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Has the Volatility of U.S. Inflation Changed

and How?

Stefano Grassi and Tommaso Proietti

Abstract

The local level model with stochastic volatility, recently proposed for U.S. Inflation by Stock

and Watson (ÒWhy Has U.S. Inflation Become Harder to Forecast?Ó, Journal of Money, Credit

and Banking, Supplement to Vol. 39, No. 1, February 2007), provides a simple yet sufficiently

rich framework for characterizing the evolution of the main stylized facts concerning the U.S.

inflation. The model decomposes inflation into a permanent component, evolving as a random

walk, and a transitory component. The volatility of the disturbances driving both components is

allowed to vary over time. The paper provides a full Bayesian analysis of this model and

readdresses some of the main issues that were raised by the literature concerning the evolution of

persistence and predictability and the extent and timing of the great moderation. The assessment of

various nested models of inflation volatility and systematic model selection provide strong

evidence in favor of a model with heteroscedastic disturbances in the permanent component,

whereas the transitory component has time invariant size. The main evidence is that the great

moderation is over, and that volatility, persistence and predictability of inflation underwent a

turning point around 1995. During the last decade, volatility and persistence have been increasing

and predictability has been going down.

KEYWORDS: marginal likelihood, Bayesian model comparison, auxiliary particle filter,

stochastic volatility, great moderation, inflation persistence
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1 Introduction

Inflation’s volatility has attracted a great deal of attention recently; the interest has

been sparked by the debate on the Great Moderation, that has been documented for

real economic aggregates. Inflation stabilization is indeed a possible source of the

reduction in the volatility of macroeconomic aggregates. The issue is also closely

bound up with inflation persistence and predictability. In an influential paper Stock

and Watson (2007), using a local level model with stochastic volatility, document

that inflation is less volatile now than it was in the 1970s and early 1980s; more-

over, persistence, which measure the long run effect of a shock, has declined, and

predictability has increased.

There is still an ongoing debate about the statistical significance of inflation

persistence and its stability over time, see Pivetta and Reis (2007), Cogley, Prim-

icieri, and Sargent (2007), Cecchetti, Hooper, Kasman, Shoenholtz, and Watson

(2007), among others. Recently Bos, Koopman, and Ooms (2007) analyzed a U.S.

core inflation series (excluding food and energy) as a long memory process sub-

ject to heteroscedastic shocks, and documented remarkable changes, taking place

about at the time of the Great Moderation (1984), in the volatility of the series and

the fractional integration parameter (which is the measure of persistence adopted in

that paper).

In this paper we reconsider the unobserved components model of U.S. in-

flation estimated in Stock and Watson (2007), referred to as the local level model

with stochastic volatility (UC-SV). The model provides a simple yet sufficiently

rich framework for discussing the main stylized facts concerning inflation, such as

the changes in persistence and predictability. The model postulates the decompo-

sition of observed inflation into two components: the permanent component (or

underlying inflation) which captures the trend in inflation, and the transitory com-

ponent, which captures the deviations of inflation from its trend value. We will start

from a specification such that both components are driven by disturbances whose

variance evolves over time according to a stationary stochastic volatility process,

and will attempt to assess the significance of the changing volatility in each of the

components.

The contributions of this paper are the following: we provide a full Bayesian

analysis, so that, unlike the current literature, we do not assume that some of the pa-

rameters, namely the variances of the stochastic volatility components, are known.

Secondly, we carry out systematic model selection by comparing the marginal like-

lihood implied by the different models of inflation volatility. The marginal likeli-

hood is estimated according to the Chib and Jeliazkov (2001) algorithm.

The interesting final result is that we find strong support for the specifica-

tion with stochastic volatility in the permanent component, but not in both. We
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Figure 1: Quarterly U.S. Inflation, y
t
= 400∆ lnCPI

t

document that persistence is higher than in previous studies and is subject to a sig-

nificant increase starting from the second half of the 90’s, whereas predictability

has decreased somewhat at about the same time.

This paper is organized as follows. In Section 2 we present the local level

model with stochastic volatility. Section 3 illustrates the Monte Carlo Markov

Chain (MCMC) sampling scheme used to perform Bayesian inference for this model.

In Section 4 we present and discuss the estimation results. In Section 5 we describe

the Chib and Jeliazkov (2001) approach to the evaluation of the marginal likelihood.

The results are used to select the final model among four competitors. Section 6

concludes the paper.

2 The UC-SV Model

The paper focuses on the quarterly inflation rate constructed from the Consumer

Price Index (All Urban Consumers, seasonally adjusted), made available by the

U.S. Bureau of Labor Statistics. The quarterly index is obtained from the monthly

index by computing the average of the three months that make up each quarter;

if we denote the quarterly series by CPIt , the annualized quarterly inflation rate,

denoted yt , t = 1, ...,T, is computed as yt = 400∆ lnCPIt . The series is plotted in

figure 1 and is available for the sample period 1960:q1 –2008:q3.
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The most general specification of the UC-SV model with stochastic volatil-

ity represents inflation as the sum of an underlying level, denoted here by αt , which

evolves as a random walk, and a transitory component:

yt = αt +σεtεt , εt ∼ N(0,1),
αt = αt−1 +σηtηt , ηt ∼ N(0,1),

(1)

where εt and ηt are independent standard normal Gaussian disturbances and their

size, σηt and σεt , respectively evolve over time according to a SV process. Denoting

h1,t = lnσ2
εt and h2,t = lnσ2

ηt ,

h1,t = µ1 +φ1h1,t−1 +κ1,t , h1,0 ∼ N 0,
σ2

κ1

1−φ2
1

)
, κ1 ∼ N(0,σ2

κ1
),

h2,t = µ2 +φ2h2,t−1 +κ2,t , h2,0 ∼ N 0,
σ2

κ2

1−φ2
2

)
, κ2 ∼ N(0,σ2

κ2
).

(2)

The model encompasses the traditional stochastic volatility model that is widely

used in finance (see for instance Shepard, 2006), which arises when the process αt

degenerates to a constant.

The specification of the stochastic volatility processes differ only slightly

from Stock and Watson (2007) and Cecchetti, Hooper, Kasman, Shoenholtz, and

Watson (2007), who assume a random walk process for the log-variances hi,t , i =
1,2. In fact, their specification is encompassed by (2), which is a more canonical

specification of a volatility model (see for instance Jacquier, Polson, and Rossi,

1994, and Kim, Shepard, and Chib, 1998), since it arises as the discrete-time ap-

proximation to the Ornstein-Uhlenbeck continuous time process used in finance,

and ensures the stationarity of ηt and εt , provided that |φi|< 1, i = 1,2. As a matter

of fact, when the autoregressive coefficients φi are close to unity and the constants

µi, i = 1,2, are close to zero, specification (2) is virtually indistinguishable from a

random walk.

When both variances σ2
εt and σ2

ηt do not vary with time, the model reduces to

the the traditional local level model. The latter has a IMA(1,1) reduced form, ∆yt =
ξt +ϑξt−1, with ξt ∼ NID(0,σ2). The structural parameters are related to the re-

duced form parameters by the two equations σ2(1+ϑ2) = σ2
η +2σ2

ε , σ2ϑ =−σ2
ε ,

which are obtained by equating the autocovariances at lags 0 and 1, respectively;

from these we obtain the moving average parameter ϑ =
[
(q2 +4q)

1
2 −2−q

]
/2,

where q = σ2
η/σ2

ε is the signal to noise ratio, and the prediction error variance

(p.e.v.), σ2 = −σ2
ε /ϑ . Notice that ϑ is restricted within the range [-1,0]. The lo-

cal level model has a long tradition and a well-established role in the analysis of

3
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economic time series, since it provides the model-based interpretation for the popu-

lar forecasting technique known as exponential smoothing, which is widely used in

applied economic forecasting and fares remarkably well in forecast competitions;

see Muth (1960) and the comprehensive reviews by Gardner (1985, 2006). In the

sequel we shall also consider the cases when either σ2
εt or σ2

ηt , or both, are constant.

The UC-SV model can be considered as an IMA(1,1) model with time-

varying p.e.v. and moving average parameter. This suggests taking, as a local

measure of persistence, Pt = 1+ϑt , where ϑt varies with time according to the

values of the time-varying signal to noise ratio qt = σ2
ηt/σ2

εt . The quantity Pt de-

creases linearly from 0 to 1 as ϑ increases from -1 to 0. Cecchetti, Hooper, Kasman,

Shoenholtz, and Watson (2007) use the implied time varying first order autocorre-

lation of ∆yt , as a measure of persistence; the local autocorrelation (i.e. conditional

on σ2
ηt and σ2

εt) is ρt(1) =−1/(qt +2) =ϑt/(1+ϑ2
t ). Alternatively, we can use the

(conditional) normalized spectral generating function at the zero frequency, which

is

P∗
t =

σ2
ηt

σ2
ηt +2σ2

εt

= 1+
2ϑt

1+ϑ2
t

= 1+2ρt(1).

This measure decreases monotonically from 0 to 1 as ϑ increases from -1 to 0.

As a measure of local predictability we can take the prediction error vari-

ance, conditional on {hi,t , i = 1,2, t = 1, . . . ,T}, which is defined as

σ2
t =−

σ2
εt

ϑt
.

A relative measure of predictability can be defined in terms of the (Granger and

Newbold, 1986, p. 310) forecastability index:

Predt = 1−
Var(ξt |hi,t)

Var(∆yt |hi,t)
=

ϑ2
t

1+ϑ2
t

. (3)

In terms of the parameters of the UC-SV, the prediction error variance equals

Var(ξt |hi,t) =
σ2

ηt

(1+ϑ)2 , whereas the variance Var(∆yt |hi,t) = σ2
ηt + 2σ2

εt . The above

measure ranges between 0 (ϑt = 0) and 0.5 (ϑt = −1), and it is negatively related

to the persistence of the process. As a matter of fact, as ϑt ranges from -1 to 0,

predictability decreases from its maximum, 0.5, to zero.

3 Bayesian Estimation

This section provides an overview of the MCMC methodology adopted for the esti-

mation of the UC-SV model. All inferences are based on a Gibbs sampling scheme,
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according to which samples are drawn componentwise from the full conditionals;

for the components which cannot be sampled directly a Metropolis-Hasting sub-

chain is used within the Gibbs sampling cycle. In particular, the posterior of the

AR parameters, φ1 and φ2, is not available in closed form; see Kim, Shepard, and

Chib (1998) and Bos and Shephard (2006). More details on the specification of the

prior distributions, the full conditionals and the Metropolis-within Gibbs steps are

provided in Appendix A.

Let θ =(µ1,µ2,φ1,φ2,σ
2
κ1
,σ2

κ2
) denote the vector of hyperparameters, hi, i=

1,2, be the collection of the values of the latent stochastic volatility processes, and

α and y denote the stack of the values of permanent inflation and the series, respec-

tively. The Gibbs sampling scheme can be sketched as follows:

1. Initialize hi,θ .

2. Draw a sample from θ ,α |y,hi:

a) Sample θ from θ |y,α,hi (see Appendix A).

b) Sample α from α |y,θ ,hi, using the simulation smoother proposed by

Durbin and Koopman (2002).

3. Sample hi, i= 1,2, from hi|α,y,θ , using a Random Walk Metropolis-Hastings

algorithm.

4. Go to 2.

The most complex part of the algorithm deals with the simulation of the

stochastic volatility processes. We adopt a single move sampler based on the den-

sity:

hi,t |hi,t+1,hi,t−1,yt ,αt−1,αt . (4)

For this purpose, we implement a Random Walk Metropolis-Hastings algorithm,

described in detail in Appendix A; see also Cappé, Moulines, and Rydén (2007). In

order to sample from the full conditional we use the following results:

f (hi,t |hi,t−1,hi,t+1,yt ,αt ,αt−1) ∝ f (hi,t |hi,t−1) f (yt |αt ,h1,t) f (αt |αt−1,h2,t). (5)

4 Estimation Results

This section reports on the main estimation results for the model presented in sec-

tion 2. The MCMC sampler was initialized by setting all hi,t = 0 and φi = 0.86,

σ2
i = 0.07 and µi = 0.6. We iterated the sampler for a burn-in period consisting of

12,500 iterations, before recording the draws from a subsequent 25,000 iterations.

The programm is written in Ox v. 5.10 console (Doornik, 2007) using our own
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source code. The time needed for all calculations (including the additional sim-

ulations required to evaluate the marginal likelihood with the Chib and Jeliazkov

method) is about 35 minutes.

Figure 2 displays the inflation series with the posterior mean of the perma-

nent component, and the interval estimates of two stochastic volatility components

for the irregular and the permanent disturbances, σεt and σηt . The third panel shows

that the volatility of the permanent component has been increasing from the 60ies

up to 1982, and then is slowly decreasing. The volatility of the transitory compo-

nent (central panel) is much more stable, instead. In the sequel of the paper we will

address the question as to whether it can be considered as time invariant.

The estimates of the latent volatility processes are comparable to the cor-

rected estimates obtained by Stock and Watson (2007) and displayed in their Figure

2, referring to CPI (all items), on page 8, panels (a) and (b), of the document avail-

able at http://www.princeton.edu/∼mwatson. In particular, the estimated standard

deviation of the permanent component shows two distinctive peaks in 1975 and

1981, and changes substantially over time; on the contrary, the volatility of the ir-

regular component is much less evolutive. The difference that arise are due to the

different sample considered and to the fact that Stock and Watson estimate a re-

stricted version of the model (in particular, φi = 1,µi = 0,σ2
κi = 0.2, i = 1,2; notice

that the variance of the volatility shocks is not estimated).

Figure 3 displays the evolution of the Monte Carlo estimates of the posterior

mean of the signal to noise ratio, qt , of the persistence parameter, Pt , the prediction

error variance and the predictability measure, Predt . The graph reveals that the size

of the random walk component increases during the 70s, when the trend dynamics

become more sustained, and it is lower in the 80s. Persistence is time varying at val-

ues well below 1 and there is evidence for a strong decreasing tendency during the

80s. The robustness of these results will be discussed later. As far as predictability

is concerned, the prediction error variance undergoes a decline after 1982 (this is

consistent with the results of Bos, Koopman, and Ooms, 2007). In relative terms,

the forecastability index shows an increase in the 80s.

Table 1 reports some summary statistics concerning the posterior distribu-

tion of the parameters and some convergence diagnostics. As for the assessment of

convergence, we report the Geweke statistics: let θ( j) denote the j-th sample of the

sampling scheme for the generic parameter θ after the initial burn-in period. Let

also θ̄a denote the average of the first na draws, θ̄b the average of the last nb draws

at the end of the convergence period, which are taken sufficiently remote to prevent

any overlap, the Geweke’s convergence statistic (Geweke, 1992, 2005) is defined as

CG =
θ̄a − θ̄b√

VL,a/na +VL,b/nb

,
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Figure 2: Upper: Inflation and posterior mean of permanent component; Middle: Ir-

regular Volatility component with 95 percent credible interval. Bottom: Permanent

Volatility component with 95 percent credible interval.
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Figure 3: Upper left: Signal to noise ratio. Upper Right: Persistence, with 95

percent credible interval. Bottom left: Prediction error variance, with 95 percent

credible interval. Bottom right: Predictability, with 95 percent credible interval.
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where

VL,k = c0,k +2
nk−1

∑
j=1

w jc j,k, k = a,b,

is the long run variance of the parameter sample path for the nk draws, based on

a weighted combination of the autocovariances of the draws at lag j, c j,k, with

weights w j that are decreasing in j and ensure that VL,k ≥ 0. A customary choice is

the set of linearly declining weights w j =
l− j
l+1

, where l is the truncation parameter.

The inefficiency factor is INEF = 1+ 2∑n−1
j=1 w jρ̂ j, where ρ̂ j is the sample

autocorrelation of the draws at lag j. This can be interpreted as a normalized mea-

sure of persistence of the draws. Large values imply that the draws are strongly and

positively autocorrelated (the spectral power is concentrated at the origin), so that

the chain explores the parameter space very slowly and the additional information

content of a draw is small.

The values reported in table 1 highlight that the convergence assessment of

the chain are not fully satisfactory, since the Geweke statistic for some parameters,

like µ1 and φ2, are strongly significant.

Table 1: Posterior mean, Median, Geweke statistic and Inefficiency factor for UC-

SV model

Parameters Mean Median Geweke’ GC INEF

µ1 -0.0017 -0.0015 -11.20 137.1

µ2 -0.0253 -0.0252 -2.30 30.92

φ1 0.9356 0.9372 1.18 13.00

φ2 0.9885 0.9905 15.06 307.7

σ2
κ1

0.0491 0.0482 -2.38 24.43

σ2
κ2

0.0487 0.0479 -0.18 63.41

5 Model Selection

Thus far the literature has focused on fitting the UC-SV model (sometimes with

arbitrary restrictions on the parameters σ2
κi) and describing the estimation result.

There is a potential danger that the UC-SV model could be overfitting the data, but

little or no attention has been devoted to this issue.

We thus turn our attention to Bayesian model selection. The models under

comparison are the following four variants of the local level model:
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• M1: the Local Level Model with homoscedastic disturbances (UC);

• M2: the Local Level Model with a SV disturbance only on the transitory

component (UC-SVt);

• M3: the Local Level Model with a SV disturbance only on the permanent

component (UC-SVc);

• M4: the Local Level Model with two SV disturbances (UC-SV).

Bayesian model comparison entails the computation of posterior model probabili-

ties, see Geweke (2005) for more details. If the models have the same prior prob-

ability, the ratio of the posterior mode probabilities is the Bayes factor, which is

the ratio of the marginal likelihoods of two rival specifications. The main diffi-

culty lies with the evaluation of the marginal likelihood. For this purpose we adopt

the method proposed by Chib and Jeliazkov (2001), which is based on the MCMC

output, and additional draws from given partial full conditionals.

Denoting by f (y|θk,Mk) the conditional density of the data, given Mk and

the parameter vector θk, and by π(θk|Mk), π(θk|y,Mk), the prior and posterior den-

sities, respectively, of θk, the Chib and Jeliazkov (2001) approach is based on the

following basic marginal likelihood identity:

m(y|Mk) =
f (y|Mk,θk)π(θk|Mk)

π(θk|y,Mk)
, k = 1,2,3,4, (6)

where m(y|Mk) is the marginal likelihood of model Mk.

The formal Bayesian approach for comparing any two rival specifications,

Mk and Mr, is through the pairwise Bayes factor, defined as the ratio of marginal

likelihoods:

Bk,r =
m(y|Mk)

m(y|Mr)
,

which can also be interpreted as the posterior odds ratio the two models, when they

are assumed to be equally likely a priori.

Taking logarithms of (6) and evaluating this function at some hight density

point θ∗
k , such as the mean of the posterior density π(θk|y,Mk), we have:

logm(y|Mk) = log f (y|Mk,θ
∗
k )+ logπ(θ∗

k |Mk)− logπ(θ∗
k |y,Mk). (7)

The conditional likelihood appearing as the first term on the right hand side is eval-

uated with the support of the Kalman filter for the linear Gaussian homoscedastic

local level model (M1); for the other specifications, featuring stochastic volatility in

at least one of the components, it is evaluated by sequential Monte Carlo methods

(particle filters). Full details are provided in Appendix B. The second component

is simply the product of the prior distribution for the parameters of each model.
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The last component, i.e. the normalized posterior density of the parameters, re-

quires a specialized treatment. In Appendix C we provide the relevant details for its

estimation, with particular reference to UC-SV specification.

Table 2: Marginal likelihood for UC models of U.S. inflation.

Models log f (y|Mk,θ
∗
k ) logπ(θ∗

k |Mk) logπ(θ∗
k |y,Mk) Total

UC -369.56 -11.48 -0.12 -380.93

UC-SVt -367.80 -8.83 7.24 -383.87

UC-SVc -366.71 -2.51 -13.5 -355.72

UC-SV -356.10 -3.06 20.81 -379.96

The results, reproduced in table 2, clearly point out that the model that per-

forms best is the local level model with stochastic volatility in the permanent com-

ponent. The variation in the transitory one is by and large insignificant. The UC-SV

has the highest conditional likelihood, but receives a high “penalty” from the term

logπ(θ∗
k |y,Mk). As a result the posterior odds of model UC-SV against UC-SVc

are close to zero. Hence, we conclude that the model with two stochastic volatility

components is likely to over-fit the data.

Hence, our preferred model is the UC-SVc specification; table 3 and figures

4-5 report the main estimation results for this model. In particular, figure 4 displays

the posterior mean of the permanent component, along with the 95% credible in-

tervals. The bottom panel displays the posterior mean and the interval estimates of

the process σηt . The plot illustrates that the volatility of the permanent component

is subject to a steep decline in the years 1982-1995, whereas the trend is reversed

after 1995. The first panel of figure 5 displays the evolution of the posterior mean

of the signal to noise ratio, σ2
ηt/σ2

ε . The persistence parameter, plotted in the top

right panel of figure 5, declined during the great moderation, but has been increas-

ing since 1995. The trend in predictability (see the bottom panels of figure 5) is the

mirror image of persistence: predictability increases during the great moderation,

but declines at the end of the sample.

Finally, figure 6 displays the nonparametric estimates of the posterior den-

sity of the parameters of the permanent volatility process and the irregular variance,

and table 3 presents summary statistics concerning the distribution of the parame-

ters and the convergence of the MCMC sampling scheme. We notice in particular

that the Geweke’s convergence diagnostics are fully satisfactory.
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Table 3: Posterior mean, median, Geweke’s statistic and Inefficiency factor for UC-

SVc model.

Parameters Mean Median Geweke’s GC INEF

µ2 -0.0233 -0.0229 -0.93 26.61

φ2 0.9791 0.9801 -0.13 69.74

σ2
κ2

0.0472 0.0463 -0.82 32.16

σ2
ε 1.2509 1.2403 1.80 135.00

6 Conclusions

The paper has provided a full Bayesian analysis of the local level model with

stochastic volatility proposed by Stock and Watson (2007) for the U.S. quarterly

CPI inflation rate. The model provides a simple yet effective decomposition of U.S.

inflation into a permanent component and a transitory one, with stochastic volatility

in the disturbances driving the two components. Bayesian model selection enabled

us to conclude that inflation’s volatility is subject to significant changes over time,

but the volatility affects only the permanent disturbances, not the transitory compo-

nent.

The volatility of the permanent has been decreasing substantially after 1982,

reaching a minimum around 1995, but has been increasing ever since, albeit at a

small rate. The estimated volatility pattern support the view that a turning point

took place around the mid-90ies and the great moderation is likely to be over. As

correctly pointed out by a Referee, this result deserves further investigation as for

its economic interpretation and implications. There are two possible explanations

as to why it went undetected in previous analyzes: first and foremost, previous

studies were conducted on a much shorter sample; for instance, the sample period

consider by Stock and Watson (2007) ended in the fourth quarter of 2004, whereas

our series ends in the 3rd quarter of 2008. The series, displayed in figure 1, does

indeed display higher volatility at the end of the sample. Secondly, there are two

substantial differences in model specification and estimation, that may play a role:

on the one hand, our final specification, suggested by Bayesian model selection, is

such that the volatility of the transitory component is constant. Also, the parameters

of the permanent disturbance volatility process are estimated, rather than fixed.

The persistence implied by the model has been decreasing during the years

of the great moderation and it stayed at historical lows up to the mid-90ies. Re-

cently, persistence has been rising again. Correspondingly, the predictability of

inflation increased during the great moderation up to maximum occurring around

1995 and it has been going down ever since.
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Figure 6: Prior and posterior densities of the parameters of the permanent volatility

process and the irregular variance.

APPENDIX A: Metropolis - within - Gibbs Sampling

This Appendix illustrates the prior and posterior distributions used in our analysis.

For the prior distribution we assume an independent structure between each block

of variables and within each block so that π(θ ,α ,h1,h2) = π(θ)π(α)π(h1)π(h2),
and, for instance,

π(θ)= π(µ1|c1,d1)π(µ2|c2,d2)π(φ1|a1,b1)π(φ2|a2,b2)π(σ
2
κ1
|γ1,β1)π(σ

2
κ2
|γ2,β2).

The prior distributions and their hyperparameters are reported in table 4.

The posterior densities are available in closed form for the permanent level

of inflation (for which samples are drawn by a multimove sampler known as the

simulation smoother, here implemented according to the algorithm presented in

Durbin and Koopman, 2002), and for some elements of the vector θ for which we

can exploit conditional conjugacy.

Scheme
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Table 4: Specification of the prior distributions

θ Prior Hyperparameters

µi N(ci,d
2
i ) ci = 0.00 di = 10.00

φi Beta(ai,bi) ai = 20.50 bi = 1.50

σ2
κ1

IG(γ1,β1) γ1 = 20.00 β1 = 0.20

σ2
κ2

IG(γ2,β2) γ2 = 20.00 β2 = 0.20

1. Given the choice of the prior distribution, the full conditional density of the

parameter φ1 (and similarly φ2) is not available in closed form; therefore, to

sample from the full conditional we employ a Metropolis-Hastings sampling

algorithm, similar to the one described in Kim, Shepard, and Chib (1998),

which enforces the stationarity of the stochastic volatility process. Another

possibility is to use a random walk Metropolis-Hasting that can be sketched

as follows: if φ
( j−1)
i denotes the current value of the chain at the j-th iteration,

we sample a new proposal φ
( j)
i = φ

( j−1)
i +w j, where w j is drawn a normal

distribution with mean 0 and variance 0.1. If the proposal is within the sta-

tionary region then it is accepted with probability min{1,g(φ
( j)
i )/g(φ

( j−1)
i )},

where

g(φi) = π(φi) f (hi|µi,φi,σ
2
κi
)

and, apart from a constant term,

log f (hi|µi,φi,σ
2
κi
) =−

h2
i,0

2σ2
κi

+
1

2
log(1−φ2

i )−
∑T−1

t=1 (hi,t+1 −φihi,t −µi)
2

2σ2
κi

ˆ

ˆ

.

(8)

2. Using a Normal prior, the full conditional distribution of the parameters µi is

N(Ci, D̂i) where:

Ci = D̂i
Ci

D2
i

+
1

σ2
κi

T

∑
t=1

(hi,t −φihi,t−1)

)
, D̂i =

(
1

d2
i

+
T

σ2
κi

)−1

. (9)

3. Using a conjugate Inverse Gamma prior, the full conditional of the variances

of volatility processes are:

σ2
κi
|y,α,hi,φi,µi ∼ IG

{
T

2
+αi,βi +

h2
i,0 +∑T−1

t=1 (hi,t+1 −µi −φihi,t)
2

2

}
.

(10)
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4. To sample from h1,t |h1,t−1,h1,t+1,yt ,αt ,θ , we adopt the single move Metropolis-

Hastings simulation step, based on the factorization:

f (h1,t |h1,t−1,h1,t+1,yt ,αt ,θ)∝ f (h1,t |h1,t−1,h1,t+1,θ) f (yt |αt ,h1,t). (11)

It can be shown that

f (h1,t |h1,t−1,h1,t+1,θ) = f (h1,t |h1,t−1,θ) f (h1,t+1|h1,t ,θ) (12)

is a Gaussian density with mean

h∗1,t =
µ1(1−φ1)+φ1(h1,t−1 +h1,t+1)

(1+φ2
1 )

and variance

v2
1 =

σ2
κ1

1+φ2
1

(see Jacquier, Polson, and Rossi, 1994). Random Walk proposals h
( j)
1,t can

be made from this Gaussian density; their acceptance probability is min{1,

g(h
( j)
1,t )/g(h

( j−1)
1,t )}, where

g(h1,t) =exp

[
−

{
(h1,t+1 −µ1 −φ1h1,t)

2

2σ2
κ1

+
(h1,t −µ1 −φ1h1,t−1)

2

2σ2
κ1

}]
×

×
1

exp(h1/2)
exp

[
−
(yt −αt)

2

2exp(h1)

]

(13)

for t = 1, . . . ,T −1, whereas

g(h1,0) = exp

{
−
(h1,1 −µ1 −φ1h1,0)

2

2σ2
κ1

−
(1−φ2

1 )h
2
1,0

2σ2
κ1

}
,

and, for t = T ,

g(h1,T ) = exp

{
−
(h1,T −µ1 −φ1h1,T−1)

2

2σ2
κ1

}
.

A similar sampling scheme is adopted for h2,t .
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APPENDIX B: Auxiliary Particle Filter

For evaluating the conditional likelihood, f (y|θk,Mk), for the SV specifications,

we implemented an auxiliary particle filter (see Pitt and Shephard, 1999). The lat-

ter estimates the one-step-ahead predictive densities which enter the factorization:

f (y|θk,Mk) = ∏t f (yt+1|Yt ,θk,Mk), where Yt = {y1, . . . ,yt}, and the predictive den-

sity is evaluated by sequential Monte Carlo methods as follows:

f (yt+1|Yt ,θk,Mk) =
1

M

M

∑
i=1

w
(i)
1,t ×

1

R

R

∑
j=1

w
( j)
2,t . (14)

Here M denotes the number of particles, w1,t are the so-called first stage weights,

R is the number of daughter particles (see below) and w2,t are the so-called second

stage weights.

All the inferences will be conditional on (θk,Mk); henceforth, for notational

simplicity we will omit these conditioning elements. After initializing the weights

w1,0 =
1
M

and drawing samples z
(i)
0 , i = 1, . . . ,M, from the initial distribution of the

random vector zt = (αt ,h1,t ,h2,t), at time t = 0, with

α0 ∼ N (0,1000) h1,0 ∼ N 0,
σ2

κ1

1−φ2
1

)
h2,0 ∼ N 0,

σ2
κ2

1−φ2
2

)
, (15)

we iterate, for t = 1, . . . ,T , the following steps:

1. Set the first stage weights, w1,t ≡
1
M

.

2. Predict the unobserved states one-step-ahead, and update the weights, by

z̄
(i)
t+1 = E(zt+1|z

(i)
t ),

w
(i)
1,t = w

(i)
1,t × f (yt+1|z̄

(i)
t+1),

(16)

α
(i)
t+1 and variancewhere f (yt+1|z̄

(i)
t+1) is a Gaussian density with mean ¯

exp(h1,t+1). The w
(i)
1,t are the first stage weights described in Pitt and Shep-

hard (1999).

3. Resample the particles z
(i)
t with replacement R times (by multinomial resam-

pling). Let z̃
(i)
t denote the resampled particles.
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˜4. Sample z
(i)
t+1, i = 1, . . . ,R, from zt+1|z

(i)
t ,yt+1, using the approach by Godsill

and Clapp (2001), which is based on the factorization:

f (zt+1|zt ,yt+1) = f (αt+1|h2,t+1,αt ,yt+1) f (h1,t+1|h1,t) f (h2,t+1|h2,t) (17)

where f (h j,t+1|h j,t), j = 1,2, are Gaussian densities with mean µ j + φ jh j,t

and variance σ2
κ j

, and

αt+1|h2,t+1,αt ,yt+1 ∼ N(m,S2)

with

S2 =

(
1

exp(h2, t+1)
+

1

exp(h1, t+1)

)−1

m= S2

(
yt+1

exp(h1, t+1)
+

αt

exp(h2, t+1)

)
.

(18)

5. Compute the second stage weights:

w
(i)
2,t =

f (yt+1|z
(i)
t+1) f (z

(i)
t+1|z̃

(i)
t )

f (yt+1|z̄
(i)
t+1) f (z̄

(i)
t+1|z̃

(i)
t )

. (19)

6. Resample M particles by multinomial resampling, with probabilities propor-

tional to w
(i)
2,t .

7. Go to step 1.

APPENDIX C: Chib and Jeliazkov Algorithm

This Appendix illustrates the steps of the Chib and Jeliazkov (2001) algorithm that

are necessary to estimate the posterior density π(θ |y) for the UC-SV model at a

high density point θ∗. The latter is the component of the basic marginal likelihood

identity that is not automatically available from the MCMC output.

The estimate is constructed as follows: denoting θ = {θ j, j = 1, . . . ,J} the

vector containing the hyperparameters, where the elements of the vector θ are

{µ1,φ1,σ
2
κ1
,µ2,φ2,σ

2
κ1
}, consider the factorization of the joint conditional density:

π̂(θ∗|y) =
J

∏
j=1

π̂(θ∗
j |y,θ

∗
1 , . . . ,θ

∗
j−1).

Further, let z = (h1,h2,α).
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• From the MCMC sample evaluate the posterior mean of µ1 and set µ∗
1 equal to

this value. A Monte Carlo estimate of the first multiplicative factor, π(θ∗
1 |y)=

π(µ∗
1 |y), is obtained from the output of the MCMC sampling scheme by the

technique known as Rao-Blackwellization.

• For estimating π(θ∗
2 |y,θ

∗
1 ) = π(φ∗

1 |y,µ
∗
1 ) run a reduced Metropolis-Hastings

within Gibbs chain for the following subset of parameters {φ1,σ
2
κ1
,µ2,φ2,σ

2
κ2
,

z}, where the value of µ1 is kept fixed at µ∗
1 .

• Estimate the value of the density π(θ∗
2 |y,θ

∗
1 ) = π(φ∗

1 |y,µ
∗
1 ), using the follow-

ing steps:

1. Simulate G draws from the posterior of {φ
(g)
1 ,σ

2,(g)
κ1

,µ
(g)
2 ,φ

(g)
2 ,σ

2,(g)
κ2

,

z(g)}, g = 1, . . . ,G, by the same MCMC methods presented in Appendix

A, conditional on µ∗
1 .

2. Compute the posterior mean of φ1 by averaging across the draws φ
(g)
1

and denote it φ∗
1 .

3. Include φ∗
1 in the conditioning set and sample J draws from the condi-

tional distibutions:

π(σ2
κ1
|y,z,φ∗

1 ,µ
∗
1 ,µ2,σ

2
κ2
,φ2), π(z|y,σ2

κ1
,µ∗

1 ,φ
∗
1 ,µ2,φ2,σ

2
κ2
),

π(µ2|y,z,µ
∗
1 ,φ

∗
1 ,σ

2
κ1
,φ2,σ

2
κ2
), π(φ2|y,z,µ

∗
1 ,φ

∗
1 ,σ

2
κ1
,µ2,σ

2
κ2
),

π(σ2
κ2
|y,z,µ∗

1 ,φ
∗
1 ,σ

2
κ1
,µ2,φ2).

These iterations provide the sample {σ
2( j)
κ1

,µ
( j)
2 ,φ

( j)
2 ,σ

2( j)
κ2

,z( j)}J
j=1.

Furthermore, at each iteration we generate

φ
( j)
1 ∼ q(φ∗

1 ,φ1|y,z
( j),µ∗

1 ,σ
2,( j)
κ1

,µ
( j)
2 ,φ

( j)
2 ,σ

2,( j)
κ2

)

where q(θ j,θ
′
j|u) is the proposal density for the transition from θ j to θ′

j

conditional on u. As a result, the collection {φ
( j)
1 ,σ

2( j)
κ1

,µ
( j)
2 ,φ

( j)
2 ,σ

2( j)
κ2

,

z( j)}J
j=1 is are multiple (correlated) draws from the distribution:

π(σ2
κ1
,µ2,φ2,σ

2
κ2
,z|y,µ∗

1 ,φ
∗
1 )×q(φ∗

1 ,φ1|y,z,µ1,σ
2
κ1
,µ2,φ2,σ

2
κ2
).

4. Denoting the probability of a move by

ψ(φ1,φ
′
1|u) = min

{
1,

f (y|φ∗
1 ,ς ,z)π(φ

∗
1 ,ς)

f (y|φ
(g)
1 ,ς ,z)π(φ

(g)
1 ,ς)

q(φ∗
1 ,φ

(g)
1 |y,ς ,z)

q(φ
(g)
1 ,φ∗

1 |y,ς ,z)

}
,

where ς is the collection of parameters (µ∗
1 ,σ

2
κ1
,µ2,φ2,σ

2
κ2
). The re-

quired marginal density at φ∗
1 , can now be estimated as

The Chib and Jeliazkov (2001) algorithm takes the following steps:
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• Run a reduced Gibbs sampling scheme on the following parameters {σ2
κ1
,µ2,

φ2,σ
2
κ2
,z} and calculate σ

2,(∗)
κ1

.
• Run a reduced Gibbs sampling scheme and calculate the φ∗

2 with the same

procedure describe before noticing that the φ∗
1 ,µ

∗
1 ,σ

2,(∗)
κ1

are fixed.

• Run a reduced Gibbs sampling scheme on the following parameters {µ2,σ
2
κ2
,

z} and calculate µ∗
2 .

• Run a reduced sampling scheme Gibbs on the following parameters {σ2
κ2
,z}

and calculate σ
2,(∗)
κ2

.

π̂(φ∗
1 |y) =

∑g ψ(φ
(g)
1 ,φ∗

1 |y,z
(g),µ∗

1 ,σ
2(g)
κ1

,µ
(g)
2 ,φ

(g)
2 ,σ

2(g)
κ2

)q(φ
(g)
1 ,φ∗

1 |y,z
(g),µ∗

1 ,σ
2(g)
κ1

,µ
(g)
2 ,φ

(g)
2 ,σ

2(g)
κ2

)

G · J−1 ∑ j α(φ∗
1 ,φ

( j)
1 |y,z( j),µ∗

1 ,σ
2( j)
κ1

,µ
( j)
2 ,φ

( j)
2 ,σ

2( j)
κ2

)
.
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