 µL PfuUltra High-Fidelity DNA 

Polymerases (2.5 U/reaction). The mix was divided into four PCR microtubes that were 

positioned in columns 1, 4, 8, and 12 of a Mastercycler ep Gradient S or Mastercycler 

ep Gradient thermal cycler before running one of the gradient PCR protocols reported in 

Table 5 and Table 6. 

Table 5: Gradient PCR program with annealing temperature from 48°C to 55°C. 

Cycles Temperature Time Step 

 95°C 2 min Initial denaturation 

30 cycles 

95°C 30 seconds Denaturation 

48°C-55°C* 30 seconds Annealing 

72°C 2 min Extension 

 72°C 10 min Final extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 

*Annealing temperatures are different in each thermocycler column: in column 1 48.2°C, in 
column 4 49.3°C,  in column 8 52.6°C, in column 12 54.8°C 
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Table 6: Gradient PCR program with annealing temperature from 53°C to 62°C 

Cycles Temperature Time Step 

 95°C 2 min Initial denaturation 

30 cycles 

95°C 30 seconds Denaturation 

53°C-62°C* 30 seconds Annealing 

72°C 2 min Extension 

 72°C 10 min Final extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 

*Annealing temperatures are different in each thermocycler column: in column 1 53°C, in 
column 4 54.5°C, in column 8 59°C, in column 12 61.8°C 

2.1.9 DNA digestion using restriction endonucleases 
DNA (plasmid and PCR product) digestions using restriction endonucleases were 

performed for preparative (cloning) and analytical purposes. 

In general, for cloning purposes double digestions were set-up when the two 

restriction endonucleases (Thermo Fisher Scientific) to be used had 100% activity in a 

common buffer (Thermo Fisher Scientific); otherwise sequential digestions in the enzyme 

appropriate buffer (Thermo Fisher Scientific), with reaction purification (Section 2.1.13) 

between the first and the second reaction, were performed. Usually 800-1000 ng of 

plasmids or 500-800 ng of purified PCR products were digested. For the majority of the 

reactions, 10 U of each restriction enzyme was used; in sequential digestions, when the 

second reaction volume was bigger than 30 µl, 15 U of restriction enzyme was usually 

used. Since the restriction endonucleases used are suspended in a glycerol-containing 

buffer, to maintain the percentage of glycerol at less than or equal to 10% of the 

reaction (manufacturer’s instruction) volume, single digestions were usually set-up in a 

total volume of 10 µl and double digestion in 20 µl, unless the low DNA concentration did 

not permit reactions in that volume. Reactions were incubated at 37°C in a water bath for 

at least 2 h, but never more than 3 h. Digestion reactions performed for cloning procedures 

were usually purified (Section 2.1.13) or subjected to preparative gel electrophoresis and 

DNA fragment extraction from agars gel (Sections 2.1.12 and 2.1.14). 

For analytical purposes, such as screening of plasmid DNA, digestions were 

performed using FastDigest® enzymes (Thermo Fisher Scientific) when possible: usually 

400-600 ng of plasmid DNA was digested in a total volume of 20 µl or 10 µl depending if 

double or single digestion was being performed. The universal FastDigest® Green 

Buffer (Thermo Fisher Scientific, cat.no. B72) and 10 U of FastDigest® enzymes were 
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used for these reactions. Reactions were incubated at 37°C for 20 min and subsequently 

run on agarose gel (Section 2.1.12). 

2.1.10 DNA ligation 
DNA ligation was used to ligate pI.18 or phCMV1 vector to the HA gene of 

interest. Reactions were set-up in the lowest volume possible, usually 10 µl, using 5 U of 

T4 DNA Ligase (Thermo Fisher Scientific, cat.no. EL0011) in its buffer (Thermo Fisher 

Scientific, cat.no. B69) and a vector to insert ratio of 1:3. A ligation control reaction (no 

insert) was also set-up to check the presence of undigested or re-ligated vector. Reactions 

were usually incubated for 68-72 h at room-temperature before being transformed into 

chemically competent DH5α E. coli. 

2.1.11 Colony polymerase chain reaction for recombinant clone screening 
Colony PCR is a fast and high-throughput method to discriminate if a bacterial 

transformant possesses plasmid DNA with certain characteristics (e.g. presence of a gene). 

Colony PCR amplification of a specific DNA sequence (in this case the MCS) permits 

identification of bacterial clones that possess a plasmid with an insert or not after gene 

cloning. 

For colony PCR, each bacterial colony to be tested was diluted in 20 µl of 

DNase/RNase free water before streaking the colony on a grid on an appropriate LB Agar 

plate. Negative (colony with empty vector) and positive (colony with vector and insert) 

controls are inserted if available. Furthermore an additional control consisting of 

DNase/RNase free water was also added to evaluate if carry-over of DNA was present 

during the procedure. After a lysis step at 94°C for 3 min in a thermal cycler, 5 µl of each 

colony suspension was transferred to a PCR microtube in which a 20 µl of PCR mix was 

present. For the PCR mix, a stock was prepared and aliquoted into PCR microtubes; the 

stock mix was prepared calculating the samples to be screened and for each reaction 

adding 12.5 µl of DreamTaq Green PCR Master Mix (Thermo Fisher Scientific, cat.no. 

K1081 or K1082), 0.1 µl of each Fw and Rev primers (final concentration 400 nM). 

Usually vector specific sequencing primers (Table 3) were used since they anneal 

upstream and downstream of the MCS in which the gene of interest is cloned; however, in 

certain cases, gene-specific primers were used instead. Amplification of the target 

sequence was verified through analytical DNA gel electrophoresis, after the colony PCR 

program (Table 7). 
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Table 7: Colony PCR program 

Cycles Temperature Time Step 

 94°C 2 min Initial denaturation 

30 cycles 

94°C 30 seconds Denaturation 

51°C 1 min Annealing 

72°C 2 min Extension 

 72°C 5 min Final extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 

 

2.1.12 DNA gel electrophoresis 
DNA gel electrophoresis was performed principally for analytical purposes. Since 

analysed DNA usually ranged between 1 kb and 6 kb, 1% (w/v) agarose (Fisher Scientific, 

cat.no. BP1356) gel in 0.5X Tris-Acetate-Ethylenediaminetetraacetic acid (EDTA) 

buffer (TAE; 50X stock solution, Alpha Laboratories, cat.no. EL0077; or Fisher Scientific, 

cat.no. BP1332) was used as matrix. Ethidium bromide (Sigma-Aldrich, cat.no. 46067), a 

dye that intercalates between double-strand DNA and fluoresces orange-red when it 

adsorbs ultraviolet light, was added to the agarose gel to give a final concentration of 

0.1 µg/ml. 

Samples were loaded on the gel after addition of loading dyes: for PCR products, 

4 µl or 5 µl was loaded after addition of 1 µl of 5X Loading Dye (QIAGEN, 

cat.no. 239901) or 6X DNA Loading Dye (Thermo Fisher Scientific, cat.no. R0611), 

respectively. Colony PCRs were performed using DreamTaq Green PCR Master Mix that 

contains tracking dyes and therefore were directly loaded onto the gel. When fast-digestion 

reactions were loaded on gel, FastDigest® Green Buffer, which permits direct loading, was 

used. At least one molecular weight marker/ladder was used per gel: GeneRuler 1 kb DNA 

Ladder Mix (Thermo Fisher Scientific, cat.no. SM0311), Fisher BioReagents™ 

exACTGene 1 kb Plus DNA Ladder (Fisher Scientific, cat.no. BP2579100) or 1 kb DNA 

Ladder (New England Biolabs, cat.no. N3232S). 

When preparative gels were necessary (for subsequent DNA gel extraction), 

1% low-melting agarose (Melford Laboratories Ltd, cat.no. L1204) or 1% UltraPure™ 

Agarose (Invitrogen™, cat.no. 6500-500) gels in 0.5X TAE were used. Samples for 

preparative gels were loaded on the gel using 6X DNA Loading Dye (Thermo Fisher 

Scientific). 
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Agarose gels were run in 0.5X TAE buffer using a power supply (Consort, cat.no. 

EV231) and electrophoretic chambers (SCIE-PLAS, cat.no. SVG-SYS Vari-gel MINI; or 

PEQLAB Biotechnologie GmbH, cat.no. 40-124 or 40-0911; or Sigma-Aldrich, cat.no. 

EP1101); analytical gels were run at 70-100 V for 1-2 h depending the voltage used, the 

gel length, resolution to be achieved and monitoring loading dye migration; preparative 

gels were run at 40 V to avoid over-heating. 

A trans illuminator (UVItec, cat.no. BXT-26.MX) was used to observe gels and 

excise DNA bands; a G:Box Chemi XT Chemi XT Imaging System (Syngene) and 

GeneSnap software (Syngene) was used to acquire images. 

2.1.13 Polymerase chain reaction and restriction digestion purification 

To purify PCR and digestion reactions QIAquick PCR purification kit (QIAGEN, 

cat.no. 28104) was used following the manufacturer’s instruction (QIAGEN 2012c). 

Briefly, 5 volumes of Buffer PB were added to the reaction, then 10 µl of 3 M sodium 

acetate pH 5.0 was added to permit acidification of the mixture since binding is optimal at 

pH 7.5. The mixture was then centrifuged in a QIAquick column at 17000 g for 1 min to 

permit specific DNA adsorption to the silica membrane. Flow-through was discarded and 

750 µl of ethanol-containing Buffer PE was used to remove salt contaminant through 

another centrifugation at the same speed. Finally, after an additional 2 min centrifugation 

to remove ethanol residue, DNA was eluted from the column adding 30 µl of 

70°C DNase/RNase free water, incubating for 1 min, and centrifuging into a clean 1.5 ml 

microtube for 1 min at 17000 g. 

2.1.14 DNA fragment extraction from agarose gel 
When it was necessary to gel purify DNA fragments, preparative agarose gel 

electrophoresis was performed, and the band of interest was excised from the gel using a 

scalpel. The DNA was extracted from the agarose gel slice using the QIAquick Gel 

Extraction Kit (QIAGEN, cat.no. 28704) or MinElute Gel Extraction Kit (QIAGEN, 

cat.no. 28604). Briefly, 3 volumes of Buffer QG, that permit gel melting, were added to 1 

volume of gel slice and incubated at 50°C for 10 min with constant mixing to permit 

complete gel dissolution; pH was then adjusted to 7.5 using 3 M sodium acetate pH 5.0, 

and one volume of isopropanol (Fisher Scientific, cat.no. P/7500/17) was added. Then the 

mixture was loaded on a QIAquick or MiniElute spin column for 1 min with 17000 g 

centrifugation. Two centrifugation-wash steps were performed with Buffer QG and Buffer 

PE to remove traces of agarose and salt. After centrifugation at 17000 g for 2 min to 

remove ethanol residues, 30 µl or 10 µl of 70°C DNase/RNase free water was added to the 

QIAquick or MiniElute spin column. The column was incubated 1 min at room 
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temperature (RT) before proceeding to a final centrifugation step to elute DNA into a clean 

1.5 ml microtube. 

2.1.15 Site-directed mutagenesis of plasmid DNA 
When it was necessary to correct a PCR-mediated nucleotide sequence mutation of 

a gene or for studies to analyse the role of a DNA sequence, site-directed mutagenesis was 

performed. Two different methods based on the same principle were used for this purpose: 

the first was a commercial QuikChange Lightning Site-direct mutagenesis kit (Agilent 

Technologies, cat.no. 210518); the second was an in-house protocol. 

2.1.15.1 Site-directed mutagenesis with QuikChange Lightning Site-directed 

mutagenesis kit 

For the QuikChange Lightning site-directed mutagenesis the manufacturer’s 

protocol (Agilent Technologies n.d.), with slight modification was followed. Briefly, two 

reverse-complementary oligonucleotide primers that contain the desired mutation were 

designed using the QuikChange Primer Design web-tool (Agilent Technologies). These 

two primers (125 ng each) were then used in a 50 µl PCR reaction together with 140 ng of 

the plasmid DNA to be mutated, 5 µl of specific reaction buffer, 1.5 µl of QuikSolution 

reagent (an Agilent Technologies proprietary salt solution), and DNase/RNase free water. 

To this reaction, 1 µl of QuikChange Lightning Enzyme (an Agilent Technologies 

proprietary Pfu-based polymerase blend) was added. Subsequently, the PCR program in 

Table 8 was run on the Mastercycler ep Gradient S or the Mastercycler ep Gradient 

thermal cycler. 

During the amplification a mutation-containing double-nicked plasmid DNA is 

synthesised. The nick in this plasmid product is repaired after transformation in E. coli 

bacterial cells. However, before proceeding to the bacterial transformation, a step to 

eliminate the template DNA is required. For this, 2 µl of the provided DpnI restriction 

enzyme was added to the amplification reaction to digest the parental/template DNA. DpnI 

can cleave at its restriction site only in DNA that is methylated or hemimethylated, thus 

leaving the mutation-containing synthesised DNA untouched. Reactions were incubated at 

37°C for 5 min to permit digestion. Then heat-shock transformation of E. coli XL10-Gold 

Ultracompetent cells was performed. This transformation differs from the one previously 

described (Section 2.1.3) for the incubation times, and for one step: before adding 2 µl of 

the DpnI-digested amplification reaction, XL10-Gold Ultracompetent cells were incubated 

on ice for 2 min with 2 µl of ß-mercaptoethanol to increase transformation efficiency. 

After adding the DNA, XL10-Gold Ultracompetent cells were incubated for 30 min on ice, 

30 seconds at 42°C and 2 min on ice for recovery. The other transformation steps were 
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performed as previously described (Section 2.1.3). Mutagenesis success was verified 

through Sanger sequencing after isolation of plasmid DNA. 

Table 8: QuikChange Lightning Site-directed mutagenesis PCR program 

Cycles Temperature Time Step 

 95°C 2 min Initial denaturation 

18 cycles 

95°C 20 seconds Denaturation 

60°C 10 seconds Annealing 

68°C 3 min Extension 

 68°C 5 min Final extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 

 

2.1.15.2 Site-directed mutagenesis with in-house protocol 

In order to reduce cost, an in-house protocol, based on the same principle as the 

QuikChange Lightning Site-direct mutagenesis kit, was optimised. This method takes a 

little longer than the kit version since additional steps are necessary between one stage and 

another, but has a similar efficacy. 

For primer design the QuikChange Primer Design web-tool was used. Then 

amplification was performed using the site-direct mutagenesis PCR protocol reported in 

Table 9 and preparing an amplification reaction with 25 µl of ACCUZYME™ 

Mix (Bioline, cat.no. BIO-25028), 125 ng of each primer, 130 ng of plasmid DNA to be 

mutated, and DNase/RNase free water to a final volume reaction of 50 µl. 

Table 9: In-house site-directed mutagenesis PCR protocol 

Cycles Temperature Time Step 

 98°C 3 min Initial denaturation 

25 cycles 

98°C 20 seconds Denaturation 

60°C 15 seconds Annealing 

72°C 12 min Extension 

 72°C 20 min Final extension 

 4°C 
To conserve the reactions until they are removed 

from the thermocycler 

 

Amplification was verified by analytical DNA gel electrophoresis; the amplicons 

were purified, before 200-400 ng were digested for 20 min at 37°C in a 10 µl reaction with 
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10 U of FastDigest® DpnI (Thermo Fisher Scientific, cat.no. FD1703) in 1X FastDigest® 

Buffer (Thermo Fisher Scientific, cat.no. B64). The DpnI reaction was heat-inactivated for 

5 min at 80°C, before being used to transform E. coli DH5α cells. Also in this case the 

success of the mutagenesis protocol was verified through Sanger sequencing after isolation 

of plasmid DNA from bacterial cultures. 

2.2 Cell culture reagents, materials and techniques 
General cell culture protocols and maintenance of cell lines are described below. 

All the procedures were performed in a MSC-Advantage™ Class II Biological 

Safety Cabinet (Thermo Fisher Scientific, cat.no. 51028226) and using a Heracell™ 150i 

humidified CO2 Incubator  (Thermo Fisher Scientific) for incubations at 37°C 5% CO2. 

2.2.1 Cell line characteristics and maintenance 

The Human Embryonic Kidney (HEK) 293T/17 (ATCC®: CRL-11268™) cell line 

is a highly transfectable cell line that was selected from a clone of HEK293T cells and is 

widely used for the production of retroviral and lentiviral vectors. 

HEK293T/17 cells were maintained in Dulbecco’s Modified Eagle 

Medium (DMEM) with high glucose and GlutaMAX™4 (Gibco®, Invitrogen™, cat.no. 

31966-021) or equivalent media (Sigma-Aldrich, cat.no. D6429, or PAN-Biotech, cat.no. 

P04-04510). The medium was supplemented depending on the application with 15% (v/v) 

or 10% (v/v) of European Union approved origin heat-inactivated Fetal Bovine 

Serum (FBS; Gibco®, Invitrogen™, cat.no. 10500-064, or PAN-Biotech, cat.no. P30-8500) 

and 1% (v/v) penicillin/streptomycin (Sigma-Aldrich, cat.no. P4333). 

HEK293T/17 cells were cultured at 37°C 5% CO2 in 10 cm sterile ∆Nunclon® 

surface cell culture dishes (Thermo Fisher Scientific, cat.no. 150350) using 

15% FBS-DMEM media three times a week, maintaining a constant subculture ratio of 

1:4, 1:4, and 1:8 respectively. Briefly, old medium was removed from the cells that were 

rinsed with 2 ml of 0.05% (w/v) Trypsin-0.53 mM EDTA solution (Sigma-Aldrich, cat.no. 

T3924, or PAN-Biotech, cat.no. P10-040100) and then incubated with 2 ml of fresh 

Trypsin-EDTA solution at 37°C 5% CO2 until the cells were completely detached from the 

dish. Subsequently, cells were resuspended by adding 6 ml of 15% FBS-DMEM medium 

that also neutralized the trypsin. Finally, 2 ml (1:4 ratio) or 1 ml (1:8 ratio) of cell 

suspension was added to 10 ml of fresh medium in a new 10 cm dish. 

                                                
4L-alanine-L-glutamine, a more stable derivate of L-glutamine, which does not degrade to 

ammonia. 



 

65 

Madin-Darby Canine Kidney (MDCK) cells were kindly provided by Prof. Sarah 

Gilbert (Jenner Institute, University of Oxford, UK). These canine kidney epithelial cells 

are widely used for the propagation of influenza viruses. MDCK cells were cultured in 

DMEM (Sigma-Aldrich, cat.no. D6429) with 5% heat-inactivated FBS (PAN Biotech) and 

1% penicillin-streptomycin and subcultured twice a week to a ratio of 1:5. 

A549 cell line (ATCC®: CCL-185™), kindly provided by Prof. Paul 

Kellam (Wellcome Trust Sanger Institute, UK), is a human lung carcinoma epithelial cell 

line (Giard et al. 1973) and it was chosen for its origin, as the human lung represents the 

natural target of influenza viruses. A549 cells were cultured in DMEM/F12 

media (Hyclone, cat.no. SH30023.02) with 10% FBS and 1% penicillin-streptomycin, 

maintained at 37°C 5% CO2, and subcultured to a 1:5 ratio twice a week. 

MDCK and A549 subculturing protocol was similar to the one described above for 

HEK293T/17 cells with the following differences: cells were maintained in T75 

flasks (Thermo Fisher Scientific, cat.no. 156499) in presence of their cell-line specific 

culture media, volumes were adapted to the culture format, and Dulbecco’s Phosphate 

Buffer Saline (PBS; Sigma-Aldrich, cat.no. D8537) was used instead of Trypsin-EDTA 

solution to wash the cells. 

2.2.2 Freezing and thawing of cell lines 

Cells were frozen when they reached 80% confluence: for a 10 cm dish one 

cryovial (Corning®, cat.no. 430915) was prepared, whereas for a T75 flask three vials were 

set up. Briefly, cells were detached by trypsinization as previously described (Section 

2.2.1) and centrifuged at 1000 g for 5 min using Rotor 6M of ELMI CM-6MT 

Centrifuge (Spectra Services) and then resuspended in freezing media, which is the culture 

media with addition of 10% (v/v) dimethyl sulfoxide (DMSO; VWR International Ltd, 

BDH Prolabo GPR RECTAPUR®, cat.no. 282164K). Cells were then transferred into 

cryovials (1 ml/cyovial) that were placed in a Mr. Frosty™ Freezing Container (Thermo 

Fisher Scientific, cat.no. 5100-0001) at -80°C to have a 1°C/min cooling rate, and stored 

at -80°C until this temperature was reached. Subsequently, they were maintained at -80°C 

in a cryobox (Thermo Fisher Scientific, cat.no. 1417563). 

When cells were required, a cryovial was thawed at 37°C in a water bath. The cell 

suspension was then transferred into 15 ml tubes (Greiner Bio-One, cat.no. 188271) with 

7 ml of appropriate medium, centrifuged at 1000 g for 5 min and supernatant was removed 

to eliminate traces of DMSO. Cells were then resuspended in 5 ml or 10 ml of appropriate 

medium and transferred to a 10 cm dish or a T25 flask (Thermo Fisher Scientific, 

cat.no. 156367). When cells had attached to the cell culture vessel, the medium was 
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changed; when cells were confluent, subculturing was performed (cells usually kept in T75 

flask were transferred from T25 to T75 flask in the first passage). 

2.3 Influenza lentiviral pseudotype protocols 

2.3.1 Pseudotype production plasmids 

p8.91 (originally named pCMVΔR8.91 (Zufferey et al. 1997)) is a second 

generation packaging plasmid construct that expresses HIV-1 gagpol under a hCMV 

promoter but has HIV-1 accessory genes vif, vpr, vpu and nef deleted; it was kindly 

provided by Dr. Nigel Temperton (Universities of Greenwich and Kent, Medway, UK). 

pCSFLW, provided by Dr. Nigel Temperton, is a self-inactivating lentiviral vector 

with Ψ packaging signal, the central polypurine tract cis-active sequence (cPPT), an 

internal promoter constituted by the U3 part of the Spleen Focus Forming virus (SFFV) 

long terminal repeat sequence, and a Woodchuck hepatitis virus post-transcriptional 

regulatory element (WPRE) to enhance reporter gene expression. pCSFLW was originally 

modified from pCSGW (originally pHR’SIN-cPPT-SE (Demaison et al. 2002)) inserting 

firefly luciferase-encoding gene as a reporter system instead of enhanced GFP-encoding 

gene. 

pI.18-A/Vietnam/1194/2004 H5 (Temperton et al. 2007) was kindly provided by 

the National Institute for Biological Standards and Control (NIBSC, London, UK), 

pI.18-A/Hong Kong/156/1997 was kindly provided by Novartis Vaccines and Diagnostics, 

and pI.18-A/turkey/Turkey/1/2005 H5 was kindly provided by Dr. Nigel Temperton who 

subcloned the gene originally provided in another plasmid by the National Institute for 

Medical Research (Mill Hill, London, UK). 

The ampicillin-resistant pCAGGS-HAT and pCAGGS-TMPRSS2 plasmids (E. 

Böttcher et al. 2006), expressing HAT and TMPRSS2 proteases under the control of a 

chicken β-actin promoter, were used for influenza HA pp production (Chapters 3 and 6). 

They were kindly provided by Prof. Hans-Dieter Klenk and Dr. Eva 

Böttcher-Friebertshäuser (Institute of Virology, Philipps University Marburg, Germany). 

The kanamycin-resistant pCMV-Tag3 TMPRSS4 (ECD)-myc expressing the 

TMPRSS4 extracellular domain (ECD) (Jung et al. 2008), the ampicillin-resistant 

pcDNA3.1-TMPRSS3 and pcDNA3.1-TMPRSS6, expressing type II Transmembrane 

Protease Serine 3 (TMPRSS3) and type II Transmembrane Protease Serine 6 (TMPRSS6) 

respectively (Bertram, Glowacka, Blazejewska, et al. 2010), were provided by Prof. Stefan 

Pöhlmann (Infection Biology Unit, German Primate Center, Germany). 
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2.3.2 Production of Highly Pathogenic Avian influenza haemagglutinin 

pseudotypes 

2.3.2.1 Production of H5 and H7 pseudotypes using FuGENE® 6 transfection reagent 

Production of HPAI H5pp and HPAI H7pp was essentially as described 

in Temperton et al. 2007 and in Molesti et al. 2013. 

For production of HPAI pp a DNA mix containing 1 µg of p8.91, 1.5 µg of 

pCSFLW and 1 µg of HA-expressing plasmid (pI.18 backbone) was set-up in 

DNase/RNase free water with total volume 15 µl and a plasmid ratio 1:1.5:1. To transfect 

the DNA mix into HEK293T/17 cells, 18 µl of FuGENE® 6 (Promega, cat.no. E2692) was 

diluted directly in 200 µl of OptiMEM® I reduced serum medium (Gibco®, Invitrogen™, 

cat.no. 31985-047) with care to not touch the plastic 1.5 ml microtube, as contact between 

undiluted FuGENE® 6 and plastic limits transfection efficiency (Jacobsen 2004). After 

5 min incubation at RT, the 15 µl DNA mix was added resulting in a FuGENE® 6-DNA 

ratio of approximately 5.2:1; then the microtube was further incubated at RT for 15 min to 

enable DNA-FuGENE® 6 complex formation. Finally, the mixture was added dropwise to 

an 80% confluent HEK293T/17 10 cm dish, in which 7 ml of fresh 15% FBS-DMEM was 

previously added after the original medium had been removed. Subsequently, the 

transfection dish was incubated at 37°C 5% CO2. 

After 24 h, the transfection medium was removed, and 7 ml of fresh 

15% FBS-DMEM and 1 U of exogenous NA from Clostridium 

perfringens (Sigma-Aldrich, cat.no. N2876) were added to facilitate pp release from the 

producer cells, since NA activity is lacking in these pp. Cells were then incubated at 37°C 

5% CO2 for an additional 24 h before pp harvesting, by removal of cell supernatant using a 

20 ml syringe and filtration using a 0.45 µm mixed cellulose ester membrane filter (Merck 

Millipore, cat.no. SLHA033SB). Pp were then directly titrated and stored at -80°C. When 

direct titration was not possible, a 130 µl aliquot of pp was prepared and conserved 

at -80°C until titration was performed to minimise the freeze-thawing of this original 

batch. 

2.3.2.2 Production of H5 and H7 influenza pseudotypes using polyethylenimine 

FuGENE® 6 is a mixture of lipids/cationic amphiphiles in 80% ethanol that coat the 

DNA. After interaction with and disruption of the negative cell membrane, the coated 

DNA can enter into target cells (Jacobsen 2004; Behr 1994). FuGENE6® has been shown 

to be a highly efficient low-cytotoxicity transfection reagent (Jacobsen 2004; Yamano, Dai 

and Moursi 2010) and is used widely for small scale production of lentiviral vectors. 

However, its relatively high cost can limit its use in large optimisation or lentiviral 
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production experiments. For this reason another reagent was evaluated for pp production. 

The use of polycationic polymer polyethylenimine (PEI) in transfection and in production 

of lentiviral vectors has been described as being as efficient as lipofection 

reagents (Yamano, Dai and Moursi 2010; Segura et al. 2007) or the calcium phosphate 

method (Toledo et al. 2009). PEI mediates transfection of DNA through condensing DNA 

forming cationic nanosized complexes (polyplexes) that can interact with the membrane 

and enter cells through endocytosis (Hanzlíková et al. 2011); subsequently, by virtue of 

PEI intrinsic buffering activity, it destabilizes the endosome permitting DNA delivery into 

the cytosol (Toledo et al. 2009). 

An already optimised transfection protocol for routine pp production was kindly 

provided by Dr. Edward Wright (University of Westminster) and was adapted for the 

production of influenza pp. Firstly, branched 25 kDa PEI (Sigma-Aldrich, cat.no. 408727) 

was dissolved in water to 50 mg/ml and then diluted to 1 mg/ml adjusting the pH to 7 with 

hydrochloric acid (Fisher Scientific, cat.no. H/1200/PB17). The solution was sterilised 

through filtration with a 0.22 µm filter, aliquoted, and conserved at -20°C. The working 

aliquot once thawed and opened was conserved at 4°C for 2 months. Then a DNA mix of 

p8.91, pCSFLW and HA-expressing plasmid at ratio 1:1.5:1 as previously described was 

prepared in 200 µl of OptiMEM® I. At the same time, in another microtube, 35 µl of 

1 mg/ml PEI was added to 200 µl of OptiMEM® I. After 5 min incubation the 

PEI-OptiMEM® I mixture was transferred to the DNA mix microtube and further 

incubated for 20 min to permit the formation of DNA-PEI polyplexes, before adding 

dropwise to a 80% confluent HEK293T/17 10 cm dish, in which the medium was 

previously changed with 7 ml of 10% FBS-DMEM. The plate was then incubated and the 

procedure for pp production was continued as described in the previous section and using 

10% FBS-DMEM instead of 15% FBS-DMEM. 

Before the PEI protocol was extensively used for pp production, it was tested and 

compared with the FuGENE® 6 protocol for the production of influenza pp: a 

bridge-experiment was performed producing in parallel A/Hong Kong/156/1997 H5pp 

using the FuGENE® 6 protocol and the PEI protocol which showed that the two production 

methods are comparable (p = 0.6809) (Figure 19). 
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Figure 19: Comparison of A/Hong Kong/156/1997 pp titres produced using two different 
transfection methods 

2.3.3 Pseudotype titration protocol 
Titration experiments were performed in Nunc™ F96 MicroWell™ white 

polystyrene plates (Thermo Fisher Scientific, cat.no. 136101), using reagent 

reservoirs (Corning®, cat.no. 4870, or Dutscher Scientific, cat.no. 006793) to hold the 

culture medium, and 8- or 12-channel pipettes (PZ HTL, cat.no. 5123 and 5127) to perform 

dilutions. 

The pp titre was evaluated by transducing HEK293T/17 cells with 2-fold serial 

dilutions of neat pp supernatants performed in a total mixing volume of 100 µl, discarding 

50 µl from the last dilution. Next, a cell suspension was added to each well (details below). 

Control wells in which pp were not present were set-up in every titration as an indirect cell 

viability measurement. 

To prepare the cell suspension to be added to the titration plate, a 10 cm dish of 

confluent HEK293T/17 cells was washed with 2 ml of Trypsin-EDTA solution, before 

2 ml of fresh trypsin were added, and incubation at 37°C 5% CO2 was performed to permit 

cell detachment. After adding 6 ml of 10% FBS-DMEM, cells were resuspended to have a 

single-cell suspension to be counted under the light microscope (Medline scientific, cat.no. 

Inverso-TC100) using a FastRead 102™ counting slide (Immune Systems, cat.no. 

BVS100) following manufacturer’s instructions (Immune Systems n.d.). Finally, a 

1.5×104 cells/50 µl suspension in 15% FBS-DMEM was prepared and 50 µl (1.5×104 cells) 

were added to each well of the plate that was then incubated at 37°C 5% CO2 to allow pp 

transduction of cells and luciferase gene expression. 

Firefly luciferase gene expression was evaluated and quantified after 48 h by 

luminometry using the Bright-Glo™ assay system (Promega, cat.no. E2650, Figure 20) 

and GloMax Multi detection system luminometer (Promega, cat.no. E7031 and E7041): 

50 µl of Bright-Glo™ Luciferase Assay System solution was added to each well and, after 

incubation for 5 min at RT, the plate was read using the standard Bright-Glo™ protocol 

pre-installed on the luminometer. 

100 101 102 103 104 105 106 107 108 109 1010 1011

PEI

FuGENE® 6

Relative Luminescence Units/ml 
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Figure 20: The firefly luciferase reaction used in the Bright-Glo™ Luciferase Assay System 
In the presence of Mg2+, firefly luciferase catalyses the mono-oxygenation of beetle luciferin using 
ATP and molecular oxygen to produce oxyluciferin and light. The figure was adapted using 
ChemBioDraw Ultra 14 from the Bright-Glo™ Luciferase Assay System Technical Manual, 
Promega (Promega 2011). 

2.3.4 Pseudotype particle neutralization assay 

To perform the pp neutralization assay (pp-NT), Nunc™ F96 MicroWell™ white 

polystyrene plates and reagent reservoirs were used; human sera were always handled 

using 200 µl MultiGuard NX Barrier tips (Sorenson BioScience, cat.no. 30550T), 20 µl 

MultiGuard Barrier tips (Sorenson BioScience, cat.no. 35220), or 10 µl MultiGuard E 

Barrier tips (Sorenson BioScience, cat.no. 15020T) and dilutions were performed using 

8- or 12-channel pipettes. 

For the pp-NT, 2-fold serial dilutions of 2 µl, 2.5 µl or 5 µl serum samples and 

neutralization controls (positive and negative) were performed in a total mixing volume of 

100 µl and, in the last dilution, 50 µl was discarded. The plate was centrifuged for 1 min at 

500 g using an ELMI CM-6MT Centrifuge and rotor 6M04 and then 50 µl of a pp solution 

with a concentration 1×106 RLU/50 µl was added to each well. Four or eight wells were 

also used for the viral input control, in which no sera was present; another four or eight 

wells were kept antibody and virus-free (50 µl of 10% FBS-DMEM was added instead of 

the pp solution) as a cell-only control. The plate was centrifuged for 1 min at 500 g before 

1 h incubation at 37°C 5% CO2. Finally, 1.5×104 HEK293T/17 cells, prepared as described 

in the previous section, were added to each well and incubated at 37°C 5% CO2 after a 

final 1 min centrifugation at 500 g. 48 h later, 50 µl of Bright-Glo™ solution were added 

to each well and, after 5 min incubation at RT, the plate was read using a GloMax® Multi 

detection system luminometer as previously described in Section 2.3.3. 

2.4 Protein detection reagents, materials and techniques 

2.4.1 Sera, primary antibodies and secondary antibodies. 

The characteristics of each serum sample, primary antibody or secondary antibody 

used in this thesis are reported in Table 10. 
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Table 10: Antibodies and reference sera  
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OIE hyperimmune chicken reference antisera were produced by inoculation of 

specific pathogen-free chickens with whole influenza viruses, in accordance with OIE 

guidelines (World Organization for Animal Health n.d.). If necessary, sera were pre-

adsorbed with chicken RBCs. Other pre-treatments (e.g. decomplementation at 56°C for 30 

min, treatment with receptor destroying enzymes) were not performed. 

NIBSC sheep antisera were produced by multiple immunizations with HA protein 

of the selected influenza virus. The HA protein is missing the transmembrane domain and 

it is obtained after digestion of virus particles with bromelain and its purification. Sera are 

decomplemented for SRH use. 

2.4.2 Immunofluorescence 

Immunofluorescence was performed to evaluate the expression of HAs after 

plasmid transfection. 

HEK293T/17 cells were seeded in a 24-well plate within which poly-lysine coated 

glass coverslips (VitroCam, cat.no. 1290-P01) had been positioned under 1 ml of 

10% FBS-DMEM. After overnight incubation at 37°C 5% CO2, 200 ng HA-expressing 

plasmids were transfected using 2.3 µl of the 1 mg/ml PEI solution following a protocol 

similar to the one described in Section 2.3.2.2 for pp production but with OptiMEM® I 

volumes reduced to 50 µL in each DNA and PEI microtube. After 24 h, medium was 

changed with 1 ml of fresh 10% FBS-DMEM. 48 h post-transfection media was removed, 

cells were washed with PBS (Sigma-Aldrich, cat.no. D8537), fixed and permeabilised for 

10 min using 1 ml of methanol (Sigma-Aldrich, cat.no. 32213) previously stored at -20°C. 

Fixed cells were maintained at 4°C overnight, before protein detection was undertaken. 

Non-transfected cells were also kept during the transfection procedure as controls and 

immunofluorescence was performed on them. 

Firstly, cells were washed using PBS and then 500 µl of solutions containing the 

primary antibody were incubated with the cells for 1 h at 37°C. At the end of the 

incubation, cells were washed with 1 ml of PBS four times: the first wash was for 1 min, 

the successive washes for 5 min each. Subsequently, 500 µl of a secondary antibody 

solution was incubated for 1 h at 37°C. Cells were washed again using the previous 

described washing protocol, and then incubated for 20 min at RT with 500 µl of 1 drop/ml 

NucBlue® Live ReadyProbes® reagent (Molecular Probes®, cat.no. R37605) in PBS to 

permit nuclear staining with Hoechst 33342. Cells were washed with PBS for 5 min one 

last time before coverslips were mounted on slides using a RT Mowiol® solution and 

observed using an epifluorescence microscope Eclipse 50i (Nikon) with a charge-coupled 

device digital camera QICAM Fast 1394 (QImaging). 
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The Mowiol® solution was prepared by mixing 6 ml of glycerol, 2.4 g of 

Mowiol® 40-88 (Sigma-Aldrich, cat.no. 324590), and 6 ml of DNAase/RNase free water 

for at least 2 h. Then 12 ml of 0.2 M Tris pH 8.5 was added and the solution warmed at 

50-60°C till the Mowiol® was dissolved. The solution was then centrifuged at 5000 g for 

15 min to remove any undissolved Mowiol® before being aliquoted and stored at -20°C. 

2.4.3 Western blotting 
Western blotting experiments were performed to verify the presence of the 

envelope-located HAs in the produced pp. 

2.4.3.1  SDS-polyacrylamide gel electrophoresis and Western blotting solutions 

Tris-glycine-SDS buffer was used as running buffer for SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE). It was prepared by dissolving the components in water to a 

concentration of 25 mM Tris base (Fisher Scientific, cat.no. BPE152-1), 192 mM 

glycine (Sigma-Aldrich, cat.no. G8898), and 0.1% (w/v) SDS (Fisher Scientific, cat.no. 

BP166-500). 

The Western transfer buffer was prepared to a final concentration of 25 mM Tris 

base, 192 mM glycine, and 20% (v/v) methanol (Sigma-Aldrich, cat.no. 32213). The buffer 

was prepared by dissolving Tris base and glycine in water and storing at 4°C; methanol 

was added only before use. 

To block the Western blotting membrane and to dissolve the primary and secondary 

antibody, solutions were prepared in PBS (Fisher Scientific, cat.no. BPE9739-1) to a final 

concentration of 10% (w/v) or 5% (w/v) dried milk (Marvel), and 

0.01% (v/v) Tween20 (Sigma-Aldrich, cat.no. P1379). 

2.4.3.2 SDS-polyacrylamide gel electrophoresis and Western blotting 

The first Western blotting experiments were performed using pp that were simply 

filtered through a 0.45 µm filter and were still in the cell culture medium (DMEM 

GlutaMAX with 10% FBS and 1% penicillin-streptomycin); however, significant 

background due to the presence of bovine serum albumin (BSA) was observed. Since the 

single HA monomer (~78 kDa) has a similar molecular weight to BSA and could have 

been partially obscured by the large BSA band (66.5 kDa), to partially remove the BSA 

low-speed centrifugation was employed. Low-speed centrifugation was chosen firstly 

because a specific antibody that could be used as a blocking reagent was unavailable. Low 

speed centrifugation is a widely used method for concentration/purification of lentiviral 

vectors, and for p120 HIV-1, VSV glycoprotein (VSV-G), and other pp it has been 

demonstrated to be a suitable approach since it does not disrupt the envelope proteins and 
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the virion itself (Strang et al. 2004; Cepko 2001; B. Zhang et al. 2001; Darling et al. 2000). 

For these reasons 2 ml of pp were centrifuged on a fixed angle centrifuge at 3000 g and 

4°C for 24 h. Then 1.95 ml of supernatant was removed and 150 µl of 

OptiMEM® I reduced serum medium were added to the 2 ml tubes (Thermo Fisher 

Scientific, cat.no. 11519934) that were incubated overnight at 4°C to permit pp 

resuspension. After resuspension, pp were preserved at -80°C before proceeding to prepare 

the samples for SDS-PAGE. 

Samples for SDS-PAGE were prepared by adding 6 µl of pp to 2 µl of 4X Laemmli 

buffer (Bio-Rad Laboratories, cat.no. 161-0747) and 0.4 µl of ß-mercaptoethanol (Bio-Rad 

Laboratories, cat.no. 161-0710), producing a final concentration of 5% v/v. All the samples 

were boiled in an AccuBlock™ Digital Dry Bath at 100°C for 10 min before spinning 

them for 1 min at 17000 g and loading them on a 4-15% Mini-PROTEAN® TGX™ precast 

polyacrylamide gel (Bio-Rad Laboratories, cat.no. 456-1083). MagicMark™ XP Western 

Protein Standard was also loaded on a gel to estimate the molecular weight of the proteins 

of interest. 

The gel was run in a Mini-PROTEAN® Tetra Cell (Bio-Rad Laboratories, cat.no. 

165-8004EDU) with Tris-Glycine-SDS running buffer for 10 min at 100 V and then 

50 min at 130 V. The gel was transferred on an Immuno-Blot® low fluorescence 

Polyvinylidene fluoride membrane (PVDF, Bio-Rad Laboratories, cat.no. 162-0262) for 

60 min at 100 V using the Mini Trans-Blot Module (Bio-Rad Laboratories, cat.no. 

170-3935) and 4°C Western transfer buffer. To keep the electrophoretic/blotting chamber 

and the buffer cold, an ice block was inserted in the Mini-PROTEAN® cell; a magnetic 

anchor and a IKA® Big Squid magnetic stirrer (Sigma-Aldrich, cat.no. Z342033) were also 

used to keep the Western transfer buffer uniform. 

The membrane was blocked overnight with shaking at RT using 25ml of a solution 

containing 10% (w/v) dried milk + 0.01% (v/v) Tween20-PBS. After removing the 

blocking buffer, the primary antibody was diluted in 5% (w/v) dried 

milk-0.01% (v/v) Tween20-PBS and 10 ml of the primary antibody solution were 

incubated with the membrane for 1 h at RT with shaking. Before adding the secondary 

antibody, the membrane was washed 4 times (first wash of 1 min, then three subsequent 

washes for 10 min) with 0.01% (v/v) Tween20-PBS. The membrane was then incubated 

for 1 h at RT with shaking and with an appropriate secondary antibody conjugated with 

infrared dyes compatible with Odyssey® Sa Infrared Imaging System (LI-COR Bioscience, 

cat.no. 9260) and diluted in 5% (w/v) dried milk-0.01% (v/v) Tween20-PBS. 
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Finally, the membrane was washed four times with 0.01% (v/v) Tween20-PBS and 

one time with PBS before imaging using the Odyssey® Sa Infrared Imaging System at 

700 nm or 800 nm and intensity 4 (on a scale of 1 to 10) was performed. 

2.5 Statistical analysis 

2.5.1 Evaluation of pseudotype titres 
Using Microsoft® Excel 2011 (Microsoft®) each relative luminescence unit (RLU) 

value obtained during titration at different pp dilution points (n=8) was transformed 

into RLU/ml; the arithmetic mean of these concentrations was considered as the pp 

titre (expressed as RLU/ml). Titres were also graphed using GraphPad Prism® 

version 6 (GraphPad Software) together with standard error of the mean (SEM).  

The origin of the graph was taken as 9×104 RLU/ml to normalize the data in 

relation to the value obtained when a pp without envelope protein is analysed using the 

same methodology. 

A blue dotted line at 2×107 RLU/ml was also reported on each graph. This line 

represents the pp titre necessary to perform pp-NT assays without the need for additional 

processing steps (e.g. concentration, purification, etc.). 

Since biological replicates were performed only in certain cases and for this reason 

excluded from the analysis, statistical tests were not applied. In fact, statistical test should 

be applied only in presence of biological replicates and not in presence of multiple 

measures. Titres were only compared graphically. 

2.5.2 Calculation of serum neutralizing titres 
Unless otherwise stated, pp-NT assays were performed only once since sufficient 

sera volume was not available to perform replicate assays. 

Data analysis on each pp-NT assay was performed using Microsoft® Excel 2011 

and GraphPad Prism® version 6 (GraphPad Software). To measure neutralization activity, 

RLU results were normalised, expressed as the percentage of neutralization (inhibition of 

pp entry into cells as indicated by reduction in luminescence) using the arithmetic mean of 

the RLU values of viral input control and of the cell control as 0% and 100% neutralization 

values, respectively. The half maximal inhibitory concentration (IC50, Figure 21), 

expressed as the dilution factor in which the sample shows 50% neutralization activity, was 

calculated using a non-linear regression method (GraphPad Prism® “logarithm of inhibitor 

versus normalised response – variable slope”) in which the slope factor was constrained to 

be less than zero to better fit the neutralization curves (GraphPad Software n.d.). 
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Figure 21: Example of pp-NT results after GraphPad Prism® 6 analysis 
Normalised percentage neutralization values are plotted against the logarithm of the dilution factors 
and neutralization curves are inferred by the software that calculates the IC50. In this example, 
sera 1, 2 and 3 are able to neutralize the pp tested with different potency (IC50 serum 1 = 5402, 
IC50 serum 2 = 353.3, IC50 serum 3 = 4468), whereas serum 4 does not neutralize the pp with a 
result comparable to the negative control. 

The IC50 calculated with GraphPad Prism® were or directly used for further 

statistical analisis or transformed in the nearest dilution range. In all cases, appropriate 

tests on the basis of the experimental design were performed. Specific information about 

each analysis is reported in each chapter. In general, non-parametric tests were used since 

the data do not follow a normal distribution.  
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CHAPTER 3  
Production of low pathogenic avian and human 

influenza A haemagglutinin pseudotypes 

3.1 Introduction 
As illustrated earlier (Section 1.8.8), pp are useful tools to study HA-directed 

antibody responses. However, the main limitation is generating these reagents. In fact, to 

produce pp it is necessary to understand the characteristics of the protein of interest, in this 

case the HA. Influenza HA was already described in Section 1.2.1; here some aspects and 

information that were necessary in order to design the correct strategies for influenza A pp 

production will be discussed. 

The HA is encoded by the 4th segment gene of the eight segmented negative strand 

RNA genome of influenza A virus. The mechanisms that regulate HA expression during 

the viral life cycle are still not completely understood but the conserved regions flanking 

the HA gene are known to play an important role (Gomila et al. 2013). In fact, sequences 

essential for the viral polymerase binding the promoter sequence, and the polyadenylation 

signal are situated at the 5’ end and 3’end regions of the HA segment. 

The HA is then synthesised as a single polypeptide precursor HA0 by ribosomes. 

HA folding starts during its synthesis and translocation to the ER (W. Chen and Helenius 

2000; Segal et al. 1992; Braakman et al. 1991). During its synthesis and passage to the ER 

and within the Golgi, the HA is also subjected to post-translational modification, such as 

glycosylation and palmitoylation (Brassard and Lamb 1997; Veit and Schmidt 1993; 

Hurtley et al. 1989). Glycosylation is an essential step in HA folding and expression, as it 

was observed that blocking the glycosylation machinery results in retention of the 

influenza HA rather than expression at the plasma membrane (Brassard and Lamb 1997; 

Hurtley et al. 1989). Acquisition or loss of a glycosylation site was shown to be related to 

an increase or decrease in HA folding (Hebert et al. 1997). In addition, 

palmitolylation (S-acetylation) of three cytosolic cysteines is necessary for HA localisation 

in the lipid raft membrane domains and expression at the plasma membrane, representing 

an important trafficking signal (Kordyukova et al. 2008; B. J. Chen, M. Takeda and Lamb 

2005). 

During its passage within the Golgi or at the level of the plasma membrane, 

influenza HA is also cleaved into two active subunits HA1 and HA2 by tissue-specific or 

ubiquitously expressed proteases (see Section 1.2.1.1) via specific single or multiple 
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arginine or/and lysine residues. This process is essential to activate the HA: without this 

cleavage the HA cannot undergo the structure change necessary for virus 

envelope-endosome membrane fusion. Consequentially, influenza virus with uncleaved 

HA is replication-defective, since it cannot complete the cell entry process. 

The N-Terminal region (of different length between different HA subtypes) of the 

HA0 polypeptide presents a hydrophobic signal peptide that has an essential role in 

trafficking of the HA to the plasma membrane surface (Sekikawa and C. J. Lai 1983). This 

sequence is not present in the membrane-integrated HA, since it is removed during HA 

maturation (Wilson, Skehel and Wiley 1981). 

Another peptide sequence important for HA trafficking is situated in the 

transmembrane region of the C-Terminal region (Engel et al. 2012; Scheiffele, Roth and 

Simons 1997). This sequence is especially involved in the HA sorting from the ER to the 

Golgi network and between different parts (cis, medial, and trans) of the Golgi network 

(Engel et al. 2012). 

Thus, regulatory sequences, glycosylation, cleavage, and trafficking signals are 

necessary for the synthesis, correct folding and activation of influenza HA in the virus-cell 

cycle and need to be taken into account when influenza pp are produced. In this chapter the 

focus is investigation into protease-mediated activation of influenza HA for the production 

of high titre pp.  

In particular, three proteases were investigated to enable the production of pp: 

TMPRSS2, HAT, and TMPRSS4. As previously discussed in Section 1.2.1.1, TMPRSS2, 

HAT, and TMPRSS4 are serine protease with trypsin-like activity that belong to the family 

of type II transmembrane serine proteases. This family is characterized by an N-terminal 

transmembrane region, a highly variable stem region containing domains specific for each 

protease and a catalytic domain that can recognise and cleave at single arginine residues 

(Böttcher-Friebertshäuser, Klenk and Garten 2013). Between the type II transmembrane 

serine protease family only some members have shown the ability to activate HA in-vitro 

through cleavage. It is not yet clear why not all the members possess this activity even in 

the presence of functional catalytic domains. 

TMPRSS2, HAT and TMPRSS4 were shown to activate the HA of numerous 

influenza strains in-vitro. Furthermore, it was also demonstrated that TMPRSS2 can have 

HA cleavage activity in-vivo, since studies on the knock-out mouse for this protein have 

shown that the animal is partially resistant to influenza virus infection (Böttcher-

Friebertshäuser, Klenk and Garten 2013). 

Since the proteases present a transmembrane domain, they are expressed either at 

the level of the plasma membrane or at the level of the Golgi system. TMPRSS2 is 



 

81 

expressed and active intracellularly at the level of the Golgi system, HAT intracellularly 

and at the plasma membrane, whereas TMPRSS4 is expressed at the plasma membrane 

(Zamora and Pöhlmann 2014). These data also show that the protease(s) can be found in 

the cellular department in which the HA is also present. 

Furthermore, all the proteases are expressed in the respiratory or gastrointestinal 

system (Bertram et al. 2012, E. Böttcher et al. 2006), which represent the tissues for which 

influenza virus has tropism.  

All these elements render TMPRSS2, HAT, and TMPRSS4, and especially their 

catalytic domain, suitable targets for experimental analysis. Since TMPRSS2 and HAT 

soluble forms do not posses HA activation properties (E. Böttcher et al. 2006), their 

addition post-transfection as recombinant proteins was excluded and it was decided to co-

transfect protease-encoding plasmids instead.  

Additionally, treatment with TPCK-trypsin, which is the family member routinely 

used to activate and cleave influenza HA enabling influenza virus replication, was used on 

pp and considered as control and indicator of efficient HA activation. Furthermore, it has 

similar catalytic activity to the three proteases investigated. However, even if promising, 

activation with TPCK-trypsin was excluded as a routine method for pp production since it 

requires additional protocol steps to be performed for the pp-NT assay. 

3.2 Materials and Methods 
To express a foreign protein in a eukaryotic cell system specific promoter 

sequences and polyadenylation signals are necessary to permit gene transcription into 

mRNA, its nuclear export, and its stability. These sequences have already been engineered 

into the two vectors, pI.18 and phCMV1 that were used to express the HA 

gene (Section 2.1.1). However sequences that control mRNA translation into protein are 

also important. Together with the starting codon AUG, the Kozak consensus sequence is 

essential to determine the initiation of the translation process (Kozak 2005). The plasmids 

that are used for the production of H5pp contain prior to the 5’ end of the HA coding 

sequence a Kozak sequence GTCAAA that was recommended by NIBSC for inclusion. 

This sequence will be referred here and in other chapters as “Influenza A Kozak 

sequence”. 

3.2.1 Influenza A haemagglutinin-expressing plasmids 

Different HA-expressing plasmids already containing the influenza Kozak sequence 

and a terminator sequence are reported in Table 11 and were kindly provided by Dr. Nigel 
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Temperton and Dr. Simon Scott (Universities of Greenwich and Kent, Medway, UK), and 

by Dr. Davide Corti (Institute for Research in Biomedicine, Bellinzona, Switzerland). 

Table 11: HA-encoding plasmids 

Plasmid 
backbone HA Codon 

optimisation 

HA 
accession 
number 

Source 

phCMV1 A/South Carolina/1/1918 H1 Yes AF117241.1 Dr. Davide 
Corti 

pI.18 A/Puerto Rico/8/1934 H1* No CY105896.1 Dr. Temperton 
Dr. Scott 

phCMV1 A/New Caledonia/20/1999 H1 Yes CY033622.1 Dr. Davide 
Corti 

pI.18 A/Udorn/307/1972 H3* No DQ508929.1 Dr. Temperton 
Dr. Scott 

phCMV1 A/duck/Czechoslovakia/1956 H4 Yes D90302.1 Dr. Davide 
Corti 

phCMV1 A/chicken/Germany/N49 H10 Yes CY014671.1 Dr. Davide 
Corti 

phCMV1 A/duck/Memphis/546/1974 H11 Yes AB292779.1 Dr. Davide 
Corti 

phCMV1 A/duck/Alberta/60/1976 H12 Yes CY130078.1 Dr. Davide 
Corti 

phCMV1 A/gull/Maryland/704/1977 H13 Yes D90308.1 Dr. Davide 
Corti 

phCMV1 A/mallard/Astrakhan/263/1982 H14 Yes AB289335.1 Dr. Davide 
Corti 

phCMV1 A/shearwater/West Australia/2576/1979 H15 Yes CY130102.1 Dr. Davide 
Corti 

phCMV1 A/black-headed gull/Sweden/2/1999 H16 Yes AY684888.1 Dr. Davide 
Corti 

*HA genes provided by Dr. David Woodhall (Novartis, Boston, USA) 

3.2.2 Cloning and subcloning influenza A haemagglutinin genes into pI.18 or 

phCMV1 expression vectors 
In Table 12, sequence characteristics, accession numbers and sources of starting 

material (cDNA or plasmids) used to clone influenza A HAs are reported. 

For the plasmids encoding HAs that were ordered from GenScript, appropriate 

restriction enzyme cleavage site, Kozak sequence and termination sequence were included 

at the 5’ and 3’ termini/ends at the point of purchase. The synthesised gene was cloned in 

pUC17 and delivered lyophilised by GenScript. The plasmids were then resuspended in 

DNase/RNase free water to a final concentration of 200 ng/µl. 
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Table 12: HA genes cloned or subcloned in pI.18 or phCMV1 expression vectors 

HA  Starting 
material 

Codon 
optimisation 

HA 
accession 
number 

Source 

A/Solomon Islands/3/2006 H1 Plasmid  Yes EU124177.1 Prof. Sarah Gilbert* 

A/Brisbane/59/2007 H1 cDNA Not 
Applicable CY163864.1 Dr. Katja Hoeschler** 

A/Texas/05/2009 H1 Plasmid Yes FJ966959.1 Prof. Sarah Gilbert * 

A/duck/Italy/1447/2005 H1 cDNA Not 
Applicable HF563054.1 Istituto Zooprofilattico 

delle Venezie 

A/Korea/426/1968 H2 Plasmid No CY125846.1 Ordered from 
GenScript 

A/duck/Germany/1215/1973 H2 cDNA Not 
Applicable CY014710.1 Dr. Davide Corti 

A/Wisconsin/67/2005 H3 Plasmid Yes CY034116.1 Prof. Sarah Gilbert* 

A/California/7/2004 H3 cDNA No CY114373.1 Dr. Davide Corti 

A/Shanghai/2/2013 H7 Plasmid No KF021597.1 Ordered from 
GenScript 

A/turkey/Ontario/6118/1968 H8 cDNA Not 
Applicable CY014659.1 NIBSC 

A/Hong Kong/1073/1999 H9 cDNA Not 
Applicable AJ404626.1 NIBSC  

* Jenner Institute, University of Oxford, Oxford, UK 
** Respiratory Virus Unit, Public Health England, London, UK 

Since different cloning/subcloning strategies were applied for each separate 

cloning, considering the different nature of the starting material and the different 

problematic aspects encountered during the cloning procedure, the methodology and 

troubleshooting for each are here reported as flow charts5. Examples of cloning and 

subcloning flow charts are shown in Figure 22 and Figure 23. All other flow charts are 

reported in Appendix Figure 2-8. To better understand and follow the flowcharts a legend 

is reported in Appendix Figure 1. The protocols of the methods presented in the 

flowcharts were described in Chapter 2 unless otherwise stated. 

                                                
5 A detailed example of a cloning procedure will be reported only in Chapter 6. 
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Figure 22: Flow chart representing the subcloning of A/Korea/426/1968 H2 and 
A/Shanghai/2/2013 H7 into pI.18 vector 
This flow chart represents an example of subcloning strategies and of all the steps that need to be 
followed in the absence of experimental issues. 
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Figure 23: Flow chart representing the cloning of A/Hong Kong/1073/1999 H9 into pI.18 
vector 
This flow chart represents an example of HA cloning strategies starting from cDNA. It also shows 
the minimal number of steps required for HA cloning. Only two experimental issues have required 
the repeat of two experimental steps (HA amplification and DNA ligation)  

Table 13: Primer names, restriction enzyme, and primer sequences used for Influenza A HA 
cloning 
Within the sequences, restriction enzyme cleavage sites are reported in red, influenza Kozak 
sequence in bold, 5’ end HA sequence in green, influenza A termination sequence in bold and 
italics, the reverse complement stop codon (UAA) in pink, and 3’ end HA reverse complement 
sequence in blue. 

Primer name Primer sequence (5’ to 3’) Restriction 
enzyme 

SolomonH1_Fw GCGCGCAGATCTGTCAAAATGAAGGTCAAGCTG BglII 

SolomonH1_Rev GCGCGCGAATTCAATTTAGATGCAGATCCGGCA EcoRI 

BrisbaneH1_Fw GGCGGATCCGTCAAAATGAAAGTAAAACTA BamHI 

BrisbaneH1_Rev GGCCTCCGAAATTTAGATGCATATTCTACA XhoI 

TexasH1_Fw GCGCGCAGATCTGTCAAAATGAAGGCTATCCTG BglII 

TexasH1_Rev GCGCGCGAATTCAATTTAAATACAGATCCGGCA EcoRI 

H1duck_Fw GCGCGCAGATCTGTCAAAATGGAAGCAAAACTACTC BglII 

H1duck_Rev GGCGCGCTCCGAAATTTAAATGCATATTCTGC XhoI 

H2duck_Fw GCGCGCAGATCTGTCAAAATGGCCATCATTTAT BglII 

H2duck_Rev GCGCGCGGTACCAATTCATATGCAGATTCTG KpnI 

CaliforniaH3_Fw GGCGGTACCGTCAAAATGAAGACTATCATT KpnI 

CaliforniaH3_Rev GGCGTCGACAATTCAAATGCAAATGTTGCA SalI 

WisconsinH3_Fw GCGCGCAGATCTGTCAAAATGAAGACCATCATT BglII 

WisconsinH3_Rev GCGCGCGTCGACAATTTAGATGCAGATGTTGC SalI 

TkOntarioH8_Fw GCGCGCCTCGAGGTCAAAATGGAGAAATTCATC XhoI 

TkOntarioH8_Rev GCGCGCGAATTCAATTTAAATACAGAACATGCATC EcoRI 

HongKongH9_Fw GCGCGCGGATCCGTCAAAATGGAAACAATA BamHI 

HongKongH9_Rev GCGCGCCTCGAGAATTTATATACAAATGTT XhoI 
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The primers used to amplify the HA-encoding sequences were designed as reported 

in Table 13 using GenBank database sequences of influenza gene segment 4. Fw primers 

were designed to possess a GC-rich flanking region to facilitate restriction digestion, an 

appropriate restriction enzyme cleavage site to clone the amplified HA into the vector of 

interest (pI.18 or phCMV1), the influenza A Kozak sequence, and the HA 5’ terminal 

encoding region sequence. Rev primers possessed the GC-rich flanking region, appropriate 

restriction enzyme cleavage sites, the reverse complement stop codon, influenza A 

termination sequence, and the reverse complement HA 3’ terminal encoding sequence. All 

the primers were analysed to ensure absence of secondary structure with Sigma-Aldrich 

OligoEvaluator™ tool. 

3.2.3 Mutagenesis to correct haemagglutinin sequences 
After sending the cloned HAs for Sanger sequencing, the A/California/7/2004 H3 

cloned using PCR was found to contain the nucleotide mutation A to C leading to amino 

acid mutation N205H. To correct this mutation, in vitro mutagenesis was performed as 

described in Section 2.1.15.1. The primers used are reported in Table 14. 

Table 14: Primer names and sequences used for A/California/7/2004 H3 mutagenesis 
The primers were used to change the histidine at position 205 to asparagine and correct the cloned 
A/California/7/2004 H3 sequence. The primer annealing schematics are reported below the primer 
sequences. In these schematics primer sequences are in bold, gene sequence is in black, and in grey 
the translated gene sequence (5’ to 3’) corresponding to the primer (Fw) or the original gene (Rev) 
is shown. The nucleotide that corrects the mutation is highlighted in red in the primer sequence and 
in the schematic. 

Primer 
name 

Primer sequence (sequence in 5’ to 3’) 
and annealing scheme 

H3Cal 

H205N 

CACCCGGGTACGAACAATGACCAAATCAGCC 

 

H3Cal 

H205N_Rev 

GGCTGATTTGGTCATTGTTCGTACCCGGGTG 

 
 

Furthermore, after sequencing of pI.18-A/Puerto Rico/8/1934 H1, two single 

nucleotide mutations (Q341R and S342R) and an insertion (S342_R343insRR) near the 

cleavage site were also identified (Figure 27). To revert the sequence to the original amino 

acid database entry QuikChange Lightning Site-direct mutagenesis kit was used again. 

However, since the QuikChange Primer Design web-tool does not permit the design of 

primers that introduce a mutation, and perform a deletion simultaneously, the primers were 

designed manually, combining the information of two sets of primers designed by the tool: 
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one set was designed with the software to correct the insertion, the other set to perform the 

mutations. The primers that were used for the mutagenesis, and the two original sets of 

primers that were designed are shown in Table 15. 

Table 15: Primer names and sequences used for A/Puerto Rico/8/1934 H1 mutagenesis 
The primers were used to change the A/Puerto Rico/8/1934 H1 incorrect cleavage sequence. Two 
set of primers were designed (R341Q_S342R and del343-344) and then combined into a third 
set (PR8_mut). The primer annealing schematics are reported below the primer sequences. In these 
schematics primer sequences are in bold, gene sequence is in black, and in grey the translated gene 
sequence (5’ to 3’) corresponding to the primer (Fw) or the original gene (Rev) is shown. The 
nucleotide that corrects the mutation is highlighted in red in the primer sequence and in the 
schematic. 
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3.2.4 Production optimisation of low pathogenic avian and human influenza A 

haemagglutinin pseudotypes 
In order to produce influenza A HA pp, it is necessary to activate the HA via proteolytic 

cleavage. If the HA is not cleaved the pp will not be able to complete the entry 

process (Figure 24). For HPAI H5 and HPAI H7pp, HA cleavage is mediated by 

ubiquitously expressed proteases, such as furin, that are expressed in the producer cell line 

(Böttcher-Friebertshäuser, Klenk and Garten 2013). However, for low pathogenic avian 

and human influenza HA, tissue-specific proteases are necessary (Böttcher-Friebertshäuser, 

Klenk and Garten 2013).  Since these proteases are not expressed (or are expressed at low 

level) in the producer HEK293T/17 cells, they need to be expressed via transfection of 

protease-encoding plasmids (Figure 25). 

 
Figure 24: Evaluation of the protease activity using pp 
If the HA is uncleaved, pp can bind the sialic acid on the cell surface, but cannot complete the entry 
process since the uncleaved HA does not possess fusion activity. As a consequence, the lentiviral 
genome doesn’t integrate into cells, the reporter gene luciferase is not expressed, and its signal 
cannot be detected after adding an appropriate substrate. On the other hand, if the HA is cleaved 
during pp production, the pp completes the entry process and luminescence signal is detected. 

To test different protease types and quantity, and the resultant pp production 

efficiency, the protocol described in Section 2.3.2.2 was modified to a down-sized format: 

transfection reactions were performed in the wells of 6-well plates in 2 ml volumes and all 

the OptiMEM® I volumes, plasmids quantities were halved to maintain a fixed plasmid 

ratio of 1:1.5:1. Briefly, a DNA mix containing 500 ng of p8.91, 750 ng of pCSFLW and 

500 ng of HA-expressing plasmid was prepared and then a protease-encoding 

Uncleaved HA 

Pseudotype particles can attach  
but not enter into the cells 

No signal 
is detected  

 

+ 

+ 

Cleaved HA 

Pseudotype particles  
enter into the cells 

Luciferase signal 
is detected  
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plasmid (Section 2.3.1: pCAGGS-HAT, pCAGGS-TMPRSS2 or 

pCMV-Tag3 TMPRSS4 (ECD)-myc) was added to permit HA cleavage/activation and test 

the activity of HAT, TMPRSS2 and TMPRSS4. In some cases (A/gull/Maryland/704/1977 

H13pp) since the above proteases had not produced positive results, a further two 

proteases, TMPRSS3 and TMPRSS6, were also tested, by adding the appropriate encoding 

plasmid (Section 2.3.1) to the mix. In general, two quantities of protease-encoding 

plasmids were tested (250 ng and 125 ng). In certain cases, a higher (500 ng) and/or a 

lower quantity (75 ng) were also tested. A transfection in the absence of protease-encoding 

plasmid (∆ protease) was also included in all experiments as a control. 

For the production of A/gull/Maryland/704/1977 H13pp and A/Texas/5/2009 H1pp 

optimisation of the production conditions was performed by evaluating additional 

quantities (1000 ng and/or 250 ng) of the HA-encoding plasmids and consequentially 

changing the ratios between HIV-1 core, lentiviral vector, and envelope protein. 

 
Figure 25: Production of low pathogenic avian and human influenza A HA pp by 
four-plasmid co-transfection 

OptiMEM® I (50 µl) was then added to the DNA mix and in the meantime a tube 

containing 50 µl OptiMEM® I and 20 µl of 1 mg/ml PEI was prepared and incubated for 5 

min. The OptiMEM® I-PEI mix was then added to the OptiMEM® I-DNA mix and 

incubated for 20 min. 

The transfection mix was subsequently added dropwise to the well of a 6 well plate, in 

which the previous day 1×106 HEK293T/17 cells had been plated to reach 80% confluence 

on the transfection day. After 24 h, 0.5 U of exogenous NA from Clostridium perfringens 

was added when the transfection media was changed. 
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3.2.5 Titration of influenza pseudotypes and trypsin-treatment to mediate 

haemagglutinin activation 
Influenza pp produced in the presence or absence of the protease-encoding 

plasmids were titrated following the protocol described in Section 2.3.3. 

As control, the ∆ proteases HA pp were also activated post-transfection using 

TPCK-Trypsin (Sigma-Aldrich, cat.no. T1426). To perform the TPCK-Trypsin activation, 

2-fold serial dilutions of neat ∆ protease pp supernatants were carried out in a total volume 

of 100 µl 10% FBS-DMEM, discarding 50 µl in the last dilution. Then 30 µl of a 

~133.3 µg/ml TPCK-Trypsin solution in 10% FBS-DMEM were added to each well to 

produce a final concentration of 50 µg/ml. 

After 30 min incubation at 37°C 5% CO2, 50 µl of Trypsin Neutralizing 

Solution (TNS, Lonza, cat.no. CC-5002) was added to each well to stop TPCK-Trypsin 

activity; then 1.5×104 cells (in 50 µl) were added to allow pp transduction of cells and 

luciferase gene expression. Firefly luciferase gene expression and pp titre were evaluated 

and quantified after 48 h incubation at 37°C 5% CO2 by luminometry as described in 

Section 2.3.3. 

3.2.6 Mutagenesis to study the role of H16 cleavage sequences 
Recently Lu et al. 2012 described the first crystal structure of an H16 HA. In their 

study, they show that, since an α-helix is present before the cleavage arginine, the cleavage 

arginine is facing the protein surface and remains buried in a cavity instead of being 

exposed to the solvent (Lu et al. 2012). To investigate the role of this structure in HA 

cleavage and pp production, mutagenesis (Section 2.1.15.1) of the 

A/black-headed gull/Sweden/2/1999 H16 HA was conducted to remove the α-helix and 

render the cleavage site more similar to the cleavage site of an H1 HA. Primers were 

designed as described in Section 2.1.15.1 and shown in Table 16. 

The mutated H16-encoding plasmid was then used to produce pp and evaluate 

different proteases as described in Section 3.2.4. 
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Table 16: Primer names and sequences used for A/black-headed gull/Sweden/2/1999 H16 
mutagenesis 
The primers were used to disrupt the α-helix at the level of the cleavage site. The primer annealing 
schematics are shown below the primer sequences. In these schematics primer sequences are in 
bold, gene sequence is in black, and in grey the translated gene sequence (5’ to 3’) corresponding 
to the primer (Fw) or the original gene (Rev) is shown. The mutated nucleotide is highlighted in red 
in the primer sequence and in the schematic. 

Primer name Primer sequence (sequence in 5’ to 3’) 
and annealing scheme 

H16cl_Fw 
GCGGAATGTGCCAAGCATCCAGTCGAGAGGACTGTTCGGCGCT 

 

H16cl_Rev 
AGCGCCGAACAGTCCTCTCGACTGGATGCTTGGCACATTCCGC 

 
 

3.2.7 Evaluation of the role of the receptor-binding site and of glycosylation in 

expression of A/Texas/05/2005 H1 
Elsewhere (Nicolson et al. 2012; Z. Chen et al. 2010; W. Wang, Castelán-Vega, et 

al. 2010) it was noted that two mutations, one introducing a glycosylation site, the other at 

the level of the RBS, in the HA of 2009 H1 pandemic strains could improve the 2009 

monovalent vaccine production and pp transduction activity. Since initial experiments to 

produce A/Texas/05/2009 H1pp failed to result in production of high titre pp, these two 

mutations K136N and Q240R (A/Texas/05/2009 H1 numbering) were investigated to see if 

the HA expression could be improved and if so, to use this mutated HA to produce a 2009 

pandemic pp. 

For this reason the producer pI.18-A/Texas/05/2009 H1 plasmid was mutated. 

Primers (Table 17) were designed and mutagenesis was performed as described in 

Section 2.1.15.2. 

The mutated HA-encoding plasmids were used in immunofluorescence 

experiments (Section 3.2.9) to compare HA expression with the wild-type. This permitted 

evaluation, together with data in the literature, to decide if these strategies should be 

implemented for effective pp production. 
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Table 17: Primer names and sequences used for A/Texas/05/2009 H1 mutagenesis 
Primers were used to change the lysine at position 136 to asparagine introducing a glycosylation 
site, and to change the RBS introducing an arginine instead of a glutamine. The primer annealing 
schematics are reported below the primer sequences. Primer sequences are in bold, gene sequence 
is in black, and in grey the translated gene sequence (5’ to 3’) corresponding to the primer (Fw) or 
the original gene (Rev) is shown. The mutated nucleotide is highlighted in red in the primer 
sequence. 

Primer name Primer sequence (sequence in 5’ to 3’) 
and annealing scheme 

Texas_K136N 
CGGTTCGAGATTTTCCCCAATACCAGCTCCTGGC 

 

Texas_K136N_Rev 
GCCAGGAGCTGGTATTGGGGAAAATCTCGAACCG 

 

Texas_Q240R 
AAAGTGCGGGACCGGGAAGGCCGGATG 

 

Texas_Q240R_Rev 
CATCCGGCCTTCCCGGTCCCGCACTTT 

 
 

3.2.8 Evaluation of the role of neuraminidase in pseudotype production 

Recently it was noted that the circulating H3 HAs are losing affinity for α-2,6 sialic 

acids and to maintain the entry function the virus supplies the lost affinity for the receptor 

using the NA (Y. P. Lin et al. 2010) . Since co-transfection of NA was shown to be an 

important aspect to produce high titre pp (Molesti et al. 2013; F. Zhang et al. 2011; W. 

Wang, Castelán-Vega, et al. 2010; Bosch et al. 2001), it was decided to evaluate if the 

presence of the NA could affect production of the pp harbouring the HA of more recently 

circulating H3N2 strains. 

For this reason A/Wisconsin/67/2005 H3pp were produced with an 

A/Udorn/307/1972 N2 NA on their envelope. For this purpose, the transfection protocol 

described in Section 3.2.4 was modified and 125 ng of pI.18-A/Udorn/307/1972 N2 

plasmid (kindly provided by Dr. David Woodhall, Novartis, Boston, USA) was added to 

the DNA mixes. As a control A/Wisconsin/67/2005 H3pp were also produced following 

Section 3.2.4 protocol using 0.5 U, 1 U or absence of exogenous NA from Clostridium 

perfringens. 
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3.2.9 Immunofluorescence 

To control the expression location of the HA following transfection of 

HA-encoding plasmids immunofluorescence was performed as described in Section 2.4.2. 

For the immunofluorescence of the H13 HA, the OIE reference antisera produced 

by inoculation of A/gull/Maryland/704/1977 (H13N6) in specific pathogen-free chicken, 

kindly provided by Dr. Giovanni Cattoli (Istituto Zooprofilattico delle Venezie, OIE, 

Legnaro, Padua, Italy), was used as primary antibody at a dilution of 1:500, whereas the 

goat anti-chicken IgG (H+L)-Fluorescein antibody (Sigma-Aldrich, cat.no. SAB3700197) 

diluted at 1:1000 was used as the secondary antibody. 

For immunofluorescence of cells transduced with A/Texas/05/2009 H1 wild-type 

and mutant pp, C179 mAb (TaKaRa Clonthec, cat.no. M145) was used at a working 

concentration of 1 µg/ml; the secondary goat anti-mouse IgG (whole molecule)–

Fluorescein isothiocyanate (FITC) antibody (Sigma-Aldrich, cat.no. F9006) was used at a 

1:500 dilution. 

3.2.10 Western blotting 
To confirm HA cleavage of A/duck/Italy/1447/2005 H1pp and A/Udorn/307/1972 

H3pp by the test proteases, Western blotting was performed (as described in Section 

2.4.3.2) using the pp produced in the presence of a protease-encoding plasmid. As controls, 

∆ protease pp was used and TPCK-Trypsin treatment was performed: 45 µl of ∆ protease 

pp was digested with 1 mg/ml TPCK-Trypsin to have a final concentration of 50  µg/ml. 

After 30 min at 37°C, 50 µl of TNS was added to block the TPCK-Trypsin activity: in this 

case, to maintain the quantity proportion of loaded samples, 12 µl, instead of 6 µl, of 

treated pp were mixed with Laemmli Buffer and ß-mercaptoethanol to have a 1X and 

5% v/v concentration respectively. 

For A/duck/Italy/1447/2005 H1pp, the A/duck/Italy/1447/2005 H1N1 reference 

chicken antiserum, kindly provided by Dr.Giovanni Cattoli (Istituto Zooprofilattico delle 

Venezie, World Organization for Animal Health, Legnaro, Padua, Italy), was used diluted 

to 1:500 as primary antibody. To detect the binding of this avian serum, an Alexa Fluor® 

680-AffiniPure donkey anti-chicken IgY (IgG) (H+L) (Stratech Scientific Ltd., cat.no. 

703-625-155) secondary antibody was diluted at 1:20000. 

For A/Udorn/307/1972 H3pp, the sheep antiserum A/England/427/1988 (H3N2) 

provided by NIBSC was diluted to 1:500 and used as the primary antibody; the donkey 

anti-sheep/goat IgG Dylight®800 antibody (AbD Serotec®, Bio-Rad, cat.no. 

STAR88D800GA) diluted to 1:20000 was used as the secondary antibody. 
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The Western blot membranes were detected using the Odyssey® Sa Infrared 

Imaging System at 700 nm for A/duck/Italy/1447/2005 H1pp and at 800 nm with 

A/Udorn/307/1972 H3pp. 

3.3 Results 

3.3.1 Cloning, subcloning and mutation correction of influenza A 

haemagglutinin genes 
All the cloning procedures reported in the flow charts were successful. In certain 

cases troubleshooting was necessary since different problems, such as absence of 

amplification of the HA gene from the cDNA, incorrect design of primers (resulting in 

unexpected primer dimer formation or the presence of uncorrected restriction enzyme site), 

problems with gel extraction, or unsuccessful ligation, were encountered. As a result, the 

following HA-encoding plasmids were generated to permit pp production: 

pI.18-A/Solomon Islands/3/2006 H1, pI.18-A/Brisbane/59/2007 H1, 

pI.18-A/Texas/05/2009 H1, pI.18-A/duck/Italy/1447/2005 H1, pI.18-A/Korea/426/1968 

H2, phCMV1-A/duck/Germany/1215/1973 H2, pI.18-A/Wisconsin/67/2005 H3, 

pI.18-A/California/7/2004 H3, pI.18-A/Shanghai/2/2013 H7, 

phCMV1-A/turkey/Ontario/6118/1968 H8, pI.18-A/Hong Kong/1073/1999 H9. 

For pI.18-A/California/7/2004 H3, a mutation was present after cloning and was 

successfully corrected by site-directed mutagenesis (sequences shown in Figure 26). 

 

A 
 

B 

 
C 

 
D 

 
Figure 26: Site-direct mutagenesis of A/California/7/2004 H3 
A. A/California/7/2004 H3 gene sequence showing the N205H mutation; B. Electropherograms of 
A/California/7/2004 H3 gene sequence showing the N205H mutation; C. A/California/7/2004 H3 
gene sequence after mutagenesis showing the correction of the mutation; D. Electropherograms of 
corrected A/California/7/2004 H3 sequence. 

Of the plasmids already available at the beginning of the studies (Section 3.2.1) the 

pI.18-A/Puerto Rico/8/1934 H1 contained a mutation at the level of the cleavage site. As 
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shown in Figure 27, the cleavage site of A/Puerto Rico/8/1934 H1 was successfully 

restored via mutagenesis, permitting the use of this plasmid to produce pp. 

A 
 

B 

 
C 

 
D 

 
Figure 27: Site-direct mutagenesis of A/Puerto Rico/8/1934 H1 
A.  A/Puerto Rico/8/1934 H1 gene sequence showing the cleavage site mutation; 
B. Electropherograms of A/Puerto Rico/8/1934 H1 gene sequence showing the cleavage site 
mutation; C. A/Puerto Rico/8/1934 H1 gene sequence after mutagenesis showing the correct 
cleavage site; D. Electropherograms of corrected A/Puerto Rico/8/1934 H1 gene sequence. 

3.3.2 Optimised protease conditions are necessary for the production of 

different influenza haemagglutinin pseudotypes 

Cloned or donated HAs were used in influenza HA pp production experiments and 

to test the activity of different proteases. In general in the absence of proteases (∆ protease) 

all the pp titres are negligible (1×104-1×105 RLU/ml), and only when a protease plasmid is 

co-transfected during pp production do titres increase significantly (Figures 28-32). This 

demonstrates that proteases are essential for the production of low pathogenic avian and 

human influenza pp. 

In Figure 28 the H1pp titres obtained testing different types and quantities of 

protease-encoding plasmid are presented. It can be noticed that for all the H1pp, in general, 

higher titres were observed when the lower quantities of the TMPRSS4-encoding plasmid 

was used. HAT was also able to mediate H1 HA activation and produce high titre pp. 

TMPRSS2 seems to mediate cleavage activation less efficiently, with the exception of 

A/Puerto Rico/8/1934 H1pp (Figure 28B) and A/Brisbane/59/2007 H1pp (Figure 28E), in 

which this protease permitted the production of pp preparations with titre equal or higher 

than the ones produced with HAT. Generally, when low quantities of protease-encoding 

plasmids were used higher titres were observed, however some exceptions were observed, 

especially when the HAT was involved (Figure 28 (B and C)). 

As a control, ∆ protease pp were also titrated with concomitant TPCK-Trypsin 

treatment. In general TPCK-Trypsin treatment permitted the rescue of the ∆ protease pp 

titre, however, when the A/duck/Italy/1447/2005 H1 ∆ protease pp was similarly treated 

the titres did not increase (Figure 28F). 
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A 

 

B 

 
C 

 

D 

 

E 

 

F 

 
Figure 28: Role of HAT, TMPRSS2, and TMPRSS4 proteases in H1pp production 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. A/South Carolina/1/1918 
H1pp; B. A/Puerto Rico/8/1934 H1pp; C. A/New Caledonia/20/1999 H1pp; D. A/Solomon 
Islands/3/2006 H1pp; E. A/Brisbane/59/2007 H1pp; F. A/duck/Italy/1447/2005 H1pp. 
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Figure 29 shows the production of H2pp. All the proteases, including 

TPCK-Trypsin, were able to mediate the cleavage of the human H2, permitting the 

production of high titre (>1×108 RLU/ml) pp. The pp bearing the H2 of avian 

origin (Figure 29B) exhibited lower titres compared to the human H2pp, and also a 

different protease activation pattern: A/Korea/426/1968 H2pp showed lower titres when 

the TMPRSS2- and TMPRSS4-encoding plasmids were used at 250 ng, whereas the 

opposite result is observed for A/duck/Germany/1215/1973 H2pp. 

A 

 

B 

 
Figure 29: Role of HAT, TMPRSS2, and TMPRSS4 proteases in H2pp production 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. A/Korea/426/1968 H2pp; 
B. A/duck/Germany/1215/1973 H2pp. 

In Figure 30 (A and B), the production of H3pp is reported. For 

A/Udorn/307/1972 H3pp (Figure 30A) it can be observed that high pp titres were obtained 

when the TMPRSS2 protease was used. HA cleavage and activation was also mediated by 

TMPRSS4 and at a lower level also by HAT. TPCK-Trypsin can also rescue ∆ protease pp 

titre. For A/California/7/2004 H3pp (Figure 30B), the pp titres failed to exceed 

1×107 RLU/ml. Cleavage was observed when 75 ng of pCAGGS-HAT, 500 ng and 125 ng 

of pCAGGS-TMPRSS2, and 250 ng, 125 ng and 75 ng of 

pCMV-Tag3 TMPRSS4 (ECD)-myc were used. Also TPCK-Trypsin was able to mediate 

HA cleavage but the effect was moderate in comparison to the ∆ protease pp titre. 

Figure 30C shows the production of A/duck/Czechoslovakia/1956 H4pp. High titre pp 

were produced when 250 ng of pCAGGS-TMPRSS2 was used; also when lower 

quantities (125 ng) of the encoding plasmid were used titres remained high. TMPRSS4 and 

HAT were also able to mediate HA activation and, interestingly, higher pp titres were 
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observed when less plasmid was used in the co-transfection. HA activation was also 

observed when TPCK-Trypsin treatment was performed. 

In Figure 30D the titres of pp harbouring the HA of the potentially pandemic H7N9 virus 

is shown. A/Shanghai/2/2013 H7 was cleaved by all the proteases tested. Higher titres 

were observed when TMPRSS4 was used but also when 250 ng of HAT-encoding plasmid 

was used. Other conditions showed moderate pp titres (1×107-1×108 RLU/ml). 

A 

 

B 

  
C 

 

D 

 
Figure 30: Role of HAT, TMPRSS2, and TMPRSS4 proteases in H3pp, H4pp, and H7pp 
production 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. A/Udorn/307/1972 H3pp; 
B. A/California/7/2004 H3pp; C. A/duck/Czechoslovakia/1956 H4pp; D. A/Shanghai/2/2013 
H7pp. 

The production optimisation of H8pp is shown in Figure 31A. High titre pp were 

produced when the pCMV-Tag3 TMPRSS4 (ECD)-myc plasmid was co-transfected into 

producer cells. The use of pCAGGS-HAT permitted the production of H8pp of moderate 
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titre, whereas lower titres were observed when pCAGGS-TMPRSS2 was used during the 

transfection or when TPCK-Trypsin treatment was performed post-supernatant harvesting. 

Figure 31B shows the production of another Group 1 HA bearing pp, 

A/Hong Kong/1073/1999 H9pp. As observed for H8pp, the highest titres were obtained 

when TMPRRSS4 was used, followed by HAT. TMPRSS2 failed to activate the H9 HA 

and pp titres were lower than for the ∆ protease pp. TPCK-Trypsin treatment also 

permitted the rescue of ∆ protease pp titre. 

A 

 

B 

 
C 

 

D 

 
Figure 31: Role of HAT, TMPRSS2, and TMPRSS4 proteases in H8pp, H9pp, H10pp, and 
H11pp production 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. 
A/turkey/Ontario/6118/1968 H8pp; B. A/Hong Kong/1073/1999 H9pp; C. 
A/chicken/Germany/N49 H10pp; D. A/duck/Memphis/546/1974 H11pp. 

In Figure 31C, titres obtained during the optimisation of the H10pp are reported. 

The optimisation has shown that high pp titres can be obtained when TMPRSS2 is used; 
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alternatively HAT permits high titre pp (>1×108 RLU/ml) production. However, the use of 

TMPRSS4 failed to produce high titre pp. 

The production optimisation of A/duck/Memphis/546/1974 H11pp is reported in 

Figure 31D. It was possible to produce moderate titre (>1×107 RLU/ml) pp using all the 

three proteases tested. Higher titres were observed when 250 ng of pCAGGS-HAT and 

pCMV-Tag3 TMPRSS4 (ECD)-myc were used, whereas the titres of TMPRSS2-produced 

pp resulted in at least a half log lower titre. The ∆ protease H11pp titre was not rescued by 

the TPCK-Trypsin treatment.  

A 

 

B 

 
C 

 
Figure 32: Role of HAT, TMPRSS2, and TMPRSS4 proteases in H12pp, H13pp, and H14pp 
production 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. A/duck/Alberta/60/1976 
H12pp; B. A/mallard/Astrakhan/263/1982 H14pp; 
C. A/shearwater/West Australia/2576/1979 H15pp. 
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Figure 32A shows the production optimisation of H12pp. High titre pp were 

obtained using HAT and TMPRSS4. The co-transfection of pCAGGS-TMPRSS2 

permitted the production of an active pp when 125 ng was used but not when 250 ng was 

transfected. As observed for the H11pp, the TPCK-Trypsin does not activate the H12 HA. 

The production of H14pp is reported in Figure 32B. H14pp were generated through 

HA activation, especially mediated by HAT, subsequentially by TMPRSS4 and 

TMPRSS2. Activation of HA pp was also achieved using TPCK-Trypsin treatment. 

In Figure 32C H15pp are reported. High titre H15pp were generated by 

co-transfection of pCMV-Tag3 TMPRSS4 (ECD)-myc. Also the use of TMPRSS2 

permitted the production of high titre pp, especially when 250 ng of plasmid was used. 

HAT and TPCK-Trypsin mediate HA activation and pp production to a lower extent than 

the other two proteases. 

To verify that the HA cleavage is mediated by the co-transfected proteases, 

Western blotting was performed on the A/duck/Italy/1447/2005 H1pp and 

A/Udorn/307/1972 H3pp. The two Western blot membranes are shown in Figure 33 and 

Figure 34. 

 
Figure 33: Western blot of A/duck/Italy/1447/2005 H1pp obtained using different proteases 
HA was detected using 1:500 A/duck/Italy/1447/2005 H1N1 OIE reference chicken antiserum and 
1:20000 Alexa Fluor® 680‑AffiniPure donkey anti‑chicken IgY (IgG) (H+L) secondary antibody. 
Membrane was acquired using the 700nm channel. Molecular weight size marker lane was not 
shown as acquired using sensitivity parameters that differed from the rest of the membrane. An HA 
control, that could be used to better identify the bands detected, was not used as a recombinant HA 
was unavailable for the subtype tested (other HA subtypes, e.g. H5, would have not be recognised 
by the antisera used). 

Unfortunately, the poor quality of the A/duck/Italy/1447/2005 H1pp Western 

blot (Figure 33) does not permit the clear visualisation and quantification of the bands, 
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however it is possible to observe the presence of bands at 55 kDa, corresponding to HA1, 

for all the pp produced using protease co-transfection, indicating successful cleavage of the 

HAs. The HA1 band is also present in the ∆ protease pp indicating that producer cells 

possess proteases that were able to cleave the HA generating functional pp. Bands 

corresponding to the uncleaved HA0 are undetectable in the membrane, indicating that by 

far the majority of the HAs are active. However, this does not correlate with the titration 

results in which the ∆ protease pp had a lower titre (Figure 28F), indicating the presence 

of uncleaved HA. 

In the ∆ protease pp subjected to TPCK-Trypsin an HA1 band cannot be observed. 

The absence of the HA1 after the TPCK-Trypsin treatment could indicate that this 

treatment was too harsh and has resulted in HA degradation and non-specific cleavage. 

This result correlates with the observation that TPCK-Trypsin treatment cannot rescue the 

∆ protease A/duck/Italy/1447/2005 H1pp titre that was diminished after this cleavage 

treatment (Figure 28F). 

 
Figure 34: Western blot of A/Udorn/307/1972 H3pp obtained using different proteases 
HA was detected using 1:500 A/England/427/1988 (H3N2) NIBSC sheep antiserum and 1:20000 
anti‑sheep/goat IgG Dylight®800 secondary antibody. Membrane was acquired using the 800nm 
channel. Molecular weight size marker lane was not shown as acquired using sensitivity parameters 
that differed from the rest of the membrane. An HA control, that could be used to better identify the 
band detected, was not used as a recombinant HA was unavailable for the subtype tested (other HA 
subtypes, e.g. H5, would have not be recognised by the antisera used). 

In the A/Udorn/307/1972 H3pp Western blot (Figure 34), two bands between 

50 kDa and 60 kDa are observed. Since in each sample these two bands are observed at a 

molecular weight corresponding to HA1, this could indicate that HA1 presents two 

different glycosylation patterns. As observed in the A/duck/Italy/1447/2005 H1pp Western 

blot, the HA0 bands are not observed. Nevertheless, it is clear that the HAs present on the 
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pp surface were cleaved by the HAT, TMPRSS2 and TMPSS4 since the HA1 bands are 

visible. Furthermore the presence of the HA1 bands in the A/Udorn/307/1972 H3 

∆ protease pp demonstrates that these or other proteases that are involved in HA cleavage 

are expressed in the HEK293T/17 producer cells. 

3.3.3 Residues near the cleavage arginine play a role in protease 

haemagglutinin activation 
A/black-headed gull/Sweden/2/1999 H16pp was also produced following the 

protease optimisation protocol. However, to test the role of an α-helix present at the level 

of the cleavage arginine in the H16 HA (Lu et al. 2012), pp were produced and optimised 

using a wild-type and a mutant H16. In this mutant H16, produced by site-direct 

mutagenesis, the amino acids near the H16 cleavage arginine were changed to resemble the 

ones present in H1 (Figure 35). In this way the α-helix should be disrupted. 

A 
 

B 

 
Figure 35: Site-direct mutagenesis of A/black-headed gull/Sweden/2/1999 H16 
A. A/black-headed gull/Sweden/2/1999 H16 gene sequence after mutagenesis showing the mutated 
cleavage site; B. Electropherograms of mutated A/black-headed gull/Sweden/2/1999 H16 gene 
sequence. 

A 

 

B 

 
Figure 36: Role of HAT, TMPRSS2, and TMPRSS4 proteases in the production of wild-type 
and mutated A/black-headed gull/Sweden/2/1999 H16pp 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. Wild-type A/black-headed 
gull/Sweden/2/1999 H16pp; B. A/black-headed gull/Sweden/2/1999 H16pp with cleavage 
mutation. 
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The protease-activation profiles of the H16pp and its mutant (Figure 35) have 

many similarities but also some differences. In fact, the protease activation profile of the 

H16 cleavage mutant pp is more similar to the one observed with H1pp: high titres are 

observed when high quantities of HAT were used and especially when lower quantities of 

TMPRSS4 were used, as observed for some of the H1pp (Appendix Table 1). 

Both H16 and its cleavage mutant were not activated by TPCK-Trypsin, possibly 

indicating that the disruption of the α-helix is not sufficient to permit the TPCK-Trypsin 

cleavage as observed with H1pp. Therefore other factors could be involved to explain this 

cleavage pattern. 

3.3.4 Production of A/Texas/05/2009 H1 pseudotypes is dependent on the 

quantity of the haemagglutinin-encoding plasmid used 

A 

 
B 

 

C 

 
Figure 37: Production of A/Texas/05/2009 H1pp 
The role of HAT, TMPRSS2, and TMPRSS4 proteases in the production of A/Texas/05/2009 H1pp 
was evaluated concomitantly to the optimisation of pp production ratios.  Titres are reported in 
RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to 
indicate the minimum titre necessary to effectively perform neutralization assays. A. 
A/Texas/05/2009 H1pp produced using standard ratio of p8.91, pCSFLW and 
pI.18-A/Texas/05/2009 H1; B. A/Texas/05/2009 H1pp produced halving the amount of 
pI.18-A/Texas/05/2009 H1; C. A/Texas/05/2009 H1pp produced doubling the amount of 
pI.18-A/Texas/05/2009 H1. 
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To produce A/Texas/05/2009 H1pp, the optimisation of type and quantity of the 

protease-encoding plasmid was performed (Figure 37A). However, the pp titres, obtained 

using proteases or TPCK-Trypsin treatment, were not different from ∆ protease pp.  

Initially a problem with the expression of the envelope protein was hypothesised. 

However, having confirmed the expression of A/Texas/05/2009 H1 on the producer cell 

surface by immunofluorescence (Figure 40), this explanation was excluded. 

Suspecting a toxic effect due to the expression of this particular HA or a less 

efficient expression in comparison to other HAs, and knowing that evaluating different 

HIV-1 core, lentiviral vector and envelope protein plasmid ratios could help the 

optimisation of pp production (Garcia and J. C. C. Lai 2011), the effect of changing 

quantities of HA-encoding plasmid during co-transfection was tested. Two conditions were 

tested: the quantity of the HA-encoding plasmid was halved (250 ng) or doubled (1000 ng) 

changing the plasmid ratio to 1:1.5:0.5 and 1:1.5:2 respectively. When less 

pI.18-A/Texas/05/2009 H1 was used (Figure 37B), HAT- and TMPRSS4-generated pp 

showed an increase in titres in comparison to the ∆ protease pp, indicating that the two 

proteases were able to activate the HA permitting the production of transduction-efficient 

pp. When the HA-encoding plasmid quantity was doubled an increase in transduction 

activity was observed when HAT-encoding plasmid was used and when 125 ng of 

pCAGGS-TMPRSS2 was used (Figure 37C). In both cases TPCK-Trypsin treatment 

permitted HA cleavage and the consequential increase of the ∆ protease pp titre. 

However, the titres of the A/Texas/05/2009 H1pp remain comparatively 

low (<1×107 RLU/ml) and further optimisation will be necessary to produce a pp that can 

be efficiently used for other applications (e.g. pp-NT assay). 

Recently two mutations of the influenza 2009 pandemic HA were reported to be 

able to increase virus production/replication and pp titre (Nicolson et al. 2012; Z. Chen et 

al. 2010; W. Wang, Castelán-Vega, et al. 2010). To investigate the feasibility of using this 

knowledge in pp production, mutagenesis was performed on the pI.18-A/Texas/05/2009 

H1 plasmid. Figure 38 and Figure 39 show the successful mutagenesis and the 

introduction of the K136 and Q240 amino acid mutations. 

A 
 

B 

 
Figure 38: Site-direct mutagenesis K136N of A/Texas/05/2009 H1pp 
A. A/Texas/05/2009 H1 gene sequence after mutagenesis showing the K135N mutation; 
B. Electropherograms of mutated A/Texas/05/2009 H1 gene sequence. 
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A 
 

B 

 
Figure 39: Site-direct mutagenesis Q240R of A/Texas/05/2009 H1pp 
A. A/Texas/05/2009 H1 gene sequence after mutagenesis showing the Q240R mutation; 
B. Electropherograms of mutated A/Texas/05/2009 H1 gene sequence. 

Before evaluating these new mutant HAs in the pp generation system, 

immunofluorescence was performed to verify protein expression following simple plasmid 

transfection. In Figure 40, the immunofluorescence shows that the two mutated HAs were 

expressed on the HEK293T/17 cells, with no significant differences in expression observed 

in comparison with the wild-type HA. For this reason and the fact that possible antigenic 

differences between the mutated HAs and the wild-type HA could be present (García-

Barreno et al. 2014; Job et al. 2013; Koel et al. 2013), it was decided to not proceed in the 

evaluation of these HA in the pp producing system. 

 
Figure 40: Immunofluorescence of the wild-type A/Texas/6/2009 H1, and the K136N and 
Q240R mutants 
The immunofluorescence was performed using C17 as primary antibody and anti‑mouse IgG 
(whole molecule)–FITC antibody as secondary antibody. Images were acquired using 20X 
magnification and the scale bar (10µm) is shown in the figure. The immunofluorescence shows the 
plasma membrane expression of A/Texas/6/2009 H1 wild-type and mutated HAs compered to the 
cell control, in which minimal background is detected. Hoechst 33342 was used to highlight the 
HEK293T/17 nuclei. 
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3.3.5 Presence of neuraminidase in the pseudotype membrane increases the 

titre of A/Wisconsin/67/2005 H3 pseudotype 
Firstly, to produce A/Wisconsin/67/2005 H3pp, different protease types and 

quantities were evaluated. The results, showed in Figure 41A, demonstrate that the use of 

pCAGGS-TMPRSS2 and pCMV-Tag3 TMPRSS4 (ECD)-myc resulted in only slight 

increase in titres compared to ∆ protease pp titre; however, HAT was able to activate the 

HA permitting the production of functional pp with titre reaching the 1×107 RLU/ml. 

A 

 

B 

 
C 

 
Figure 41: Production of A/Wisconsin/67/2005 H3pp 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. Evaluation of HAT, 
TMPRSS2, and TMPRSS4 protease on the production of A/Wisconsin/67/2005 H3pp; B. 
Evaluation of HAT, TMPRSS2, and TMPRSS4 protease role on production of 
A/Wisconsin/67/2005 H3pp in which the A/Udorn/307/1972 N2 was also expressed. C. Role of the 
A/Udorn/307/1972 N2 and exogenous NA on A/Wisconsin/67/2005 H3pp production. 
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Since recently it was demonstrated that H3 bearing influenza A viruses show a 

lower affinity for short and branched sialylated glycan receptors (Gulati et al. 2013) and 

that the N2 NA can acquire significant receptor-binding activity following mutation (Y. P. 

Lin et al. 2010), it was decided to evaluate, in the pp system, the effect of the 

co-transfection of an N2 NA-expressing plasmid. 

When the A/Udorn/307/1972 N2 was added to the pp surface by co-transfection of 

the encoding plasmid, the HA protease cleavage pattern did not change, but a slight 

increase in the titres of pp produced using HAT was observed (Figure 41B). 

Further analysis shows that the H3N2pp titre was higher than the titre of the H3pp 

produced using both the standard (0.5 U) and double (1U) amount of exogenous NA. As 

expected, the lowest titre is observed in NA absence, indicating that NA activity is 

necessary for pp production (Figure 41C). 

3.3.6 For production of A/gull/Maryland/704/1977 H13 pseudotype further 

strategies should be implemented 
Initial experiments performed to produce the A/gull/Maryland/704/1977 H13pp did 

not yield positive results since in all the cases pp titres lower than 5×105 RLU/ml were 

obtained (Figure 43A). 

 
Figure 42: Immunofluorescence of the wild-type A/gull/Maryland/704/1977 H13 
The immunofluorescence was performed using A/gull/Maryland/704/1977 (H13N6) antisera as 
primary antibody and the anti‑chicken IgG (H+L)‑Fluorescein antibody as secondary antibody. 
Images were acquired using 20X magnification and the scale bar (10µm) is shown in the figure. 
The immunofluorescence shows the plasma membrane expression of A/gull/Maryland/704/1977 
H13 compered to the cell control, in which minimal background is detected. Hoechst 33342 was 
used to highlight the HEK293T/17 nuclei. 

Since also TPCK-Trypsin treatment failed to activate H13pp, a problem with the 

expression of the envelope protein was suspected and thus immunofluorescence was 

performed. However, the immunofluorescence (Figure 42) clearly showed that the H13 

Hoechst 33342 merge 
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HA was expressed on the plasma cell membrane when the encoding plasmid was 

transfected into cells. 

For this reason, in order to produce the H13pp, two strategies were investigated. 

The first strategy consisted of decreasing the amount of HA-encoding plasmid used, as was 

done for A/Texas/05/2009 H1, in case that a toxic effect following the expression of the 

HA had occurred. This strategy did not result in any improvement in the pp titre (Figure 

43B). 

The second strategy used was evaluating two additional proteases, TMPRSS3 and 

TMPRSS6. Testing these two proteases (Figure 43C), an increase in the H13pp titre was 

observed when 125 ng of TMPRSS6-encoding plasmid was co-transfected during pp 

production, indicating a possible role of this protease in the cleavage of the H13 HA. 

A 

 

B 

 
C 

 
Figure 43: Production of A/gull/Maryland/704/1977 H13pp 
Titres of pp generated during an individual transfection experiment are reported in RLU/ml with 
SEM (n=8 titre measurements). A line corresponding to 2×10^7 RLU/ml is drawn to indicate the 
minimum titre necessary to effectively perform neutralization assays. A. Role of HAT, TMPRSS2, 
and TMPRSS4 proteases in the production of A/gull/Maryland/704/1977 H13pp; B. Role of HAT, 
TMPRSS2, and TMPRSS4 proteases in the production of A/gull/Maryland/704/1977 H13pp in 
with the amount of HA-encoding plasmid used during transfection was halved; C. Role of 
TMPRSS3 and TMPRSS6 proteases in the production of A/gull/Maryland/704/1977 H13pp. 
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3.4 Discussion 
To permit entry into cells, influenza viruses or pp need to harbour on their envelope 

trimerised and correctly folded HAs. Furthermore, it is necessary that the fusion peptide is 

exposed. This is mediated by HA0 cleavage at the level of basic residue/residues preceding 

the fusion peptide sequence itself. 

Influenza HPAI H5 and HPAI H7pp are usually straightforward to produce, since 

HA cleavage is mediated by proteases that are expressed in producer cell lines (Garcia and 

J. C. C. Lai 2011). On the other hand, production of pp harbouring the human or low 

pathogenic avian HA is more problematic since cleavage is mediated by tissue-specific 

proteases. 

Recently, different proteases putatively involved in HA cleavage were isolated and 

exploited to produce pp and study HA cleavage using pp (Zmora et al. 2014; Sawoo et al. 

2014; Ferrara et al. 2013; Galloway et al. 2013; Bertram et al. 2012; Bertram et al. 2011; 

Bertram, Glowacka, Blazejewska, et al. 2010; W. Wang et al. 2008). However, these 

studies have mainly concentrated on human H1 and H3 HA subtypes. In this chapter the 

essential role of three proteases HAT, TMPRSS2, and TMPRSS4 to cleave HAs and thus 

produce low pathogenic avian and human influenza pp is shown. In fact, when 

protease-encoding plasmid is co-transfected into HEK293T/17 with HIV-1 

gagpol-encoding plasmid, HA-encoding plasmid, and lentiviral vector, pp can be obtained. 

This process is not straightforward: optimisation of the type and the quantity of protease 

used is necessary to obtain high titre pp. 

Before proceeding to discuss the data in detail, it should be noted that to calculate 

the pp titre, which is used as surrogate measure of protease activity, a method that does not 

consider the mathematical relationship between the titration dilution points was used. 

Alternatively and perhaps more relevant, the titration results could have been fitted with a 

curve and then the titre in RLU/ml should have been interpolated on the basis of the curve 

equation. However it was impossible to find a curve fitting the data. This curve-fitting 

methodology would have been more appropriate especially to calculate the titre of the pp 

produced without envelope protein, which were used to normalize the data (Section 1.5.1). 

In fact the method used here tends to intrinsically overestimate the background level, with 

the risk of masking significant results. However the method used permits an effective 

evaluation of pp titre for further experimental procedures (i.e. pp-NT assay) and for this 

reason was considered more appropriate for the final use of pp. In future other 

mathematical methods to calculate the titre should be evaluated. 

Another important factor that should be considered is the fact that pp are produced 

with equal amounts of transfected DNA that may or may not result in an equal amount of 
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protein being expressed. If the elements encoded by p8.91 and pCSFLW are identical in 

each transfection, and could be considered expressed at the same level in each transfection, 

the same is not true for the HA and the protease encoding plasmid: even if expression 

controlling elements are similar, the genes are inherently different and this is a factor that 

can contribute to protein expression. In fact each gene could be codon- or not codon- 

optimized and specific sequences could interfere with mRNA stability and translation. For 

this reason caution should be exercised when comparing different pp. 

Additionally if the p8.91, pCSFLW, and the plasmid encoding the HA should also 

be present at the same time in the same cells to produce pp, for the proteases the process is 

more complicated. For example TMPRSS2 needs to be expressed in the cell in which HA 

is expressed since it mediates cleavage intracellulary, whereas HAT could activate HA in 

trans since it is also expressed at the plasma membrane. The cellular localization in which 

TMPRSS4 mediates its activity is not clear.  

Taking in consideration the points discussed, in general, from the results obtained, 

it can be noticed that TMPRSS4 shows a broad cleavage activity since it is able to activate 

HAs belonging to different Group 1 and Group 2 subtypes, permitting the production of 

high titre pp. Furthermore, Group 1 HAs are preferentially cleaved by HAT rather than 

TMPRSS2, whilst for Group 2 HAs the opposite is true. More specifically, it appears clear 

that different subtypes exhibit different cleavage patterns. This was also noted by 

Galloway et al. 2013; however, the results reported here differ from those previously 

described. For example, in Galloway at al. TMPRSS2 had a greater and broader cleavage 

activity compared to the results presented here. However, these dissimilarities could be 

explained by different experimental conditions. In fact, the results presented here show that 

not only the type, but also the quantity of the protease-encoding plasmid needs to be 

investigated to have optimal cleavage conditions and high pp titres. In relation to this, it 

could be that a HA-protease equilibrium is necessary to produce high titre pp. In fact it 

could be that, when overexpressed, proteases mediate aspecific degradation of the HA. 

Unfortunately, the poor quality of the Western blots performed and the absence of 

normalisation of pp loading do not permit the quantification of the ratio of uncleaved: 

cleaved HA and comparison of different preparations. Nevertheless, the Western blot 

performed on A/duck/Italy/1447/2005 H1pp shows that after TPCK-Trypsin treatment of ∆ 

protease pp the HA is degraded since an HA1 band is not visible. Furthermore, the 

A/duck/Italy/1447/2005 H1pp activated by TPCK-Trypsin has a titre lower than the ∆ 

protease. This indicates that TPCK-Trypsin treatment conditions also need to be optimised 

for each pp and reinforces the concept that an equilibrium between HAs and proteases is 

needed to permit optimal cleavage/activation and to not cause HA degradation. 



 

113 

Degradation could also be the cause of the double bands (corresponding to the proposed 

HA1) observed in the Western blot performed on A/Udorn/307/1972 H3pp, however other 

effects such as different HA glycosylation could also exhibit with this pattern. The 

optimisation and standardisation of Western blotting using pp is necessary to understand if 

degradation, differential glycosylation or other artefacts can affect the results observed. 

Furthermore, it will reveal deeper insight into protease-HA equilibrium and should be 

investigated in future. Furthermore, the ability to assess the protease kinetic in relation to 

HA as substrate using purified proteins could be useful to understand this 

equilibrium (Ferrara et al. 2013). 

In regards to the protease-HA equilibrium hypothesis, the A/Texas/05/2009 H1pp 

production experiments permit some elucidation of this mechanism. In fact, 

A/Texas/05/2009 H1pp production using 500 ng of HA-encoding plasmid resulted in low 

titre pp. However, when the plasmid quantity was increased or decreased, pp with higher 

titres were obtained. The experiments have also shown that using different HA quantities, 

the cleavage pattern changed. 

In Appendix Table 1 the pp production optimisation results were reported and the 

best conditions were highlighted. In general it was always possible to determine the best 

protease for cleavage, however when two different quantities of the same 

protease-encoding plasmid permit the production of a pp, the lower quantity should be 

used to minimise the toxic effect of the expressed protease. In fact, during optimisation 

experiments and pp production, it was observed that, when transfecting protease-encoding 

plasmids, high titre pp are obtained only 48 h post-transfection; if pp are collected 72 h 

post-transfection the titre is at least 10 fold lower (Appendix Figure 9). This effect 

appears to be associated with acidification, as noted by colour change, of the cell culture 

media and change of producer cell morphology. To support the hypothesis of the toxic 

effect of protease expression, it should be noted that HAT and TMPRSS2 are expressed 

under the control of inducible promoters in the MDCK-HAT and MDCK-TMPRSS2 cell 

lines (E. Böttcher et al. 2009) and the use of an inducible promoter is highly recommended 

when toxic proteins need to be produced (Kaufman 2000). 

An interesting result was obtained when pp were produced in the absence of 

protease-expressing plasmids: pp titration and Western blot indicates that ∆ protease pp are 

partially able to enter into the target cell line and they present a cleaved HA on their 

surface, confirmed by the presence of the HA1 band. Surprisingly, in the Western blot the 

HA0 band is not observed, indicating that the majority of HAs are activated. However, 

since ∆ protease pp titre is lower than the protease-activated pp titre (indicating the 

presence of uncleaved HA) the absence of the HA0 band, especially in ∆ protease pp, 
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could be an artefact due to the sample preparation (e.g. low-speed centrifugation). As 

mentioned, titration data suggest that ∆ protease pp could harbour some cleaved HA. In 

regards to this observation, it is likely that HAT, TMPRSS2 and TMPRSS4 are expressed 

at low levels in the HEK293T/17 cells. Recently, it has been shown that TMPRSS2 and 

HAT are expressed at different levels in different human respiratory and gastrointestinal 

tissues (Bertram et al. 2012) and expression profiles of TMPRSS2 and TMPRSS4 show 

that they are expressed also at the level of the kidney (Appendix Figure 10-12). It is for 

this reason likely that these two proteases at least are expressed in the producer cell, but 

unfortunately data concerning protease expression in HEK293T/17 cells are not currently 

available to confirm this theory. Nevertheless, it should be possible to investigate 

expression of the proteases using immunofluorescence and appropriate primary antibodies. 

It will be also interesting to perform knockdown experiments and subsequently produce pp 

to evaluate if cleaved HA is still present. In fact it cannot be excluded that other proteases 

could also be involved in the HA cleavage observed in the ∆ protease pp. Recently, 

matriptase 1 was shown to be able to activate HA (Baron et al. 2013; Beaulieu et al. 2013; 

Hamilton, Gludish and Whittaker 2012). Also kallikrein 5 and kallikrein 12 have been 

associated with the cleavage of H1, H2 and H3 HAs (Hamilton and Whittaker 2013). 

The fact that human proteases are able to cleave and activate the HAs of different 

influenza A subtypes highlights that HA cleavage is a conserved process between avian 

species and humans, which was underlined after the observation that TMPRSS2 

homologous proteins are able to cleave human influenza HAs (Bertram et al. 2012). 

However, it is necessary to understand which of the HA amino acid residues are involved 

in the recognition of the HA by the proteases. In this chapter the role of amino acid 

residues preceding the cleavage arginine was investigated briefly. 

Recently the structure of an H16 subtype HA was resolved and it was observed that 

some amino acid residues upstream of the cleavage site are important in determining the 

surface accessibility of the cleavage arginine (Lu et al. 2012). Previously it was observed 

that TPCK-Trypsin is not able to mediate H16 cleavage (Galloway et al. 2013), a result 

that is confirmed by this study. In fact, in H16 the arginine remains buried since an α-helix 

is present preceding it (Lu et al. 2012). To test the effect of this structure in HA cleavage, 

the wild-type and a mutant H16, in which the α-helix was disrupted, were used to produce 

pp using different proteases. The results show that different cleavage patterns are observed 

in the two H16 HAs, indicating that amino acids near the cleavage arginine play an 

important role in determining protease specificity: the proteases, even if they are all serine 

proteases and should recognise the same cleavage arginine, could activate HA on the basis 

of specific proximal sequence differences. From the results observed it is not clear which 
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residues are important for each protease, however this could be further investigated via 

mutagenesis studies. Residues distal from the cleavage arginine could also play a role in 

determining protease specificity, when considering protein interactions. Supporting this, 

H1, H2, and H3 HAs present slightly different cleavage patterns, although they possess 

subtype specific cleavage motifs (Galloway et al. 2013). These indicate that other residues, 

possibly in the stalk or in regions proximal to the stalk, could play a role in the 

determination of protease-mediated cleavage. 

The study of HA mutants could help to elucidate which residues are involved, and 

will generate data that can permit at least the prediction of the protease type that should be 

used to activate a determinant HA, and thus enable production of high titre pp. 

Furthermore, the resolving of the protease structures and co-crystallization of the proteases 

with human and/or avian HA could be valuable to delineate the amino acid residues 

involved in the cleavage process (Ferrara et al. 2013). This would not only enhance 

understanding of the HA activation mechanism, but importantly may aid development of 

potential protease inhibitors (Dahms et al. 2014; Hamilton et al. 2014; Becker et al. 2012; 

Böttcher-Friebertshäuser et al. 2012; Sielaff et al. 2011; Zhirnov et al. 2011; Zhirnov, 

Ovcharenko and Bukrinskaya 1984), in a similar manner to NA inhibitor design , for 

treatment of severe influenza virus infections. In theory, if miniaturised and optimised, the 

pp producing protocol could also be exploited to screen compounds that can block 

protease-mediated cleavage. 

In this chapter, only optimisation of the protease quantity and type used was 

investigated to activate the HA and produce high titre pp. However, another possible 

strategy to produce pp could have been modifying the cleavage site from a single arginine 

or lysine to a multibasic cleavage site (Sawoo et al. 2014). Different groups have 

investigated the role of the multiple lysines and arginines introduced in the HA cleavage 

site of native viruses especially to evaluate if subtypes other than H5, H7 and H9 can 

support a multibasic cleavage site and the effect that this has on virus pathogenicity (Veits 

et al. 2012; Schrauwen et al. 2011; Munster et al. 2010; Szécsi et al. 2006). This literature 

reveals that only some subtypes/strains can support a multibasic cleavage site, implicating 

that this strategy may not be applicable to all influenza strains.	  

From the data presented here, differences in pp titre between strains and subtypes 

are observed: certain pp tend to always produce higher titres, others lower. In this regard, 

differential HA expression and maturation (glycosylation, folding and trafficking) in the 

HEK293T/17 producer cell line could play an important role as mentioned in Section 3.1 

of this chapter. It is probable that certain HAs are expressed in lower quantities than others 

and this results in a lower number of pp produced (Hai et al. 2012). In relation to this, the 
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quantity of HA in each preparation should be evaluated to determine if pp of different 

strains harbour the same amount of HAs on their surfaces. 

Furthermore, regarding the role of glycosylation in HA expression, in the current 

study the A/Texas/05/2009 H1 K136N mutant, which possesses a glycosylation site in 

position 136 in comparison to the wild-type, was investigated by immunofluorescence. 

This was to see if any differences in expression were evident, since this mutation was 

reported to increase vaccine yield (Nicolson et al. 2012). Results have shown that 

expression differences are not apparent and it is probably necessary to use other 

techniques (e.g. Western blotting) to highlight any. The production of pp harbouring this 

mutation present some concerns, as recently, antigenic differences compared with the 

wild-type caused by this same mutation were reported (García-Barreno et al. 2014; Job et 

al. 2013) and this is an issue if pp are to be used in neutralization assays. 

To increase the titre of A/Texas/05/2009 H1pp another mutant was investigated. In 

this mutant the receptor-binding site was modified to introduce an arginine instead of 

glutamine at position 246 (A/Texas/05/2009 numbering). As mentioned, this mutant was 

associated with an increase of pp titre and of vaccine yield (Z. Chen et al. 2010; W. Wang, 

Castelán-Vega, et al. 2010). In immunofluorescence experiments, this mutant does not 

appear to be differentially expressed compared to the wild-type HA. However, this HA 

mutation is also related to sialic acid receptor recognition (W. Wang, Castelán-Vega, et al. 

2010), and for this reason to test its effect, pp should be produced and tested on target cells. 

Unfortunately, viruses with mutated receptor-binding sites were recently associated with 

the presence of antigenic differences compared to the wild-type HA (Koel et al. 2013). For 

this reason, before proceeding to generate this mutant pp, further evaluation of the 

advantages and disadvantages of producing a mutated HA pp to be used in neutralization 

assays should be performed. At present, other strategies involving the optimisation of HA 

quantity and cleavage seems to be more suitable, considering also that, from 

immunofluorescence experiments, the wild-type A/Texas/05/2009 H1 HA appears to be 

strongly expressed. 

The two H3pp bearing more recently circulating HAs, A/California/7/2004 H3pp 

and the A/Wisconsin/67/2007 H3pp, exhibit lower titres compared to the 

A/Udorn/307/1972 H3pp. Recently it was recognised that currently circulating H3N2 

strains are losing receptor-binding activity (Gulati et al. 2013). It was recently 

demonstrated that in response to this loss the NA have acquired a compensating 

mutation (Y. P. Lin et al. 2010). This is not surprising since HA and NA coevolve and an 

equilibrium between the two opposite activities is necessary to have efficient 

replication (Mitnaul et al. 2000; Kaverin et al. 1998). In this case the NA mutation permits 
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increase of the binding activity of the virus (Y. P. Lin et al. 2010). Furthermore, the use of 

a NA-encoding plasmid was shown to increase the pp titre (Molesti et al. 2013; F. Zhang et 

al. 2011; W. Wang, Castelán-Vega, et al. 2010; Bosch et al. 2001). For these reasons it 

was decided to evaluate the NA role in the production of the A/Wisconsin/67/2007 H3pp. 

Unfortunately, the associated strain N2 NA was not available and for this reason the N2 of 

A/Udorn/307/1972 (H3N2) was used instead. The data produced support the observation 

that the presence of an endogenous NA increases pp titre (Molesti et al. 2013; F. Zhang et 

al. 2011; W. Wang, Castelán-Vega, et al. 2010; Bosch et al. 2001). To understand better if 

this effect was dependent on an increased release of pp, production experiments were also 

performed doubling the amount of exogenous NA usually used. Results show that 

increasing amount of exogenous NA does not have a positive effect in pp production. This 

seems to indicate that is not the sialidase activity that increase pp titre but the binding 

activity itself. Since the NA used does not possess the mutation associated with increased 

binding activity, a hypothesis is that the presence of NAs could influence the avidity of pp 

for their receptor (Ohuchi et al. 2006). The study of pp harbouring NA and a headless HA, 

which confers fusion activity to these pp, could have been useful to verify if NA could 

possess binding activity.  

Furthermore, NA and HA plasmids were used in a ratio 1:4 but, as previously 

mentioned, this may not directly represent the NA:HA protein ratio. It is possible that the 

two plasmids were transfected into different cells and for this reason pp harbouring only 

NA or only HA could also be present. To analyse NA expression on the viral surface, 

immunofluorescence on transfected cells and protein quantification of pp though ELISA 

and Western Blot could have been useful. Confocal immunofluorescence imaging of pp 

(Pizzato et al. 1999) could also have been used for this purpose.  

Lastly, it was not possible to produce the A/gull/Maryland/704/1977 H13pp even 

using TPCK-Trypsin treatment as observed previously (Galloway et al. 2013). 

Immunofluorescence has confirmed that the H13 HA is expressed on the producer cell 

surface, indicating that the absence of pp titre could be related to the fact that the HA is 

uncleaved or not properly cleaved. Reducing the amount of HA used did not permit to 

increase the pp titre as observed for A/Texas/05/2009 H1pp. Interesting, when testing two 

different proteases, TMPRSS3 and TMPRSS6, an increase in titre compared to the 

∆ protease was observed using TMPRSS6. This protease, like TMPRSS3, was not 

previously associated with HA cleavage (Zmora et al. 2014; Bertram et al. 2011; Bertram, 

Glowacka, Blazejewska, et al. 2010), so further experiments (e.g. Western blotting) are 

necessary to confirm this data. Simultaneous optimisation of HA quantity and the protease 

quantity could perhaps elucidate if this protease is involved. It should also be noticed that 
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an asparagine is present near the cleavage arginine (Galloway et al. 2013). This asparagine 

is not present in other subtypes, and should be further investigated using mutagenesis since 

it could potentially be glycosylated. This interpretation, is in contrast with the recently 

resolved H13 structure that shows only one glycosylation site (Lu et al. 2013); however, 

the recombinant protein used for structure characterisation was produced using a 

baculovirus system, and insect cell differs for glycosylation in comparison with 

mammalian cells (Contreras-Gómez et al. 2013). 

H13 HA was also previously reported to have specific characteristics of receptor 

binding and recognises exclusively α-2,3 sialic acids (Lu et al. 2013; Shelton et al. 2011; 

Nobusawa et al. 1991). For this reason it is obligatory to test the ability of the pp to enter 

into the target cells used but also into other cell lines using pp encoding for GFP as 

reporter gene, since this reporter permits a qualitative evaluation of pp entry. 

In this chapter it was shown that influenza HA pp production is a process that 

requires optimisation of the protease-mediate HA cleavage, of HA expression, and in 

certain cases the addition of other influenza envelope proteins (i.e. NA). Despite these 

limitations, pp are important tools to elucidate all biological processes involving HA (e.g. 

receptor-recognition, cleavage, antibody responses). 
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CHAPTER 4  
Evaluation of reference antisera cross-reactivity for 

establishment of reference standards for employment in 

pseudotype particle neutralization assays 

4.1 Introduction 
The advantages of the use of pp-NT assays were described in Chapter 1 and the 

production of novel influenza pp in Chapter 3. However, before proceeding to use them as 

tools to study immune responses, it is necessary to investigate more thoroughly their use as 

surrogate antigens in neutralization assays. It is necessary to identify appropriate 

neutralization controls to be used with the pp produced. Usually sera collected from 

previously infected or vaccinated animals/individuals can be useful for this purpose, 

especially if positivity for specific influenza antibody was confirmed by another 

serological assay (e.g. HI, MN or SRH). Additionally, established positive sera would 

represent a useful tool to optimise, validate, and monitor an assay. The International 

Organization for Standardization, the International Conference on Harmonisation of 

Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), the 

WHO, the OIE, and the United States Pharmacopeia describe reference materials as critical 

reagents supporting the use of numerous bioassays for standardisation and control of 

different biological products. The same organizations also extensively established how 

such material should be produced, characterised, and maintained (Health:2008tk World 

Health Organization 2006; P. F. Wright 1998). Appropriate reference standards are 

especially useful when the specificity, sensitivity, precision, and accuracy of an assay are 

evaluated for the first time (Jacobson 1998) but are also essential when other assay aspects, 

such as dilution range or calibration curves, are established (The United States 

Pharmacopeial Convention 2010b). Furthermore they have an essential role when the 

Westgard quality control rules6 are applied to monitor assay stability and consistency over 

different analytical sessions (e.g. days) (J. J. Gray et al. 1995). 

                                                
6 Westgard rules are a set of criteria used for laboratory quality control. These rules help to 

establish if the results of an analytic session should be ignored: in fact an analytic session can be 
accepted only if the measured value of a control/reference standard is in accordance with the value 
established during assay validation. The Westgard rules state the statistical criteria of accordance 
(T. A. Carroll, Pinnick and W. E. Carroll 2003; Westgard et al. 1977). 
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Reference materials are also useful when multisite validation of an assay is 

performed. For example the use of reference standard sera has been shown to be extremely 

useful to increase consistency between laboratories using HI and SRH (Wood et al. 1994). 

Reference antisera against all the HA subtypes are commonly generated and used 

for influenza virus typing in the HI assay (World Organization for Animal Health 2012; 

Dwyer et al. 2006), and for this reason they represent suitable material to be investigated 

as possible controls and reference standards in pp-NT assays. 

For this reason, the neutralization activity and cross-reactivity of reference antisera 

was evaluated to identify appropriate controls that can be used in proof-of-principle 

experiments with pp-NT assays. This will also permit understanding of which steps will be 

necessary to optimise and validate the pp-NT assay, and to certify its use in product release 

and stability control (if, in future, HA stalk-directed mAbs will be licensed) and in 

evaluating antibody responses elicited by current and ‘next-generation universal’ influenza 

vaccines. 

4.2 Material and methods 

4.2.1 Haemagglutinin-expressing plasmids and pseudotype production 

pI.18-A/duck/Italy/1447/2005 H1, phCMV1-A/duck/Germany/1215/1973 H2, 

pI.18-A/Udorn/307/1972 H3, phCMV1-A/duck/Czechoslovakia/1956 H4, 

phCMV1-A/turkey/Ontario/6118/1968 H8, pI.18-A/Hong Kong/1073/1999 H9, 

phCMV1-A/chicken/Germany/N/49 H10, phCMV1-A/duck/Memphis/546/1974 H11, 

phCMV1-A/duck/Alberta/60/1976 H12, phCMV1-A/mallard/Astrakhan/263/1982 H14, 

phCMV1-A/shearwater/West Australia/2576/1979 H15, phCMV1-A/black-headed 

gull/Sweden/2/1999 H16 were used for pp production as described in Section 2.3.2.2, with 

addition of an appropriate protease-encoding plasmid to the transfection mix, based on 

Chapter 3 results. 

pI.18-A/Vietnam/1194/2004 H5 (Accession number: ABP51976.1) was used for 

production of H5pp, as described in Chapter 2. 

pI.I8-A/chicken/Italy/1082/1999 H7 (Accession number: ABR37396.1) was kindly 

provided by Dr. Eleonora Molesti (Universities of Greenwich and Kent, Medway, UK), 

and the H7pp was produced as described elsewhere (Molesti et al. 2013; Ferrara et al. 

2013) following the protocol reported in Chapter 2, but with the addition of 250 ng of 

pCAGGS-TMPRSS2 in the transfection mix. 
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4.2.2 Reference sera 

The OIE avian reference hyperimmune sera used for these studies were kindly 

provided by Dr. Giovanni Cattoli (Istituto Zooprofilattico delle Venezie, OIE, Legnaro, 

Padua, Italy) and are reported in Table 18. 

Table 18: OIE avian influenza reference antisera for HI assay, Agar Gel Immunodiffusion 
test, and Agar Gel Precipitation test 

Antigen strain name Subtype HA accession 
number HI titre 

A/duck/Italy/1447/2005 H1N1 HF563054.1 1:512 

A/duck/Germany/1215/1973 H2N3 CY014710.1 1:512 

A/psittacine/Italy/2873/2000 H3N8 GQ247846.1* 1:256 

A/cockatoo/England/1972 H4N8 GQ247847.1* 1:128 

A/turkey/Canada/1965 H6N2 GQ247851.1* 1:256 

A/turkey/Ontario/6118/1968 H8N4 CY014659.1 1:512 

A/mallard/Italy/3817-34/2005 H9N2 Not Applicable 1:256 

A/ostrich/South Africa/2001 H10N1 GQ247860.1* 1:512 

A/duck/Memphis/546/1974 H11N9 AB292779.1 1:1024 

A/duck/Alberta/60/1976 H12N5 CY130078.1 1:128 

A/gull/Maryland/704/1977 H13N6 D90308.1 1:1024 

A/mallard/Gurjev/263/1982 H14N5 M35997 1:512 

A/shearwater/Australia/2576/1979** H15N9 CY130102.1 1:2048 

A/gull/Denmark/68110/2002 H16N3 GQ247872.1* 1:256 

*Partial sequence 
**Also known as A/shearwater/West Australia/2576/1979 

Reference avian sera against H5 and H7 influenza strains were provided by the 

Animal and Plant Health Agency (APHA, previously Animal Health and Veterinary 

Laboratories Agency) and are reported in Table 19. 

Table 19: APHA avian influenza reference antisera 

Antigen strain name Subtype HA accession 
number HI titre 

A/chicken/Scotland/1959 H5N1 CY015081.1 Not available 

A/African starling/England/983/1979 H7N1 AF202232.1 Not available 

A/chicken/Wales/1306/2007 H7N2 EF675618.1 Not available 

A/chicken/England/4054/2006 H7N3 EF467826.1 Not available 

A/England/268/1996 H7N7 AF028020.1 Not available 
A/turkey/England/647/1977 H7N7 AF202247.1 Not available 
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4.2.3 Pseudotype particle neutralization assays 

The pp-NT assays were performed as described in Section 2.3.4, using 5 µl of each 

serum sample (starting dilution 1:40) and using a pp input of 1×106 RLU/well. 

IC50 neutralization titres were calculated using GraphPad Prism® expressed as 

dilution factor; then for further statistical analysis they were categorised into 17 groups 

according to the dilution tested and as reported in Table 20. 

Table 20: Category of IC50 used for statistics 

Group IC50 values Dilution Factor 

0 <35 <40 

1 35-45 40 

2 45-75 40-80 

3 75-85 80 

4 85-150 80-160 

5 150-170 160 

6 170-310 160-320 

7 310-330 320 

8 330-630 320-640 

9 630-670 640 

10 670-1270 640-1280 

11 1270-1290 1280 

12 1290-2550 1280-2560 

13 2550-2570 2560 

14 2570-5100 2560-5120 

15 5100-5140 5120 

16 >5140 >5120 

 

A cross-reactivity map (pp versus reference antisera), completed using the 

neutralization groups for further statistical analysis, was designed in a Microsoft® Excel 

2011 spread sheet and then saved as a comma-separated value (csv) file. 

4.2.4 Bioinformatic analysis 

Percentage identity between HA amino acid sequences of pp and reference sera 

antigens were calculated to check if cross-reactivity could be explained by overall 

sequence similarity. Amino acid sequences of the HA used in neutralization assays, and 

used to generate the reference antisera, were downloaded from the Influenza Virus 
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Resource, the Influenza Research database and the Global Initiative on Sharing Avian 

Influenza Data (GISAID) Epi-Flu™ platform. The accession numbers of the HAs used in 

pp-NT assays are reported in Chapter 3 Table 11 and Table 12, and in Section 4.2.1; HA 

accession numbers of the reference antisera are reported in Table 18 and Table 19. For 

A/mallard/Italy/3817-34/2005 (H9N2) the HA sequence was not available and for this 

reason the pp sequence was used as reference. 

Unfortunately some of the sequences are not complete, which complicates the 

analysis. To avoid this problem it was decided to evaluate the percentage identity only for 

the amino acids that constitute the extracellular part of the HA (amino acids from 24 to 

547 - H3 numbering), which were available for all HAs used. 

All sequences were aligned using MUSCLE algorithm (Edgar 2004) and Jalview 

software (Waterhouse et al. 2009). Subsequently the sequences were trimmed of their 

N-Terminal signal sequence, the transmembrane region, and the cytoplasmic tail. 

Percentage identities between amino acid sequences were calculated by pair-wise 

alignments using Jalview, before being reported in a Microsoft® Excel 2011 spread sheet 

and saved as csv file. 

The phylogenetic trees shown alongside the cross-reactivity and the percentage 

identity tables were generated using Molecular Evolutionary Genetics Analysis (MEGA) 

software (K. Tamura et al. 2011): the aligned sequences were imported and trees derived 

using Unweighted Pair Group Method with Arithmetic mean (UPGMA), the simplest 

method of tree construction based on pairwise evolutionary distances. The trees generated 

were manually modified using MEGA and 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 

4.2.5 Statistical analysis 
Cross-reactivity tables for the IC50 neutralization titres, expressed as group (Table 

20), and for percentage amino acidic identity, were completed using Microsoft® Excel 

2011. The R statistical software was then used to analyse the data and design a ‘heat-map’ 

which colour codes the neutralization titres and the percentage identity. The precise codes 

used to produce the maps are reported in Appendix Section A.2. These codes are based on 

the use of the software package “RColorBrewer”, which permits building of a personalised 

colour palette, and “gplots”, a package that contains functions for the graphical interface. 

The “heatmap.2” function was eventually used to assign to each IC50 group or percentage 

identity value a colour. 
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Kendall τ (tau) statistics (“Kendall” package) was also run using R software to 

check if association/correlation between measured IC50 titres and percentage identity was 

present. 

4.3 Results 
Pp-NT assays were performed against a panel of reference standard antisera using 

pp bearing HAs of a representative strain, where possible of avian origin, for each HA 

subtype. The resulting neutralization data, expressed as IC50, were then added to a 

Microsoft® Excel 2011 spreadsheet that was analysed with the statistical software R. The 

analysis with R permitted the colour-coding of the neutralization titre calculated. In this 

way a ‘heat-map’, or in this case a cross-reactivity map, in which a darker colour 

represents a higher neutralization activity of the sera against the pp analysed, is designed. 

This cross reactivity map is shown in Figure 44 and should be read positioning the 

page in landscape orientation. In the cross-reactivity map each pp is compared with a 

matching antisera (same subtypes and often strains) and other 19 non-matching reference 

antisera. The phylogenetic relationship between each pp and between each antigen used to 

produce the antisera was also taken into consideration, and phylogenetic trees are indicated 

on the x-axis for reference antisera and on the y-axis for the pp. 

Observing the Figure 44, some features of the cross-reactivity map become 

immediately discernable: in the top left there are Group 1 HA pp against Group 1 reference 

antisera, bottom right there are Group 2 HA pp against Group 2 reference antisera, and in 

bottom left and top right there are the results of pp tested with reference antisera from a 

different Group. The cross-reactivity map diagonal represents pp that were tested against 

matching antisera, and as expected the higher neutralization titres are usually found in this 

part of the table. It can also be noticed that two map-shifts are present since the H6pp and 

H13pp are missing. 

A definite symmetry can be visualised using the diagonal as symmetry axis and, in 

general, high neutralization titres are found when pp are tested with antisera of the same 

group (top left and bottom right). Conversely, sometimes antisera neutralize pp that 

harbour HAs of a completely different subtype/group. 

Other important features are that pp were usually neutralized by antisera generated 

against closely related viruses: in fact using the two phylogenetic tree as guides, it is 

possible to identify clusters of darker green in relation to phylogenetic clades, for example 

the H2-H5, H12-H8-H9, H11-H16-H13, H4-H14, and H7-H15. 
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Figure 44: Cross-reactivity map of pp and reference sera based on IC50 

 

Analysing Figure 44 in detail, it is possible to notice additional distinctive 

topographies. H1pp was highly neutralized by the matched antisera, but not by antisera 

generated against closely related HAs (same clade); however, it was neutralized by some 

Group 1 antisera (H8N4 and H11N9) and additionally by three Group 2 antisera. The H2pp 
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and H5pp were neutralized by the each others’ antisera, by the antisera generated against 

the most closed related HAs (H1 and H6) but also by H8N4, H9N2 and H11N9 antisera. 

H8pp and H12pp, even if closely related, did not exhibit neutralization by each 

others antisera; however, they were neutralized by the antisera generated against the 

closely related H9N2. Furthermore, H8pp was also neutralized by the antisera generated 

against the H1-H2-H5 clade, and by some antisera of Group 2, especially the ones 

generated against H7 viruses. 

All the antisera, without distinction of HA subtype, neutralized H9pp: higher 

neutralization activities were detected for Group 1 antisera, for H14N5 and H7 antisera, 

especially anti-H7N7. 

H11pp and H16pp were neutralized by their matched antisera and by antisera 

generated against other closely related HA, and by H1N1 antisera. For H16pp, 

neutralization activity was detected also when H12N5, H8N4, and H7 antisera were used. 

For Group 2 pp, A/Udorn/207/1972 H3pp (a human isolate) was poorly neutralized 

by the matched avian antisera, but was neutralized by the anti-H7N2 sera, one of the H7N7 

antisera, and by numerous Group 1 antisera. 

H4pp was neutralized by all Group 2 antisera and by the H9N2 antisera. H14pp was 

neutralized by the matching antisera and by the antisera generated against the closely 

related H4. 

H7pp and H15pp were neutralized by their matched antisera and by each others 

antisera; Group 1 sera were also found to cross-react with H15pp and some (H6N2 and 

H13N9) also with H7pp. 

H10pp was only neutralized by its matching antisera and not by any others. 

Since phylogenetic relationships did not completely explain the cross-reactivity 

pattern detected, percentage of amino acid identity was evaluated. Considering that the pp 

used exhibit only the HA in the envelope, the analysis was performed using only this 

protein. A percentage-identity map was designed and reported in Figure 45. This map 

shows a similar pattern to the one previously described (Figure 44): there is a symmetry 

following the diagonal, the darker green is concentrated in the top left and bottom right 

sectors of the map. However, compared to the previous map (Figure 44), dark green 

cannot be observed in the two other sectors of the maps, thus, as expected, the similarity 

between strains belonging to different groups is low. 

Since it is difficult to highlight all the differences and all the similarities by eye, 

statistical analysis was performed to see whether any concordance or association between 

the maps was present. Kendall τ test shows that there is low association between 
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percentage identity and neutralization titres (τ = 0.269, p ≤ 2.22 10-16). This means that 

additional factors could influence the neutralization titres obtained. 

 
Figure 45: Cross-reactivity map of pp and reference sera based on percentage of amino acid 
identity 
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4.4 Discussion and Conclusion 
Serological methods, such as HI and MN, are cost-effective and widely-used 

methodologies to monitor the circulation and the prevalence of influenza viruses and are 

also employed in vaccine immunogenicity studies (Cattoli and Terregino 2008). However, 

as described in Chapter 1, these assays are subject to numerous shortcomings. 

It has been previously demonstrated that influenza pp-NT assays correlate with 

other classical serological assays (Garcia et al. 2010; W. Wang, Xie, et al. 2010; Alberini 

et al. 2009; Temperton et al. 2007) and thus may become the technique of choice for HPAI 

H5 virus serology. Since pp are replication-defective, they offer a safe alternative to 

wild-type virus methods that require Biosafety Level 3 containment, and the detection of 

antibody responses is not influenced by the variability of blood-based reagents as observed 

in other assays (i.e. RBC in HI) (Stephenson et al. 2003; Rowe et al. 1999). Furthermore 

the pp-NT appears to be more effective than other functional assays to detect the antibody 

response directed against the HA stalk (Corti et al. 2011).This is most likely due to the fact 

that, with the absence of NA on the pp membrane surface, glycoprotein density is reduced 

and the HA stalk becomes more accessible to antibodies. Consequently, pp could be used 

to effectively study heterosubtypic antibody responses directed against the HA stalk 

region (Chapter 5). 

The pp-NT assay is becoming used more frequently for HPAI H5 virus and more 

recently also for H7 viruses and human seasonal H1N1 and H3N2, however its use with 

other influenza antigens is limited. Here, after the production of different avian influenza 

HA pp (Chapter 3), the possible use of pp in neutralization assay as surrogate antigen was 

evaluated through testing a panel of reference antisera. For this study a panel of chicken 

reference antisera was used. This panel was chosen because sera recognising all different 

HA were available. Mammalian (e.g. ferret) reference antisera could represent a more 

appropriate control for assays applied for human serology however only antisera against 

strains of human importance (e.g. H1, H3, H5, H7, and H9) are readily available, and for 

other subtypes appropriate antisera need to be generated. Since pp-NT assay can be used 

for avian serological studies as well as for human serological ones, the chicken antisera 

panel was considered acceptable for a first analysis of cross-reactivity in reference sera. In 

future, further studies could be designed to assess mammalian antisera and subtype-

specific mAbs for cross-reactivity. Additionally it should be noted that chicken sera are 

more prone to cross-reactivity responses and could better help to identify possible 

drawbacks of the pp-NT assay. 

In this study it was shown that influenza reference antisera are usually able to 

efficiently neutralize HA-paired pp. However, interestingly, the human A/Udorn/307/1972 
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H3pp is not efficiently neutralized by its paired (H3N8) avian antisera. This may be due to 

the fact that H3 avian viruses belong to a different lineage with respect to the human H3 

(W. Zhang, Jiang and Y. Chen 2007) as can also be observed by the percentage of identity 

between the A/Udorn/307/1972 H3 and the A/psittacine/Italy/2873/2000 H3, that is 

lower (89.33%) than other paired HAs. 

Variation in the antiserum neutralizing titres against the HA-paired pp is also 

observed when H7 antisera are tested. This could be related to the origin of the antisera 

reflecting intra-subtype antigenic differences among H7 strains and to the fact that 

different antisera preparations most likely have different neutralizing titres. 

However, pp were also tested against antisera generated using non-matched viruses. 

This analysis has shown that cross-reactive responses can be detected not only when 

phylogenetic relationships are present between the HA of the pp tested and the HA used as 

antigens to generate the antisera, but also between HA and antisera that share less 

similarity. Conversely these cross-reactivity responses do not follow an explainable 

pattern. 

Many authors have previously observed that chicken antisera generated using 

whole virus in comparison to the ones generated through HA-expressing DNA vaccination 

or recombinant HA1 vaccination present a lower specificity in HI and/or immunodot-blot 

assays: this is primarily due to the fact that antisera produced using whole virus also 

includes NA- and M2-directed antibodies (Shahsavandi et al. 2011; C.-W. Lee, Senne and 

Suarez 2006). However, since a certain level of cross reactivity is observed also with DNA 

or recombinant protein vaccination, cross-reactive HA-directed antibodies are involved 

(C.-W. Lee, Senne and Suarez 2006). Similarly, cross-reactive responses were detected 

using reference antisera in pp-NT assays. 

The fact that reference antisera show high neutralizing responses and 

cross-reactivity between different strain/subtypes could be problematic not only for HI 

typing, but especially for pp-NT assays. In fact the results show that these antisera can be 

efficiently used as controls to neutralize pp, but when matched-pp are tested the IC50 is 

usually exceeding the examined dilution range (1:40-1:5120), and therefore cannot permit 

the direct implementation of quality controls and used as reagents for checking the 

robustness of the assay. Furthermore, the high cross-reactivity and absence of specificity 

observed in the pp-NT assay is problematic since it cannot discriminate between two pp. 

Preparation of the standard material through dilution of the commonly used reference 

standard, or the use of mAb mixtures (with or without the presence of a serum matrix) 

showing high specificity could be more effective approaches to establish reference 

materials to be used to validate, standardise, and control the pp-NT assay. 
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To better understand the factors contributing to the cross-reactivity results, and to 

investigate if similarity present between HAs could explain the cross-reactivity results 

observed, percentage of amino acid identity was calculated between HA tested and HA 

used to generate the antisera. Statistical analysis has shown that there is a low association 

between HA similarity and neutralization activity of the sera observed, however other 

factors could also explain the results observed. 

An influence that needs to be accounted for to explain the cross-reactivity observed 

is that proteins are flexible. Immunoglobulins, especially the complementarity determining 

regions, can be adapted to different epitopes, thus an epitope that is similar but not 

completely conserved between two HAs could potentially still be bound by the same 

antibody (Dreyfus et al. 2012). Other factors could also be dependent on the serum origin: 

for example the chicken IgY are comparable with mammalian IgG but have some unique 

characteristics. IgY heavy chain is longer due to the presence of an additional constant 

region and the presence of glycine and proline residues between the constant region 

boundaries limits the antibody flexibility (Davison et al. 2008; Narat 2003). All these 

properties could have an impact in antigen recognition, especially considering the three 

dimensional structure of influenza HA on the virus surface: for example the longer heavy 

chain could impair the recognition of the HA stalk, which is less accessible especially in 

the wild-type viruses (Wasilewski et al. 2012). Supporting this hypothesis is the fact that 

avian antibodies directed against the HA stalk are not yet described. 

Furthermore, the percentage of amino acid identity is a good approach to evaluate 

similarity between proteins since it is easy to perform with standard bioinformatics 

tools (multiple alignment and pair-wise alignment), however it does not take into account 

the insertion or the deletion of glycosylation sites. Glucidic residues attached to the protein 

through linking to asparagine residues can influence antigen recognition masking or 

modifying an epitope and, for this reason, should be taken into account when similarity is 

evaluated (J. I. Kim and Park 2012). There are different tools (Chauhan, Rao and Raghava 

2013) that are able to score and detect which residues have a higher probability to be 

glycosylated. They could be useful when two different HAs are compared, however they 

cannot yet predict which are the glycans that are linked to the proteins, and the glycan 

length could also have a role in antigen recognition. Furthermore glycosylation varies 

between different producer cells and this can influence antigenicity (viruses used as 

antigens to generate antisera are usually propagated in eggs, whereas pp are produced in a 

mammalian cell line) (Jacobs and Callewaert 2009). 

To understand and explain the cross-reactivity detected, evaluating the structural 

similarity between the HAs could be a useful approach. Different methods were developed 
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for this purpose: some of them use structural alignments, and others use approaches such 

as distance matrix or secondary structure matching (Choi, Kwon and S.-H. Kim 2004; 

Carugo and Pongor 2002). However, these methods are either time-consuming or 

computationally intensive; furthermore the software solutions require the protein structures 

as input and this could be problematic (Choi, Kwon and S.-H. Kim 2004) since, for 

influenza A virus only 9 HA influenza subtypes are available and, especially for strains 

that have no human impact, the number of resolved HA structures within each subtype is 

minimal. 

Methodologies that were developed to understand antigenic characteristics of 

influenza HA could perhaps be the most useful to explain the cross-reactivity pattern 

observed. Recently antigenic cartography has been used to evaluate the antigenic 

evolution/drift of different influenza viruses and to help vaccine strain selection (Fouchier 

and D. J. Smith 2010; de Jong et al. 2007). In antigenic cartography, different strains of the 

same subtypes are usually analysed using HI, MN, and ELISA using reference sera 

generated against the different strains. In this way matrices/cross-reactivity maps are built 

and using mathematical analysis, antigenic distance between strains is represented on a 

graphical map. This methodology could, in theory, be used to analyse the data presented 

here and can potentially elucidate some of the antigenic characteristics highlighted in these 

studies, or at least show a new representation of the antigenic interplays between 

different pp. 

Overall, the results presented here reinforce the greater sensitivity of the pp-NT 

assays described previously (Garcia et al. 2010; Temperton et al. 2007). Nonetheless, these 

results point out some features and characteristics that need to be improved and 

investigated further, such as the specificity, quality control, and the robustness of the assay. 

In this study only positive sera were evaluated but an important aspect of diagnostic 

assay development is also identifying an appropriate negative control. At the moment FBS  

(data not shown) is used as control in each assay, however it is not a perfect control: an 

appropriate negative control should possess the same matrix of the samples tested in 

absence of the analytes, in this case influenza HA-directed antibodies (The United States 

Pharmacopeial Convention 2010a; The United States Pharmacopeial Convention 2010b). 

As an additional control, chicken antisera against Newcastle disease virus (data not shown) 

was used in some of the assays as a more appropriate reference control (produced using the 

same methodology as OIE reference antisera). This control was not used in all the assays 

since it was not available at the start of the study. Another appropriate control for the study 

could have been sera from pre-immunised chicken, however this was not available. 
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In general for selecting an appropriate control is straightforward if 

immunological-naïve experimental animals are used. However, this is difficult with 

humans since influenza circulates in the population and the presence of cross-reactive 

antibodies, easily detected by pp-NT assays (Molesti, Ferrara, et al. 2014; Corti et al. 

2010), can render the identification of such sera difficult for all the pp produced (Jacobson 

1998). In this case a good approach could be to utilise artificially generated sera or ferret 

antisera. The identification of such materials will also be essential to define sensitivity and 

specificity of the pp-NT assay. 

In the absence of appropriate controls and presence of high cross-reactivity 

responses, it will be difficult to assess the specificity of the assay. Some important 

parameters should be evaluated to understand which factors could interfere with the pp-NT 

assay. For example the presence of virus-attachment inhibitors in the sera and serum 

treatments (e.g. heat-inactivation, pre-treatment with receptor-destroying enzymes) can be 

assessed to optimise pp-NT assay conditions and to reduce non-specific neutralization if 

present. Also the evaluation of possible haemolysis or other contaminants (e.g. lipids) of 

the serum samples is an aspect that needs to be taken in consideration when the assay is 

optimised and validated (Jacobson 1998). 

Furthermore using RLU as a fixed input for each pp is an optimal approach since it 

permits direct comparison with MN assays (in neutralization assays 50% Tissue Culture 

Infectious Dose, TCID50, is used as indicator of viral infectivity). However, research 

groups have emphasised the need to normalise on the basis of the HA content or by other 

methods to permit comparison between results (Garcia and J. C. C. Lai 2011). Knowing 

the HA content could be important to complete the analysis reported here but it is not 

essential. For a final standardisation and validation of the pp-NT assay, a fine 

characterisation of pp input using HA quantity measures, preferentially the amount of 

cleaved and uncleaved HA simultaneously, will be necessary to support any statistical 

analysis performed, but at the moment this is beyond the study remit and will require 

further studies (e.g. quantification method development and standardisation). In relation to 

the studies presented here and in the following chapters, the possible 

unfeasibility (Chapter 7) of quantifying cleaved and uncleaved HA content in pp 

preparations could result in the impossibility of a direct comparison between the IC50 

obtained using different HA subtypes or strains, since IC50 is related to antibody affinity, 

which is dependent also on the antigen content used. For example, it appears from the data 

reported here that certain pp could be intrinsically easier to neutralize (e.g. H9pp) than 

others (e.g. H10pp): it could be that this is due to the fact that some display a smaller 

number of HA molecules on their surface. However, it should be noted that in classic 
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neutralization and MN assays the HA content of the viral input is not routinely evaluated 

and the same problem therefore exists. At present, the use of RLU for normalisation is the 

only reasonable way to proceed and can still permit comparison between results if 

normalisation is performed to calculate the IC50 values. 

To conclude, the results presented here show that the high sensitivity and the 

propensity of the pp-NT assay to detect cross-reactive responses permit the use of OIE 

reference standard antisera as positive neutralization controls, but not as reference 

standards to validate the assay. More appropriate standards (e.g. mAb mixtures) need to be 

developed to further progress optimisation and validation of the pp-NT assay. 
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CHAPTER 5  
Use of influenza A pseudotypes to study heterosubtypic 

antibodies pre- and post- vaccination 

5.1 Introduction 
The study of antibody responses induced by natural infection and vaccination 

directed against influenza A HAs is an important facet of pandemic preparedness, since it 

permits the evaluation of whether a population is subclinically infected, and can identify 

the geographical spread of circulating viruses. Furthermore, understanding how the 

immune response against influenza works is of paramount importance for the design of 

vaccines with higher efficacy (M. A. Rose, Zielen and Baumann 2012; G. L. Chen and K. 

Subbarao 2009; Olive TW Li and Poon 2009; Ben-Yedidia and R. Arnon 2007;). 

In Chapter 1, it was discussed how human mAbs that exhibit pan-, hetero-, or 

homo-subtypic neutralization activity, conferred by their ability to bind conserved regions 

on the HA stalk, have been isolated (Friesen et al. 2014; Dreyfus et al. 2012; Corti et al. 

2011; Ekiert et al. 2011; Sui et al. 2009; Throsby et al. 2008; Okuno et al. 1993). The 

discovery of these cross-reactive antibodies has opened up the possibility not only for the 

use of these as therapeutic agents in antiviral therapy (Clementi et al. 2012; N. Mancini et 

al. 2011; Friesen et al. 2010; Marasco and Sui 2007), but has also increased interest in 

understanding how they are generated by natural infection and vaccination, in addition to 

stimulating production of such neutralizing antibodies using novel ‘universal’ vaccine 

approaches (G. L. Chen and K. Subbarao 2009; T. T. Wang and Palese 2009). 

In Section 1.7, present and future influenza vaccines were already discussed. 

Inactivated and attenuated influenza vaccines are in general unable to induce strong cross-

reactive protective immune responses. In contrast, ‘universal’ vaccines should be able to 

induce a protective immune response against multiple influenza A subtypes and strains. 

There are different approaches to reach this target: broaden the immune response induced 

by traditional vaccines using adjuvants, aim to induce antibodies against conserved regions 

of HA, induce responses against the conserved membrane external domain of the M2 

protein or the NA, and induce T-cell (cytotoxic and helper) responses (Babon et al. 2012; 

Sommerfelt 2011; Song et al. 2011; Steel et al. 2010; Ulmer et al. 1998). However, since 

the various parts of the immune system are strictly interconnected, vaccination strategies 

have also aimed to elicit responses at T-cell level and at B-cell/antibody level 

simultaneously. One of the strategies used for this purpose is the use of vectors as delivery 
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systems. This permits the expression of influenza proteins and subsequent activation of a 

T-cell response and in certain cases also of the B-cell response. For example, MVA, which 

is a highly attenuated pox vector, permits the infection of host cells, the transient 

expression of viral (envelope or internal) proteins of interest, and the presentation of viral 

peptides on MHC of both classes inducing T- and B- cell responses. Furthermore, through 

intrinsic adjuvant and immunostimulating activities, it recalls on site components of the 

innate immune system and stimulates the production of interferons, inflammatory 

cytokines and chemokines. This results in a local inflammatory environment that helps the 

onset of a robust immune response. 

The development and evaluation of these ‘universal’ vaccines is however 

problematic. For example, some protein regions are often poorly immunogenic or exposed 

and need to be correctly presented to trigger an efficient immune response; the vaccine 

needs to induce a long lasting immunity; clinical trials are essential since it is not possible 

to evaluate the role of pre-existing immunity in animal models (Krammer and Palese 

2014). For antibody-inducing vaccines it is necessary to evaluate if the antibodies elicited 

are able to bind and neutralize different influenza viruses and potential pandemic strains, 

and especially for the latter, strict biosafety containment is necessary. Subsequently, 

especially for a vaccine whose aim is to elicit HA stalk-directed antibodies, other problems 

exist: firstly it is necessary to precisely evaluate whether antibodies that can bind to 

different influenza viruses are already present in the human population and, if present, 

determine at what level. Subsequentially it is necessary to assess whether these new 

vaccines will be able to induce or boost a heterosubtypic, preferentially stalk-directed, 

neutralizing antibody-mediated response. 

As discussed in Chapter 1, classical serological assays, such as SRH, HI and MN 

assays, have unfortunately demonstrated low sensitivity for the detection of 

cross-neutralizing antibodies, especially those directed against epitopes in the HA stalk 

region (Corti et al. 2011; Ekiert et al. 2011; Ekiert et al. 2009; Sui et al. 2009; Okuno et al. 

1993). The use of binding assays (e.g. ELISA, immunofluorescence, Western blotting, 

microarray) permits the detection of HA specific antibodies present in sera and other 

samples (e.g. nasal wash, throat wash) (Reber and Katz 2013) but they cannot differentiate 

whether these antibodies can neutralize influenza virus infection, since they evaluate 

binding ability only, and not antibody function (Plotkin 2008). 

Many studies and the results reported in Chapter 4 have shown that the pp-NT is 

more prone to detect cross-reactive antibody responses than the classic neutralization 

assay. Furthermore the use of pp exhibiting on their envelope a chimeric HA (Section 
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1.8.8.4) permits a more direct evaluation of stalk-directed antibody presence in serum 

samples. 

From this perspective, the panel of HA pp lentiviral vectors generated in Chapter 3 

was next used to understand the presence and the breadth of heterosubtypic immunity in 

humans, and to evaluate/investigate how seasonal vaccination or new influenza 

experimental vaccines can affect these responses. Furthermore, to be able to demonstrate 

that the heterosubtypic responses detected are mediated by stalk-specific HA antibodies, a 

chimeric HA pp was generated and used in neutralization assays. 

5.2 Materials and Methods 

5.2.1 Production of a chimeric haemagglutinin pseudotype 
Head and stalk regions of the chimeric pp studied were chosen on the basis of the 

high pp titre of the two parental HA pp (Chapter 3), the phylogenetic relationships between 

the two HAs, the epidemiological importance of the original virus strain and the 

cross-reactivity map reported in Chapter 4, in order to minimise responses directed against 

the HA head. Consequently, it was decided to produce a chimeric HA with the head of 

A/duck/Memphis/546/1974 H11 and the A/South Carolina/1/1918 H1 stalk: H11 was 

chosen primarily for its low cross-reactivity, whereas A/South Carolina/1/1918 H1 stalk 

was considered of interest since the virus is representative of the 1918 influenza pandemic 

and has antigenic characteristics similar to the 2009 pandemic strain (Wei et al. 2010). 

5.2.1.1 Cloning of a H11 head/H1 stalk chimeric haemagglutinin 

The original protocol (Hai et al. 2012; Pica et al. 2012) for generating chimeric 

HAs requires the amplification of the regions of interest using primers containing SapI 

sites and then cloning into pDZ plasmid (a pCAGGS derivative plasmid), however it was 

decided to not follow this protocol since it requires multi-segment ligation and was 

considered more error-prone in the primer design. Instead, Gibson Assembly 

Cloning (New England Biolabs, cat.no. E5510) was used for assembling the chimeric HA. 

The Gibson methodology permits the fast assembly of multiple overlapping DNA 

fragments through a reaction in which three different enzymes are used at the same time: 

an exonuclease to create 3’ overhangs, a polymerase to fill gaps, and DNA ligase to close 

the nicks in the assembled DNA (Gibson et al. 2009). 

The schematic representation of the chimeric HA cloning strategy utilising Gibson 

Assembly is shown in Figure 46: the head region of the H11 HA is PCR amplified and 

flanking sequences complementary to A/South Carolina/1/1918 H1 stalk are inserted, 

while the stalk sequence A/South Carolina/1/1918 H1 in the backbone vector is also 
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amplified. Then the two PCR products are added to the Gibson Assembly reaction and a 

chimeric HA is generated. 

To create a chimeric HA the two cysteines Cys52 and Cys277 that separate the 

head and the stalk, need to be identified. For this purpose an alignment with the two amino 

acid sequences of interest, A/South Carolina/1/1918 H1 (Accession Number: 

AAD17229.1) and A/duck/Memphis/546/1974 H11 (Accession Number: BAF47125.1) 

was conducted using the MUSCLE algorithm (Edgar 2004) in Jalview (Waterhouse et al. 

2009) (Appendix Figure 13). DNA Dynamo (Blue Tractor Software Ltd) and plasmid 

DNA sequences were then used to identify the nucleotide sequence corresponding to the 

three regions of interest: N-terminal and C-terminal stalk region of 

A/South Carolina/1/1918 H1, and head region of H11. With this identification completed, 

the hypothetical chimeric HA sequence was assembled and primers, reported in Table 21, 

were designed using the NEBuilder® online tool (New England Biolabs). 

 
Figure 46: Schematic representation of chimeric HA cloning using Gibson Assembly 
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Table 21: Primer sequences and annealing temperatures for cloning of the H11 head/H1 stalk 
chimeric HA 
Sequences annealing with H1 stalk are shown in red, the ones annealling with H11 head in blue. 
Annealing temperatures were calculated by NEBuilder. 

Primer name Primer sequence (5’ to 3’) Annealing 
Temperature 

H1_stalk_Rev GCACAGCTTTCCATTATG 58.9°C 

H1_stalk_Fw AACACCAAGTGTCAGACAC 58.9°C 

H11_head_Fw ATAATGGAAAGCTGTGCAGCATCGACGGAAAAGCAC 63.6°C 

H11_head_Rev GTCTGACACTTGGTGTTGCAAGACTCGATATTCAGGTC 63.6°C 
 
 

NEBuilder® designs primers that are suitable for amplification using the Q5® 

High-Fidelity DNA Polymerase and for this reason 25 µl PCR reactions were set-up as 

follows: dNTPs at a final concentration of 200 µM, 0.5 µM of each primers, 1X Q5® 

Reaction Buffer, 0.005 U of Q5® High-Fidelity DNA Polymerase, and 1 ng of plasmid 

DNA (phCMV1-A/South Carolina/1/1918 H1 or phCMV1-A/duck/Memphis/546/1974 

H11) used as template. For the amplification of the A/South Carolina/1/1918 H1 stalk 

domain in the backbone phCMV1 vector, 5 µl of Q5® High GC Enhancer was also added 

to the reaction mix. PCRs were run in Mastercycler ep Gradient S and in the Mastercycler 

ep Gradient thermal cyclers using the programs reported in Table 22 and Table 23. 

 

Table 22: PCR program for the amplification of the H1 stalk-encoding sequence in the 
phCMV1 vector 

Cycles Temperature Time Step 

 98°C 3 min Initial denaturation 

30 cycles 

98°C 30 seconds Denaturation 

58.9°C 30 seconds Annealing 

72°C 6 min Extension 

 72°C 8 min Final extension 

 4°C 
To conserve the reactions until removed from the 

thermocycler 
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Table 23: PCR program for the amplification of the H11 head-encoding sequence 

Cycles Temperature Time Step 

 98°C 3 min Initial denaturation 

30 cycles 

98°C 15 seconds Denaturation 

63.6°C 30 seconds Annealing 

72°C 1 min Extension 

 72°C 2 min Final extension 

 4°C 
To conserve the reactions until removed from the 

thermocycler 

 

Amplification of the H1 stalk in the phCMV1 backbone (~5.3 kb) and of the H11 

head (~640 bp) were verified by DNA electrophoresis using a 0.8% agarose gel (Section 

2.1.12). PCR products were purified using the QIAquick PCR purification kit (Section 

2.1.13), measured by NanoDrop™, and then ~500 ng DNA digested in a total volume of 

20 µl using 10 U of FastDigest® DpnI in 1X FastDigest® buffer and DNase/RNase free 

water. This digestion was performed to destroy the parental DNA and thus increase Gibson 

Assembly efficiency. After digestion, purification to remove buffer salts and enzyme was 

carried out, then samples were measured by NanoDrop™ and, to join the two overlapping 

fragments, a 20 µl Gibson Assembly reaction was set up in DNase/RNase free water using 

10 µl of 2X Gibson Assembly mix, 80 ng of the stalk fragment, and 29 ng of the head 

fragment to produce a vector (phCMV1 H1 South Carolina stalk) to insert (H11 head) ratio 

of 1:3. After 15 min at 50°C in the Mastercycler ep Gradient S thermocycler, 2 µl of 

assembled product was added to 50 µl NEB 5-α competent E. coli (New England Biolabs, 

cat.no. C2987) for transformation according to the protocol presented in Section 2.1.3, 

adjusting the heat-shock incubation times according to the New England Biolabs 

instructions: 30 min in ice, 30 seconds at 42°C, and 2 min in ice again; then 950 µl of SOC 

medium was added and bacterial cells were incubated for recovery before plating 100 µl 

on a kanamycin-LB Agar plate. 

After overnight incubation at 37°C, 20 of the colonies present on the plates were 

screened using T7 and phCMV1 Rev primers in colony PCRs  (Section 2.1.11) to assess 

the presence of a 1.7 kb band corresponding to the assembled chimeric HA. After PCR 

amplification and purification of plasmid DNA, some of the positive clones were then 

additionally screened via restriction enzyme digestion (Section 2.1.9) with FastDigest® 

HindIII: this enzyme linearises the phCMV1 vector and the template plasmid 

phCMV1-A/South Carolina/1/1918 H1, but cleaves phCMV1-A/duck/Memphis/546/1974 
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H11, and the phCMV1-H11 head/H1 stalk creating two fragments of 400 bp and 5.6 Kb. 

Lastly, two clones were sent for Sanger sequencing to confirm the phCMV1-H11 head/H1 

stalk. 

After the amino acid sequence of the HA construct was confirmed through 

alignment using MUSCLE algorithm (Edgar 2004) in Jalview (Waterhouse et al. 2009), 

the chimeric HA was used for pp production. 

5.2.1.2 Optimisation of the production of a H11 head/H1 stalk haemagglutinin 

pseudotype 

Before producing the chimeric pp, optimisation experiments in 6-well 

plates (Section 3.2.4) were performed to determine quantity and quality of the proteases 

that need to be used in pp production. These experiments were executed as described in 

Chapter 3 testing two different quantities (250 ng and 125 ng) of HAT, TMPRSS2 and 

TMPRSS4 protease-expressing plasmids in transfection mixes. Protease 

controls (∆protease and TPCK-trypsin activation) were also included. 

5.2.2 Sera and antibodies 

Sera from 18-60 year old people (n=13) and from elderly >60  (n=9), collected 

before and after the 2007-2008 seasonal vaccination with A/Wisconsin/67/2005 (H3N2), 

A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004, were a kind gift form 

Prof. Emanuele Montomoli (University of Siena, Italy). The samples were previously 

decomplemented at 56°C for 30 min. For these sera, Prof. Emanuele Montomoli provided 

serological results from SRH using as antigens A/Wisconsin/67/2005 (H3N2), 

A/Solomon Island/3/2006 (H1N1) and A/New Caledonia/20/1999 (H1N1).  

Another set of sera was evaluated against representative influenza pp strains. 

Human sera from clinical trial NCT00942071 (Antrobus et al. 2013) were kindly provided 

by Prof. Sarah Gilbert (Jenner Institute, University of Oxford, UK). These sera were 

collected from adults aged 50 years and over pre- and post- administration of an Influenza 

split virion vaccine (Sanofi Pasteur MSD, France) containing HAs of 

A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2), and B/Brisbane/60/2008. Nine 

subjects also received an injection of MVA vectors expressing the 

A/Panama/2007/1999 (H3N2) NP and M1 antigens as a single fusion protein (Antrobus et 

al. 2013; Berthoud et al. 2011) (MVA-NP+M1), meanwhile the other remaining 

subjects (n=8) received a saline placebo (Antrobus et al. 2013). These sera were not 

subjected to any pre-treatment 



 

141 

C179 mAb (TaKaRa Clonthec, cat.no. M145) was used as neutralization control at 

a starting concentration of 10 µg/ml in H1 and H2 pp-NT assays and as an additional 

control in pp-NT assay performed using the chimeric HA pp. 

Reference sheep serum against A/England/427/1988 (H3N2) was provided by the 

NIBSC and used as positive control in H3 pp-NT. 

The OIE avian reference hyperimmune sera and the reference avian serum against 

A/chicken/Wales/1306/2007 (H7N2) (APHA, UK), which were described in Section 4.2.2, 

were used as appropriate positive neutralization controls in the pp-NT assays. The 

anti-H11 serum was also used as positive control in the chimeric HA pp-NT assay. 

5.2.3 Haemagglutinin-expressing plasmids and pseudotype production 

The pp A/Vietnam/1194/2004 H5, A/turkey/Turkey/1/2005 H5, and 

A/Netherlands/219/2003 H7 used for screening the 2007-2008 seasonal vaccination sera 

were generated by Dr. Nigel Temperton and Dr. Eleonora Molesti  (Universities of 

Greenwich and Kent, Medway, UK) using a protocol equivalent to the one described in 

Section 2.3.2.1. 

For the other pp presented here and used in neutralization assays, the 

HA-expressing plasmids were provided, obtained or cloned to produce pp as described in 

Chapters 2-4. 

Lentiviral pp were produced as described in Section 2.3.2.2, adding to the transfection 

mixes an appropriate quantity of protease-expressing plasmid based on the data shown in 

Appendix Table 1, the result of optimisation experiments performed in Chapter 3. For the 

chimeric pp, produced with the HA-encoding plasmid, the quantity and quality of proteases 

to be used were chosen after optimisation. 

As in Chapter 3, the pI.18-A/Udorn/307/1972 N2 plasmid was added to the 

transfection mix used to produce the A/Wisconsin/67/2005 H3pp. 

5.2.4 Pseudotype particle neutralization assays 
The 2007-2008 seasonal vaccination serum panel was tested in neutralization 

assays using the following pp: A/Solomon Islands/3/2006 H1, A/New Caledonia/1/1918 

H1, A/South Carolina/1/1918 H1, A/Korea/426/1968 H2, A/Wisconsin/67/2005 H3 (with 

A/Udorn/307/1972 N2), A/Udorn/307/1972 H3, A/duck/Czechoslovakia/1956 H4, 

A/Vietnam/1194/2004 H5, A/turkey/Turkey/1/2005 H5, A/Shanghai/2/2013 H7, 

A/chicken/Italy/1082/1999 H7, A/Netherlands/219/2003 H7, A/Hong Kong/1073/1999 H9, 

A/chicken/Germany/N/49 H10, A/duck/Memphis/546/1974 H11, A/duck/Alberta/60/1976 

H12, A/mallard/Astrakhan/263/1982 H14, A/shearwater/West Australia/2576/1979 H15, 

and the chimeric H11 head/H1 stalk HA pp. 
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For 2007-2008 seasonal vaccination sera, the pp-NT neutralization assay using as 

antigens A/Vietnam/1194/2004 H5, A/turkey/Turkey/1/2005 H5, and 

A/Netherlands/219/2003 H7pp were kindly performed by Dr. Eleonora Molesti. The raw 

data were re-analysed here and reported in the Appendix Figure 15 and Appendix Figure 

16 and should be taken into consideration when interpreting the results presented in this 

chapter. 

Pp-NT were performed as described in Section 2.3.4 using a fixed pp input of 

1×106 RLU/well and 2.5 µl of sera in the first dilution well (starting dilution 1:80). 

The aforementioned pp, with the exception of A/Solomon Islands/3/2006 H1, 

A/Netherlands/219/2003 H7, and A/duck/Alberta/60/1976 H12, were also used to test the 

neutralization activity of the clinical trial sera panel: in this case the starting dilution was 

1:100 (2 µl of sera), since the samples provided were of limited volume. 

Analysis was performed as described in Section 2.3.4. When the IC50 value could 

not be calculated, since all the dilution points tested showed 100% neutralization, an 

arbitrary value corresponding to the distribution mean plus three standard deviations was 

assigned. 

5.2.5 Statistical analysis 

To evaluate the correlation of the pp-NT assay with a classical serological assay, 

SRH assay, Pearson correlation between the SRH titres and the logarithm IC50 values was 

calculated. 

IC50 values (expressed as reciprocal of serial dilution) obtained from pp-NT assays 

were also reported in Box-and-Whisker plots for comparison; in the Appendix Table 2-5, 

quartiles and medians of the IC50 distributions were also reported. A non-parametric 

Wilcoxon matched-pairs signed rank test to assess statistical significance between pre- and 

post- vaccination time-points in the 2007-2008 vaccination study and day 0 and day 21 in 

the clinical trial was applied considering that the data were not following Gaussian 

distributions. 

Data obtained from the 2007-2008 vaccination study were subsequently stratified 

into two groups, adults and elderly, considering the age of the subject, to highlight if 

differences in seroconversion and titres were present between these two groups. 

Clinical trial data were stratified on the basis of the vaccine regimen: 

TIV + placebo or TIV + MVA-NP+M1, to evaluate the effect of the MVA-NP+M1 in 

broadening the heterosubtypic antibody response. 

At this point, if the data were normally distributed, a mixed Analysis of 

Variance (ANOVA) should have been used for further analysis; unfortunately the data did 
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not follow a parametric distribution, and a non-parametric version of this test does not 

exist. Consequently for the first dataset, resulting from the 2007-2008 vaccination study, 

Wilcoxon matched-pairs signed rank test and Mann-Whitney U test were performed. Then, 

to counteract the problem of multiple comparisons, p values were corrected using the 

Bonferroni correction (significance p ≤ 0.01257). 

For the second dataset, since the stratification was applied to understand the 

MVA-NP+M1 vaccination effect and to avoid multiple comparisons, it was decided to 

compare the result graphically to see if it was possible to identify differences and then 

perform statistical analysis comparing the IC50 fold-increase between TIV + placebo and 

the TIV + MVA-NP+M1groups using a Mann-Whitney U test. The graphs showing the 

IC50 fold-increase are reported in Appendix Figure 17. 

Seroconversion rates (SCRs) were also calculated as a percentage or fraction of 

subjects showing a 4-fold increase (SCR(4-fold)) or a 2-fold increase (SCR(2-fold)) in the IC50 

titre post-vaccination or at day 21. For the 2007-2008 vaccination study, to see if age is a 

factor in determining the responses, SCRs of each age-group expressed as fractions were 

added together and then compared using a contingency table and the chi-squared test. The 

same procedure was performed for the clinical trial study, this time to identify whether 

differences were present between TIV + placebo and TIV + MVA-NP+M1. 

All the analyses were performed using GraphPad Prism® version 6 and Microsoft® 

Excel 2011. 

5.3 Results 

5.3.1 Cloning of a H11 head/H1 stalk chimeric haemagglutinin 
A chimeric HA comprising the head region of A/duck/Memphis/546/1974 H11 and 

the stalk region of A/South Carolina/1/1918 H1 was successfully cloned using Gibson 

Assembly. Firstly the two regions of interest, the H11 head and the H1 stalk, were 

successfully amplified using the Q5® High-Fidelity DNA Polymerase as shown in Figure 

47. 

                                                
7 In the Bonferroni correction, the p value significance cut-off is calculated dividing the p 

value 0.05 for the number of comparisons performed, in this case four. 
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Figure 47: Amplification of the H1 stalk in the phCMV1 backbone (~5.3 kb) and of the H11 
head (~640 bp) 

Subsequently, after PCR purification, DpnI digestion was conducted to remove the 

bacterial methylated plasmid template, then further purification to remove the restriction 

enzyme, and finally the Gibson Assembly reaction was set-up. Following transformation of 

E. coli and overnight incubation, numerous colonies were present on the selection plate. 

Twenty of these colonies (#1-#20) were screened through colony PCRs. As shown in 

Figure 48, 18 colonies were positive for a band at ~1.7 kb corresponding to a full length 

HA. Of these colonies, 6 were grown overnight, and the plasmid DNA purified for further 

analysis. 



 

145 

 
Figure 48: Colony PCR screening after Gibson Assembly of the chimeric HA 
Twenty colonies (#1-#20) were screened by colony PCR; phCMV1 and 
phCMV1-A/duck/Memphis/546/1974 H11 were used as negative and positive controls. 

The six plasmid clones were analysed by digestion with HindIII followed by 

analytical DNA gel electrophoresis. HindIII cleaves phCMV1, the vector backbone, and 

H11 head in the middle. In this way if the plasmid encodes the chimeric HA or H11 two 

bands at 400 bp and at 5.6 Kb will be visible, if it encodes for the H1 a band at 6 Kb will 

be observed, and if phCMV1 is empty a band at 4.3 kb will be visualised (Figure 49A). 

As shown in Figure 49B, all the clones showed a band at 400 bp and a band at 

5.6 kb, confirming the presence of the H11 head in a plasmid encoding an HA. However, it 

cannot be concluded that all six clones carried a chimeric HA as the use of the HindIII 

restriction enzyme permitted only the discrimination between H1 and the H11 head/H1 

stalk HA, but not between H11 and the chimeric HA. To differentiate between these 

two (since satisfactory restriction enzyme analysis was unavailable), clones #3 and #5 were 

sent for Sanger sequencing and, after checking the electropherogram, these two clones 
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were confirmed chimeric HA. However, since clone #3 contained a mutation (probably 

introduced during amplification of the H1 stalk), it was decided to produce pp with 

clone  #5. 

A 

 

B 

 
Figure 49: Digestion screening of chimeric HA-encoding plasmids 
A. Schematic representation of potential results of the screening with HindIII restriction enzyme; 
B. Screening of six possible chimeric HA-encoding plasmids with phCMV1 control. 

The above results show that Gibson Assembly is a rapid and efficient method to 

construct chimeric HA, however sequences need to be verified carefully since mutations 

can be introduced during PCR amplification steps. 

5.3.2 Production of the H11 head/H1 stalk chimeric haemagglutinin 

pseudotype 

With the chimeric HA sequence confirmed (Appendix Figure 14), production of 

the chimeric HA pp was investigated. As shown in Chapter 3, to produce influenza A pp it 

is necessary to define the quantity and quality of the proteases that mediate HA cleavage 

and, even for closely related HAs, protease-cleavage specificity cannot yet be predicted. 

Therefore the 6-well transfection protocol (Section 3.2.4) was applied to identify the 

appropriate production conditions. 

TPCK-Trypsin is not efficient in activating and cleaving the chimeric HA, but the 

protease-optimisation showed (Figure 50) that the chimeric HA was activated by HAT and 

TMPRSS4, especially when low quantities (i.e. 125 ng) of plasmids were used. However, 

only when 125 ng of pCAGGS-HAT were added to the transfection mix was the pp titre 

adequate (≥ 2×107 RLU/ml) to perform neutralization assays. Since the pp-production 

optimisation is performed in a 6-well format, the protease plasmid quantity found here 

would have to be doubled (i.e. 250 ng) when producing pp for neutralization assay in a 

10 cm plate transfection format (Chapter 2). 
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Figure 50: Production optimisation of the chimeric HA pp 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to effectively perform neutralization 
assays. 

5.3.3 Pseudotype particle neutralization assay correlates with Single Radial 

Haemolysis assay 
Before analysing the heterosubtypic antibody response in the 2007-2008 vaccinated 

subjects, the suitability of the pp-NT assays was evaluated through comparison with the 

SRH assay. A/Solomon Island/3/2006 (H1N1), A/Wisconsin/67/2005 (H3N2), 

A/New Caledonia/20/1999 (H1N1) SRH titres and the logarithm IC50 values obtained by 

pp-NT assay were graphed in a Scatter plot (Figure 51) and the Pearson coefficient for 

correlation was calculated. 

In general, antibody responses detected by pp-NT assay were higher than the ones 

detected by SRH, with discordance between the two assays when SRH titres 

were <10 mm2. Statistical analysis shows that the pp-NT assay correlates with SRH when 

the H1 and H3 antigens are used (A/Solomon Island/3/2006 H1: r = 0.5110, 

A/Wisconsin/67/2005 H3: r = 0.6048, A/New Caledonia/20/1999 H1: r = 0.0.6875) and all 

the correlations were statistically significant (A/Solomon Island/3/2006 H1: p = 0.0004, 

A/Wisconsin/67/2005 H3 and A/New Caledonia/20/1999 H1: p < 0.0001). 

These results demonstrate that pp-NT assays are suitable for vaccine 

immunogenicity evaluation studies. 
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A 

 

B 

 
 C 

 
Figure 51: Correlation of SRH and pp-NT 
Correlation was performed using three different antigens including the two vaccine strains: 
A. A/Solomon Islands/3/2006 (H1N1);     B. A/Wisconsin/67/2005 (H3N2); 
C. A/New Caledonia/20/1999 (H1N1). 

5.3.4 Heterosubtypic haemagglutinin stalk-directed antibody responses are 

present pre- and post- 2007-2008 seasonal vaccination in an Italian 

population 
After evaluating the correlation between pp-NT assay and SRH assay, different pp 

were used as surrogate antigens in neutralization assays to study if heterosubtypic 

neutralizing antibody responses were present in the 2007-2008 vaccination sera. For each 

pp tested, the IC50 distributions were depicted in Box-and-Whisker plots. The 

Box-and-Whisker plot is a suitable graphical representation for a population distribution, 

especially if non-parametric, because it depicts the median, the first and third quartiles as a 

plot, the variability outside the interquartile range as whiskers, and the outliers as single 

dots. Consequently, it allows a graphical comparison, which enriches the statistical 

analysis. 
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The overall results, obtained when each pp was tested, were stratified based on the 

collection date: pre- and post-vaccination (Figures 52-56 (A and B), Figures 57 and 59). 

Subsequently, the sub-populations of adults (18-60 years old) and elderly (> 60 years old) 

were analysed (Figures 52-56 (A and D), Figures 58 and 60). 

Firstly the two vaccine strains, A/Solomon Island/3/2006 (H1N1) and 

A/Wisconsin/67/2005 (H3N2), were considered. For A/Solomon Island/3/2006 H1 high 

responses were detected pre-vaccination, which increased following vaccine 

administration (Figure 52A). This increase was statistically significant (p < 0.0001) and at 

least 72.7% of the total population presented a 4-fold increase in the neutralizing titres with 

a further 9.1% of the population presenting a 2-fold increase (Table 24). When the 

population is stratified by age (Figure 52C) it can be noticed that only the differences 

between pre- and post-vaccination titres in adults (p = 0.0002) were significant using the 

Wilcoxon matched-pairs signed rank test and after applying the Bonferroni correction for 

multiple comparison: in fact in elderly (p = 0.0195) the differences were not significant 

when the p-value cut-off 0.0125 was applied. When comparing by Mann-Whitney U test 

the IC50 titres in the pre-vaccination adults and elderly groups, the differences 

observed (p = 0.0304) are not significant. Likewise, IC50 titres post-vaccination in the two 

groups are not statistically significant (p = 0.5949). 

For the other vaccine strain A/Wisconsin/67/2005 H3N2 (Figure 52B), a pp 

bearing a non-cognate NA (A/Udorn/307/1972 N2) in conjunction with the H3 was used 

for neutralization. Neutralization titres were detected pre-vaccination and were 

augmented (p = 0.0029) by the administration of the seasonal vaccine. When 

age-stratification (Figure 52D) was applied and multiple comparison was implemented, 

statistical significance was not reached for the comparison of pre- and post-vaccination 

titres of adults and of elderly groups, nevertheless differences (p = 0.0273) between 

pre- and post-vaccination titres could be present in elderly in the absence of the Bonferroni 

correction. Also, when comparing neutralization titres at the same time-point between 

age-groups statistically significant differences were not detected. 
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Figure 52: IC50 of sera tested with A/Solomon Island/3/2006 H1 and A/Wisconsin/67/2005 
H3 (A/Udorn/307/1972 N2) pp-NT assays 
Comparison in the overall population and after age-stratification of IC50 measured pre- and 
post-vaccination with A/Wisconsin/67/2005 (H3N2), A/Solomon Island/3/2006 (H1N1) and 
B/Malaysia/2506/2004. Quartiles and medians of the distributions are reported in Appendix Table 
2 and Appendix Table 3. A. Results against A/Solomon Island/3/2006 H1pp; B. Results against 
A/Wisconsin/67/2005 H3 (A/Udorn/307/1972 N2) pp; C. Results of A/Solomon Island/3/2006 H1 
pp-NT after stratification of age groups; D. Results of A/Wisconsin/67/2005 H3 A/Udorn/307/1972 
N2 pp-NT after stratification of age groups. 
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Figure 53: IC50 of sera tested with A/New Caledonia/20/1999 H1 and A/Korea/426/1968 H2 
pp-NT assays 
Comparison in the overall population and after age-stratification of IC50 measured pre- and 
post-vaccination with A/Wisconsin/67/2005 (H3N2), A/Solomon Island/3/2006 (H1N1) and 
B/Malaysia/2506/2004. Quartiles and medians of the distributions are reported in Appendix Table 
2 and Appendix Table 3. A. Results against A/New Caledonia/20/1999 H1pp; B. Results against 
A/Korea/426/1968 H2pp; C. Results of A/New Caledonia/20/1999 H1 pp-NT after stratification of 
age groups; D. Results of A/Korea/426/1968 H2 pp-NT after stratification of age groups. 

PRE
POST

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

IC
50

A/New Caledonia/20/1999 
H1pp

***

PR
E

PO
ST

2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

IC
50

A/Korea/426/1968
H2pp

***

ADULTS

ELDERLY

2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

A/New Caledonia/20/1999 
H1pp

IC
50

PRE POST

**

**

AD
UL
TS

EL
DE
RL
Y

2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

A/Korea/426/1968
H2pp

IC
50

PRE POST

**
*

**



 

152 

 

After analysis of the two vaccine strains, neutralizing titres were evaluated for the 

other HAs. When A/New Caledonia/20/1999 H1pp was used in a neutralization assay, 

statistically significant differences (p =0.0001) were observed post-vaccination, even if 

high titres were detected pre-vaccination (Figure 53A), but this was not surprising because 

the strain has abundantly circulated before 2007. When the time-point analysis was 

performed after age-group stratification (Figure 53C), statistically significant differences 

in antibody titres were observed in elderly (p = 0.0039), but not in adults (p = 0.0327). 

Furthermore the elderly tend to have lower starting antibody titres than adults (p = 0.0070), 

but this difference disappeared after vaccination. 

The results obtained in the H2 (A/Korea/426/1968) pp-NT assay (Figure 53B) 

show that strong neutralizing antibody responses were present in pre-vaccination sera and 

that they were boosted (p = 0.0001) post-vaccination. After data stratification based on age 

groups and collection date (Figure 53D), comparing pre- and post-vaccination data inside 

the same age-group, increasing IC50 titres were observed with statistical significance in 

adults (p = 0.0046) and in elderly (p = 0.0117) while, using a Mann-Whitney test to 

compare both adults and elderly a significant difference was obtained 

pre-vaccination (p = 0.0043) but not post-vaccination (p = 0.0511). 

For A/Udorn/307/1972 H3, a significant difference (p = 0.0127) between 

pre-vaccination and post-vaccination responses was identified (Figure 54A). After data 

stratification and considering the Bonferroni correction, statistical significance was lost in 

the adult group (p = 0.0479) and in the elderly (p = 0.2383). Also using Mann-Whitney U 

test, no significant differences between age groups were observed (Figure 54C). 

As shown in Figure 54B, pre-vaccination sera neutralized H4pp with an overall 

increased response (p < 0.0001) detected in post-vaccination samples. This difference was 

significant in adults (p = 0.0012) but not in elderly (p = 0.0547) (Figure 54D). In addition, 

no differences were observed between age-stratified cohorts. 
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Figure 54: IC50 of sera tested with A/Udorn/307/1972 H3 and A/duck/Czechoslovakia/1956 
H4 pp-NT assays 
Comparison in the overall population and after age-stratification of IC50 measured pre- and 
post-vaccination with A/Wisconsin/67/2005 (H3N2), A/Solomon Island/3/2006 (H1N1) and 
B/Malaysia/2506/2004. Quartiles and medians of the distributions are reported in Appendix Table 
2 and Appendix Table 3. A. Results against A/Udorn/307/1972 H3pp; B. Results against 
A/duck/Czechoslovakia/1956 H4pp; C. Results of A/Udorn/307/1972 H3 pp-NT after stratification 
of age groups; D. Results of A/duck/Czechoslovakia/1956 H4 pp-NT after stratification of age 
groups. 
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Following the re-analysis (Appendix Figure 15 and Appendix Figure 16) of the 

neutralization assays performed using A/Vietnam/1194/2004 H5, A/turkey/Turkey/1/2005 

H5, and A/Netherlands/219/2003 H7pp, it can be noticed that, when the two H5pp were 

used, neutralizing antibody responses were detected in pre-vaccination sera, but in 

post-vaccination only the responses against A/turkey/Turkey/1/2005 are boosted (p < 

0.0001) (Appendix Figure 15B). A similar pattern was observed using age-group 

stratification with A/turkey/Turkey/1/2005 (Appendix Figure 16B): adults (p = 0.0061) 

and elderly (p = 0.0039) having a statistical significant increase in the neutralizing 

responses. For H5 A/Vietnam/1194/2004, the comparison between age groups at the same 

collection time is not statistically significant pre-vaccination p = 0.0142 when the 

Bonferroni correction was applied, but it was statistically significant 

post-vaccination (p = 0.0089) (Appendix Figure 15A). On the contrary to 

A/turkey/Turkey/1/2005, only pre-vaccination (p = 0.0089) there were significant 

differences between adults and elderly (Appendix Figure 16A). 

When A/Netherlands/219/2003 H7 HPAI pp was used (Appendix Figure 15C), a 

low neutralizing antibody response was detected pre-vaccination and was 

boosted (p = 0.002) by vaccine administration. In age-cohorts (Appendix Figure 16C), 

differences were observed (p = 0.0017) only in adults between the two time-points. 

The other two H7pp used in neutralization assays carry the HA of LPAI viruses. 

When A/Shanghai/2/2013 H7 was used (Figure 55A), neutralizing titres higher than the 

ones detected against other H7pp were observed pre-vaccination as well as 

post-vaccination when they increased (p = 0.0032). Furthermore, a post-vaccination 

increase of antibody titre against A/Shanghai/2/2013 H7pp is observed in 

adults (p = 0.0017) but not in elderly (Figure 55C). For A/chicken/Italy/1082/1999 H7 

influenza pp (Figure 55B) neutralizing antibody responses were detected in 

pre-vaccination sera and they were raised (p = 0.0462) in post-vaccination; however, with 

age-stratification the significance was lost (Figure 55D). 

Differences (p < 0.0001) between pre-vaccination and post-vaccination sera were 

observed for H9pp (A/Hong Kong/1073/1999) (Figure 56A). Stratified data showed 

significant variations between pre- and post-vaccination titres (adults: p = 0.0012, 

elderly: p = 0.0039) while comparison between the adults and the elderly group showed 

significance only in pre-vaccination (p = 0.0026) (Figure 56C). 

Against H10pp, a neutralizing antibody response was measured in pre-vaccination 

sera, but no significant variation (p = 0.4245) was detected in post-vaccination 

sera (Figure 56B). Also the subsequent age stratification showed the same statistical 

pattern (Figure 56D). 
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Figure 55: IC50 of sera tested with A/Shanghai/2/2013 H7 and A/chicken/Italy/1082/1999 H7 
pp-NT assays 
Comparison in the overall population and after age-stratification of IC50 measured pre- and 
post- vaccination with A/Wisconsin/67/2005 (H3N2), A/Solomon Island/3/2006 (H1N1) and 
B/Malaysia/2506/2004. Quartiles and medians of the distributions are reported in Appendix Table 
2 and Appendix Table 3. A. Results against A/Shanghai/2/2013 H7pp; B. Results against 
A/chicken/Italy/1082/1999 H7pp; C. Results of A/Shanghai/2/2013 H7 pp-NT after stratification of 
age groups; D. Results of A/chicken/Italy/1082/1999 H7 pp-NT after stratification of age groups. 
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Figure 56: IC50 of sera tested with A/Hong Kong/1073/1999 H9 and A/chicken/Germany/N49 
H10 pp-NT assays 
Comparison in the overall population and after age-stratification of IC50 measured pre- and 
post-vaccination with A/Wisconsin/67/2005 (H3N2), A/Solomon Island/3/2006 (H1N1) and 
B/Malaysia/2506/2004. Quartiles and medians of the distributions are reported in Appendix Table 
2 and Appendix Table 3. A. Results against A/Hong Kong/1073/1999 H9pp; B. Results against 
A/chicken/Germany/N49 H10p; C. Results of A/Hong Kong/1073/1999 H9 pp-NT after 
stratification of age groups; D. Results of A/chicken/Germany/N49 H10 pp-NT after stratification 
of age groups. 
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Figure 57: IC50 of sera tested with A/duck/Alberta/60/1976 H12, 
A/mallard/Astrakhan/263/1982 H14, and A/shearwater/West Australia/2576/1979 H15 pp-NT 
assays 
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Quartiles and medians of the 
distributions are reported in Appendix Table 2. A. Results against A/duck/Alberta/60/1976 H12pp; 
B. Results against A/mallard/Astrakhan/263/1982 H14pp; C. Results against A/shearwater/West 
Australia/2576/1979 H15pp. 
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Figure 58: Age-stratified IC50 of sera tested A/duck/Alberta/60/1976 H12, 
A/mallard/Astrakhan/263/1982 H14, and A/shearwater/West Australia/2576/1979 H15 pp-NT 
assays 
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Quartiles and medians of the 
distributions are reported in Appendix Table 3. A. Results against A/duck/Alberta/60/1976 H12pp; 
B. Results against A/mallard/Astrakhan/263/1982 H14pp; C. Results against A/shearwater/West 
Australia/2576/1979 H15pp. 
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In the A/duck/Alberta/60/1976 H12 pp-NT assay (Figure 57A) low responses were 

detected and they were augmented by vaccination (p = 0.0275). However, when 

age-stratification was applied, the statistical significance was lost in adults as well as the 

elderly. Comparing the responses between groups at the same time-point did not show any 

differences (Figure 58A). 

Neutralizing antibody responses against H14 and H15pp in pre-vaccination 

individuals were boosted (p < 0.0001) post-vaccination (Figure 57 (B and C)). Age group 

stratification showed the same pattern with post-vaccination responses of higher magnitude 

for adults (H14 p = 0.0017; H15 p = 0.0002) but for elderly only against H14 (p = 0.078). 

In the IC50 comparison between the two age-groups, variations were not significant (Figure 

58 (B and C)). 

Before proceeding to the use of the chimeric HA in pp-NT assay, it was important 

to test the two parental HA pp to be able to compare the IC50 titres and understand if 

antibodies are directed against the stalk or the head of the HA. In A/South Carolina/1/1918 

pp-NT assay (Figure 59A and 60A), high neutralizing responses were detected 

pre-vaccination but a statistically significant increase (p < 0.0001) was observed in 

post-vaccination titres. When comparing pre- and post-vaccination data in adults and in 

elderly, titre increase at the two time-points was significant (adults: p = 0.0002; elderly: 

p = 0.0039). No differences were detected between adults and elderly at the two 

time-points using the Mann-Whitney U test. 

When the H11pp was used (Figure 59B and 60B), very low neutralization titres 

were detected pre-vaccination but increased (p = 0.0007) post-vaccine administration. 

Using the Bonferroni correction, differences between pre- and post-vaccination titres in 

adults (p = 0.0151) and in elderly (p = 0.0313) were not detected. When comparing the two 

time-points between the two groups variations were not significant. 

Lastly, the chimeric HA pp was tested (Figure 59C and 60C): high responses were 

detected pre- and post-vaccination though differences were statistically 

significant (p = 0.0002). However, when data stratification and Bonferroni correction were 

applied, differences between pre- and post-vaccination titres were observed in the 

elderly (p = 0.0039) but not in adults (p = 0.0215). No difference between the adults and 

elderly IC50 titres were detected pre- or post-vaccination. 
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Figure 59: IC50 of sera tested with A/South Carolina/1/1918 H1, A/duck/Memphis/546/1974 
H11, and the chimeric HA pp-NT assays 
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Quartiles and medians of the 
distributions are reported in Appendix Table 2. A. Results against A/South Carolina/1/1918 H1pp; 
B. Results against A/duck/Memphis/546/1974 H11pp; C. Results against the chimeric H11 
head/H1 stalk HA pp. 
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Figure 60: Age-stratified IC50 of sera tested with A/South Carolina/1/1918 H1, 
A/duck/Memphis/546/1974 H11, and the chimeric HA pp-NT assays 
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Quartiles and medians of the 
distributions are reported in Appendix Table 3. A. Results against A/South Carolina/1/1918 H1pp; 
B. Results against A/duck/Memphis/546/1974 H11pp; C. Results against the chimeric H11 
head/H1 stalk HA pp. 
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The IC50 values obtained when the chimeric HA pp was employed were higher than 

the ones detected against H11 (the pp that has donated the head region) but lower than the 

ones detected with A/South Carolina/1/1918 H1pp, which has donated the stalk region. 

This indicates that the presence of the A/South Carolina/1/1918 H1 stalk mediates an 

increase in neutralizing titres, demonstrating that antibodies against this region were 

present in the samples pre-vaccination. Likewise these antibody responses increased 

post-seasonal vaccination, since a statistical difference was observed between the two 

time-points. Nevertheless, since the A/South Carolina/1/1918 H1 pp-NT IC50 values are 

higher than the ones detected in the chimeric HA pp-NT assay, a response against the head 

was also involved. Since A/South Carolina/1/1918 (H1N1) was not present in the vaccine 

but this HA is related to A/Solomon Islands/3/2006 (H1N1) (same HA subtype), it is clear 

that at the basis of the neutralization detected there is homosubtypic cross-reactivity. 

To better analyse the magnitude of the responses detected and to understand if there 

are changes between the two populations analysed, the data analysis was enriched by 

calculating SCRs, which are reported in Table 24. SCRs were calculated pre- and 

post- age-stratification, and two cut-off values (2-fold and 4 fold) were used to determine 

the SCRs. It can be noticed that SCR(4-fold) for the H1 vaccine strains were > 40% and/or 

> 30%, which are the two vaccine immunogenicity criteria cut-offs for adults and elderly 

when the HI assay is used (Committee for Proprietary Medicinal Products 1997), whereas 

for the H3 vaccine strains only the elderly SCR(4-fold) exceed the cut-off percentage. 

Interesting, viewing the SCRs for the two vaccine strains, it is noticeable that the majority 

of adults had a seroconversion for the H1 strain but not for the H3, whereas in elderly it 

was the opposite. 

In the previous analyses, the elderly had lower antibody titres pre-vaccination but 

SCRs revealed that these increased to levels that were comparable to the IC50 values of 

adult subjects post-vaccination. In fact, using chi-squared statistics, it was possible to 

verify that SCR(4-fold) and SCR(2-fold) were influenced by the age of subjects (χ2 = 10.16, 

df = 1, p = 0.0014, and respectively χ2 = 3.912, df = 1, p = 0.0479) indicating that the 

elderly had better qualitative and quantitative cross-reactive antibody response than adults. 

Taken together the data presented show that heterosubtypic stalk-directed antibody 

responses were present in this Italian population and they increased post-seasonal 

vaccination; the data also suggested that homosubtipic and/or heterosubtypic head-directed 

responses were sometimes present. 
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Table 24: SCRs using cut-off values of 4-fold IC50 (SCR(4-fold)) or 2-fold IC50 
increase (SCR(2-fold)) 
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5.3.5 Heterosubtypic haemagglutinin antibody responses are detected and 

partially augmented after the administration of a trivalent vaccine with 

or without the co-administration of a MVA-NP+M1 vaccine 

The small volumes of samples available for the 2007-2008 vaccination study 

prevented repeats of the pp-NT assays being conducted. For this reason and to investigate 

whether the results observed were specific to the population, another set of sera was 

evaluated with the same methodology. These sera were collected at day 0 and at day 21 of 

the NCT00942071 clinical trial (Antrobus et al. 2013) in which subjects were firstly 

vaccinated with a trivalent 2011-2012 seasonal influenza vaccine and immediately after 

with placebo or with a MVA-NP+M1 vaccine. 

Since all the subjects have received a trivalent seasonal vaccine, it was decided to 

perform the first analysis comparing the two time-points regardless of the kind of regimen 

that the subject had received. Subsequently, data were stratified for the regimen to see if 

the MVA-NP+M1 vaccine has had an effect in increasing the heterosubtypic antibody 

responses, if they are present. 

All the subjects were older adults aged 50 years and above and no age-difference 

were observed between the two experimental groups (Antrobus et al. 2013), therefore a 

age-stratification was not performed for this study. 

In the trivalent vaccine, A/California/7/2009 H1N1 and A/Perth/16/2009 H3N2 

were included and, unfortunately, two matching or related pp were not available to 

evaluate neutralizing responses: in fact A/Texas/05/2009 H1pp, which is related by 

subtype to A/California/7/2009 H1, was not produced at a titre high enough to perform 

neutralization assays (Chapter 3). However, the response against the vaccine strains and 

seroconversion of the subjects were previously evaluated though ELISA and HI (Antrobus 

et al. 2013). Therefore, in the current study, sera were directly evaluated against different 

representative strains of human and avian influenza. 

Considering human influenza viruses, the A/New Caledonia/20/1999 H1 pp-NT 

assay (Figure 61A), detected high responses at day 0 but a statistically significant increase 

was not detected at day 21. The same was observed when A/Korea/426/1968 H2pp was 

used: high responses were detected but the vaccine failed to increase them (Figure 61B). 

On the contrary when the two H3pp were used in neutralization assay, pre-vaccine 

administrations showed higher responses when the older A/Udorn/307/1972 H3 was 

used (Figure 61C), than when the more recent A/Wisconsin/67/2005 H3 but in both cases, 

these responses increased (p = 0.0001) at day 21 (Figure 61D). 
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Figure 61: IC50 of NCT00942071 clinical trial sera tested with pp-NT assays (1) 
Comparison between IC50 measured at day 0 and at day 21 of the NCT00942071 clinical trial. 
Quartiles and medians of the distributions are reported in Appendix Table 4. A. Results against 
A/New Caledonia/20/1999 H1pp; B. Results against A/Korea/426/1968 H2pp; C. Results against 
A/Udorn/307/1972 H3pp; D. Results against A/Wisconsin/67/2005 H3 (A/Udorn/307/1972 N2) pp. 
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Figure 62: IC50 of NCT00942071 clinical trial sera tested with pp-NT assays (2) 
Comparison between IC50 measured at day 0 and at day 21 of the NCT00942071 clinical trial. 
Quartiles and medians of the distributions are reported in Appendix Table 4. A. Results against 
A/duck/Czechoslovakia/1956 H4pp; B. Results against A/Vietnam/1194/2004 H5pp. C. Results 
against A/turkey/Turkey/1/2005 H5pp; D. Results against A/Shanghai/2/2013 H7pp. 
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Analysing the neutralization data obtained using H4pp (Figure 62A), it can be 

observed that high neutralization activity are detected at day 0 and remained high also 

post-vaccination. On the other hand, in H5 pp-NT assays (Figure 62 (B and C)) antibody 

responses were observed before vaccination but they increased at day 21 only for 

A/turkey/Turkey/1/2005 H5 (p < 0.001), whereas A/Vietnam/1194/2004 H5 remained 

unchanged. 

In the sera analysed, neutralizing antibody responses against A/Shanghai/2/2013 

H7 (Figure 62D) were already present at day 0 but titres increased (p = 0.0002) at day 21. 

The same was observed for A/Hong Kong/1073/1999 H9 (Figure 63A) with IC50 values 

that increased (p < 0.0001) post-vaccine administration. In contrast, in the 

A/chicken/Germany/N49 pp-NT assay (Figure 63B), low antibody responses were 

detected at the first time-point and they did not increase at the second. Also for H14 and 

H15 pp-NT assays, neutralizing antibodies were identified but they failed to be boosted by 

vaccination (Figure 63 (C and D)). 

Lastly, as for the 2007-2008 vaccination study, the chimeric HA pp and the two 

parental HAs, A/South Carolina/1/1918 H1 and A/duck/Memphis/546/1974 H11, were 

used in neutralization assays as surrogate antigens. In A/South Carolina/1/1918 H1 

pp-NT (Figure 64A) responses were detected at day 0 and they were 

augmented (p = 0.0150) by vaccination. Similarly, but at lower magnitude, responses for 

H11 were detected pre-vaccine administrations and they increased (p = 0.0202) 

post-vaccination (Figure 64B). As shown in the 2007-2008 vaccination study, and in this 

case, neutralizing antibody responses against the chimeric HA were detected (Figure 

64C). These were of intermediate magnitude when compared with those measured against 

the donor H1 (Figure 64A) and they increased (p = 0.0046) during the two time-points. 

The results obtained with the chimeric HA clearly show that, as already underlined 

in the 2007-2008 vaccination study (Section 5.3.4), stalk-directed and head-directed 

cross-reactive antibody responses are present in the human population and are partially 

boosted by vaccination. In contrast to the results reported previously (Section 5.3.4), the 

effect of the vaccine regimens noted was less broad in the current study, with the IC50 

distribution against some the pp analysed not changing post-vaccine administration. 
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Figure 63: IC50 of NCT00942071 clinical trial sera tested with pp-NT assays (3) 
Comparison between IC50 measured at day 0 and at day 21 of the NCT00942071 clinical trial. 
Quartiles and medians of the distributions are reported in Appendix Table 4. A. Results against 
Hong Kong/1073/1999 H9pp; B. Results against A/chicken/Germany/N/49 H10pp; C. Results 
against A/mallard/Astrakhan/263/1982 H14pp; D. Results against 
A/shearwater/West Australia/2576/1979 H15pp. 
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Figure 64: IC50 of NCT00942071 clinical trial sera tested with pp-NT assays (4) 
Comparison between IC50 measured at day 0 and at day 21 of the NCT00942071 clinical trial. 
Quartiles and medians of the distributions are reported in Appendix Table 4. A. Results against 
A/South Carolina/1/1918 H1pp; B. Results against A/duck/Memphis/546/1974 H11pp; C. Results 
against H11 head/H1 stalk chimeric HA peudotype. 

To compare the two different vaccine regimens (TIV + placebo and 
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in the 2007-2008 vaccination study was followed. Firstly the data were graphed in 

Box-and-Whisker plots after regimen-stratification (Figures 65-69) in order to compare 
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two cases were statistically significant differences found in the IC50 fold-increase 

comparing TIV + placebo and TIV + MVA-NP+M1. This was when A/Wisconsin/67/2005 

H3 (A/Udorn/307/1972 N2) pp (p = 0.0359) (Figure 65D and Appendix Figure 17D) and 

H15pp (p = 0.0152) was used (Figure 67D and Appendix Figure 17L). 
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Figure 65: Comparison of TIV + placebo and TIV + MVA-NP+M1 vaccine combinations 
using pp-NT IC50 (1) 
IC50 measured pre- and post-vaccination and stratified considering the vaccine combinations from 
NCT00942071 clinical trial were reported on Box-and-Whisker plots for comparison. Quartiles and 
medians of the distributions are reported in Appendix Table 5. A. Results against 
A/New Caledonia/20/1999 H1pp; B. Results against A/Korea/426/1968 H2pp; C. Results against 
A/Udorn/307/1972 H3pp; D. Results against A/Wisconsin/67/2005 H3 (A/Udorn/307/1972 N2) pp. 
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Figure 66: Comparison of TIV + placebo and TIV + MVA-NP+M1 vaccine combinations 
using pp-NT IC50 (2) 
IC50 measured pre- and post-vaccination and stratified considering the vaccine combinations from 
NCT00942071 clinical trial were reported on Box-and-Whisker plots for comparison Quartiles and 
medians of the distributions are reported in Appendix Table 5. A. Results against 
A/duck/Czechoslovakia/1956 H4pp; B. Results against A/Vietnam/1194/2004 H5pp. C. Results 
against A/turkey/Turkey/1/2005 H5pp; D. Results against A/Shanghai/2/2013 H7pp. 
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Figure 67: Comparison of TIV + placebo and TIV + MVA-NP+M1 vaccine combinations 
using pp-NT IC50 (3) 
IC50 measured pre- and post-vaccination and stratified considering the vaccine combinations from 
NCT00942071 clinical trial were reported on Box-and-Whisker plots for comparison. Quartiles and 
medians of the distributions are reported in Appendix Table 5. A. Results against 
Hong Kong/1073/1999 H9pp; B. Results against A/chicken/Germany/N/49 H10pp; C. Results 
against A/mallard/Astrakhan/263/1982 H14pp; D. Results against 
A/shearwater/West Australia/2576/1979 H15pp. 
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Figure 68: Comparison of TIV + placebo and TIV + MVA-NP+M1 vaccine combinations 
using pp-NT IC50 (4) 
IC50 measured pre- and post-vaccination and stratified considering the vaccine combinations from 
NCT00942071 clinical trial were reported on Box-and-Whisker plots for comparison. Quartiles and 
medians of the distributions are reported in Appendix Table 5. A. Results against 
A/South Carolina/1/1918 H1pp; B. Results against A/duck/Memphis/546/1974 H11pp; C. Results 
against H11 head/H1 stalk chimeric HA peudotype. 
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Table 25: SCRs using cut-off values of 4-fold IC50 (SCR(4-fold)) or 2-fold IC50 
increase (SCR(2-fold)) 
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SCRs were also calculated and reported in Table 25. Using chi-squared statistics to 

compare the SCR(4-fold) and SCR(2-fold) between the two vaccine groups, a statistically 

significant difference was identified for the SCR(2-fold) (χ2 = 4.416, df = 1, p = 0.0356) but 

not for the SCR(4-fold) (χ2 = 1.670, df = 1, p = 0.1962). These, along with the fold-increase 

results previously evaluated, could indicate that that MVA-NP+M1 vaccine increases the 

responses of subjects that usually have a low response to the traditional vaccine, or that 

influenza immune responses differ from those induced by classic TIV. 

These last two analyses have shown that differences were not present between the 

TIV + placebo and TIV + MVA-NP+M1 vaccine combinations, however since the number 

of participants in the clinical trial was limited and some dissimilarities were identified 

between the two groups, bigger differences could be identified if a diverse study with a 

larger number of subjects in which individuals have more specific characteristics (e.g. low 

pre-vaccination neutralizing titre) will be designed. 

5.4 Discussion and Conclusion 
In the recent years it has become clear that antibodies that are able to neutralize 

different influenza virus subtypes can be generated in animal models, exist in nature and 

can be isolated in humans (Friesen et al. 2014; Dreyfus et al. 2012; Corti et al. 2011; 

Ekiert et al. 2011; Sui et al. 2009; Throsby et al. 2008; Okuno et al. 1993). The discovery 

of these antibodies has stimulated investigations into their frequency, characteristics, and 

how they are generated, with a view to designing new vaccine strategies that can stimulate 

them. However, one of the problematic aspects in the study of these responses is to identify 

appropriate diagnostic and serological tools. As already reported in Section 1.8, classical 

assays such as HI and SRH are frequently used in seroepidemiological and vaccine 

immunogenicity studies. These two assays are extremely useful to charachterize influenza 

directed antibodies responses but have drawbacks when applied to the evaluation of cross-

reactive antibodies: HI is unable to detect antibodies directed against the HA stalk, whereas 

SRH could potentially detect these antibodies but only if they are of specific Ig classes (i.e. 

the ones that can activate the complement system). Furthermore, if sera are not properly 

pre-adsorbed, SRH can also detect antibodies that recognise internal proteins, which can be 

the cause of detected cross-reactivity since they are more conserved between different 

influenza strains.  

In contrast, MN and influenza pp-NT assay have been successfully applied to 

identification and characterisation of broadly-reactive mAbs directed against the HA and to 

study immunological response to natural infection and vaccines (Corti et al. 2010; Alberini 

et al. 2009; Garcia et al. 2009; Temperton et al. 2007). However, studies on the breadth of 
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the cross-reactive response have been predominantly focused on seasonal and potentially 

pandemic (H5, H7 and H9) strains. Evaluation of serological responses against other avian 

influenza viruses is usually limited to defined populations (such as farmers and animal 

workers) and often performed using HI assay, which does not give information on the 

cross-reactive HA stalk-directed antibodies (Oshansky et al. 2014; G. C. Gray et al. 2011; 

Kayali et al. 2011). 

To address this issue, a study using pp-NT assays was implemented using a panel 

of HA subtypes representative of avian and human viruses, to detect the antibody response 

pre- and post-seasonal vaccination. Two collections of pre- and post-vaccination 

sera (2007-2008 vaccination study and NCT00942071 clinical trial (Antrobus et al. 2013)) 

were tested using a broad panel of influenza pp in neutralization assays to assess whether 

cross-reactive antibody responses can be detected in the human populations and, if present, 

whether they can be boosted by current seasonal vaccination. Furthermore using different 

HA subtypes the breadth of the response was also evaluated. 

The results reported here indicate that pp-NT assays are able to detect different 

magnitudes of neutralizing antibody responses against human and avian influenza viruses 

pre-vaccine administration. Considering the age and the geographical origin of the two 

populations tested, it is unlikely that these people have been in contact or were infected by 

avian influenza viruses harbouring HAs antigenically-related to some of the HAs 

tested (such as H4, H7, H9, H10, H11, H12, H14, and H15) and for this reason it is likely 

that a cross-reactive antibody response is responsible for the measured IC50. 

However, it should be noticed that some of the H1, H2 and H3 strains used in 

pp-NT have previously circulated in the human population: in fact 

A/New Caledonia/20/1999 (H1N1) abundantly circulated from 1999 to at least 2006, 

A/South Carolina/1/1918 is the prototype for the 1918 influenza pandemic but related 

viruses have circulated until 1957, H2 viruses circulated between 1957 and 1968, 

A/Udorn/307/1972 H3 is from a virus isolated 40 years ago. Probably at least part of the 

population tested (elderly >60 years old and/or the older subjects in the adult group in the 

2007-2008 seasonal vaccination study, and the clinical trial subjects) could have been 

naturally infected by these viruses or by antigenically-related viruses and thus the 

responses detected could be partially explained. Furthermore for the 2007-2008 

vaccination studies in which it was possible to analyse the neutralizing antibody response 

for the vaccine strains prior to vaccination, high neutralization titres were detected against 

A/Solomon Islands/3/2006 H1 and A/Wisconsin/67/2005 H3: this can only be explained if 

cross-reactive antibodies are being detected, since these viruses did not circulate 

abundantly previously. 
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At this point it is fundamental to understand which HA epitopes are involved in this 

cross-reactivity. For H1 and H3, since common epitopes between the HA head exist, 

antibodies that can neutralize more than one strain could be present (R. Xu et al. 2010; 

Yamashita et al. 2010), but between different HA subtypes the head variation is bigger. 

Since the HA stalk is the most conserved region between the different HAs tested, the 

response measured here against non-seasonal strains (such as H4, H7, H9, H10, H11, H12, 

H14, and H15) are probably mediated by stalk-directed cross-neutralizing antibodies in the 

majority of cases. 

Recently it has been shown that the use of chimeric HAs on pp or virus surfaces is a 

useful tool to study cross-reactive antibody responses and, more precisely, antibody 

directed against the HA stalk region (Hai et al. 2012; Pica et al. 2012). For this reason, in 

this study a pp harbouring a chimeric HA was generated and used in neutralization assays. 

The use of a chimeric HA in neutralization assays has permitted the delineation of 

cross-reactivity firstly mediated by stalk-directed antibodies and secondarily by 

head-directed antibodies. 

In the 2007-2008 study, comparing pre-vaccination neutralization titres with 

post-vaccination values has shown statistically significant differences. It also showed that 

heterosubtypic antibody responses are partially boosted during seasonal vaccination. In 

fact with the exception of A/Vietnam/1194/2004 and A/chicken/Germany/N49 H10, 

increases in antibody responses are always detected, with SCRs that can exceed 40% when 

the 4-fold increase cut-off is used. 

This is not the first time that seasonal vaccination has been reported to induce 

cross-reactive antibodies: in the past it was shown that mAbs that neutralize different 

Group 1 viruses can be isolated after seasonal vaccination (Corti et al. 2010) and that 

seasonal vaccination can induce antibodies and T-cell responses that cross-neutralize H5 

viruses (Ding et al. 2011; Gioia et al. 2008). Furthermore a recent longitudinal study (M. S. 

Miller, Gardner, et al. 2013) has shown that influenza antibodies against previously 

encountered strains increase over time and that cross-reactive stalk antibodies increase 

even in the absence of an antigenic shift, which is considered the major stimuli for 

generation of the heterosubtypic antibody subsets (Pica et al. 2012; Palese and T. T. Wang 

2011). The increase in stalk-directed cross-reactive antibody responses post-seasonal 

vaccination described here mirrors the one observed by Miller, Gardner, et al. over a more 

expanded period of time. Unfortunately precise age information, vaccination and medical 

history of the subjects were not known in the 2007-2008 study and it is not possible to 

perform an epidemiological study breaking down the data into specific subject age and 

seasonal strains encountered. 
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However, the increase in antibody responses observed could be explained not only 

by the boosting of an already present immune response. An interesting hypothesis, 

considering that the pp-NT assay is a potency assay8, is that the higher response detected 

post-vaccination could be mediated by the ‘affinity maturation’ of the pre-existing 

antibodies following seasonal vaccination, and to a consequential increase in the potency 

of these antibodies, more than merely an increase in quantities of the same. Different 

studies have now shown that a small number of somatic mutations in germline antibodies 

with low HA binding activity are required for the acquisition of a stalk-directed 

broad-neutralization activity (Avnir et al. 2014; Pappas et al. 2014; Lingwood et al. 2012; 

Corti et al. 2011). 

Another important finding in the 2007-2008 vaccination study, was that 

pre-vaccination neutralizing antibody responses, when significant, were higher in adults 

compared to the elderly, but usually these responses resulted in the equivalent magnitude 

post-vaccine administration. This can be explained by the decline of the antibody response 

in the elderly (N. Lee, Shin and I. Kang 2012; Weksler and Szabo 2000). Surprisingly in 

the elderly population it was observed that the post-vaccination titres against all subtypes 

increase more than the antibody response in the 18-60 group. The elderly are usually less 

able to generate antibody responses against newly encountered epitopes since B-cell 

diversification is lower in the elderly than in the young (Weksler and Szabo 2000). Also 

the decreasing of CD4+ and CD8+ naïve cell population with aging impairs the ability to 

mount an immune response against new antigens (N. Lee, Shin and I. Kang 2012). 

However, their antibody responses were high and broad post-vaccination: this could be 

explained by the fact that seasonal vaccination in the elderly does not create new 

antibodies, but can recall memory responses directed against conserved or semi-conserved 

epitopes. This highlights the seasonal vaccination importance in this high-risk population 

since it can potentially confer a partial protection to unmatched-vaccine viruses through 

cross-reactivity. 

The other set of sera that was evaluated was collected during the NCT00942071 

clinical trial (Antrobus et al. 2013). In this trial the effect of a trivalent vaccine containing   

antigens was evaluated in the absence or presence of a co-administration of a 

MVA-NP+M1 vaccine. Firstly the total effect of the trivalent vaccination was evaluated 

and subsequently the effect of the co-administration. 
                                                
8 A potency assay is an assay that permits to evaluate the activity of a biological substance: 

the pp-NT evaluates the biological (neutralization) activity of an antibody mixture. The 
neutralization activity is dependent on the quantity and on the affinity of the antibodies present in 
the mixture (Klasse and Sattentau 2002). For this reason when an increase in the activity is 
detected, it could be related to an enrichment of antibody quantities and/or to a change in the 
affinity of the antibody mixture. 
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Different research groups have demonstrated that H1N1 2009 pandemic infection 

and vaccination has generated a higher cross-reactivity response by inducing stalk-directed 

antibodies (Mahallawi et al. 2013; Sangster et al. 2013; Krammer et al. 2012; Pica et al. 

2012; Perera et al. 2011; W. Wang et al. 2011). Here, analysing the antibody response 

against different human and avian strains, antibodies neutralizing previously encountered 

strains (e.g. H1, H2, and H3) and avian strains were detected, but only in certain cases 

were these antibodies boosted post-vaccination. Statistically significant increases were 

detected only for the two H3 stains, for the A/Vietnam/1194/2004 H5pp, for 

A/South Carolina/1/1918 H1pp, A/Shanghai/2/2013 H7pp, H9pp and H11pp. These data in 

part seem to contradict previous findings that vaccination with pandemic 2009 HA confers 

high cross-reactive antibodies, since the 2007-2008 seasonal vaccination seems here to 

result in higher and broader responses. The use of chimeric HA demonstrates that 

stalk-directed antibodies were boosted, however the increase does not appear to be as high 

as in the other study. It could be that different antibodies were boosted in these two studies: 

for example in the NCT00942071 clinical trial they could be directed versus certain 

subtypes (e.g. Group 2) and not against others, as heterosubtypic antibodies with different 

specificity exist (Ekiert et al. 2011; Ekiert et al. 2009; Throsby et al. 2008; Varecková, N. 

Cox and Klimov 2002). To test this hypothesis it would be interesting to generate and use a 

different chimeric HA in pp-NT assays, for example a Group 2 chimeric HA, since high 

cross-reactive titres were detected against H3 strains after vaccination. 

In the NCT00942071 clinical trial a MVA-NP+M1 vaccine was also 

co-administered in nine subjects to induce a T-cell response together with an antibody 

response. MVA is a modified and highly attenuated smallpox vector, that can transduce 

different cells, including DCs, and permits the expression of the protein of interest and the 

subsequent presentation of peptides via MHC molecules. This enhances and induces CD8+ 

and CD4+ T-cell responses. Influenza MVA-based vaccines have been shown to be able to 

induce CD8+ and CD4+ T-cell responses, and humoral responses, depending on the 

proteins that are expressed (e.g. HA, NA, NP) (Rimmelzwaan and Sutter 2009). 

Recently the administration of MVA alone or MVA-NP+M1 has been shown also 

to be able to induce an adjuvant effect on antibody response (Mullarkey et al. 2013; 

Berthoud et al. 2011). Since other adjuvants (e.g. MF59) have been shown to have an 

effect in enhancing and broadening the antibody response (Khurana et al. 2014; Banzhoff 

et al. 2009), it would be interesting to evaluate if MVA-NP+M1 has an effect on 

heterosubtypic HA-directed antibody responses. 

In this study, as already highlighted in Antrobus et al., with MVA-NP+M1 vaccine 

significant variations in the antibody titres post-vaccination compared to placebo were not 
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detected. Only when A/Wisconsin/67/2005 H3pp and H15pp were tested, increasing 

neutralizing titres were detected following MVA-NP+M1 vaccine administration. 

Nevertheless, analysis of the SCRs has highlighted the possibility of differences between 

placebo and MVA-NP+M1 vaccine that could have been too small to be detected by 

non-parametric tests (in relation to the statistical power and the limited number of subjects 

analysed) and thus further studies will be necessary to understand the possible effect of the 

MVA-NP+M1 co-administration. 

The adjuvant effect of MVA-NP+M1 vaccine did not generate high variation in the 

HA-directed heterosubtypic cross-reactive responses in comparison to the placebo 

administration; however this vaccine could have generated other classes of cross-reactive 

antibodies, which were not evaluated in this study. For example, antibodies against the NP 

could have been induced and should be evaluated. NP is more conserved than the envelope 

proteins since it is internal to the virion and therefore less subject to selective pressures. In 

fact, antibodies against NP have been shown to have an important role in vivo conferring 

protection against influenza virus infection (LaMere et al. 2011; Carragher et al. 2008; 

Zheng et al. 2007). These antibodies do not possess neutralization activity and the 

mechanism by which they confer protection is not yet clear, but it is believed to have a role 

in enhancement of DC function and interaction with T-cell responses (LaMere et al. 2011; 

Carragher et al. 2008; Zheng et al. 2007). 

In contrary to past studies in which HA cross-reactive antibodies were considered 

extremely rare (Grebe, Yewdell and Bennink 2008), the two studies presented here show 

that cross-reactive antibody responses could be more frequent in the human population 

than was previously believed. Similar findings are becoming more common now that 

methodologies (e.g. isolation of mAbs and plasma cells, pp-NT, chimeric HA ELISA) able 

to detect stalk-directed antibodies are becoming more widely used (Molesti, Ferrara, et al. 

2014; M. S. Miller, Gardner, et al. 2013; Wrammert et al. 2011; Labrosse et al. 2010). 

Nevertheless the frequency of these antibodies is still controversial. The possibility of 

multiplexing (Molesti, Wright, et al. 2014) and automatisation the pp-NT assay should be 

investigated (see Chapter 7) since this will permit the evaluation of responses against more 

subtypes simultaneously. Also testing of larger panels of samples would permit the 

verification of the real frequency of these cross-reactive antibodies in the human 

population. 

It is also possible that geographical origin of the analysed subjects could play an 

important role in explaining the dissimilarity observed in different studies. This may also 

determine the basal level of certain cross-reactive antibodies: in fact in different regions of 

the world different pathogens and immunological stimuli (e.g. vaccine, allergens) are 
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encountered at different times during the human lifespan, and that alone can shape the 

immune system in different ways (Kucharski and Gog 2012). Also genetic polymorphisms 

could play a role in modulating the antibody response: for example it is now accepted that 

the majority of cross-neutralizing antibodies against influenza HA uses the variable heavy 

chain segment VH1-69. Furthermore, it was shown how a polymorphism in the germline 

version of this locus could impair the generation of stalk-directed antibodies (Pappas et al. 

2014; Lingwood et al. 2012). Since other cross-reactive antibodies use different segments, 

it is important that studies focusing on evolution of antibodies from the germlines are 

performed and it is also essential that genome-wide association studies are implemented. 

This is not only to identify important factors in influenza susceptibility and 

pathogenesis (Everitt et al. 2012; Zhou et al. 2012), but also to highlight genetic factors 

that could explain differences in immune responses between individuals. 

These studies have shown that cross-reactive antibody responses can be detected in 

the human population. However, the detection of cross-reactive antibodies through pp-NT 

assays does not give information on possible protection that they can mediate. In fact 

correlates of protection are not established for pp-NT, and in the literature there is only one 

report in which a cut-off value was calculated using correlation with MN for H5 

viruses (Alberini et al. 2009). It is unlikely that the same cut-off could be used for other 

influenza strains, as the correlation experiment with SRH described here demonstrates that 

correlation coefficient varied in relation to the antigen tested. However, the need for 

clinical trials to evaluate ‘universal’ vaccines (Krammer and Palese 2014) and the fact that 

only with MN and pp-NT is it possible to evaluate efficiently stalk-directed antibodies, 

could permit the establishment of a cut-off for this assay in the future. 

Recently stalk-directed neutralizing antibodies have been shown to be able to 

mediate protection from influenza infection in the mouse model engaging the Fcγ 

receptors (DiLillo et al. 2014), and also this will be need to be evaluated in the future as an 

explanation as to why numerous mAbs show an enhanced activity in vivo than in vitro. 

It is also important to bear in mind possible bias in the data presented here. Firstly, 

as already discussed in Chapter 4, the pp-NT assay was performed normalising on the basis 

of the transduction activity (RLU) of each pp and not on the basis of HA content. 

Secondarily the populations analysed are of limited numbers. Especially when analysing 

stratified data in the 2007-2008 vaccination study, populations had been reduced and 

statistical power was lost due to the Bonferroni correction, resulting in the absence of 

statistical significance in presence of a graphical difference when comparing pre- and 

post-vaccination neutralization titres. However, since a conservative approach was used in 

the statistical analysis, overall the data strongly suggest that influenza seasonal vaccination 
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is able to mediate the increase of heterosubtypic antibody responses in certain cases. 

Similar studies with a larger population sample size will need to be undertaken to finally 

confirm and to improve understanding of the heterosubtypic responses detected here. 

Furthermore in these two studies, certain factors were not controlled or 

investigated. For example, the effect of sera pre-treatment was not considered. The sera 

from the 2007-2008 vaccination study, being previously used for SRH, were subjected to 

complement inactivation, whereas the sera from the NCT00942071 clinical trial were not. 

This could potentially explain differences between the two studies. Additionally, the 

treatment of sera with receptor destroying enzymes was also not investigated. This 

treatment is necessary in HI and MN to avoid the detection of aspecific inhibiting and 

neutralizing responses caused by non-specific inhibitors such as sera lectins. The absence 

of this treatment could be the factor underlying the high neutralization responses here 

detected and should be considered for future optimization and validation of pp-NT (see 

Chapter 7) 

Another important factor that was not controlled for in the experimental design is 

that in the current study pp producer cell lines, target cells and sera are all of human origin. 

For classical neutralization assays that are usually performed using MDCK cells as virus 

producer cells and as target, concerns about this usually do not exist but this cell line is of 

canine origin. In the pp-NT assays performed, all the components are of the same 

origin (i.e. human) and it is not clear if neutralization titres could be affected, but should be 

a concern and investigated in future. For example, it is possible that antibodies against 

phospholipids, or other antibodies could interfere in the neutralization process causing an 

overestimation of the neutralization titre. Some authors perform neutralization assays 

against non-related pp (e.g. VSV-G, HIV-1 or Hepatitis C pp) to avoid possible problems 

of non-specific neutralization: this method is highly valid but it is better and necessary to 

know the immunological status of the subject with respect to the control virus. 

If the findings presented here are confirmed by further serological testing in larger 

populations, they could have important implications for seasonal vaccination and vaccine 

development. For this purpose it will also be necessary to understand whether stalk 

antibodies exclusively mediate the heterosubtypic HA-directed responses and which HA 

epitopes are shared between different subtypes. For example, antibodies recognising the 

RBS have shown homosubtypic and heterosubtypic neutralization activity (Whittle et al. 

2011). Adding data about the response at the single B-cell level, differentiating between 

memory responses and plasma cells, and isolating mAbs can be also useful for this 

purpose. Slight modifications of the pp-NT assay, involving increasing incubation times 

and the amount of the samples tested, could be effectively used to test antibody content in 
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the medium of isolated and cultured cells (Mahallawi et al. 2013), permitting these types of 

experiments to be performed easily. 

The use of bioinformatic approaches can also represent a useful tool to analyse 

neutralization data and design precise experiments. Simple alignments can permit the 

identification of conserved regions; more complex approaches, involving the analysis and 

comparison of antibody-HA binding complex to identified residues subjected to 

immunological pressure and/or the prediction of the regions subjected to evolutionary 

pressure evaluating the prevalence of circulating strains (Wikramaratna et al. 2013; 

Sivalingam and Shepherd 2012; Lees, Moss and Shepherd 2011), can also give information 

that can be used to study precise epitopes, especially if conformational. 

It is shown here that a pp-NT assay performed with a panel of pp is a useful, safe 

and simple tool to study cross-reactive antibody responses, and that a chimeric HA pp-NT 

assay is useful to discriminate if the cross-reactive antibody responses are directed against 

the HA stalk or head region. However, other modifications of the pp-NT assay could be 

additionally useful to confirm whether the cross-reactive antibodies are directed against the 

stalk and to finely characterise the epitopes that are involved. Post-attachment 

neutralization assay has also shown the ability to differentiate stalk-directed antibodies 

from head-directed antibodies (Edwards and Dimmock 2001) and could be used to confirm 

the presence of stalk antibodies. Another possible approach could be the use of chimeric 

HA, or HA pp bearing mutated HA stalks mimicking the one of broadly neutralizing mAbs 

escape-mutant viruses. This latter approach may also give precise information about the 

epitopes recognised: if the antibodies that present in the serum recognise the same epitopes 

of broadly neutralizing mAbs, serum will not be able to neutralize the mAb escape-mutant 

HA pp. 

To conclude, the studies here described represent the first employment of a 

comprehensive panel of influenza pp to detect heterosubtypic antibody responses pre- and 

post- influenza seasonal vaccinations in human populations. Furthermore the use of a 

chimeric HA has permitted the origin of the cross-reactive response detected to be 

established: it is primarily mediated by antibodies directed against the HA stalk region but 

heterosubtypic or homosubtypic responses directed against the HA head could be present 

and need further investigation. In general, the data presented here highlight that the 

knowledge on influenza cross-reactive response is still lacking and even if it has notably 

improved over the last twenty-five years, more systematic studies are still necessary to 

understand the complex interaction between immune system and influenza viruses. 
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CHAPTER 6  
Production of influenza B haemagglutinin lentiviral 

pseudotype particles and  

their use in neutralization assays 

6.1 Introduction 
It is generally accepted that influenza A virus represents a health burden that needs 

to be monitored by surveillance and prevented using vaccination. However, influenza A 

virus is not the only virus that causes seasonal influenza epidemics in the human 

populations. In fact, influenza B viruses cause, especially in children and young adults, 

respiratory disease with intermediate but significant mortality rates in comparison to 

influenza A (pandemic H1N1 and H3N2 influenza A infections were usually associated 

with higher mortality rates but seasonal H1N1 infection had lower mortality rates than 

influenza B infection in the last 20 years) (Glezen et al. 2013; Ellis et al. 2011; W. W. 

Thompson et al. 2003; P. F. Wright, Bryant and Karzon 1980). Influenza B death, when 

occurring, is extremely rapid and frequently, but not exclusively, associated with 

myocarditis or with pneumonia caused by bacterial superinfection (Rein et al. 2014; 

Paddock et al. 2012; Frank et al. 2010; Yusuf, Soraisham and Fonseca 2007). 

Influenza B virus (prototype virus B/Lee/40) was first isolated after a human 

epidemic in 1940, but was demonstrated to have caused epidemics from at least 

1936 (Francis 1940) and since then it has continued to cause cyclic seasonal epidemics. 

After years in which the influenza B burden has been underestimated by the clinical 

and public-health community, recently it has become evident that it is necessary to raise 

awareness of influenza B virus infection, especially by increasing epidemiological 

surveillance and seasonal vaccination coverage (Glezen et al. 2013). An influenza B strain 

is routinely included in the seasonal vaccine, but frequently the strain presented in the 

trivalent vaccine had not matched the circulating strain, leaving the population (usually the 

high-risk one) unprotected (Dolin 2013). This is partially due to the fact that, in the late 

1970s, a large-scale genomic reassortment event involving all eight influenza B segments 

led to the generation of two distinct influenza B lineages: the Victoria lineage (prototype 

virus B/Victoria/2/1987) and the Yamagata lineage (prototype virus 

B/Yamagata/16/88) (R. Chen and Holmes 2008; Rota et al. 1990). These two lineages 
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continue to diverge, are subject to reassortment, and to co-circulation, even if one tends to 

dominate over the other for a determinate period of time (R. Chen and Holmes 2008). 

To resolve the vaccine mismatch issue, quadrivalent vaccines containing one 

representative strain for each influenza B lineage together with the influenza A H1N1 and 

H3N2 viruses were developed and were recently licensed (Tinoco et al. 2014; Beran et al. 

2013; Pepin et al. 2013). Despite the improved vaccine coverage, epidemiological 

surveillance and rigorous vaccine testing are still needed (Eichner et al. 2014; Beran et al. 

2013). 

The use of serological methods for the evaluation of influenza epidemiological 

distribution and vaccine immunogenicity was already discussed in Chapter 1. 

Unfortunately, there are concerns when classical serological assays are used for 

influenza B epidemiological studies and vaccine evaluation. In fact, several authors have 

independently shown that the classical HI assay is insensitive for the measurement of 

seroconversion, since it routinely underestimates antibody titres in comparison to 

SRH (Wood et al. 1994; G. Mancini et al. 1983; Oxford, Yetts and Schild 1982). 

Ether-treatment of the antigen (virus) during HI was shown to increase sensitivity (Pyhälä, 

Kleemola and Visakorpi 1985; Kendal and Cate 1983; Monto and Maassab 1981), 

however this increase is insufficient to attain SRH and MN consistency (Ansaldi et al. 

2004; Kendal and Cate 1983; G. Mancini et al. 1983). 

Furthermore, with the evidence that antibodies that are able to neutralize the two 

influenza B lineages and, in some cases, also influenza A viruses (CR9114, 

pan-neutralizing mAb) could exist in humans (Yasugi et al. 2013; Dreyfus et al. 2012), 

interest in studying the cross-neutralizing response from an influenza B perspective has 

increased. In this case, classic serological methods do not provide assistance, since they 

usually do not detect HA stalk-directed antibodies (Dreyfus et al. 2012; Corti et al. 2011; 

Ekiert et al. 2011; Ekiert et al. 2009; Sui et al. 2009; Okuno et al. 1993), as mentioned in 

the previous chapter. 

Since pp are useful tools to study heterosubtypic antibodies, with the know-how 

acquired during the production of influenza A HA pp (Chapters 2 and 3) it was decided to 

produce a panel of influenza B HA pp. These newly developed influenza B reagents, which 

have hitherto not been reported in the literature, were then investigated for their feasibility 

of use as surrogate antigens in neutralization assays and to study cross-neutralizing 

antibody responses. 
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6.2 Materials and Methods 

6.2.1 Cloning B/Brisbane/60/2008 and B/Bangladesh/3333/2007 

haemagglutinins into the pI.18 expression vector 

In order to clone influenza B HAs, influenza B cDNA and HA sequences of 

B/Bangladesh/3333/2007 (Accession number: CY115255.1) and 

B/Brisbane/60/2008 (Accession number: FJ766840.1) were kindly provided by Prof. Paul 

Kellam (Wellcome Trust Sanger Institute, UK). 

An outline of the cloning protocol used is reported in Appendix Figure 18 as a 

flow chart. In this chapter the detailed cloning protocol and results are given. 

6.2.1.1 Primer design 

Primers to amplify influenza B HA were designed using the protocol outlined in 

Section 3.2.2: inclusion of a GC-rich flanking region to facilitate restriction digestion, 

appropriate restriction enzyme cleavage sites, influenza A Kozak sequence (GTCAAA) 

and sequence of the HA 5’ end encoding region (Fw primer), or reverse complement stop 

codon, influenza A termination sequence (ATT) and reverse complement HA 3’ end 

encoding sequence (Rev primer). Considering the high titre pp obtained using the influenza 

A Kozak sequence, it was decided to evaluate this sequence instead of a putative influenza 

B Kozak in the first instance (Section 6.2.2) Since the Influenza B strains used have 100% 

nucleotide identity in the region used to design the primers, HA 5’ and 3’ end encoding 

sequences (Appendix Figure 19), only one set of primers was designed to permit HA 

amplification (Table 26). 

Table 26: Primer names, restriction enzyme, and primer sequences used for Influenza B HA 
cloning into p.I.18 vector 
Within the sequences, restriction enzyme cleavage sites are reported in red, influenza Kozak 
sequence in bold, 5’ end HA sequence in green, the influenza A termination sequence in bold and 
italics, the reverse complement stop codon (UAA) in pink, and 3’ end HA reverse complement 
sequence in blue. 

Primer name Primer sequence (5’ to 3’) Restriction 
enzyme 

FluB_SalI_Fw GCGCGCGTCGACGTCAAAATGAAGGCAATAA SalI 

FluB_EcoRI_Rev GCGCGCGAATTCAATTTATAGACAGATGGAGCA EcoRI 

 

6.2.1.2 Polymerase chain reactions 

A gradient PCR using PfuUltra High-Fidelity DNA Polymerase was performed for 

each Influenza B HA as previously described in Section 2.1.8.2 using 2 µl/reaction of 

cDNA template, previously diluted 1:50, and a range of annealing temperatures of 48.2°C, 

49.3°C, 52.6°C and 54.8°C. 
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Before proceeding to PCR purification, the PCRs were checked for successful 

amplification by agarose gel electrophoresis as described in Section 2.1.12 (Figure 69A). 

Since on first attempt HA amplification was not observed, the gradient PCR was 

repeated, increasing the amount of cDNA template (10 µl/reaction) previously diluted 

1:50, and decreasing the water volume to maintain the same PCR volume. HA specific 

amplification was checked on a 1% agarose-TAE gel (Figure 69B). 

From the positive PCR results, the sample obtained using the highest annealing 

temperature (for better primer specificity) was selected for purification and further 

processing. The other PCRs were stored at -20°C as backups. 

6.2.1.3 PCR product and vector digestion using restriction endonucleases 

After PCR purification using QIAquick PCR purification kit (Section 2.1.11), 

627.6 ng B/Brisbane/60/2008 and 515.2 ng of B/Bangladesh/3333/2007 PCR products 

were digested in a reaction volume of 20 µl for 2 h at 37°C using 10 U EcoRI (Thermo 

Fisher Scientific, cat.no. ER0271) and 10 U SalI (Thermo Fisher Scientific, cat.no. 

ER0641) in 1X Buffer O (Thermo Fisher Scientific, cat.no. BO5), in which the two 

enzymes have 100% activity. Alongside the PCR product digestions, 1 µg of pI.18 vector 

was also digested for 2 h at 37°C using 10 U EcoRI and 10 U SalI in 1X Buffer O. After 

the incubations, the digestions were purified to remove enzymes and buffer salts, and were 

quantified by NanoDrop™. 

6.2.1.4 Ligation 

Ligation was performed using T4 DNA Ligase as previously described in 

Section 2.1.10: 20 ng of vector (pI.18 EcoRI-SalI digested, 4.3 kb) and 25 ng of 

insert (Influenza B HA EcoRI-SalI digested, 1.7 kb) were used for the 10 µl reactions, 

corresponding to a vector:insert ratio of 1:3. 

After 72 h, 25 µl aliquots of chemically competent DH5α E. coli were transformed 

with 2.5 µl of control and ligation reactions following the standard transformation 

protocol (Section 2.1.3). Lastly, 100 µl of the ligation-transformed bacteria were plated on 

ampicillin-LB Agar plates. 

6.2.1.5 Recombinant clone screening: colony PCR, digestion and Sanger sequencing 

After overnight 37°C incubation of the ligation plates, 10 colonies for each HA 

strain (B/Bangladesh/3333/2007: B#1-B#10; B/Brisbane/60/2008: B#11-B#20) were 

screened by colony PCRs using pI.18 Fw and pI.18 Rev sequencing primers, as previously 

described (Section 2.1.11). HA positive (pI.18-A/Korea/426/1968 H2) and negative (pI.18) 

DH5α E. coli colonies were also included as colony PCR controls. 
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Positive colonies were inoculated in 5 ml of 100 µg/ml ampicillin-LB Broth and 

incubated overnight at 37°C with constant shaking (225 rpm). Plasmid preparation was 

then performed as described in Section 2.1.4. Subsequently 600 ng of plasmid DNA was 

digested by FastDigest® EcoRI (Thermo Fisher Scientific, cat.no. FD0274) in FastDigest® 

Green buffer for 20 min at 37°C before being run on 1% agarose-TAE gel (Figure 71). 

The positive recombinant clones were sent for Sanger sequencing at GATC Biotech 

AG (Section 2.1.7) using pI.18 Fw and pI.18 Rev sequencing primers. 

6.2.1.6 Site-direct mutagenesis of B/Brisbane/60/2008 to correct N212S mutation 

The alignment of the cloned B/Brisbane/60/2008 HA shows a missense nucleotide 

mutation corresponding to the amino acid mutation N212S (Figure 72 (A and B)). Instead 

of repeating the cloning starting from the PCR (the mutation could have been inserted 

during cDNA amplification), it was decided to correct the mutation by performing 

mutagenesis on the cloned HA, since it could not be excluded that the mutation was 

inserted during the reverse transcription-PCR9 (retro transcription of the extracted viral 

RNA into cDNA) and that the cDNA already contained the mutation. 

To revert the mutation, the QuikChange Lightning Site-direct mutagenesis kit was 

used as described in Section 2.1.15.1. Primers were designed using the QuikChange Primer 

Design web-tool and are reported in Table 27. 

Table 27: Primer names and sequences used for B/Brisbane/60/2008 HA mutagenesis 
The primers were used to change the serine at position 212 to asparagine and correct the cloned 
B/Brisbane/60/2008 HA sequence. The primer annealing schematics are reported below the primer 
sequences. In these schematics primer sequences are in bold, gene sequence is in black, and in grey 
the translated gene sequence (5’ to 3’) corresponding to the primer (Fw) or the original gene (Rev) 
is shown. The nucleotide that corrects the mutation is highlighted in red in the primer sequence and 
in the schematic. 

Primer 
name 

Primer sequence (sequence in 5’ to 3’) 
and annealing schematic 

S212N 

TGGGGGTTCCACTCTGACAACGAGACCCAA 

 

S212N_Rev 

TTGGGTCTCGTTGTCAGAGTGGAACCCCCA 

 

                                                
9 This is highly probable considering that RNA-dependent DNA polymerase has lower 

proofreading activity compared to PfuUltra High-Fidelity DNA Polymerase (and all 
DNA-dependent DNA polymerases in general). 
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6.2.2 Site-direct mutagenesis of B/Bangladesh/3333/2007 Kozak sequence to 

evaluate the role of the influenza B Kozak 
Considering the importance of the Kozak sequence for expression of influenza A 

HA and pp production, and the fact that the 5’ and 3’ non-coding regions are highly 

conserved in the influenza B genome, it was decided to evaluate the role of the Kozak 

sequence in producing influenza B pp. 

A putative influenza B Kozak sequence CACAAA that is highly conserved in the 

5’ non-coding region of Influenza B HA cDNA was identified using Clustal X (Larkin et 

al. 2007) and Jalview (Waterhouse et al. 2009) through multiple alignment of the first 100 

nucleotides of the circulating influenza B segment 4 (i.e. HA), after downloading the 

sequences from the National Center for Biotechnology Information (NCBI) Influenza 

Virus Resource database (Appendix Figure 20). 

The QuikChange Primer Design web-tool and the QuikChange Lightning 

Site-direct mutagenesis kit (Section 2.1.15.1) were again used to perform the mutagenesis 

and design the primers (Table 28). 

Table 28: Primer names and sequences used for B/Bangladesh/3333/2007 Kozak sequence 
mutagenesis 
The region of the primer that anneals to pI.18 is highlighted in green; the Kozak sequence is 
highlighted in red; the nucleotides that are modified to generate the influenza B Kozak sequence 
are in bold; the region of the primer that anneals to the HA 5’ end encoding sequence is highlighted 
in blue. 

Primer name Primer sequence (5’ to 3’) 
FluB_KozakFw CTAGAAGATCTGATATCGTCGACCACAAAATGAAGGCAATAATTGTAC 

FluB_KozakRev GTACAATTATTGCCTTCATTTTGTGGTCGACGATATCAGATCTTCTAG 

6.2.3 Preparation of other influenza B haemagglutinin-encoding plasmids 

phCMV1-B/Hong Kong/8/1973 HA, phCMV1-B/Victoria/2/1987 HA, 

phCMV1-B/Yamagata/16/1988 HA, phCMV1-B/Florida/4/2006 HA plasmid clones were 

provided by Dr. Davide Corti (Institute for Research in Biomedicine, Bellinzona, 

Switzerland). Each expression plasmid encodes a codon-optimised HA gene flanked by the 

influenza A Kozak enabling its use in pp production. The plasmids were diluted 1:100 and 

1 µl was used to transform DH5α E. coli as previously described (Section 2.1.3). 

Transformed colonies were inoculated in 5 ml kanamycin-LB Broth and were grown 

overnight at 37°C with shaking at 225 rpm; then plasmids were prepared using QIAprep 

Spin Miniprep Kit as described in Section 2.1.4. 
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6.2.4 Production of influenza B pseudotypes 

Influenza B HA, like the influenza A HA, is synthesised as a polypeptide precursor 

that needs to be activated through cleavage by tissue-specific proteases that recognise a 

single conserved arginine. Exactly as implemented during the production and optimisation 

of influenza A pp (Chapter 3) to permit influenza B HA cleavage and activation, the three 

proteases HAT, TMPRSS2, and TMPRSS4 were evaluated by adding the encoding 

plasmid to 6-well transfection mixes of 750 ng of pCSFLW, 500 ng of p8.91, and 500 ng 

of the appropriate HA-encoding plasmid. Three protease plasmid quantities (500 ng, 

250 ng and 125 ng) were tested for B/Bangladesh/3333/2007 pp, whereas only two 

quantities (250 ng and 125 ng) were used with the other influenza B pp. As controls, pp 

were also produced in the absence of proteases. 

Furthermore to visualise the pp entry into target cell lines directly, influenza B pp 

expressing emerald GFP (emGFP) were also produced in 6-well plates: 750 ng of the self 

inactivating lentiviral vector encoding emGFP (pCSemGW, kindly provided by Prof. Greg 

Towers, University College London, UK), 500 ng of p8.91, 500 ng of HA-encoding 

plasmid and 250 ng of pCAGGS-HAT were used according to the optimisation results 

obtained. All the 6-well transfections were performed as previously described in Section 

3.2.4. 

6.2.5 Titration of influenza B pseudotypes 
The newly generated pp were titrated on HEK293T/17 cells as outlined in 

Section 2.3.3; treatment with TPCK-Trypsin was also performed as previously 

described (Section 3.2.5) using a final TPCK-Trypsin concentration of 100 µg/ml. 

Influenza B pp were also tested for their ability to enter into two further target cell 

lines: MDCK and A549. 

Titrations of luciferase lentiviral pp onto MDCK and A549 were performed using 

the standard HEK293T/17 titration protocols (Section 2.3.3), maintaining the same 

quantity of virus and cells, and the same incubation time (48 h). 

For evaluation of influenza B pp expressing emGFP, poly-lysine coated glass 

coverslips were positioned in the wells of a 24-well plate and covered with 

5×104 cells (HEK293T/17, MDCK or A549) and 1 ml of cell-line specific culture 

media (Section 2.2.1). Then 300 µl of pp was added to each well. After 48 h, cells were 

removed from the incubator, washed with 1 ml of PBS (Sigma, cat.no. D8537), fixed with 

1 ml of 4% (w/v) paraformaldehyde (Fisher Scientific, cat.no. P/0840/53) in PBS pH 7.4 

for 15 min, and washed again with 1 ml of PBS. Cells were then incubated for 20 min at 

RT with 1 drop/ml NucBlue® Live ReadyProbes® reagent in PBS. Coverslips were then 
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washed again with 1 ml PBS and mounted on glass slides using 10 µl of Mowiol® 40-88 

solution (Section 2.4.2). 

6.2.6 Western blotting 
To study the activity of the proteases on the pp HAs and confirm HA cleavage, a 

Western blot was performed using B/Brisbane/60/2008 pp since a suitable primary 

antibody, NIBSC 11/136 anti-B/Brisbane/60/2008 serum (NIBSC), was available. 

Samples were prepared as described in Section 2.4.3.2 and in Section 3.1.9. To 

check HA activation, TPCK-Trypsin treatment on the ∆ protease pp was accomplished 

mixing 45 µl of pp produced and 1 mg/ml TPCK-Trypsin to have a final concentration of 

100 µg/ml. 

Western Blotting was performed as described in Sections 2.4.3.2. The 

anti-B/Brisbane/60/2008 serum was used diluted 1:500 and a donkey anti-sheep/goat IgG 

Dylight®800 antibody diluted 1:20000 was used as secondary antibody to detect the 

sheep-origin antisera. The membrane was detected using the Odyssey® Sa Infrared 

Imaging System at 800 nm. 

6.2.7 Pseudotype particle neutralization assays 

B/Brisbane/60/2008, B/Hong Kong/8/1973, and B/Florida/4/2006 pp used for 

neutralization assays were produced in 10 cm dishes as previously described in Section 

2.3.2.2 with the addition of 500 ng of HAT-encoding plasmid. Titration was performed 

according to the standard protocol (Section 2.3.3). 

Firstly, the neutralization activity of a positive control NIBSC 11/136 

anti-B/Brisbane/60/2008 serum was evaluated against the three different 

pp (B/Brisbane/60/2008, B/Hong Kong/8/1973, and B/Florida/4/2006) by performing 

pp-NT in quadruplicate (starting dilution 1:100 and pp input 1×106 RLU/well). 

The human sera from clinical trial NCT00942071 (Antrobus et al. 2013) described 

in Section 5.1.2 were used to investigate the suitability of influenza B pp-NT assays in a 

vaccine immunogenicity study, to determine if the assay correlates with standard 

serological assays (e.g. HI), and to investigate if it is possible to detect cross-reactive 

responses to influenza B as observed for influenza A (Chapter 5). B/Brisbane/60/2007 HI 

data were kindly provided by Prof. Sarah Gilbert and Dr. Teresa Lambe (Jenner Institute, 

University of Oxford, UK). Using these sera, pp-NT assays against B/Brisbane/60/2008, 

B/Hong Kong/8/1973, and B/Florida/4/2006 were performed as previously described in 

Section 2.3.4 using 2 µl of sera (1:100 starting dilution) and 1×106 RLU/well pp input. 
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6.2.8 Statistical analysis 

Statistical analysis for pp-NT assays was performed as previously described in 

Sections 2.3.4 and 5.2.5. IC50 titres were reported in Box-and-Whisker plots to allow a 

graphical comparison of the results; in the Appendix Table 7 and Appendix Table 8, 

quartiles and medians of the IC50 distributions were also reported. 

SCRs for pp-NT assays were also calculated on the basis of the percentage of 

subjects showing a SCR(4-fold) or a SCR(2-fold) in the IC50 titre at day 21. 

Pearson correlation between the log10 HI assay titres and the log10 IC50 values was 

performed using GraphPad Prism®. 

6.2.9 Bioinformatic analysis 
Influenza B HA nucleotide sequences of genes used in the production of pp were 

used for a phylogenetic analysis. Firstly, HA-encoding sequences were downloaded from 

the Influenza Virus Resource database, then codon-based alignment was performed on the 

sequence using the MUSCLE algorithm (Edgar 2004) in MEGA (K. Tamura et al. 2011). 

A Bayesian inference of phylogeny method was used to build the phylogenetic tree. 

This method allows the concurrent calculation of the phylogenetic tree and its credibility. 

The principles on which it is based are explained in a user-friendly but detailed manner by 

Huelsenbeck et al. 2001 and by Huelsenbeck, Rannala and Masly 2000. Here only a 

summary of the method will be reported. 

The Bayesian statistical inference is based on the concept of posterior probability, 

which is the probability of an event occurring after taking into consideration relevant 

evidences, described by the prior probability. In phylogenetics, this is the probability of a 

given tree when considered in terms of the sequence alignment. For this reason, before 

performing Bayesian analysis, a fundamental requirement is to establish the evolutionary 

model based on the sequence alignment. The evolutionary models describe, through 

parameters, the rates with which one nucleotide replaces another during evolution. To find 

the best nucleotide substitution model, Jmodeltest (Posada 2008) was used: this software 

calculates the evolutionary model that best fits the sequence alignment evaluating a 

likelihood for each substitution model given the data in the alignment, and then comparing 

the likelihood of multiple models to determine the most likely model (Posada and Buckley 

2004). 

The Bayesian phylogenetic analysis was performed using Bayesian evolutionary 

analysis by sampling trees (BEAST) (Drummond et al. 2012; Drummond and Rambaut 

2007) software package. The Hasegawa, Kishino and Yano (HKY) + Gamma model, 

which was determined as the best fit model by the Jmodetest analysis, was used as 
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nucleotide substitution model; furthermore the year of strain isolation was added as 

parameters to permit the software to evaluate the time-dependent rates of molecular 

evolution (molecular clock), calculate branch length and incorporate a time-scale in the 

tree. The Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm at the basis 

of BEAST was then run. The first tree is generated randomly; then the algorithm generates 

a new tree changing a parameter, and accepts or rejects it based on its probability and the 

probability of the tree generated previously. The tree with the highest probability is then 

used for the next iteration of the algorithm. Every fixed number of iterations (e.g. 1000), 

the software saves the tree. In this way the algorithm evaluates different trees but with the 

increase of the iterations will tend to consider trees that are in a stationary phase of the 

probability distribution and that should be more similar to each other. Once a 

user-specified number (e.g. 10000000) of iterations is reached, the software stops. 

Lastly, the maximum clade credibility tree was calculated by the software 

discarding (burn-in) the first 25% of saved trees, which for the characteristics of the 

algorithm used are usually more divergent between each other, and using a majority-rule to 

combine the remaining trees. Posterior probability for each tree node are then calculated on 

the basis of how many trees analysed have that node. The maximum clade credibility tree 

generated was then graphically elaborated adding colour and formatting with 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 

The HA amino acid sequence of B/Brisbane/60/2008, B/Hong Kong/8/1973 and 

B/Florida/4/2006 were aligned using MUSCLE algorithm (Edgar 2004) in 

Jalview (Waterhouse et al. 2009), and non-conserved amino acids were highlighted using 

the Zapo colour system10. The alignment was then manually annotated. Percentages of 

identity between amino acid sequences were calculated by pair-wise alignments using 

Jalview. 

B/Brisbane/60/2008 HA structure (PDB ID: 4FQM (Dreyfus et al. 2012)) was 

downloaded from the Protein Data Bank (PDB) (Bernstein et al. 1977) and analysed using 

Swiss PDB Viewer software (Guex and Peitsch 1997): monomer surface was calculated, 

non-conserved residues between B/Brisbane/60/2008 and B/Hong Kong/8/1973 or 

B/Florida/4/2006 were mapped and highlighted on the B/Brisbane/60/2008 HA surface. 

The HA structure of B/Hong Kong/8/1973 (PDB ID: 2RFU (Q. Wang et al. 2007)) was 

also downloaded from the PDB database and non-conserved residues between 

B/Hong Kong/8/1973 or B/Florida/4/2006 were mapped on its surface; the position of the 

residues of B/Florida/4/2006 HA that were not present in B/Hong Kong/8/1973 were 

                                                
10 In the Zapo colour system the amino acid residues are coloured on the basis of their 

physiochemical properties. 
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highlighted after superimposing (fit) the B/Florida/4/2006 structure 

HA (PDB ID: 4FQJ (Dreyfus et al. 2012)). 

6.3 Results 

6.3.1 Cloning B/Brisbane/60/2008 and B/Bangladesh/3333/2007 

haemagglutinins into pI.18 expression vector 

A 

 
B 

 
Figure 69: Gel electrophoresis of B/Bangladesh/3333/2007 and B/Brisbane/60/2008 HA 
amplicons 
Four different annealing temperatures were tested in a gradient PCR to amplify influenza B HA. 
A. The gel shows that HA amplification was not achieved when 2 µl/reaction of 1:50 cDNA 
dilution was used as template. B. The gel shows amplification of influenza B HA using 
10 µl/reaction of 1:50 cDNA dilution as template at the four different annealing temperatures. 
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To clone B/Brisbane/60/2008 and B/Bangladesh/3333/2007 HAs, cDNA was used 

as template in a gradient PCR. The concentration of the cDNA material was unknown and 

considering the limited volume and the fact that it contains the genetic material of all 8 

influenza B genome segments, it was decided to use a 1:50 cDNA dilution. When the first 

PCR performed (Figure 69A) gave negative results, the PCR was repeated by increasing 

the template quantity of 5-fold. These second PCRs resulted in positive amplification for 

the two strains at all the annealing temperatures tested (Figure 69B). The amplicons 

obtained using an annealing temperature of 54°C (the highest tested) were then used for the 

subsequent cloning steps: digestion and ligation into pI.18 vector. 

After ligation and transformation, colonies grew on the “vector plus insert” ligation 

plate. However, since colonies were present also in the control (no insert) plate, 

demonstrating the presence of undigested or re-ligated pI.18 vector, colony PCRs were 

performed on the “vector plus insert” colonies to screen more recombinant clones and to 

identify positive ones. Of the 20 colonies (10 for each strain) screened via colony PCR, 

only three (B/Bangladesh/3333/2007 B#4, B/Brisbane/60/2008 B#11, and B#16) were 

positive (Figure 70). To confirm that the recombinant clones identified were not false 

positives, the colonies were further cultured, the plasmid purified, and final screening 

achieved via EcoRI restriction digestion. After vector linearization with Fast Digest EcoRI, 

the expected band size of 6 kb (pI.18 vector 4.3 kb plus the insert 1.7 kb) was 

obtained (Figure 71). 
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B
 

 

A
 

Figure 70: Gel electrophoresis of pI.18-B/Bangladesh/3333/2007 and 
pI.18-B/Brisbane/60/2008 HA colony PCR screenings 
A band corresponding to ~1.7 kb indicates successful cloning. Bands <100 bp indicate the 
amplification of the pI.18 empty multicloning site and an insert-negative clone. 
A. Colony PCR of pI.18-B/Bangladesh/3333/2007 B#1, together with the DNA ladder, 
positive (A/Korea/ H2) and negative control (pI.18) are shown. B. PCR of 
pI.18-B/Bangladesh/3333/2007 B#2-B#10 colonies and of pI.18-B/Brisbane/60/2008 B#11-#B20 
colonies. 
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Figure 71: Gel electrophoresis of positive clone digestions using EcoRI 
Control pI.18 vector (4.3 kb) is compared with positive clones that contain influenza B 
HA-encoding gene (6 kb). 

The positive plasmids pI.18-B/Bangladesh/3333/2007 B#4, 

pI.18-B/Brisbane/60/2008 B#11 and B#16 were then sent for sequencing to confirm HA 

insertion and identity. The B/Bangladesh/3333/2007 B#4 HA had 100% identity with the 

database HA sequence (Appendix Figure 21); however in the two B/Brisbane/60/2008 

HAs the mutation N212S was present (Figure 72 (A and B)). 

The mutation was then successfully corrected using the QuickChange Lightning 

Site-direct mutagenesis kit as shown in Figure 72 (C and D). 

A 
 

B 

 
C 

 
D 

 
Figure 72: Site-direct mutagenesis of B/Brisbane/60/2008 HA 
A. B/Brisbane/60/2008 HA gene sequence showing the N212S mutation; B. Electropherograms of 
B/Brisbane/60/2008 HA gene sequence showing the N212S mutation, corresponding to the 
nucleotide substitution 635°>G, C. B/Brisbane/60/2008 HA gene sequence after mutagenesis 
showing the correction of the mutation; D. Electropherograms of corrected B/Brisbane/60/2008 HA 
gene sequence. 
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6.3.2 Proteases are necessary for production of high titre influenza B 

pseudotypes 
Once correct cloned influenza B HAs were obtained, the production of Influenza B 

pp was investigated by testing the effect that different types and quantities of proteases had 

on HA activation. 

Using this methodical approach, pp with high titre were obtained for all the tested 

HAs: B/Bangladesh/3333/2007 (Figure 73), B/Hong Kong/8/1973 (Figure 74A), 

B/Victoria/2/1987 (Figure 74B), B/Yamagata/16/1988 (Figure 75A), 

B/Florida/4/2006 (Figure 75B), and B/Brisbane/60/2008 (Figure 76). 

In general, higher pp titres (>1×109 RLU/ml) can be achieved by co-transfection of 

the HAT or the TMPRSS4 protease-expressing plasmid (Appendix Table 6). However, it 

can be observed that there are not significant differences when using 125 ng or 250 ng of 

HAT or TMPRSS4, whereas using lower quantities of TMPRSS2 usually improves pp 

production. 

All the pp produced in the absence of proteases had low titres (<1×106 RLU/ml). 

However, titres were increased significantly after treatment with TPCK-Trypsin permitting 

the pp to transduce target cells. 

 

 
Figure 73: Role of HAT, TMPRSS2, and TMPRSS4 proteases in B/Bangladesh/3333/2007 pp 
production 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 
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A 

 

B 

 
Figure 74: Role of HAT, TMPRSS2, and TMPRSS4 proteases in B/Hong Kong/8/1973 pp and 
B/Victoria/2/1987 pp production 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 
A. B/Hong Kong/8/1973 pp; B. B/Victoria/2/1987 pp. 

A 

 

B 

 
Figure 75: Role of HAT, TMPRSS2, and TMPRSS4 proteases in B/Yamagata/16/1988 pp and 
B/Florida/4/2006 pp production 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 
A. B/Yamagata/16/1988 pp; B. B/Florida/4/2006 pp. 
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Figure 76: Role of HAT, TMPRSS2, and TMPRSS4 proteases in B/Brisbane/60/2008 pp 
production 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 

A Western blot was performed on B/Brisbane/60/2008 pp, following low-speed 

centrifugation, to confirm that HA activation and pp entry are dependent on HA cleavage. 

In all the B/Brisbane/60/2008 pp produced through protease addition, bands at 51-55 kDa 

corresponding to HA1 can be observed in the Western blot (Figure 77). HAT and 

TMPRSS4 produced pp displaying a thicker HA1 band, whereas the bands observed when 

TMPRSS2 is used are thinner. The band intensities correlate with the pp titres in which 

TMPRSS2 viruses show lower titres compared to HAT and TMPRSS4 produced 

pp (Figure 76). Furthermore, in the Western blot, the ∆ protease pp shows not only a band 

at ~78 kDa corresponding to HA0, but also a small band at ~55 kDa. The presence of the 

HA1 band is likely to be related to the presence of proteases in the producer HEK293T/17 

cells and explains the entry of ∆ protease pp into HEK293T/17 target cell line observed 

during titration experiments. The Western blot shows that the HA cleavage mediated by 

proteases can also be reproduced through TPCK-trypsin treatment of the ∆ protease pp: in 

fact the HA0 band disappeared and instead the HA1 was observed. These results clearly 

support the hypothesis that the three proteases and TPCK-trypsin cleave the HA0 into the 

two subunits HA1 and HA2. 

Interestingly, in the Western blot, the HAs activated by HAT, TMPRSS2 and 

TMPRSS4 present heterogeneous glycosylation characteristics: more than one band 

between 50 kDa and 60 kDa, all corresponding to HA1, are present. Instead, in the 
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∆ protease pp before and after TPCK-trypsin treatment only a single band at 55 kDa is 

observed. 

 
Figure 77: Western blot of B/Brisbane/60/2008 pp obtained using different proteases 
HA was detected using 1:500 NIBSC 11/136 anti‑B/Brisbane/60/2008 serum and 1:20000 
anti‑sheep/goat IgG Dylight®800 secondary antibody. Membrane was acquired using the 800nm 
channel. Molecular weight size marker lane was not shown as acquired using sensitivity parameters 
that differs from the rest of the membrane. An HA control, that could be used to better identify the 
band detected, was not used as a recombinant HA was unavailable for the Influenza B HA tested. 

 

6.3.3 Influenza B Kozak is as efficient as influenza A Kozak for pseudotype 

production 

To test the role of the putative influenza B Kozak sequence and to see if it can 

improve the pp titre via increased expression of HA, mutagenesis was successfully 

performed on the B/Bangladesh/3333/2007 to change the initial influenza A 

Kozak (Figure 78). 

A 

 
B 

 
Figure 78: Electropherograms showing B/Bangladesh/3333/2007 HA Kozak sequence before 
and after mutagenesis 
The Kozak sequence is highlighted. A. Influenza A Kozak sequence (GTCAAA) in pI.18 
B/Bangladesh/3333/2007 HA; B. Influenza B Kozak sequence (CACAAA) in pI.18 
B/Bangladesh/3333/2007 HA after successful mutagenesis. 
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Influenza B Kozak-B/Bangladesh/3333/2007 pp were produced employing HAT, 

TMPRSS2, TMPRSS4 and TPCK-Trypsin treatment and the titres of these pp were then 

compared with the B/Bangladesh/3333/2007 pp produced using the influenza A Kozak 

sequence. The results (Figure 79) show that there are no clear differences between the 

titres of the pp produced using the influenza A or influenza B Kozak sequence. 

Furthermore the influenza B Kozak-B/Bangladesh/3333/2007 pp shows the same 

cleavage/activation pattern to the non-mutated B/Bangladesh/3333/2007 pp. 

 
Figure 79: The role of influenza B Kozak sequence in pp production 
Titre of B/Bangladesh/3333/2007 pp obtained using the standard influenza A Kozak 
sequence (GTCAAA) are compared with the ones obtained using Influenza B Kozak 
sequence (CACAAA).  
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 

6.3.4 Influenza B pseudotypes enter into different target cell lines 

The influenza B pp produced were also tested for their ability to transduce MDCK 

and A549 cells. All the influenza B pp tested can transduce the target cell lines examined 

showing higher transduction activity for MDCK compared to A549 (Figure 80). However, 

the best target was found to be the HEK293T/17 cell line. In fact, in the quantitative results 

obtained using firefly luciferase-expressing pp, it is clear that the highest pp titres are 

obtained when HEK293T/17 cell line is used as transduction target, whereas using MDCK 

and A549 the pp titres can be considered low (<1×107 RLU/ml) especially for certain 

strains (B/Victoria/2/1987, B/Yamagata/16/1988, B/Brisbane/60/2008). 
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These results were also confirmed using emGFP-expressing influenza B pp and 

epifluorescent microscopy, to have a qualitative approach, demonstrating that the influenza 

B pp can transduce both MDCK and A549 cells (Figure 81). 

 
Figure 80: Transduction of HEK293T/17, MDCK, and A549 cells with Influenza B pp 
expressing firefly luciferase 
Titres are reported in RLU/ml with SEM (n=8 titre measurements). A line corresponding to 2×10^7 
RLU/ml is drawn to indicate the minimum titre necessary to perform neutralization assays. 

 
Figure 81: Transduction of HEK293T/17, MDCK, and A549 cells with influenza 
B/Florida/4/2006 pp expressing emGFP 
Images were acquired with 40X objective. The scale bar (10µm) is shown in the figure. 
Transduction results for the other pp are comparable to the examples presented here. 
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6.3.5 Influenza B pseudotypes are neutralized by reference antiserum 

To evaluate if the influenza B pp could be used as surrogate antigens in 

neutralization assays, pp-NT assays were undertaken using a reference antisera and three 

different pp: B/Brisbane/60/2008 (Victoria lineage), B/Hong Kong/8/1973 and 

B/Florida/4/2006 (Yamagata lineage) (Figure 82). 

 

 
Figure 82: Phylogenetic tree of the HAs used for pp production 
Victoria lineage strains are in fuchsia, whereas Yamagata strains are in lagoon. 
B/Hong Kong/8/1973 is reported in black as circulating before the lineage division. Accession 
numbers are reported with the strain name on the tree tips. Posterior probabilities (Section 6.2.9) 
are reported on the nodes. Axes represent time scales with origin at the most recent circulating 
strain (B/Brisbane/60/2008). 

The results, reported in Figure 83, show that the anti-B/Brisbane/60/2008 serum 

can neutralize not only the matched pp (IC50=20761), but also, at a lower level, pp bearing 

the HA of the other influenza B lineage (B/Florida/4/2006, IC50=10582) or the HA of a 

strain that was circulating before the lineage division (B/Hong Kong/8/1972, IC50=18404). 

This indirectly demonstrates that influenza B pp-NT assay has a high sensitivity but 

a low specificity since reference serum should not cross-react and neutralize viruses of 

different lineages. 
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Figure 83: Neutralization activity of NIBSC 11/136 anti-B/Brisbane/60/2008 HA serum and of 
the negative control 
On the X axis the logarithm of the sera dilution factor is reported; on the Y axis percentage 
neutralization is reported. Assays were performed in quadruplicate (n=4) and SD is reported for 
each dilution point. Neutralization activity of the NIBSC 11/136 serum (continuous line) against 
matched B/Brisbane/60/2008 (fuchsia), B/Florida/4/2006 (blue), and B/Hong Kong/8/1973 (lilac) 
pp. Neutralization activity of the negative control (FBS) is also reported. Calculated IC50 values for 
the NIBSC 11/136 serum are also reported in the associated table. IC50 of the negative control are 
equal to 0. 

6.3.6 Influenza B pseudotype particle neutralization assay does not correlate 

with haemagglutination inhibition assay 

Human sera from NCT00942071 clinical trial were screened against the vaccine 

matching B/Brisbane/60/2008 in a pp-NT assay and log10 (IC50) and IC50 values were 

calculated. Log10 (IC50) values were then compared with the log10 HI titres. In Figure 84, 

show that HI and pp-NT assay results do not correlate with each other (r = 0.1632, 

p = 0.3563). 
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Figure 84: Correlation of HI assay and pp-NT assay performed with B/Brisbane/60/2008 
influenza strain 
The cut-off reported on the log10 (HI) axis corresponds to log10 (40). 

6.3.7 Influenza B pseudotype particle neutralization assays detect 

cross-reactive antibody response between Victoria and Yamagata 

lineage 

Human clinical trial NCT00942071 sera collected at day 0 and day 21 after 

vaccination with A/California/7/2009 H1N1, A/Perth/16/2009 H3N2, and 

B/Brisbane/60/2008, and placebo or MVA-NP+M1, were tested in pp-NT assays using 

B/Brisbane/60/2008 pp, B/Hong Kong/8/1973 pp and B/Florida/4/2006 pp. 

Data obtained in pp-NT assay using B/Brisbane/60/2008 show that strong 

neutralizing antibody responses are present already pre-vaccination and that the 

vaccination itself fails (p = 0.5791) to induce higher antibody responses (Figure 85A). 

However, a shift of the IC50 distribution first quartile can be observed post-vaccination. 

Sera were tested also against B/Hong Kong/8/1973 pp that have antigenic 

characteristics typical of influenza B strains circulating before the lineage division: 

antibody responses were detected at vaccination day 0 and at day 21; the post-vaccination 

neutralizing titres exhibit a significant increase (p = 0.0046) (Figure 85B). 

Finally, sera were also analysed against a strain of the Yamagata 

lineage (B/Florida/4/2006) that was un-matched to the vaccine administered to the 

recruited subjects: day 0 shows responses that increase significantly (p = 0.0129) at 

day 21 (Figure 85C). 

Overall titres obtained against B/Brisbane/60/2008 pp were higher than those 

measured using B/Hong Kong/8/1973 pp and B/Florida/4/2006 pp. 
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Figure 85: IC50 of sera tested with pp-NT assay reported in a Box-and-Whisker plot 
Comparison between IC50 measured pre- (day 0) and post- (day 21) vaccination. Quartiles and 
medians are reported in Appendix Table 7. A. IC50 against B/Brisbane/60/2008 pp; B. IC50 against 
B/Hong Kong/8/1973 pp; C. IC50 against B/Florida/4/2006 pp. 

SCRs using two cut-off values (4-fold and 2-fold increase) for the three strains 

were also calculated: B/Brisbane/60/2008 and B/Hong Kong/8/1973 have an 

17.6% SCR(4-fold) (3/17 subjects), whereas the B/Brisbane/60/2008 SCR(2-fold) is 

29.4% (5/17 subjects) and the B/Hong Kong/8/1973 SCR(2-fold) is 58.8% (10/17 subjects); 

the B/Florida/4/2006 SCR(4-fold) is 29.4% (5/17 subjects) and the SCR(2-fold) is 58.8% (10/17 

subjects). 

During the NCT00942071 clinical trial, placebo or MVA-NP+M1 was 

co-administered with the seasonal TIV. Considering the B/Brisbane/60/2008 HI titre, 

Antrobus et al. found no difference between the TIV + placebo and the 

TIV + MVA-NP+M1 groups. Since pp-NT is more sensitive than HI and the two assays 

did not correlate in this case, the pp-NT IC50 obtained were stratified and were analysed 

graphically to see if any difference was present between the two vaccination regimen 

groups. The IC50 fold-increases of each group were also compared statistically. 

From the graphs (Figure 86) it appears that at day 0 the subjects of the 

TIV + MVA-NP+M1 group have lower IC50 values than the TIV + placebo group. 

However, at day 21 the IC50 titres of the TIV + MVA-NP+M1 group have a distribution 

comparable to the one measured in the TIV + placebo. These results, together with the 

small number of subjects recruited and the non-parametric distribution of the IC50 titres, 

render any statistical analysis problematic. For this reason only the fold-increase in the IC50 
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titres (Figure 87) for each pp were compared after treatment-stratification using a 

Mann-Whitney U test: the results show that differences in IC50 fold-increase between 

TIV + placebo and TIV + MVA-NP+M1 are not statistically significant for all the pp 

tested. 

 

 
Figure 86: IC50 of sera tested with pp-NT assay reported in a Box-and-Whisker plot after 
stratification using vaccination regimens 
Comparison between IC50 measured before (day 0) and after (day 21) vaccination after 
stratification using vaccine regimens (TIV + placebo and TIV + MVA-NP+M1). Quartiles and 
medians are reported in Appendix Table 8. A. IC50 against B/Brisbane/60/2008; B. IC50 against 
B/Hong Kong/8/1973; C. IC50 against B/Florida/4/2006. 
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Figure 87: Fold-increase in the IC50 titres of the TIV + placebo and the TIV + MVA-NP+M1 
groups 
A. IC50 fold-increase against B/Brisbane/60/2008 pp; B. IC50 fold-increase against 
B/Hong Kong/8/1973 pp; C. IC50 fold-increase against B/Florida/4/2006 pp. 

6.3.8 Influenza B haemagglutinin antigenic differences can be related to the 

HA head region 
The pair-wise amino acid alignments, performed on the three HAs used in the 

pp-NT, show that between B/Brisbane/60/2008 and B/Hong Kong/8/1973 HAs there is 

94.9% of amino acidic identity, whereas between B/Brisbane/60/2008-B/Florida/4/2006 

there is 93.5% identity. B/Hong Kong/8/1973 HA is also similar to B/Florida/4/2006 HA 

with a percentage identity of 94.4%. Bioinformatics analysis also shows that 

non-conserved amino acids are located in the head region, especially in the outer surface 

part, traditionally implicated in antigenic differences between different HAs (Figure 

88 and Figure 89). 

Of particular relevance is the fact that B/Hong Kong/8/1973 HA possesses an 

amino acid deletion in the head region near the sialic acid binding-site and corresponding 

to antigenic site B, that can be clearly visualised in the comparison of 

B/Hong Kong/8/1973 and B/Florida/4/2006 HA structures (the deleted residues are added 

in orange to the B/Hong Kong/8/1973 HA structure in Figure 89 (E and F)). These 

deleted residues are positioned near and probably involved in the binding region of the 

CR8033 mAb (Dreyfus et al. 2012), and the 3A2 and 10C4 mAbs (Yasugi et al. 2013). 

This indicates that the B/Hong Kong/8/1973 HA could not be bound by these antibodies. 
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Figure 88: Amino acid alignment of B/Brisbane/60/2008, B/Hong Kong/8/1973, and 
B/Florida/4/2006 HAs 
The sequences of B/Brisbane/60/2008 (ACN29380), B/Hong Kong/8/1973 (AAA43717), and 
B/Florida/4/2006 (ACF54246) HA were aligned and annotated using Jalview. The amino acids 
corresponding to the head region are boxed in pink. The HA2 subunit is boxed in light blue. The 
amino acids that differ between the three sequences are highlight using the Zapo colour system 
based on amino acid physiochemical properties. 
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Figure 89: Differences between B/Brisbane/60/2008, B/Hong Kong/8/1973, and 
B/Florida/4/2006 HAs 
The HA head is shown in pink and the stalk in grey. In dark red the non-conserved residues are 
highlighted. 
A and B. Outer-surface view and inner-surface view of B/Brisbane/60/2008 HA (PDB ID: 4FQM) 
in which the residues that differ from B/Hong Kong/8/1973 HA are highlighted; C and D. 
Outer-surface view and inner-surface view of B/Brisbane/60/2008 HA in which the residues that 
differ B/Florida/4/2006 HA are highlighted; E and F. Outer-surface view and inner-surface view of 
B/Hong Kong/8/1973 HA (PDB ID: 2RFU) in which non-conserved residues in comparison to 
B/Florida/4/2006 HA are highlighted. The B/Florida/4/2006 HA structure (PDB ID: 4FQJ) was 
superimposed on B/Hong Kong/8/1973 HA to highlight in orange the residues present in 
B/Florida/4/2006 HA but deleted in B/Hong Kong/8/1973 HA. Images produced using Swiss PDB 
Viewer. 

Non-conserved amino acids in the stalk HA domain (Figure 88 and Figure 89) 

were found proximal to the viral envelope and in the HA transmembrane region. The only 

exception is the mutation H55Y (B/Brisbane/60/2008 numbering) in the B/Florida/4/2006 
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HA. This mutation is positioned in the stalk region adjacent to the head and it is included 

in the epitope recognised by the influenza pan-neutralizing mAb CR8071 (Dreyfus et al. 

2012). This indicates that CR8071 and potentially similar antibodies are able to bind and 

neutralize B/Brisbane/60/2008, B/Hong Kong/8/1973, and B/Florida/4/2006. 

6.4 Discussion and Conclusion 
Influenza B virus is an important human pathogen that causes severe annual 

epidemics, however its study is frequently neglected in comparison to Influenza A. 

Nonetheless, recently with the failure of the vaccine coverage and with the development of 

a quadrivalent vaccine, the interest in this virus from an epidemiological prospective is 

growing, and the need for new assays for diagnosis and vaccine evaluation, as a 

consequence of severe limitation of classical serological assays, is compelling. To respond 

to this request, the production of influenza B pp, their characterisation and their use in 

neutralization assays as surrogate antigens was investigated and described here. 

As shown in Chapter 3, a prerequisite to be able to produce high titre pp is to 

pinpoint the important elements of and understand the life cycle of the virus that will 

donate the envelope protein. HA activation through specific-cleavage has an essential role 

in the influenza virus life cycle since it permits low-pH dependent fusion with the 

endosome-membrane after attachment and endocytosis of the virus, permitting the release 

into the cytosol of the vRNP complexes. For influenza B HA activation has been observed 

in chicken embryonated eggs (Zhirnov, Golyando and Ovcharenko 1994), and in a 

trypsin-dependent and independent way in MDCK cells (Lugovtsev, Melnyk and Weir 

2013; Noma et al. 1998). Furthermore, experiments have shown that the NA could also 

have a role in HA activation by removing glucidic residues on the HA surface (Yamamoto-

Goshima and Maeno 1994; Shibata et al. 1993) and it was shown that influenza B can be 

cleaved by porcine pancreatic elastase when the cleavage arginine is substituted with an 

alanine or a valine (J. Stech et al. 2011). Influenza B HA can also partially support a 

poly-basic cleavage site that permits the cleavage by subtilisin-like proteases (Brassard and 

Lamb 1997). More recently, HAT and TMPRSS2 have been shown to be able to cleave 

and activate influenza B HA in in vitro models (Böttcher-Friebertshäuser et al. 2012). 

However, data on other proteases that could be involved in the influenza B HA cleavage in 

nature are lacking. 

As already shown in Chapter 3 and elsewhere (Sawoo et al. 2014; Ferrara et al. 

2013; Bertram et al. 2012; Bertram, Glowacka, Blazejewska, et al. 2010), pp are useful 

tools to study HA cleavage mediated by proteases: the optimisation of pp production 

through testing of different protease-expressing plasmids gives indirect information about 
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protease-cleavage specificity. Here the three proteases HAT, TMPRSS2 and TMPRSS4, 

described in the literature for their ability to activate influenza A HAs (Sakai et al. 2014; 

Tarnow et al. 2014; Baron et al. 2013; Galloway et al. 2013; Bertram et al. 2012; Bertram, 

Glowacka, Blazejewska, et al. 2010; E. Böttcher et al. 2009; E. Böttcher et al. 2006), were 

tested for cleavage of influenza B HAs to produce high titre pp. Interestingly, the results 

reported here correlate with the ones previously observed (Böttcher-Friebertshäuser et al. 

2012): high titre pp are dependent on abundant and specific HAT-mediated HA cleavage 

as confirmed by Western blotting (Figure 77). In contrast, the TMPRSS2-activated pp 

have lower transduction titres even though the protease does mediate HA cleavage. For the 

first time, the role of TMPRSS4 in influenza B HA cleavage/activation is shown, since the 

transfection of the encoding plasmid during pp production is associated with high pp titres 

and HA cleavage, as observed in Western blot analysis. 

It was already stated that pp transduction titres appear to correlate with Western 

blot results: it can also be noticed in the overall quantity of HA in each pp seems to differ. 

This is especially evident in the TMPRSS2-activated pp in which the HA1 bands are 

thinner but the HA0 bands do not appear, and by the fact that all the TMPRSS2-activated 

pp result in a lower transduction titre in comparison with pp produced by HAT and 

TMPRSS4 co-transfection. It seems unlikely that the results observed are due to 

transfection errors because the TMPRSS2-activated pp always exhibit lower titres 

independently of the influenza B HA used. These results could be explained by the fact 

that, to produce high titre pp, a protease-HA equilibrium could be important as a high 

quantity of protease usually results in a lower pp titres for all the influenza B HAs tested. 

This could be due to degradation of HA following the presence of a high quantity and/or 

highly active protease, probably related to the fact that it is known that the pp envelope 

displays less HA in comparison to wild-type virus (Corti et al. 2010). Additionally, other 

mechanisms could be implicated in the digestion pattern observed: for example it has been 

shown that protease activity is also dependent on other cellular factors, such as 

anti-protease/protease equilibrium and oxidative-stress (Kesic et al. 2012; Kesic, 

Hernandez and Jaspers 2012), that were not controlled in this study. As alluded to in 

Chapter 3 other approaches, especially biochemical, to evaluate protease activity and 

protease-HA affinity, will be necessary to better understand the HA cleavage mechanism 

and to be able to better predict type and quantity of the protease that can be used to obtain 

high titre pp. 

Another important point to further investigate is that in the Western blot a 

heterogeneous HA glycosylation pattern seems to be present, as HA1 is represented by 

more than one band. Elsewhere it was noted that exogenous bacterial NA can also play a 
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role in removing glucidic residues from the HA surface, to enhance viral attachment to the 

receptor (Brassard and Lamb 1997). Furthermore, it was noted that the proteases, 

especially TMPRSS2, that mediate HA cleavage including intracellularly (E. Böttcher et al. 

2009), could interact with the cell glycosylation machinery (Walker et al. 1992). The 

implication of this should be further investigated as it can potentially have repercussions 

on the pp-NT assay since glycosylation represents an important antigenic influence. To 

understand better the glycosylation pattern of the pp HA it will be necessary to perform 

further analysis that involve Peptide-N-glycosidase F and/or Endoglycosidase H treatment 

followed by Western blotting to highlight differences in the HA molecular weight after 

removal of specific oligosaccharide molecules. Potential characterisation of pp using 

Western and lectin blotting, and via mass spectrometry (Kordyukova and Serebryakova 

2012; Downard, Morrissey and Schwahn 2009) would be useful to understand which 

glycosylation residues are lost, which are maintained, and in what proportion. 

To investigate the production of influenza B pp, the role of the Kozak sequence in 

the influenza B HA expression was evaluated. Reverse genetic system studies performed 

for influenza B viruses (Jackson, Elderfield and Barclay 2010; Jackson et al. 2002; Barclay 

and Palese 1995) have previously shown that specific 5’ and 3’ vRNA non-coding regions, 

containing the Kozak sequence, are of essential importance for production of viruses, and 

correct sequences must always be included in this system to permit vRNA packaging, 

vRNA transcription and translation, and protein expression. In an analogous manner, it was 

previously highlighted (Chapter 3) that the presence of a Kozak sequence is necessary to 

express the HA and produce high-titre pp, and even if this requisite for pp production is 

less stringent than the reverse genetic system requirements, the presence of the Kozak 

sequence is an important aspect that should be evaluated. In this chapter, the use of two 

different Kozak sequences to permitted HA expression and production of influenza B HA 

pp to be investigated. Results show that the influenza A Kozak sequence GTCAAA and 

the influenza B Kozak sequence CACAAA are equally efficient for the expression of HA 

and the production of high titre pp. In fact B/Bangladesh/3333/2007 pp exhibit the same 

titres and cleavage pattern independently of the Kozak sequence used (Figure 79). These 

data, and literature show that it could be interesting to test the effect of the absence of the 

influenza Kozak sequence, or of the presence of other Kozak sequences (e.g. human) in the 

influenza B pp production model, perhaps also using direct qualitative and quantitative 

evaluation of HA expression by immunofluorescence, Western blotting or by 

fluorescence-activated cell sorting analysis. Furthermore it could be of interest to see if the 

influenza B Kozak sequence CACAAA could be used to express other viral proteins and 
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produce influenza A and non-influenza pp. Unfortunately, this is beyond the scope of this 

study. 

After optimisation of the production of influenza B pp through analysis of HA 

cleavage and Kozak sequence, the pp were characterised for their activity to transduce 

different cell lines. Influenza B pp are able to transduce HEK293T/17, MDCK and A549 

cell lines: higher transduction titres were obtained when the producer cells HEK293T/17 

were used, whereas the classical influenza producing cell lines MDCK and the human lung 

carcinoma A549 show lower transduction titres. There are two major factors that could 

explain why different HAs show better entry capacity than others in different cell lines. 

Firstly, influenza B HA recognises different sialoglycan residues present on the 

glycoprotein surface to mediate cell entry, and different strains/viruses can have different 

preferences (Y.-F. Wang et al. 2012; G. Xu et al. 1994; M. N. Matrosovich et al. 1993); 

secondly cells can present a different proportion of sialic acid combinations (Lugovtsev, 

Melnyk and Weir 2013; N. M. Varki and A. Varki 2007; Svennevig, Prydz and Kolset 

1995). A further factor, in the light of the results observed during the production of recent 

H3pp (Chapter 3), is that if pp have a lower density of HAs in their surface, a lower pp 

avidity could consequently result. This could be important for the entry into certain cell 

lines, in relation to differential sialic acid distribution between cells (Sieben et al. 2012). 

However, these elements alone cannot explain the differences in titre observed, 

especially taking into consideration that MDCK should be a highly susceptible cell line 

since it is routinely used for influenza virus infection and amplification. Considering that 

HEK293T/17 are used as producer cells and subsequentially as target cells, exhibiting 

higher transduction efficiency compared to the other cell lines tested, it is reasonable to 

enquire if the identical origin of the pp lipid bilayer and of the target cell plasma membrane 

can influence the transduction activity. In fact, the lipid bilayer and the characteristics of 

the membrane lipids can play an important role in the attachment of the virus particle and 

lipid properties have been shown to play an important role in membrane fusion (Heaton 

and Randall 2011; Xiangjie Sun and Whittaker 2003; Chernomordik et al. 1998). 

Furthermore it was demonstrated that HIV-1 and influenza viruses present lipid bilayer 

envelopes showing different characteristics in comparison to the producer cell lines 

(Lorizate et al. 2013; Gerl et al. 2012; Aloia, Tian and Jensen 1993). To assess membrane 

role in pp transduction the study of the pp envelope lipids in comparison with the ones of 

the producer and target cell lines could help to elucidate the factors that can interfere with 

viral attachment. Furthermore performing experiments in which different cell lines are 

used as producer cells and as target cell lines could also be helpful to understand the lipid 

roles in membrane attachment and fusion. 
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With a first characterisation of the pp complete, the use of the generated influenza 

B pp in neutralization assays was investigated. Firstly, the ability of a reference antiserum 

to neutralize the pp generated. Only an anti-B/Brisbane/60/2008 reference serum was 

available, and it was tested successfully in neutralization assays against three different 

viruses: B/Brisbane/60/2008, B/Florida/4/2006, and B/Hong Kong/8/1973. Next, pp-NT 

assays were used to evaluate the neutralization activity of a set of pre- and post-vaccination 

sera for which the HI titre against B/Brisbane was known. 

The reference serum used could neutralize all the pp tested and it could also 

differentiate between them showing correlation with amino acid identity through different 

neutralization activities: in fact the serum neutralizes the homologous B/Brisbane/60/2008 

most efficiently, followed by B/Hong Kong/8/1973, which shares 94.9% amino acid 

identity with B/Brisbane/60/2008, and B/Florida/4/2006 (93.5% amino acidic identity). 

This could indicate that, as already observed with influenza A (Molesti, Ferrara, et al. 

2014; Corti et al. 2011; Corti et al. 2010; Garcia et al. 2009), the pp-NT assay is more 

sensitive in detecting cross-neutralizing antibody responses. 

Furthermore, it should be noted that the reference sheep antisera used is 

hyperimmune and for this reason more prone to cross-react in presence of similar strains 

and therefore not recommended for antigenic analysis. This could explain why such high 

cross-reactivity was detected between strains of different lineages using pp-NT assay. 

Additionally cross-reactivity between influenza B lineage is sometime reported using 

similar serum. Additionally, absence of serum pre-treatment should also be considered as 

possible cause of the cross-reactivity detected, as discussed in Chapter 4. 

Here, using a panel of vaccination sera in the analysis of IC50 results obtained with 

the pp-NT assay and the HI titres against B/Brisbane/60/2008, discordant correlation was 

observed between the HI and pp-NT assays (Figure 84). However, this observation does 

not represent a problem in the reliability of the pp-NT assay, since influenza B HI assay is 

already known to not be sensitive (Wood et al. 1994; G. Mancini et al. 1983; Oxford, Yetts 

and Schild 1982), whereas pp-NT is highly sensitive (Garcia et al. 2010; W. Wang et al. 

2008; Temperton et al. 2007). The HI insensitivity is also demonstrated by the fact that it 

was unable to detect antigenic differences between influenza B viruses until the 

1980s (Rota et al. 1990) meanwhile phylogenetic analyses have shown that the two distinct 

lineages were present already in the second part of the 1970s (R. Chen and Holmes 2008). 

Furthermore SRH and classical HI have also been shown to correlate poorly (Oxford, Yetts 

and Schild 1982). More recently, it was reported that discordant correlation could be 

observed between SRH, MN, HI, and pp-NT, since all these assays measure different kind 

of antibody responses (Molesti, Ferrara, et al. 2014). For this reason, it will be also 
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necessary to test other sets of sera to understand the correlation characteristics of the 

Influenza B pp-NT with HI. For the same reason, it will be necessary also to see if the 

pp-NT assay correlates with SRH or MN. Of special interest would be the correlation study 

with MN since pp-NT and MN are based on the same principle, differing essentially in 

sensitivity, and are able to detect stalk-directed cross-neutralizing antibodies. 

Considering that reference sera neutralization has shown some level of 

cross-reactivity and that it was demonstrated (Chapter 5) that Influenza A pp-NT is able to 

detect cross-reactive stalk-directed antibodies, Influenza B pp-NT assays ability to detect 

Influenza B cross-reactive responses in this set of vaccination sera was also investigated. 

This took the form of neutralization assays with viruses not included in the trivalent 

vaccine that was originally administered to the test subjects. In fact, as already mentioned, 

if the influenza B pp-NT assay is more prone to detect stalk-directed antibody responses, 

this alone can partially explain the discordant correlation with the HI assay previously 

observed. As explained in Chapter 5 for the analysis it was decided firstly to consider 

simply the differences in time-points (day 0 and day 21), secondly the differences in 

vaccination regimens (TIV + placebo and TIV + MVA-NP+M1) were evaluated, despite 

that the limited number of subjects recruited in each group restricts the statistical analysis 

that can be performed. 

Surprisingly, high neutralization responses were detected against the vaccination 

strain B/Brisbane/60/2007 and for B/Florida/4/2006 and B/Hong Kong/8/1973 HA pp, and 

for the last two strains analysed, these neutralization titres also increased after vaccine 

administration. With regard to the age of the participants in this clinical trial (50 years and 

above) (Antrobus et al. 2013), it is likely that the subjects have encountered the two 

strains (B/Florida/4/2006 and B/Hong Kong/8/1973) previously so it is expected that a 

certain level of antibody against theses two strains could already be present; however the 

high titre observed, especially against the B/Hong Kong/8/1973 pp, and the increase in the 

neutralization titre after vaccination indicate that a certain level of cross-reactivity could be 

present. This is not surprising especially for influenza B viruses. Before the Yamagata and 

Victoria lineage division, SRH was shown to be able to detect seroconversion also for 

strains not encountered previously and not included in the administered vaccines (Oxford, 

Yetts and Schild 1982). In that case, this was not interpreted as lower specificity of the 

assay, but as a characteristic of influenza B virus to be able to induce a cross-reactive 

response (Oxford, Yetts and Schild 1982). Recently it was shown that seroconversion and 

increase in antibody responses was obtained against a Yamagata strain, when a trivalent 

vaccine containing a Victoria lineage strain was used if the subjects were previously 

primed with a Yamagata-strain containing vaccine (Skowronski et al. 2012). Here, 
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analogously, when a Victoria-strain based vaccine (B/Brisbane/60/2008) is administered, a 

significant increase in the neutralizing antibody response against a Yamagata 

strain (B/Florida/4/2006) and a pre-lineage division strain (B/Hong Kong/8/1973) is 

observed, whereas the increase against the vaccine strain if present is not statistically 

significant. 

A bioinformatic analysis to investigate similarity between the HAs used in the 

pp-NT assays was performed to understand possible epitopes underlining the cross-reactive 

response observed. The three HAs used differ especially for residues present within 

epitopes located on HA head. The region corresponding to antigenic site A and B are the 

ones with the greatest differences between the three HAs tested. The HA stalk and the 

central part of the HA head appear conserved. When differences are observed in the stalk, 

these are usually in positions proximal to the membrane or in the transmembrane region 

itself, and it is unlikely that they have an antigenic role since known stalk epitopes are 

usually less proximal (Dreyfus et al. 2012; Corti et al. 2011; Ekiert et al. 2011; Ekiert et al. 

2009; Sui et al. 2009). Furthermore, the parts of the HA that are more conserved 

correspond roughly to the epitope regions of mAbs that show broader neutralization 

activity against influenza B viruses (also inter-lineage neutralization) (Yasugi et al. 2013; 

Dreyfus et al. 2012). With the knowledge that the influenza A pp-NT neutralization assay 

is able to detect antibodies directed to the stalk region, a hypothesis is that the influenza B 

pp-NT is also able to recognise antibodies directed against the conserved characterised 

epitopes (Yasugi et al. 2013; Dreyfus et al. 2012). These antibodies are the ones that in 

B/Florida/4/2006 and B/Hong Kong/8/1973 pp-NT increase post-vaccination, as it is 

unlikely that the seasonal vaccine would be able to increase or generate antibody that 

recognise the non-conserved regions of these unrelated HAs. 

Furthermore, using classical epitope mapping methods, site B seems to be the one 

for which influenza B antibody response is directed in the majority of cases (Rivera et al. 

1995; Berton, Naeve and Webster 1984; Krystal et al. 1983). It will not be surprising if, as 

observed for Yamagata-lineage (Yasugi et al. 2013; Dreyfus et al. 2012), broad 

neutralizing Victoria-lineage specific antibodies directed against site B were present in the 

human population and were not yet described. The presence of these antibodies, for 

example, could explain the decrease in antibody titre observed between 

B/Brisbane/60/2008 HA and B/Hong Kong/8/1973 HA that possess a different antigenic 

site B, as a deletion is present, while other sites appear more conserved. These show that 

epitopes generating cross-reactive responses to influenza B are more readily exposed than 

influenza A ones, and in the light of the results and the literature reported here, they could 

potentially drive the antibody response against the virus. A cross-reactive response, also 
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stalk-directed, probably plays a more predominant role in protecting against influenza B 

viruses than the one usually observed with influenza A viruses. For the moment, the ability 

to detect stalk-directed antibody responses via the pp-NT assay is the only tool to verify 

the spread of this cross-reactive response. In addition, to test this hypothesis a convenient 

approach could be using chimeric influenza B HA that present the stalk of influenza B and 

the head of influenza A HA. Unfortunately such hybrid HA is potentially more difficult to 

construct than others, since influenza B HA lack the two cysteines of the disulphide bond 

that are exploited for creating the chimeric protein (Pica et al. 2012). Another possible 

approach is to insert influenza B epitopes into the influenza A HA frame, however this 

could potentially result in protein misfolding. Since the influenza B reservoir is principally 

restricted to humans, the influenza B strains that are found in other animals (i.e. seals) 

usually have antigenic characteristics similar to human influenza B strains (Bodewes et al. 

2013; Osterhaus et al. 2000), and considering that two influenza B lineages co-circulate, 

the use of influenza B HAs that present a single-mutation or switching of small epitopes 

between non-related influenza B strains could be of help, on condition that the influenza B 

assay is sensitive enough to distinguish between single amino acid mutations. 

Despite this, there is a result that remains difficult to interpret using this 

cross-reactive theory without need for additional explanation: the fact that, using the 

B/Brisbane/60/2008 pp-NT, an increase in neutralizing titres are not detected 

post-vaccination. It was previously pointed out that an original antigenic-sin could explain 

higher responses to non-related HAs than the vaccine HA; an interesting additional 

hypothesis is that B/Brisbane/60/2008-specific antibodies were already present at high 

level in the population analysed and that the vaccine has simply not boosted an already 

high and specific antibody response, boosting only a cross-reactive one that was lower. 

This could be partially explained in the light of influenza B HA evolution: in 2013 a new 

influenza B virus has started to circulate causing increased seasonal epidemics and it was 

pointed out that herd immunity could play a big role in determining influenza B 

evolution (R. Chen and Holmes 2008; Air et al. 1990), triggering the emergence of new 

influenza B strains. The higher sensitivity of the pp-NT in comparison to classical 

serological assays (e.g. HI) could have potentially emphasised this underlying herd 

immunity. 

In the second part of the analysis of the neutralization responses in vaccination sera, 

differences between the two vaccination regimen groups were evaluated. By graphical 

comparison it could be observed that TIV + MVA-NP+M1 group seems to have lower 

antibody responses at day 0 compared to the TIV + placebo group (Figure 86). Graphical 

results also appear to indicate that an underling role of MVA vaccine in increasing 
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antibody responses against influenza B could be present, as the IC50 fold-increase 

observed (Figure 87) in the TIV + MVA-NP+M1 group appears to be greater than the one 

of the TIV + placebo group. However, statistical analysis does not confirm this 

observation. In Chapter 5, the advantage of MVA vaccination was discussed. If a role of 

this vaccine in increasing influenza B specific response will be proved by other analysis 

and experiments with a larger number of subjects, it could pose numerous questions. Is it 

the adjuvant effect of MVA that mediates the increase in antibody responses observed? Is 

there a role of influenza A NP and M1 protein-specific T-cell response in influenza B 

response? How are influenza A and B specific responses connected in nature? These are 

questions that remain unanswered for the moment, but are undeniably of biological 

interest, especially for the generation of ‘universal’ vaccines. It was suggested that the 

response against influenza A virus could influence influenza B virus response and 

consequentially influenza B virus evolution, facilitating the shift of dominance between the 

two lineages in different seasons (R. Chen and Holmes 2008; Air et al. 1990). However, 

how or if this happens is not yet clear and should be investigated. It could be that HA 

stalk-directed antibodies play an important role in this and pp will be effective tools to 

assess it. 

To conclude, the data presented here demonstrate that influenza B pp, which are 

produced at higher titre using proteases, could be useful tools to study influenza B HA 

directed specific and cross-reactive antibody responses. However, more experiments are 

necessary to understand the advantages and disadvantages of the influenza B pp-NT assay 

in comparison with classical serological methods. 
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CHAPTER 7  
Discussion 

The studies presented in this thesis detail the generation of new influenza 

pseudotype particles (pp) and the investigation of their use in neutralization assays to study 

human antibody responses. 

In Chapters 3 and 6, pp expressing the haemagglutinins (HAs) of different 

influenza A and B strains and subtypes on their surface were produced. Firstly this 

involved an optimisation procedure to identify proteases that were able to efficiently 

mediate HA cleavage/activation. As is shown, the production of pp using these proteases 

has two advantages: it is possible to study a critical process in which HA is involved and 

that is a determinant in viral pathogenicity, and to produce important reagents that can be 

used for evaluating antibody responses. 

As shown in Chapter 3, certain pp were more problematic to produce, especially to 

high titres, and different strategies involving additional adjustments of the HA encoding 

plasmid were necessary to increase the pp titre. In another case it was necessary to add a 

neuraminidase (NA) encoding plasmid to the transfection mix in order to increase pp titre. 

Probably this was due to the fact that HA did not have sufficient affinity for the cellular 

receptor, and that the presence of NA permitted to compensate for absence of HA affinity 

(Gulati et al. 2013; de Vries et al. 2012; Y. P. Lin et al. 2010). This demonstrates that pp 

production system can be improved and can also help to elucidate processes underlying 

aspects of the co-evolution of the influenza envelope proteins. Another utility of pp is the 

ability to generate mutants and to evaluate different combinations of HA and NA subtypes 

without the risk of creating potentially dangerous/pandemic viruses, since pp are 

replication defective. 

The work presented demonstrates that it is becoming important to better 

characterise the pp produced, especially in relation to specific HA attributes. In Chapters 3 

and 6, when HA cleavage was evaluated through Western blotting, a potential problem in 

the glycosylation characteristics of influenza pp was noted. In fact, HAs processed by the 

tested proteases seem to present a more heterogeneous glycosylation (indicated by the 

presence of double band corresponding to HA1) compared to HAs produced in absence of 

proteases and treated with L-tosylamido-2-phenyl ethyl chloromethyl ketone treated 

trypsin (TPCK-Trypsin). These glycosylation ‘problems’ should be investigated to not 

only improve the pp production methodology but also to understand the pp antigenic 

characteristics. In fact, such pp glycosylation differences/characteristics have important 
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repercussions as they expose usually hidden epitopes (usually masked by glycosylation), 

explaining the high sensitivity (sometimes at the expense of specificity) observed during 

pp neutralization (pp-NT) assays. 

In Chapters 4-6 it was shown that the pp-NT assay is particularly sensitive 

compared to Single Radial Haemolysis (SRH) and haemagglutination inhibition (HI) 

assays. Other authors have also discussed the high sensitivity of pp-NT in comparison to 

microneutralization (MN) assay (Molesti, Ferrara, et al. 2014; Hai et al. 2012; Corti et al. 

2010; Garcia et al. 2010; Alberini et al. 2009; Sui et al. 2009; W. Wang et al. 2008), 

however it is not yet clear if this sensitivity is related to pp characteristics (i.e. lower 

density/quantity of envelope proteins on the surface) or there are other factors, such as 

non-specific inhibitors (e.g. lectins) present in antisera that could influence neutralization 

(E. K. Subbarao et al. 1992). The results reported in Chapters 4 and 5 indicate that some 

influenza A pp (e.g. H4pp and H9pp) are more readily neutralized than others by the 

reference antisera tested and by human pre- and post-seasonal vaccination sera. These 

neutralization profiles do not appear to be non-specific, since the negative control used 

does not neutralize the pp, but they are of concern. It could be that epitopes described to be 

involved in cross-reactivity between HAs are more exposed in these more readily 

neutralized HAs. However, there is no evidence of this at the moment but further 

investigation involving the characterisation of pp and optimisation of pp-NT assay should 

be pursued. 

In Chapter 5 a particular advantage of pp was shown: using different pp and 

especially using chimeric HA pp, it was possible to directly study stalk-directed antibodies 

and confirm their presence in human sera. Whether the cross-reactive antibodies detected 

using pp-NT have a protective role in vivo is not yet clear, especially since correlates of 

protection are not yet established for pp-NT. Furthermore, since stalk-directed antibodies 

are believed to mediate their function in vivo through Fragment crystallizable (Fc) γ 

receptor engagement (DiLillo et al. 2014), it is not clear if the stalk-directed antibodies 

detected here could have an activity in vivo. In fact, pp-NT does not permit discrimination 

between immunoglobulins (Ig) classes, and only certain classes/subclasses binds efficiently 

to the Fcγ receptor. Additional experiments using antibody preparations that have been 

purified to obtain Ig of one specific class may better elucidate the biological significance of 

the cross-reactive responses detected here. 



 

223 

7.1 Future work 
Future developments of this project in light of the results reported in this thesis are 

extensive and can be summarised in the following categories: 

• Generation of other influenza pp, including influenza C and D; 

• Optimisation of the pp production system; 

• Study and prediction of HA protease-mediated activation and cleavage; 

• Characterisation of pp using microscopy and proteomics techniques; 

• Optimisation and standardisation of the pp-NT, including the establishment 

of reference standards and controls; 

• Evaluation of heterosubtypic antibody response and its evolution over time 

in different human populations (with particular focus on newborn infants, 

children, immunocompromised people, etc.) using the panel of pp described 

here, and novel chimeric HA pp; 

• Use of pp in other serological/immunological assays (e.g. HI, 

Enzyme-Linked Immunosorbent Assay ‘ELISA’, post-attachment 

neutralization assay); 

• Application of influenza HA pp/lentiviral vectors in novel vaccine and gene 

therapies. 

Below some of these potential project developments are discussed in relation to 

results reported in this thesis. In addition, some other preliminary experiments that were 

performed during the study period will be briefly mentioned. 

7.1.1 Generation of other influenza pseudotypes, including influenza C and D 

In Chapter 3, new pp belonging to different subtypes never before pseudotyped 

were described. Nevertheless, pp representative of certain subtypes, such as H6 and H13, 

were not able to be generated since either the HA-encoding plasmid was non available or 

the current protocols resulted to be unsuccessful. These two pp need to be developed as 

soon as possible. In fact, since influenza viruses bearing H6 HA have been shown to infect 

humans (Freidl et al. 2014; Yuan et al. 2013; Kayali et al. 2009), H6 viruses can pose a 

pandemic threat (G. Wang et al. 2014). H6pp could be used in neutralization assays to 

highlight if the human population possess antibodies that can mitigate or protect from H6 

viruses in case of a pandemic. Additionally, H13pp could be useful to study the 

characteristics of H13 HA (i.e. receptor specificity) since this HA has been shown to 

possess peculiar receptor binding activity (i.e. different amino acid residues in the 
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receptor-binding site compared to other HA subtypes and unclear affinity for α-2,3 sialic 

acids) (Lu et al. 2013; Nobusawa et al. 1991; Chambers et al. 1989). 

Furthermore, the production of pp bearing HAs of the most recent human H1 and 

H3 circulating influenza strains (e.g. A/California/04/2009 (H1N1)-like, 

A/Perth/16/2009 (H3N2)-like, and A/Victoria/361/2011(H3N2)-like) should be further 

investigated, since some of these reagents are already described in the literature (Sawoo et 

al. 2014; Yang et al. 2014; Margine, Krammer, et al. 2013; W. Wang, Castelán-Vega, et al. 

2010), whereas in this thesis their production was more problematic (i.e. difficulties in 

production of A/Texas/05/2009 H1pp, and A/Wisconsin/67/2005 H3pp compared to pp 

bearing H1 and H3 of past circulating viruses). 

Of particular interest would be the production of pp expressing HAs of H1 and H3 

avian and swine strains, too. Producing such tools will allow pp neutralization (pp-NT) 

assays to be carried out, and to understand how much cross-reactivity is present in the 

human population against avian and swine strains from which pandemics have started in 

the past, and for which the human population was previously reported to be naïve (Capua 

et al. 2009). 

Recently H17 and H18 influenza A viruses were detected by polymerase chain 

reaction (PCR) in bats and different studies have now highlighted the fact that it is not 

possible to cultivate these viruses and that the HAs do not recognise sialic acids as 

receptors (Xiaoman Sun et al. 2013; Tong et al. 2013). The production of pp harbouring 

these novel HAs could permit elucidation of their biologic characteristics, to identify the 

cellular receptor, to investigate the spread of these viruses in the bat/animal population 

using serological methods, and to understand if they have potential to cause pandemics 

taking into account the immunological status of the human population. 

Amongst the influenza viruses, influenza C tends to be neglected even if it is the 

only type that is exclusively circulating in humans. Since the lentiviral pp production 

protocol reported in this thesis was efficient for the generation of influenza B pp, the 

production of influenza C pp using the same method could be evaluated. Production of 

influenza C pp using vesicular stomatitis virus (VSV) core is described in the 

literature (Hanika et al. 2005). However, influenza C pp using a lentiviral core are not yet 

described. Lentiviral vectors have the advantage to be able to transduce non-dividing and 

dividing cells (Sakuma, Barry and Ikeda 2012; Durand and Cimarelli 2011). Furthermore 

compared to VSV, lentiviral pseudotyping usually do not require engineering the 

cytoplasmic tail of the donor envelope protein, consequentially it is in general a more 

straightforward process (Owens and J. K. Rose 1993). Lastly, they have a higher safety 

profile than VSV since more recombination events are necessary to reproduce the native 
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virus (especially if second or third generation packaging systems are used). In the light of 

the protocols described here for Influenza A and B pp, and considering the characteristics 

of the Haemagglutinin-esterase-fusion (HEF) envelope protein, which possesses sialidase 

activity (Pekosz and Lamb 1999; Rosenthal et al. 1998; Herrler et al. 1988), to produce 

influenza C pp exogenous NA will not be necessary; however proteases able to activate 

influenza C are not yet described, and the optimisation protocol (as described in Chapters 3 

and 6) will be important to elucidate HEF activation. 

Lastly, with the very recent discovery of a possible influenza D virus (Hause et al. 

2014; Hause et al. 2013; Sheng et al. 2013), pp could be utilised to study this new virus, 

understanding the similarities and differences of the envelope proteins compared with the 

other influenza types. Furthermore, the use of an influenza D pp-NT will permit to evaluate 

how wide spread the immunity to this virus is in animal and human populations. 

7.1.2 Optimisation of the pseudotype production system 

In the literature there are regular reports of the development of novel packaging cell 

lines to produce lentiviral vectors for gene therapy (Ni et al. 2005; Sinn, S. L. Sauter and 

McCray 2005; Strang et al. 2004; Farson et al. 2001; Pacchia et al. 2001). Packaging cell 

lines are extremely useful as they permit continuous production of lentiviral vectors and 

the reduction of the number of plasmids that need to be transfected (Sinn, S. L. Sauter and 

McCray 2005; Strang et al. 2004). However, these cell lines present different problems, for 

example the partial toxicity of the human immunodeficiency virus type‑1 (HIV‑1) 

structural proteins expressed (Sinn, S. L. Sauter and McCray 2005; Farson et al. 2001). In 

case of influenza pp, considering that different envelope proteins are used, a packaging cell 

line expressing (probably under an inducible promoter) only the HIV-1 structural proteins 

would be very useful to investigate. A packaging cell line expressing only HIV-1 structural 

proteins and not the lentiviral vector or the envelope surface proteins would permit the 

maintenance of pp production flexibility. In fact, different envelope protein-encoding 

plasmid and lentiviral vector expressing different reporter genes could be transiently 

transfected into this producer cells, consequently permitting the generation of pp with 

different envelope-reporter combinations. 

Furthermore, in Chapters 3 and 6, it was shown that proteases are necessary for 

production of high titre pp. Generation of a cell line expressing such proteases as a pp 

producer could be investigated. Since the results reported seem to indicate that an accurate 

optimisation of the protease quantity is necessary to obtain HA activation, inducible cell 

lines, utilising different gene promoters, could be developed. Since inducible cells 

expressing type II Transmembrane Protease Serine 2 (TMPRSS2) and human airway 
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trypsin-like protease (HAT) have been produced, testing these cell lines for pp production 

before generating protease-expressing Human Embryonic Kidney (HEK) 293T/17 cells 

may help to understand if the approach is suitable. 

7.1.3 Study and prediction of haemagglutinin protease-mediated activation 

and cleavage 

In Chapters 3 and 6, it was shown that optimisation of the type and quantity of 

protease is necessary to activate HA, however it is not yet clear which are the factors that 

influence protease-HA recognition. The cleavage data acquired during the current study 

using different HA/protease combinations, and generation of new data with new 

combinations, will permit the use of bioinformatic methods to understand and possibly 

predict which proteases will be able to cleave a specific HA. Bioinformatics prediction 

tools have been specifically generated to predict different aspects of protein characteristics, 

such as protein sorting, glycosylation, and secondary structures (Chauhan, Rao and 

Raghava 2013; B. Eisenhaber and F. Eisenhaber 2010; Krogh et al. 2001; Nakai 2000). 

Furthermore, using bioinformatic approaches and pp-derived data will make it 

possible to identify potential critical residues for HA cleavage and to test their role through 

mutagenesis and pp production, and thus confirm the reliability of the bioinformatics tool 

generated. 

7.1.4 Characterisation of pseudotype particles using microscopy and 

proteomics techniques 

In this thesis different pp were produced and characterised only for their ability to 

transduce target cell lines. In Chapters 3 and 6 the need to optimise Western blotting using 

pp was highlighted, which has shown mixed results to date. This would permit 

quantification of the particles, characterisation of the HA cleavage, study of pp HA 

glycosylation characteristics, and evaluation of batch-to-batch variations. 

Confocal microscopy has been used to evaluate the concomitant presence of the 

core protein and the envelope protein on the pp surface (Pizzato et al. 1999), and could be 

an extremely useful tool to evaluate what proportion of particles present HA on their 

surface. 

Electromicroscopy and cryoelectromicroscopy are also useful tools to characterise 

virus particles and recently they were used to understand the distribution of HA on the 

influenza virus surface and to understand how stalk-directed antibodies interact and 

recognise the HAs (Wasilewski et al. 2012; Corti et al. 2011; Bonnafous et al. 2010). 

These kinds of studies will be extremely valuable for pp since they could help to elucidate 

if the high sensitivity of pp-NT is due to a lower density of HA on pp surface. 
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Recently mass spectrometry has begun to be used for virus characterisation and 

typing (Kordyukova and Serebryakova 2012). For this reason, it represents a technique that 

should be investigated to characterise pp; furthermore it will also permit the evaluation of 

glycosylation characteristics of the HAs expressed on the pp surface. 

7.1.5 Optimisation and standardisation of the pseudotype particle 

neutralization assay, including the establishment of reference standards 

and controls 

The work presented using pp-NT is still at a research level and proof-of-principle 

stage. The pp-NT assay is not optimised, standardised or validated according to the 

International Conference on Harmonisation of Technical Requirements for Registration of 

Pharmaceuticals for Human Use (ICH), and the United States Pharmacopeia. In Chapter 4 

it was discussed that establishing adequate positive, negative controls and reference 

standards are essential, but other aspects should be evaluated to standardise and validate an 

assay. 

As in all cell-based assays, cell input is an important aspect in standardisation (The 

United States Pharmacopeial Convention 2010a; The United States Pharmacopeial 

Convention 2010b): the use of an automatic cell counter, cell viability (e.g. using trypan 

blue), and evaluation of α-2,3:α-2.6 sialic acid ratios present on the cell surface, are all 

aspects that should be taken into account and investigated since they could be important for 

the consistency of the assay during different analytical sessions. 

Another important aspect of optimisation and standardisation is the viral input used 

in the pp-NT assay. The measure of the transduction activity of pp, as performed in this 

thesis, evaluating the expression of reporter genes is the most straightforward technique to 

evaluate pp titres. However, this method cannot discriminate between cells with single or 

multiple integration events (due to multiplicity of infection) (Geraerts et al. 2006). 

Furthermore, especially when using enzymes as reporters (e.g. firefly luciferase), the titres 

can also depend on the level of reporter protein expression, which could be related to the 

vector integration in more or less active regions of the chromatin (Geraerts et al. 2006). 

Different research groups exploiting pp of influenza virus and other viruses 

determine the viral input evaluating the number of viral particles. These quantification 

methods usually consist on evaluation of the HIV-1 viral core protein p24 amount (directly 

correlating with number of particles), or in quantification of pp genomes through reverse 

transcription real-time or quantitative PCR, or evaluating pp reverse transcriptase activity 

(Geraerts et al. 2006). Evaluation of p24 protein content and of reverse transcriptase 



 

228 

activity can be readily achieved using commercial kits that are commonly used in HIV-1 

testing (Geraerts et al. 2006). 

Instruments able to track and characterise nanoparticles can also be employed for 

evaluation of viruses and vaccines. These instruments are able to evaluate not only the 

number of particles but also their dimension, and if they aggregated (Carr and M. Wright 

2013). These instruments can potentially help to differentiate defective pp. Firstly it can 

discriminate if the pp harbour on their surface HAs, since their presence should change the 

diameter of the pp. Secondarily, if coupled with reverse transcription real-time or 

quantitative PCR it permits to establish the ratio of genome-containing or empty pp (Filipe, 

Jiskoot and Hawe 2011). Preliminary experiments (Appendix Table 9) performed using 

Nanosight LM10, one of these instruments, show that the number of pp is of the same 

order of magnitude in the preparations of different HA pp and in pp without envelope 

glycoproteins, but the two differ for particle dimensions. This means that evaluating pp 

titre using simply particle number does not correlate with viral entry since particles without 

envelope glycoproteins cannot enter into cells, or if they enter, do not integrate their 

genome since they remain trapped in the endosomes to be subsequently degraded (Voelkel 

et al. 2012). If this Nanosight result will be confirmed by further experiments, it will 

underline the impossibility to normalise viral input using p24 measurement or quantitative 

reverse transcription PCR, since these methods are related to the particle number and not to 

the ability of the particle to enter into cells, the factor that is evaluated in a pp-NT assay. 

A good compromise used by different groups (Hai et al. 2012; W. Wang, Xie, et al. 

2010), in relation to the use of pp in neutralization or other assays, is also to standardise the 

pp input using HA content. However, technical problems can be encountered. In fact, the 

HA content could be expressed by different measures: HA content can be the total HA 

protein amount, the amount of only the active (cleaved) HA, or the haemagglutinating 

units. Evaluation of total HA quantity can be easily achieved using ELISAs that are 

already commercially available or that can be developed in-house; however it could be 

necessary to use a specific kit for each HA subtype or strain. Quantification of 

haemagglutinating units can be easily performed with the haemagglutination assay (World 

Health Organization 2002). However, it has been shown that normalising the virus input 

using haemagglutination units instead of reporter gene expression can result in lower 

reporter signal levels for some pp since a lower number of particles is used (Hai et al. 

2012). This is probably due either to HA differential expression on the viral surface (some 

HA can be more expressed than others (Hai et al. 2012)) or to the decrease of HA affinity 

for sialic acid and consequentially reduction in viral entry (Hai et al. 2012). 
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To quantify cleaved and uncleaved HA, quantitative Western blotting using 

densitometry needs to be performed (Taylor and Posch 2014; Changgui Li et al. 2010). 

This assay requires complex development and standardisation: internal loading controls 

need to be used, membrane transfer needs to be consistent between different experiments, 

quantity standards (e.g. different amount of recombinant HA) need to be prepared and 

validated. Furthermore this assay requires the use of specific antibodies against the protein 

of interest, and for this reason it will be necessary to isolate at least two 

antibodies (recognising HA1 and HA2) or a suitable polyclonal preparation for each HA 

subtype that needs to be tested. 

Ultimately, establishing cut-off values for pp-NT to be used to discriminate 

between positive or negative sera (Garcia et al. 2010) and subsequently for correlation with 

protection (Alberini et al. 2009) will be necessary. 

7.1.6 Use of pseudotype particles in other serological/immunological assays 

Different groups have now used pp as surrogate antigens not only in neutralization 

but also in HI: they have shown that serological results are comparable with the classic HI 

performed using native viruses (Yang et al. 2014; W. Wang, Xie, et al. 2010). However, 

studies have focussed only on Highly Pathogenic Avian influenza (HPAI) and human 

seasonal strains and for this reason it will be of interest to evaluate the new pp described in 

Chapter 3. 

A rudimentary experimental ELISA using pp was investigated: in preliminary 

experiments it was observed that an influenza H5 pp fails to coat the wells of a standard 

ELISA plate, which was possible using recombinant HAs (Protein Sciences, cat.no. 3006 

A/Vietnam/1203/2004) (Appendix Figure 22). The presence of Fetal Bovine Serum (FBS) 

in the pp production media may contribute to this effect. A potential solution that should be 

investigated further was found in a sandwich ELISA. This will not require removal of FBS 

protein (i.e. albumin), which was a problem (Chapters 2, 3 and 6) when purification 

methods are not used (e.g. gel-filtration and commercial available kits). In this sandwich 

ELISA an antibody directed against the specific HA head will be coated on the well 

surface and it should be able to capture strain/subtype specific pp, permitting the use of 

sera or other monoclonal or polyclonal preparations. However, to be able to apply this 

format, HA-head specific antibodies need to be used, and a precise optimisation for each 

pp will be necessary, with particular attention paid to the origin of the antibodies used 

during the coating (they should be of a different species to avoid cross-reactivity with the 

ones that require testing). 
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In Chapter 1, the use of pp in post-attachment neutralization assays (Oh et al. 2010) 

was described. This allows specific detection of antibodies that inhibit virus-endosome 

fusion. However, the method is scarcely used. The development and optimisation of a 

post-attachment neutralization assay that does not require incubation at 4°C could be an 

advantage and it was partially investigated. Preliminary results have shown that 

neutralization occurs when HA head-directed antibodies are added 1 h after HEK293T/17 

cells and HA pp were mixed together at room temperature (Appendix Figure 23). A 

possible solution is to investigate centrifugation (spinoculation) to facilitate and enhance 

attachment of the pp to the cell surface, a necessary step to discriminate between 

head-directed and stalk directed antibodies. 

Recently multiplexing of HA pp-NT using avian sera was also described (Molesti, 

Wright, et al. 2014). The major advantage of multiplexing includes the possibility to test 

sera against two or more different pp at the same time, reducing the quantity of sample to 

be used. However, a disadvantage could be the fact that in the presence of cross-reactive 

antibodies, which are present in human sera according to the results presented in 

Chapters 5 and 6, the pp could compete during the neutralization. It will be necessary for 

this reason to perform the multiplexed pp-NT using stalk-directed monoclonal antibodies 

and see if any differences in neutralizing titres are detected in comparison to single pp-NT. 

7.1.7 Application of influenza haemagglutinin pseudotype particles/lentiviral 

vectors in vaccine and gene therapies 

Recently lentiviral vectors bearing HA on their surface were used as gene therapy 

vectors, as they are able to efficiently transfer a gene to the airways of a mouse 

model (Ostrowski et al. 2014; Patel et al. 2013). This would be a promising development, 

especially for pathology of the respiratory system (e.g. Cystic Fibrosis, Primary Ciliary 

Dyskinesia) (Ostrowski et al. 2014; Patel et al. 2013). Nevertheless, the potential 

application of these vectors in humans has one problematic aspect: humans, unlike 

laboratory mice, can encounter influenza HA during their lifetime, and can express 

mucosal-derived antibodies that are potentially able to stop the entry of the lentiviral 

vectors into the target cells and thus prevent gene transfer. In this case, age and 

immunological status of the patient could be an important aspect for gene therapy and the 

possibility to choose between different avian and animal HA lentiviral vectors/pp on the 

basis of prevalence of the antibodies in potential patients could be an advantage. In fact, 

immunological tests (i.e. pp-NT assay) can be used as tools to select an HA to which a 

lowered or absent antibody response is detected and that can be safely and effectively used 

in gene therapy. Even if this strategy appears over complicated, the same principle is used 
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when adenoviral and adeno-associated gene therapy is applied (Ahi, Bangari and Mittal 

2011). 

Influenza virus-like particles (VLPs) are being investigated as influenza vaccines 

by different groups since they permit the presentation of proteins in their natural 

conformation (S.-M. Kang, M.-C. Kim and Compans 2012; Haynes 2009; Bright et al. 

2007). In addition, VLPs possessing the HA as the envelope and lentiviral or retroviral gag 

as the core have been used successfully as vaccines in animal models (Haynes 2009; Guo 

et al. 2003). Furthermore, VSV bearing influenza HAs on their envelope were also shown 

to be a successful candidate vaccines (Ryder et al. 2014). With adequate precautions, 

lentiviral pp could therefore be used as vaccines too. For example, recently, 

non-integrating lentiviral vectors have been described (Farazmandfar et al. 2012; Banasik 

and McCray 2010). These vectors permit the transduction of target cell lines, however the 

genes within the vector are expressed but not integrated. They can for this reason be used 

efficiently as a vaccine permitting the expression of proteins of interest after entry, 

potentially also inducing T-cell responses, in a similar manner to that observed using 

adenoviral and Modified Vaccinia Ankara (MVA) vectors. 

	  



 

232 

CHAPTER 8  
Conclusion 

In this thesis the production of influenza HA lentiviral pp as novel reagents for the 

study of influenza HA specific antibody responses is described. The generation of pp 

bearing HA on their surface was shown to require optimisation, particularly of the 

proteases used to activate the HA and the quantity of envelope protein used. 

The pp were used to investigate amino acid residues that could influence HA 

cleavage, demonstrating that they are useful tools to study the basic biology of the 

influenza virus. Furthermore, with the addition of a NA-encoding plasmid to the 

transfection mixes, it is possible to study the co-dependency and potentially evolution of 

HA and NA functions. 

The use of pp as surrogate antigens in neutralization assays was also shown to be 

extremely useful to detect cross-reactive antibody responses in vaccine immunogenicity 

studies. This was particularly notable when using pp harbouring a chimeric HA, where it 

was possible to distinguish the presence of antibodies that were stalk- or head-directed. 

Lastly, it was also shown that it is still necessary to evaluate different aspects of pp 

characterisation and pp-NT optimisation/standardisation. Nevertheless, the results 

presented in this thesis provide additional incentive to optimise, standardise, and validate 

the pp technology as a method to evaluate vaccine immunogenicity and for the surveillance 

of influenza viruses in animals and humans. 
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APPENDIX 

A.1 Additional Figures and Tables for Chapter 3 

 
Appendix Figure 1: Flow chart legend 
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The solid black line identifies the flow followed. 
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The symbol is used to identify a decision point that can result in two different 
paths. 
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Appendix Figure 2: Flow chart outlining the cloning of A/Solomon Islands/3/2006 H1 and 
A/Texas/05/2009 H1 HAs into pI.18 expression vector 
This subcloning strategy differs from the one reported in Figure 22 since to introduce the Kozak 
sequence, PCR was necessary. After failure of HA amplification through PCR using Pfx SuperMix, 
HA was amplified using gradient PCR on previously digested and purified HA. Other steps were 
followed as for HA cloning in Figure 23 
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Appendix Figure 3: Flow chart outlining the cloning of A/Brisbane/59/2007 H1 HA into pI.18 
expression vector 
This subcloning strategy follows the concepts summarised in Figure 23. However, failure of 
efficient amplification and purification of HA gene have required cloning using a Zero Blunt® 
TOPO® PCR cloning kit. In parallel, traditional cloning was also performed without success. The 
plasmid resulting from the Zero Blunt® TOPO® PCR cloning was then used for a traditional sub 
cloning as shown in Figure 22. 
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Appendix Figure 4: Flow chart outlining the cloning of A/duck/Italy/1447/2005 H1 HA into 
pI.18 expression vector 
The strategy followed is similar to Figure 23. However for poor primer design (i.e. reverse primer 
with a restriction enzyme site already present in HA gene) reclining starting from PCR material 
was necessary using a sticky- and blunt-end (EcoRV) cloning strategy 
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Appendix Figure 5: Flow chart outlining the cloning of A/duck/Germany/1215/1973 H2 HA 
into phCMV1 expression vector 
After the failure of the first cloning of the HA after amplification with Pfx SuperMix, the HA gene 
was cloned following a procedure similar to the one outlined in Figure 23.  
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Appendix Figure 6: Flow chart outlining the cloning of A/California/7/2004 H3 HA into pI.18 
expression vector 
Cloning was successful after HA amplification using Pfx SuperMix and a procedure similar to 
Figure 23. However for a mutation present in the HA sequence, an additional corrective 
mutagenesis was required. 
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Appendix Figure 7: Flow chart outlining the cloning of A/Wisconsin/67/2005 H3 HA into 
pI.18 expression vector 
HA gene from plasmid was digested and purified to be then used as starting material in a cloning 
procedure as reported in Figure 23. 
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Isolation of plasmid DNA 
 from bacterial culture 

L 

DNA digestion using EcoRI and XhoI restriction 
endonucleases in Buffer O 

DNA digestion using EcoRI and SalI  restriction 
endonucleases in Buffer O 

YES 
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Appendix Figure 8: Flow chart outlining the cloning of A/turkey/Ontario/6118/1968 H8 HA 
into phCMV1 expression vector 
Cloning was successful after HA amplification using Pfx SuperMix and procedure similar to Figure 
23. 

Is the HA 
sequence 
correct? 

YES 

Are the 
plasmids tested 
positive for the 

insert? 
DISCARD 

NO 

NO 

CLONING 
SUCCESSFUL 

YES 

Correct the 
sequence using 

mutagenesis 

L 

All plasmids were 
positive for the insert 

Sanger sequencing 
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Appendix Table 1: Decision table for the production of influenza A pp 
The protease-expressing plasmid quantities are for a 6-well transection. To perform the transfection 
in a 10 cm plate as described in section 2.3.2, it is necessary to double the quantities. The optimal 
quantity is highlighted in green. Titres of pp from optimization experiments are reported using the 
following code: 
- indicates pp titres <1×106 RLU/ml 
+ indicates pp titres between 1×106-1×107 RLU/ml;  
++ indicates pp titres between 1×107-1×108 RLU/ml;  
+++ indicates pp titres between 1×108-1×109 RLU/ml;  
++++ indicates pp titres between 1×109 and 1×1010 RLU/ml. 

Conditions that were not tested are reported with a slash. 
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Appendix Figure 9: Comparison between 48 h and 72 h collections of 
A/duck/Czechoslovakia/1956 H4pp 
H4pp was produced using the protocol described in section 2.3.1 and with the addition of 500 ng 
pCAGGS-TMPRSS2 to the transfection mix. 
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Appendix Figure 10: HAT (TMPRS11D) expression profile 
A. Expression profile available via Expression Atlas database that shows the results of an 
expression experiment. Greater colour intensity means higher expression. B. Expression profile 
available via GeneHub-GEPIS database. 
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Appendix Figure 11: TMPRSS2 expression profile 
A. Expression profile available via Expression Atlas database that shows the results of three 
different expression experiments. Greater colour intensity means higher expression. B. Expression 
profile available via GeneHub-GEPIS database. 
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Appendix Figure 12: TMPRSS4 expression profile 
A. Expression profile available via Expression Atlas database that shows the results of three 
different expression experiments. Greater colour intensity means higher expression. B. Expression 
profile available via GeneHub-GEPIS database. 
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A.2 Chapter 4 R codes 

A.2.1 Cross-reactivity map R code 
#Load R packages 
library(RColorBrewer) 
library(gplots) 
 
#Load cross-reactivity file (cross.csv) 
refsera <-read.csv("cross.csv", sep=",") 
 
#Transform the file in matrix 
row.names (refsera) <-refsera$X 
refsera<-refsera[,2:21] 
refsera_matrix <-data.matrix(refsera) 
 
#Create the personalized colour palette 
my_palette <-colorRampPalette (c("white", "green4")) (n=17) 
 
#Generate the map using heatmap.2 function and 
#the personalized colour palette 
refsera_heatmap <- heatmap.2 (refsera_matrix, Rowv=NULL, 

Colv=FALSE,  dendrogram="none", col = my_palette, key=T, 
keysize=1, symkey=FALSE,density.info=c("none"), scale="none", 
margins=c(1,1), trace=c("none"), 
colsep=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
), rowsep=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), 
sepcolor="snow4", sepwidth=c(0.01,0.01), lmat=rbind( c(0, 4), 
c(0,1), c(2,3) ), lhei=c(1.5, 5, 0.5), lwid=c(0.1, 4)) 

A.2.2 Percentage identity map R code 
#Load R packages 
library(RColorBrewer) 
library(gplots) 
 
#Load csv the percentage identity file (ident.csv) 
refsera_id <-read.csv("ident.csv", sep=",") 
 
#Transform the file in matrix 
row.names (refsera_id) <-refsera_id$X 
refsera_id<-refsera_id[,2:21] 
refsera_id_matrix <-data.matrix(refsera) 
 
#Create the personalized colour palette 
my_palette <-colorRampPalette (c("white", "green4")) (n=17) 
 
#Generate the map using heatmap function and  
#the personalized colour palette  
#showing the percentage identity values 
refsera_id_heatmap <- heatmap.2 (refsera_id_matrix, Rowv=NULL, 

Colv=FALSE,  dendrogram="none", col = my_palette, key=T, 
keysize=1, symkey=FALSE,density.info=c("none"), scale="none", 
margins=c(1,1), trace=c("none"), 
colsep=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
), rowsep=c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15), 
sepcolor="snow4", sepwidth=c(0.01,0.01), lmat=rbind( c(0, 4), 
c(0,1), c(2,3) ), lhei=c(1.5, 5, 0.5), lwid=c(0.1, 4),  
cellnote=as.matrix(refsera_id),notecol="black") 
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A.3 Additional Figures and Tables for Chapter 5 

 
Appendix Figure 13: Alignment of A/South Carolina/1/1918 H1, A/duck/Memphis/546/1974 
H1, and of the combined chimeric HA 
The alignment shows the H1 stalk region in red and the H11 head region in blue. 
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Appendix Figure 14: Alignment of the cloned chimeric HA Fw and Rev amino acid sequences 
with the assembled chimeric HA amino acid sequence 
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Appendix Figure 15: IC50 of sera tested with H5 and H7 pp-NT assay  
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Data were generated by Dr. 
Eleonora Molesti (Universities of Greenwich and Kent, Medway, UK) and then re-analysed. 
A. Results against A/Vietnam/1194/2005 H5pp; B. Results against A/turkey/Turkey/1/2005 H5pp; 
C. Results against A/Netherlands/219/2003 H7pp. 
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Appendix Figure 16: Age-stratified IC50 of sera tested with H5 and H7 pp-NT assay  
Comparison between IC50 measured pre- and post-vaccination with A/Wisconsin/67/2005 (H3N2), 
A/Solomon Island/3/2006 (H1N1) and B/Malaysia/2506/2004. Data were generated by Dr. 
Eleonora Molesti Universities of Greenwich and Kent, Medway, UK) and then re-analysed. A. 
Results against A/Vietnam/1194/2005 H5pp; B. Results against A/turkey/Turkey/1/2005 H5pp; C. 
Results against A/Netherlands/219/2003 H7pp. 
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Appendix Table 2: Quartiles and medians of the IC50 distributions of the 2007-2008 study 
 

 PRE POST 

A/Solomon Islands/3/2006 

H1pp 

1st Quartile 2129 41654 
Median 4811 65710 
3rd Quartile 15358 118267 

A/Wisconsin/67/2005 H3 

(A/Udorn/307/1972 N2) pp 

1st Quartile 1311 3892 
Median 2465 5957 
3rd Quartile 11670 9257 

A/New Caledonia/20/1999 

H1pp 

1st Quartile 6001 10981 
Median 8668 25822 
3rd Quartile 13432 87436 

A/Korea/426/1968 

H2pp 

1st Quartile 2814 11142 
Median 4584 15683 
3rd Quartile 6529 25909 

A/Udorn/307/1972  

H3pp 

1st Quartile 2549 5639 
Median 4925 6572 
3rd Quartile 7820 12063 

A/duck/Czechoslovakia/1956 

H4pp 

1st Quartile 410 1170 
Median 746 1739 
3rd Quartile 1703 4541 

A/Vietnam/1194/2005 

H5pp 

1st Quartile 161 884 
Median 544 1276 
3rd Quartile 1882 2747 

A/turkey/Turkey/1/2005 

H5pp 

1st Quartile 96 455 
Median 242 649 
3rd Quartile 398 1201 

A/Netherlands/219/2003 

H7pp 

1st Quartile 3 80 
Median 43 179 
3rd Quartile 222 781 

A/Shanghai/2/2013 

H7pp 

1st Quartile 2692 3168 
Median 3575 4816 
3rd Quartile 4652 8275 

A/chicken/Italy/1082/1999 
H7pp 

1st Quartile 139 180 
Median 619 343 
3rd Quartile 1235 651 

A/Hong Kong/1073/1999 

H9pp 

1st Quartile 277 452 
Median 392 1131 
3rd Quartile 621 1669 

A/chicken/Germany/N49 H10 
pp 

1st Quartile 941 2956 
Median 2975 6070 
3rd Quartile 4655 7533 
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A/duck/Alberta/60/1976  

H12pp 

1st Quartile 1 41 
Median 41 149 
3rd Quartile 87 255 

A/mallard/Astrakhan/263/1982  

H14pp 

1st Quartile 238 0 
Median 352 84 
3rd Quartile 1400 1362 

A/shearwater/West Australia/2576/1979 

H15pp 

1st Quartile 18 100 
Median 78 225 
3rd Quartile 193 892 

A/South Carolina/1/1918 

H1pp 

1st Quartile 927 2584 
Median 1588 3558 
3rd Quartile 1997 5791 

A/duck/Memphis/546/1974 

H11pp 

1st Quartile 0 0 
Median 1 21 
3rd Quartile 24 537 

Chimeric H11 head/H1 stalk pp 
1st Quartile 324 944 
Median 547 1609 
3rd Quartile 929 2782 
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Appendix Table 3: Quartiles and medians of the IC50 distributions of the 2007-2008 study 
after age- stratification 

 

 ADULTS ELDERLY 
 PRE POST PRE POST 

A/Solomon Islands/3/2006 

H1pp 

1st Quartile 1117 25414 3749 57939 
Median 2280 62831 14927 67767 
3rd Quartile 9441 123354 27536 123684 

A/Wisconsin/67/2005 H3 

(A/Udorn/307/1972 N2) pp 

1st Quartile 1412 6150 645 13305 
Median 7775 19447 2207 82321 
3rd Quartile 17759 34291 6933 127519 

A/New Caledonia/20/1999 

H1pp 

1st Quartile 4515 8638 2249 11508 
Median 5958 15146 3727 17605 
3rd Quartile 9458 24820 4276 29248 

A/Korea/426/1968 

H2pp 

1st Quartile 5867 7399 2608 3678 
Median 6561 10527 3920 6691 
3rd Quartile 9724 29110 5331 9765 

A/Udorn/307/1972  

H3pp 

1st Quartile 3129 5386 2197 5517 
Median 4891 6392 5230 6633 
3rd Quartile 5994 14075 8185 9966 

A/duck/Czechoslovakia/1956 

H4pp 

1st Quartile 636 1316 313 1031 
Median 807 2352 417 1679 
3rd Quartile 2682 5406 1311 2870 

A/Vietnam/1194/2004 

H5pp 

1st Quartile 520 1107 78 452 
Median 900 1907 127 892 
3rd Quartile 2552 3377 965 1602 

A/turkey/Turkey/1/2005 

H5pp 

1st Quartile 242 418 30 501 
Median 350 716 97 581 
3rd Quartile 425 1040 179 2559 

A/Netherlands/219/2003 

H7pp 

1st Quartile 14 105 0 69 
Median 56 256 8 89 
3rd Quartile 252 1128 332 360 

A/Shanghai/2/2013 

H7pp 

1st Quartile 2888 4238 1753 2420 
Median 3505 6693 3718 3196 
3rd Quartile 4257 8502 4763 4730 

A/chicken/Italy/1082/1999 
H7pp 

1st Quartile 114 447 199 533 
Median 770 1185 601 814 
3rd Quartile 1472 1632 855 1986 

A/Hong Kong/1073/1999 

H9pp 

1st Quartile 2793 4463 581 1640 
Median 4546 6932 966 3604 
3rd Quartile 5145 7568 2297 8364 

A/chicken/Germany/N49  
H10 pp 

1st Quartile 173 290 187 252 
Median 386 356 222 602 
3rd Quartile 779 519 358 759 
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A/duck/Alberta/60/1976  

H12pp 

1st Quartile 11 13 0 0 
Median 43 93 1 2 
3rd Quartile 107 1033 47 2572 

A/mallard/Astrakhan/263/1982  

H14pp 

1st Quartile 29 120 15 94 
Median 89 539 40 155 
3rd Quartile 418 1075 119 777 

A/shearwater/West Australia/2576/1979 

H15pp 

1st Quartile 84 252 20 197 
Median 160 449 134 307 
3rd Quartile 379 1676 214 995 

A/South Carolina/1/1918 

H1pp 

1st Quartile 1006 2630 658 2409 
Median 1644 3472 1152 4350 
3rd Quartile 1913 5671 2357 6174 

A/duck/Memphis/546/1974 

H11pp 

1st Quartile 0 5 0 0 
Median 1 19 0 22 
3rd Quartile 39 626 11 2508 

Chimeric  

H11 head/H1 stalk pp 

1st Quartile 471 1119 65 768 
Median 556 1848 319 1360 
3rd Quartile 1022 2537 771 4174 
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Appendix Table 4: Quartiles and medians of the IC50 distributions of the NCT00942071 
clinical trial study 
 

 day 0 day 21 

A/New Caledonia/20/1999 

H1pp 

1st Quartile 3676 3135 
Median 4788 4736 
3rd Quartile 6236 6220 

A/Korea/426/1968 

H2pp 

1st Quartile 7419 7704 
Median 9215 10871 
3rd Quartile 13430 14697 

A/Udorn/307/1972  

H3pp 

1st Quartile 3473 7180 
Median 4938 9586 
3rd Quartile 9292 11544 

A/Wisconsin/67/2005 H3 

(A/Udorn/307/1972 N2) pp 

1st Quartile 495 3345 
Median 998 5827 
3rd Quartile 1962 15729 

A/duck/Czechoslovakia/1956 

H4pp 

1st Quartile 2121 1642 
Median 3023 2893 
3rd Quartile 3550 4184 

A/Vietnam/1194/2004 

H5pp 

1st Quartile 279 694 
Median 618 1764 
3rd Quartile 1303 2392 

A/turkey/Turkey/1/2005 

H5pp 

1st Quartile 364 797 
Median 901 1318 
3rd Quartile 1564 2327 

A/Shanghai/2/2013 

H7pp 

1st Quartile 2338 3287 
Median 2964 4261 
3rd Quartile 4425 6285 

A/Hong Kong/1073/1999 

H9pp 

1st Quartile 1422 6723 
Median 3023 8614 
3rd Quartile 6108 13346 

A/chicken/Germany/N49 H10 
pp 

1st Quartile 122 190 
Median 294 315 
3rd Quartile 397 386 

A/mallard/Astrakhan/263/1982  

H14pp 

1st Quartile 581 543 
Median 853 702 
3rd Quartile 1245 1476 

A/shearwater/West Australia/2576/1979 

H15pp 

1st Quartile 312 341 
Median 497 759 
3rd Quartile 838 1220 

A/South Carolina/1/1918 

H1pp 

1st Quartile 1045 1669 
Median 2736 3397 
3rd Quartile 4043 8896 
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A/duck/Memphis/546/1974 

H11pp 

1st Quartile 1 18 
Median 48 229 
3rd Quartile 364 1065 

Chimeric H11 head/H1 stalk pp 
1st Quartile 176 330 
Median 339 866 
3rd Quartile 647 2195 
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Appendix Table 5: Quartiles and medians of the IC50 distributions of the NCT00942071 
clinical trial study after vaccine-regimen stratification 

 

 TIV + placebo TIV + MVA-NP+M1 
 day 0 day 21 day 0 day 21 

A/New Caledonia/20/1999 

H1pp 

1st Quartile 4468 3375 3364 3135 
Median 5624 5871 3854 3750 
3rd Quartile 6763 7051 5404 5103 

A/Korea/426/1968 

H2pp 

1st Quartile 7834 7842 6928 7388 
Median 11273 10620 8687 12659 
3rd Quartile 18309 14568 9529 14709 

A/Udorn/307/1972  

H3pp 

1st Quartile 3923 7460 3258 6588 
Median 7239 11000 4575 9012 
3rd Quartile 10344 14284 6859 10981 

A/Wisconsin/67/2005 H3 

(A/Udorn/307/1972 N2) pp 

1st Quartile 685 2563 323 3554 
Median 1186 4801 909 6442 
3rd Quartile 7220 12515 1616 18170 

A/duck/Czechoslovakia/1956 

H4pp 

1st Quartile 1495 1282 2164 2025 
Median 2873 2029 3235 3362 
3rd Quartile 3545 3585 4149 5544 

A/Vietnam/1194/2004 

H5pp 

1st Quartile 391 1063 151 600 
Median 677 1669 618 2074 
3rd Quartile 1552 4014 1303 2392 

A/turkey/Turkey/1/2005 

H5pp 

1st Quartile 477 1053 304 616 
Median 849 1444 935 1318 
3rd Quartile 1983 2255 1564 2494 

A/Shanghai/2/2013 

H7pp 

1st Quartile 2428 3599 2269 2703 
Median 3168 4307 2604 4261 
3rd Quartile 4720 6436 4467 6285 

A/Hong Kong/1073/1999 

H9pp 

1st Quartile 1714 7461 1160 4819 
Median 4009 10901 2614 7989 
3rd Quartile 8119 17865 4917 11084 

A/chicken/Germany/N49  
H10 pp 

1st Quartile 146 200 76 153 
Median 388 338 264 233 
3rd Quartile 421 384 384 396 

A/mallard/Astrakhan/263/1982  

H14pp 

1st Quartile 548 534 697 531 
Median 733 693 945 1214 
3rd Quartile 1036 1013 1744 2224 

A/shearwater/West Australia/2576/1979 

H15pp 

1st Quartile 227 105 312 580 
Median 447 394 586 856 
3rd Quartile 913 1092 732 2182 

A/South Carolina/1/1918 

H1pp 

1st Quartile 991 1627 1665 1745 
Median 1981 3077 3170 3397 
3rd Quartile 4341 7282 3658 14916 
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A/duck/Memphis/546/1974 

H11pp 

1st Quartile 2 14 0 35 
Median 29 345 97 83 
3rd Quartile 784 4493 211 924 

Chimeric  

H11 head/H1 stalk pp 

1st Quartile 231 823 79 128 
Median 538 1744 256 486 
3rd Quartile 701 2249 383 2089 
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Appendix Figure 17: Fold-increase in the IC50 titres of the TIV + placebo and the TIV + 
MVA-NP+M1 groups 
A. IC50 fold-increase against A/New Caledonia/20/1999 H1pp;  
B. IC50 fold-increase against A/Korea/426/1968 H2pp; 
C. IC50 fold-increase against A/Udorn/307/1972 H3pp; 
D. IC50 fold-increase against A/Wisconsin/67/2005 (A/Udorn/307/1972 N2) H3pp; 
E. IC50 fold-increase against A/duck/Czechoslovakia/1956 H4pp; 
F. IC50 fold-increase against A/Vietnam/1194/2004 H5pp; 
G. IC50 fold-increase against A/turkey/Turkey/1/2005 H5pp; 
H. IC50 fold-increase against A/Shanghai/2/2013 H7pp; 
I. IC50 fold-increase against A/Hong Kong/1073/1999 H9pp; 
J. IC50 fold-increase against A/chicken/Germany/N49 H10pp; 
K. IC50 fold-increase against A/mallard/Astrakhan/263/1982 H14pp; 
L. IC50 fold-increase against A/shearwater/West Australia/2576/1979 H15pp; 
M. IC50 fold-increase against A/South Carolina/1/1918 H1pp; 
N. IC50 fold-increase against A/duck/Memphis/546/1974 H11pp; 
O. IC50 fold-increase against chimeric HA pp. 
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A.4 Additional Figures and Tables for Chapter 6 
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Determination of  
nucleic acid concentration 

YES 

NO 

Analytical DNA gel electrophoresis 

PCR purification with 
 QIAquick PCR purification kit 

NO 
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Digestion purification with 
 QIAquick PCR purification kit 
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nucleic acid concentration 
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any colonies 
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Changed template  
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Appendix Figure 18: Flow chart outlining the cloning of B/Brisbane/60/2008 and 
B/Bangladesh/3333/2007 HAs into pI.18 expression vector 
All details are reported in Chapter 6. Cloning procedure was similar to the one reported in Figure 
23, without requirement of DNA ligation repeat. However mutagenesis was required to correct the 
B/Brisbane/60/2008 HA sequence. 
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Appendix Figure 19: Alignment of the B/Bangladesh/3333/2007 and B/Brisbane/60/200 HA 
sequences 
The regions of the 5’ and 3’ end encoding sequences used to design the primer have 100% 
nucleotide identity. A. 5’ end encoding region in which the sequence used to design the 
primer is highlighted in green; B. 3’ end encoding region in which the sequence used to 
design the primer is highlighted in blue and the stop codon in pink.  

M
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(see section 6.2.1.6) 
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All plasmids were 
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Appendix Figure 20: Alignment of the first 100 nucleotides of the circulating influenza B 
segment 4 (HA) 
In the figure only the non-redundant sequences are shown. Consensus sequence is also reported. 
The putative Influenza B Kozak sequence CACAAA is highlighted in red.  
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Appendix Figure 21: Alignment of the cloned B/Bangladesh/3333/2007 HA Fw and Rev 
sequences with the database amino acid sequence 



 

316 

 

Appendix Table 6: Decision table for the production of influenza B pp 
The protease-expressing plasmid quantities are for a 6-well transection. To perform the transfection 
in a 10 cm plate as described in section 2.3.2, it is necessary to double the quantities. The optimal 
quantity is highlighted in green. Titres of pp from optimization experiments are reported using the 
following code: 
- indicates pp titres <1×106 RLU/ml 
+ indicates pp titres between 1×106-1×107 RLU/ml;  
++ indicates pp titres between 1×107-1×108 RLU/ml;  
+++ indicates pp titres between 1×108-1×109 RLU/ml;  
++++ indicates pp titres between 1×109 and 1×1010 RLU/ml. 

Conditions that were not tested are reported with a slash. 
 

 HAT TMPRSS2 TMPRSS4 
 500 ng 250 ng 125 ng 500 ng 250 ng 125 ng 500 ng 250 ng 125 ng 

B/Bangladesh/3333/2007 ++++ ++++ ++++ ++ +++ +++ ++++ ++++ ++++ 
B/Hong Kong/8/1973 / ++++ ++++ / ++ +++ / +++ +++ 
B/Victoria/2/1987 / +++ ++++ / + +++ / +++ ++++ 
B/Yamagata/16/1988 / +++ ++++ / + +++ / ++++ ++++ 
B/Florida/4/2006 / ++++ ++++ / ++ +++ / +++ ++++ 
B/Brisbane/60/2008 / ++ ++ / - - / ++ +++ 
 

Appendix Table 7: Quartiles and medians of the IC50 distributions reported in Figure 85 
 

 B/Brisbane/60/2008 pp B/Hong Kong/8/1973 pp B/Florida/4/2006 pp 

day 0 day 21 day 0 day 21 day 0 day 21 

1st Quartile 5179 9487 1721 4614 413.6 1782 
Median 11103 12886 2722 7448 1250 3308 
3rd Quartile 31627 26065 4508 9815 2212 4557 

 
 
 

Appendix Table 8: Quartiles and medians of the IC50 distributions reported in Figure 86 
 

 TIV + placebo TIV + MVA-NP+M1 

day 0 day 21 day 0 day 21 

B/Brisbane/60/2008 pp 
1st Quartile 9503 9996 3122 9421 
Median 21198 14226 5228 12886 
3rd Quartile 27902 42864 35366 26054 

B/Hong Kong/8/1973 pp 
1st Quartile 2979 6795 1399 4326 
Median 4236 8657 2024 5083 
3rd Quartile 8053 10837 2676 8973 

B/Florida/4/2006 pp 
1st Quartile 1425 2683 391 1011 
Median 2047 3904 606 2638 
3rd Quartile 4253 5200 1278 3743 
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A.5 Preliminary Experiments 

Appendix Table 9: Evaluation of pseudotype particles using Nanosight LM10 
 

 
A/Udorn/307/1972 

H3pp ∆ envelope pp 

Mode (nm) 130 126 

Mean (nm) 162.46 150.94 

Standard Deviation(nm) 61.23 50.33 
Equivalent particle concentration 

(particles/ml) 7.16×108 3.52×108 
 
 
 
 
 

 
Appendix Figure 22: HApp do not coat ELISA plates 
Different amount of A/Vietnam/1203/2004 H5pp, 200 ng of recombinant A/Vietnam/1203/2004 
H5 (recombinant H5), and 500 ng of BSA (Sigma-Aldrich, cat.no.) were coated on an ELISA plate, 
and subsequently detected using anti-A/turkey/Turkey/1/2005 H5N1 (APHA) diluted at 1:500 in 
PBS (Sigma-Aldrich, cat.no. D8537) and rabbit anti-chicken IgY (whole molecule)−Peroxidase 
antibody (Sigma-Aldrich, cat.no. A9046) diluted at 1:4000 in PBS. 
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Appendix Figure 23: Pp post-attachment neutralization assay performed at RT 
HEK293T/17 cells and A/South Carolina/1/1918 H1pp were incubated together and then 4 
different antibody preparations (at a concentration corresponding to their IC90) were added to the 
cell-pp mix at different time-points. 
C179 was used since it is a stalk directed antibody and can neutralize influenza virus after virus 
post-attachment to cells. FE1723 was kindly provided by Dr. Davide Corti (Institute for Research 
in Biomedicine, Bellinzona, Switzerland), and neutralized H1pp via binding of the HA head region 
and does not neutralize influenza virus post-attachment. The anti-A/duck/Italy 1447/2005 (H1N1) 
serum was also used. FBS was used as neutralization negative control. 
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