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Towers and Fibered Products of Model
Structures

Javier J. Gutiérrez and Constanze Roitzheim

Abstract. Given a left Quillen presheaf of localized model structures,
we study the homotopy limit model structure on the associated cate-
gory of sections. We focus specifically on towers and fibered products
(pullbacks) of model categories. As applications we consider Postnikov
towers of model categories, chromatic towers of spectra and Bousfield
arithmetic squares of spectra. For stable model categories, we show that
the homotopy fiber of a stable left Bousfield localization is a stable right
Bousfield localization.

Mathematics Subject Classification. 55P42, 55P60, 55S45.

Keywords. Localization, model category, Postnikov tower, homotopy
fibered product, homotopy pullback.

Introduction

Localization techniques play an important role in modern homotopy theory.
For several applications it is often useful to approximate a given space or
spectrum by simpler ones by means of localization functors. For instance,
given a simplicial set X, one can consider its Postnikov tower. This tower
can be built as a sequence of fibrations

· · · fn−→ PnX
fn−1−→ Pn−1X

fn−2−→ · · · f2−→ P2X
f1−→ P1X

f0−→ P0X

and maps pn : X → PnX satisfying that pn = fn ◦ pn+1 for every n ≥ 0 and
that πk(fn) : πk(X) ∼= πk(PnX) if k ≤ n for any choice of base point of X,
and πk(PnX) = 0 if k > n and all choices of base points.

Each of the spaces PnX can be built as a localization of X with re-
spect to the map Sn+1 → ∗, and pn is the corresponding localization map.
If X is connected, then the fiber of fn−1 is an Eilenberg–Mac Lane space
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K(πn(X), n) and every simplicial set X can be reconstructed as the homo-
topy limit of its Postnikov tower X � holimn≥0 PnX; see [15, Chap. VI,
Theorem 3.5].

In the category of spectra, given any spectrum E, we can consider
its associated homological localization functor LE which inverts the maps
that induce isomorphisms in E∗-homology in a universal way. Given an
abelian group G, let us denote by MG the associated Moore spectrum. It
is well known that any spectrum X can be built, using Bousfield’s arithmetic
square [9], as a homotopy pullback of the diagram of homological localizations

LMZJ
X −→ LMQX ←− LMZK

X,

where J and K form any partition of the set of prime numbers and ZJ are
the integers localized at the set of primes J .

Furthermore, the chromatic convergence theorem [26, Theorem 7.5.7]
states that a finite p-local spectrum X is the homotopy limit of its chromatic
localizations LE(n)X at the prime p.

The aim of this paper is to present categorified versions of these state-
ments in the framework of Quillen model structures. Given a diagram (left
Quillen presheaf) of model categories F : Iop → CAT, there is an injective
model structure on the category of sections associated wit F , which we can
further colocalize to obtain the homotopy limit model structure. We study
these model structures for towers and homotopy fibered products (homotopy
pullbacks) of model categories.

First, we construct the Postnikov tower of an arbitrary combinatorial
model category. As an application we show that for simplicial sets and for
bounded below chain complexes these towers converge in a certain sense.
Another tower model structure is the homotopy limit model structure on
the left Quillen presheaf of chromatic towers Chrom(Sp), where Sp denotes
here the category of p-local symmetric spectra. We show that the Quillen
adjunction

const : Sp −−→←− Chrom(Sp) : lim

induces a composite

Ho(Sp)fin Lconst−−−−→ Ho(Chrom(Sp))F holim−−−→ Ho(Sp)fin

which is isomorphic to the identity. (Here, F and fin denote suitable finiteness
conditions.) This set-up is a step towards deeper insights into the structure
of the stable homotopy category via viewing chromatic convergence in a cat-
egorified manner.

We then move to fibered products of model categories. Using this set-
up, we show that the category of symmetric spectra is Quillen equivalent to
the homotopy limit model structure of the left Quillen presheaf for Bousfield
arithmetic squares of spectra.

As a final application we focus on a correspondence between the homo-
topy fiber of a left Bousfield localization C → LSC and certain right Bousfield
localizations. This is then used, among other examples, to understand the
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layers of the Postnikov towers established earlier and to study the correspon-
dence between stable localizations and stable colocalizations.

1. Model Structures for Sections of Quillen Presheaves

In this section we recall the injective model structure on the category of
sections of diagrams of model categories. We will state the existence of this
model structure in general, although we will be mainly interested in the cases
of sections of towers and fibered products of model categories. Details about
these model structures can be found in [4, Section 2, Application II], [6,7],
[16, Section 3] and [27, Section 4].

Let I be a small category. A left Quillen presheaf on I is a presheaf
of categories F : Iop → CAT such that for every i in I the category F (i)
has a model structure, and for every map f : i → j in I the induced functor
f∗ : F (j) → F (i) has a right adjoint and they form a Quillen pair.

Definition 1.1. A section of a left Quillen presheaf F : Iop → CAT consists
of a tuple X = (Xi)i∈I , where each Xi is in F (i), and, for every morphism
f : i → j in I, a morphism ϕf : f∗Xj → Xi in F (i) such that the diagram

(g ◦ f)∗Xk

ϕg◦f ��

f∗ϕg

��

Xi

f∗Xj

ϕf

������������

commutes for every pair of composable morphisms f : i → j and g : j → k.
A morphism of sections φ : (X,ϕ) → (Y, ϕ′) is given by morphisms

φi : Xi → Yi in F (i) such that the diagram

f∗Xj
f∗φj ��

ϕf

��

f∗Yj

ϕ′
f

��
Xi

φi

�� Yi

commutes for every morphism f : i → j in I.
A section (X,ϕ) is called homotopy cartesian if for every f : i → j the

morphism ϕf : f∗QjXj → Xi is a weak equivalence in F (i), where Qj denotes
a cofibrant replacement functor in F (j).

Recall that a model category is left proper if pushouts of weak equiva-
lences along cofibrations are weak equivalences, and right proper if pullbacks
of weak equivalences along fibrations are weak equivalences. A model category
is proper if it is left and right proper.

The category of sections admits an injective model structure, which is
left or right proper, if the involved model structures are left or right proper,
respectively. A proof of the following statement can be found in [4, Theo-
rem 2.30, Propostion 2.31]. Recall that a model category is called combi-
natorial if it is cofibrantly generated and the underlying category is locally
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presentable. Foundations of the theory of combinatorial model categories may
be found in [5,11,23]. The essentials of the theory of locally presentable cat-
egories can be found in [1,14,24].

Theorem 1.2. (Barwick) Let F : Iop → CAT be a left Quillen presheaf such
that F (i) is combinatorial for every i in I. Then there exists a combinatorial
model structure on the category of sections of F , denoted by Sect(I, F ) and
called the injective model structure, such that a morphism of sections φ is a
weak equivalence or a cofibration if and only if φi is a weak equivalence or a
cofibration in F (i) for every i in I, respectively. Moreover, if F (i) is left or
right proper for every i ∈ I, then so is the model structure on Sect(I, F ). �

Now, to model the homotopy limit of a left Quillen presheaf, we would
like to construct a model structure on the category of sections whose cofibrant
objects are precisely the levelwise cofibrant homotopy cartesian sections. This
will be done by taking a right Bousfield localization of Sect(I, F ). The re-
sulting model structure will be called the homotopy limit model structure.

The existence of the homotopy limit model structure when the cate-
gory Sect(I, F ) is right proper was proved in [7, Theorem 3.2]. Without any
properness assumptions, the homotopy limit model structure exists as a right
model structure, as proved in [4, Theorem 5.25]. It follows directly from those
results that if F (i) is right proper for every i in I, then we get a full model
structure. For the reader’s convenience we spell this out in a little more detail.

Theorem 1.3. Let F : Iop → CAT be a left Quillen presheaf such that F (i) is
right proper and combinatorial for every i in I. Then there exists a combina-
torial model structure on the category of sections of F , called the homotopy
limit model structure, with the same fibrations as Sect(I, F ) and whose cofi-
brant objects are the sections that are cofibrant in Sect(I, F ) and homotopy
cartesian.

Proof. Let D be the full subcategory of Sect(I, F ) consisting of the homotopy
cartesian sections. Consider the functor

Φ: Sect(I, F ) −→
∏

f : i→j

Arr(F (i))

defined as Φ((Xi)i∈I) =
∏

f : i→j ϕf , where f runs over all morphisms of I
and Arr(−) denotes the category of arrows, and let Q denote an accessible
cofibrant replacement functor in Sect(I, F ).

The categories Sect(I, F ) and
∏

f : i→j Arr(F (i)) are accessible (in fact,
they are locally presentable; see [1, Corollary 1.54]) and the functor Φ is
an accessible functor since it preserves all colimits (as these are computed
levelwise). Hence Φ is an accessible functor between accessible categories.

Each F (i) is combinatorial for every i in I, and hence by [23, Corollary
A.2.6.6] the subcategory of weak equivalences weq(F (i)) is an accessible and
accessibly embedded subcategory of Arr(F (i)). Therefore,

∏
f : i→j weq(F (i))

is an accessible and accessibly embedded subcategory of
∏

f : i→j Arr(F (i)).
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By [1, Remark 2.50], the preimage (Φ◦Q)−1(
∏

f : i→j weq(F (i))) is an acces-
sible and accessibly embedded subcategory of Sect(I, F ). But this preimage
is precisely D.

Now, since D is accessible there exists a set K of objects and a regular
cardinal λ such that every object of D is a λ-filtered colimit (and hence
a homotopy colimit if we choose λ big enough; see [11, Proposition 7.3]) of
objects in K. Moreover, since D is accessibly embedded this homotopy colimit
lies in D.

The homotopy limit model structure is then the right Bousfield localiza-
tion RK Sect(I, F ). (We can perform this right Bousfield localization because
every F (i) and hence Sect(I, F ) are right proper.) The fact that the cofibrant
objects of this new model structure are precisely the levelwise cofibrant ho-
motopy cartesian sections follows from [19, Theorem 5.1.5]. �

2. Towers of Model Categories

Let N be the category 0 → 1 → 2 → · · · . A tower of model categories is a
left Quillen presheaf F : Nop → CAT. The objects of the category of sections
are then sequences X0,X1, . . . , Xn, . . ., where each Xi is an object of F (i),
together with morphisms ϕi : f∗Xi+1 → Xi in F (i) for every i ≥ 0, where
f : i → i+1 is the unique morphism from i to i+1 in N. A morphism between
two sections φ• : X• → Y• consists of morphisms φi : Xi → Yi in F (i) such
that the diagram

f∗Xi+1
��

f∗φi+1

��

Xi

φi

��
f∗Yi+1

�� Yi

commutes for every i ≥ 0.

Proposition 2.1. Let F : Nop → CAT be a tower of model categories, where
F (i) is a combinatorial model category for every i ≥ 0. There exists a combi-
natorial model structure on the category of sections, denoted by Sect(N, F ),
where a map φ• is a weak equivalence or a cofibration if and only if for every
i ≥ 0 the map φi is a weak equivalence or a cofibration in F (i), respectively.
The fibrations are the maps φ• : X• → Y• such that φ0 is a fibration in F (0)
and

Xi+1 −→ Yi+1 ×f∗Yi
f∗Xi

is a fibration in F (i+1) for every i ≥ 0, where f∗ denotes the right adjoint to
f∗. The fibrant objects are those sections X• such that Xi is fibrant in F (i)
and the morphism

Xi+1 −→ f∗Xi

is a fibration in F (i + 1) for every i ≥ 0.

Proof. The existence of the required model structure follows from Theo-
rem 1.2. The description of the fibrations follows from [16, Theorem 3.1]. �
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Proposition 2.2. Let F : Nop → CAT be a tower of model categories, where
each F (i) is combinatorial and right proper for every i ≥ 0. Then there is a
model structure Tow(F ) on the category of sections of F with the following
properties:

(i) A morphism φ• is a fibration in Tow(F ) if and only φ• is a fibration in
Sect(N, F ).

(ii) A section X• is cofibrant in Tow(F ) if and only if Xi is cofibrant in
F (i) and the morphism f∗Xi+1 → Xi is a weak equivalence in F (i) for
every i ≥ 0.

(iii) A morphism φ• between cofibrant sections is a weak equivalence in
Tow(F ) if and only if φi is a weak equivalence in F (i) for every i ≥ 0.

Proof. The existence of the model structure Tow(F ) follows from Theo-
rem 1.3 applied to the left Quillen presheaf F . The characterization of the
weak equivalences between cofibrant objects follows since Tow(F ) is a right
Bousfield localization of Sect(N, F ). �

2.1. Postnikov Sections of Model Structures

Let C be a left proper combinatorial model category and n ≥ 0. The model
structure PnC of n-types in C is the left Bousfield localization of C with respect
to the set of morphisms IC�fn. Here IC is the set of generating cofibrations
of C, fn : Sn+1 → Dn+2 is the inclusion of simplicial sets from the (n + 1)-
sphere to the (n+2)-disk, and � denotes the pushout-product of morphisms
constructed using the action of simplicial sets on C coming from the existence
of framings; see [20, Section 5.4]. A longer account about model structures
for n-types can be found in [18, Section 3].

For every n < m the identity is a left Quillen functor PmC → PnC. Thus
we have a tower of model categories P•C : Nop → CAT. The objects X• of
the category of sections are sequences

· · · −→ Xn −→ · · · −→ X2 −→ X1 −→ X0

of morphisms in C, and its morphisms f• : X• → Y• are given by commutative
ladders

· · · �� Xn
��

fn

��

· · · �� X2
��

f2

��

X1
��

f1

��

X0

f0

��
· · · �� Yn

�� · · · �� Y2
�� Y1

�� Y0.

By Proposition 2.1, if C is a left proper combinatorial model category,
then there exists a left proper combinatorial model structure on the category
of sections Sect(N, P•C), where a map f• is a weak equivalence or a cofibration
if for every n ≥ 0 the map fn is a weak equivalence or a cofibration in PnC,
respectively. The fibrations are the maps f• : X• → Y• such that f0 is a
fibration in P0C and

Xn −→ Yn ×Yn−1 Xn−1

is a fibration in PnC for every n ≥ 1. The fibrant objects can be characterized
as follows:
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Lemma 2.3. Let X• be a section of P•C. The following are equivalent:
(i) X• is fibrant in Sect(N, P•C).
(ii) X0 is fibrant in P0C and Xn+1 → Xn is a fibration in Pn+1C for all

n ≥ 0.
(iii) Xn is fibrant in PnC and Xn+1 → Xn is a fibration in C for all n ≥ 0.

Proof. This follows because a fibration in PnC is also a fibration in Pn+1C as
well as a fibration in C. �

If the model structures for n-types PnC are right proper for every n ≥ 0,
then by Proposition 2.2 the model structure Tow(P•C) exists and will be
denoted by Post(C). It has the following properties:

(i) A morphism f• is a fibration in Post(C) if and only if f• is a fibration
in Sect(N, P•C).

(ii) A section X• is cofibrant if and only if Xn is cofibrant in C and
Xn+1 → Xn is a weak equivalence in PnC for every n ≥ 0.

(iii) A morphism f• between cofibrant sections is a weak equivalence if and
only if fn is a weak equivalence in PnC for every n ≥ 0.
For every n ≥ 0 the identity functors form a Quillen pair

id : C � PnC : id, since PnC is a left Bousfield localization of C. This extends
to a Quillen pair

id : CN
op

inj
�� Sect(N, P•C) : id,��

where CN
op

inj denotes the category of Nop-indexed diagrams with the injective
model structure. Indeed weak equivalences and cofibrations in CN

op

inj are de-
fined levelwise and every weak equivalence in C is a weak equivalence in PnC
for all n ≥ 0. Hence, there is a Quillen pair

C
const �� CN

op

inj

id ��
lim

�� Sect(N, P•C)
id

��
id �� Post(C),
id

��

where const denotes the constant diagram functor.

Lemma 2.4. The adjunction const : C � Post(C) : lim is a Quillen pair.

Proof. By [19, Proposition 8.5.4(2)], it is enough to check that the left adjoint
preserves trivial cofibrations and cofibrations between cofibrant objects. If f is
a trivial cofibration in C then const(f) is a trivial cofibration in Sect(N, P•C).
But since Post(C) is a right Bousfield localization of Sect(N, P•C) it has the
same trivial cofibrations. Hence const(f) is a trivial cofibration in Post(C).

Let f : X → Y be a cofibration between cofibrant objets in C. Then
const(f) is a cofibration between cofibrant objects in Sect(N, P•C). But
const(X) and const(Y) are both cofibrant in Post(C) by Proposition 2.2.
Hence const(f) is a cofibration in Post(C) if and only if it is a cofibration in
Sect(N, P•C) (see [19, Proposition 3.3.16(2)]). �

Let sSet∗ denote the category of pointed simplicial sets with the Kan–
Quillen model structure. Then the model structure Post(sSet∗) exists, since
Pn sSet∗ is right proper for every n ≥ 0; see [10, Theorem 9.9].
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Theorem 2.5. The Quillen pair const : sSet∗ � Post(sSet∗) : lim is a Quillen
equivalence.

Proof. By [20, Proposition 1.3.13] it suffices to check that the derived unit
and counit are weak equivalences. Let X be a fibrant simplicial set. Then
const(X) is cofibrant in Post(sSet∗), since const is a left Quillen functor. Let

· · · −→ Xn −→ · · · −→ X2 −→ X1 −→ X0

be a fibrant replacement of const(X) in Post(sSet∗). Hence we have that Xn

is fibrant in Pn sSet∗ and Xn+1 → Xn is a fibration in sSet∗ and a weak
equivalence in Pn sSet∗ for all n ≥ 0. By [15, Chap. VI, Theorem 3.5], the
map X → lim X• is a weak equivalence.

Now, let X• be any fibrant and cofibrant object in Post(sSet∗). We have
to see that the map const(lim X•) → X• is a weak equivalence in Post(sSet∗).
This is equivalent to seeing that the map lim X• → Xn is a weak equivalence
in Pn sSet∗ for every n ≥ 0. First note that since the category N

op
>n = · · · →

n + 3 → n + 2 → n + 1 is homotopy left cofinal in N
op we have that lim X• is

weakly equivalent to limN
op
>n

X• for every n (see [19, Theorem 19.6.13]). Hence
it is enough to check that the map limN

op
>n

X• → Xn is a weak equivalence in
Pn sSet∗ for all n ≥ 0. For every n ≥ 0 we have a map of towers

· · · �� Xm
��

��

· · · �� Xn+3
��

��

Xn+2
��

��

Xn+1

· · · Xn+1 · · · Xn+1 Xn+1 Xn+1,

where each vertical map is a weak equivalence in Pn+1 sSet∗. Using the Milnor
exact sequence (see [15, Chap. VI, Proposition 2.15]) we get a morphism of
short exact sequences

0 �� lim1
N
op
>n

πi+1X• ��

��

πi(limN
op
>n

X•) ��

��

limN
op
>n

πiX• ��

��

0

0 �� lim1
N
op
>n

πi+1Xn+1 �� πi(limN
op
>n

Xn+1) �� limN
op
>n

πiXn+1 �� 0.

For 0 ≤ i < n the left and right vertical morphisms are isomorphisms; hence
the map limN

op
>n

X• → Xn+1 is a weak equivalence in Pn sSet∗. Therefore, the
map

limN
op
>n

X• −→ Xn+1 −→ Xn

is a weak equivalence in Pn sSet∗ for n ≥ 0. �

Corollary 2.6. Let X → Y be a map in Post(sSet∗). Then X → Y is a weak
equivalence if and only if lim X̂ → lim Ŷ is a weak equivalence in sSet∗, where
X̂ and Ŷ denote a fibrant replacement of X and Y , respectively.
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Proof. We have the following commutative diagram:

const(lim X̂)

g

��

� �� X̂

��

X
���

f

��
const(lim Ŷ )

� �� Ŷ Y.
���

The horizontal arrows are weak equivalences because they are either a fibrant
replacement or because the Quillen pair const and lim is a Quillen equiva-
lence. So f is a weak equivalence if and only if g is a weak equivalence. But
since const preserves and reflects weak equivalences between cofibrant objects
(because it is the left adjoint of a Quillen equivalence), it follows that g is a
weak equivalence if and only if lim X̂ → lim Ŷ is a weak equivalence. �

2.2. Chromatic Towers of Localizations

We can also use the homotopy limit model structure on towers of categories
to obtain a categorified version of yet another classical result. The chromatic
convergence theorem states that for a finite p-local spectrum X,

X � holimn LnX,

where Ln denotes left localization at the chromatic homology theory E(n) at
a fixed prime p; see [26, Theorem 7.5.7]. The prime p is traditionally omit-
ted from notation. We will see that the Quillen adjunction between spectra
and the left Quillen presheaf of chromatic localizations of spectra induces an
adjunction between the homotopy category of finite spectra and the homo-
topy category of chromatic towers subject to a suitable finiteness condition.
The chromatic convergence theorem then shows that the derived unit of this
adjunction is a weak equivalence. By Sp in this section we always mean the
category of p-local spectra symmetric spectra [21] and the prime p will be
fixed throughout the section.

Recall from [20, Section 6.1] that the homotopy category of a pointed
model category supports a suspension functor with a right adjoint loop func-
tor defined via framings. A model category is called stable if it is pointed and
the suspension and loop operators are inverse equivalences on the homotopy
category. Every combinatorial stable model category admits an enrichment
over the category of symmetric spectra via stable frames; see [12,22].

Let C be a proper and combinatorial stable model category. Given a
prime p, we define LnC to be the left Bousfield localization of C with respect
to the E(n)-equivalences, where E(n) is considered at the prime p. By this,
we mean Bousfield localisation at the set IC�SE(n), where IC is the set of
generating cofibrations of C and SE(n) the generating acyclic cofibrations of
LE(n) Sp = Ln Sp. (The square denotes the pushout-product.) This defines a
left Quillen presheaf

L•C : Nop −→ CAT .

By Proposition 2.1 we get the following:
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Proposition 2.7. There is a left proper, combinatorial and stable model struc-
ture on the category of sections Sect(N, L•C), such that a map is a weak
equivalence or a cofibration if and only if each

fn : Xn −→ Yn

is a weak equivalence or a cofibration in LnC, respectively. A map fn : Xn → Yn

is a fibration if and only if f0 is a fibration in L0C and

Xn+1 −→ Yn+1 ×Yn
Xn

is a fibration in Ln+1C for all n ≥ 1. �

Note that the resulting model structure is stable as each LnC is stable.
We then perform a right Bousfield localization to obtain the homotopy limit
model structure. Note that this again results in a stable model category [2,
Proposition 5.6] as this right localization is stable in the sense of [2, Definition
5.3]. As left localization with respect to E(n) is also stable in the sense of [2,
Definition 4.2], LnC is both left and right proper if C is; see [2, Propositions
4.6 and 4.7]. Hence, Proposition 2.2 implies the following result:

Proposition 2.8. Let C be a proper, combinatorial and stable model category.
There is a model structure Chrom(C) on Sect(N, L•C) with the following prop-
erties:

(i) A morphism is a fibration in Chrom(C) if and only if it is a fibration in
Sect(N, L•C).

(ii) An object X• is cofibrant in Chrom(C) if and only if all the Xn are
cofibrant in C and Xn+1 → Xn is an E(n)-equivalence for each n. �

The following is useful to justify the name “homotopy limit model struc-
ture”. Recall that Sp denotes here the category of p-local spectra.

Lemma 2.9. Let f : X• → Y• be a weak equivalence in Chrom(Sp). Then

holim X• −→ holim Y•

is a weak equivalence of spectra.

Proof. Let f : X• → Y• be a weak equivalence in Chrom(Sp). This implies
that

Ho(Chrom(Sp))(const(A),X•) −→ Ho(Chrom(Sp))(const(A), Y•)

is an isomorphism for all cofibrant A ∈ Sp. By Lemma 2.4, (const, lim) is a
Quillen pair, so the above is equivalent to the claim that

[A,holim X•] −→ [A,holim Y•]

is an isomorphism for all cofibrant A ∈ C, where the square brackets denote
morphisms in the stable homotopy category. But as the class of all cofibrant
spectra detects isomorphisms in the stable homotopy category, this is equiv-
alent to

holim X• −→ holim Y•
being a weak equivalence of spectra as desired. �
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Remark 2.10. It is important to note that we do not know if the converse
is true. Looking at the proof of this lemma, we see that the following are
equivalent:

(i) There is a set of objects of the form const(G) in Chrom(Sp) that detect
weak equivalences.

(ii) The weak equivalences in Chrom(Sp) are precisely the holim-
isomorphisms.

Unfortunately, it is not known from the definition of the homotopy limit
model structure whether any of those equivalent conditions hold.

We can now turn to the main result of this subsection. For this, we need
to specify our finiteness conditions. Recall that a p-local spectrum is called
finite if it is in the full subcategory of the stable homotopy category Ho(Sp)
which contains the sphere spectrum and is closed under exact triangles and
retracts. We denote this full subcategory by Ho(Sp)fin.

Definition 2.11. We call a diagram X• in Chrom(Sp) finitary if holimX• is a
finite spectrum. By Ho(Chrom(Sp))F we denote the full subcategory of the
finitary diagrams in the homotopy category of Chrom(Sp).

Theorem 2.12. The Quillen adjunction const : Sp � Chrom(Sp) : lim induces
an adjunction

Ho(Sp)fin −−→←− Ho(Chrom(Sp))F

and the derived unit is a weak equivalence.

Proof. First, we notice that the derived adjunction

Lconst : Ho(Sp) −−→←− Ho(Chrom(Sp)) : R lim = holim

restricts to an adjunction

Lconst : Ho(Sp)fin −−→←− Ho(Chrom(Sp))F : R lim = holim .

By definition, the homotopy limit of each finitary diagram is assumed to be
a finite spectrum. On the other side,

holim(Lconst(X)) � X

is exactly the chromatic convergence theorem for finite spectra. The derived
unit of the above adjunction is a weak equivalence. For a cofibrant spectrum

X −→ (holim(const(X)) = holimn LnX)

is again the chromatic convergence theorem. �

We would really like to show that the above adjunction is an equivalence
of categories, that is, that the counit is a weak equivalence, meaning that

const(holim Y•) −→ Y•

is a weak equivalence for Y• a fibrant and cofibrant finitary diagram in
Chrom(Sp). However, to show this we would need to know that the weak
equivalences in Chrom(Sp) are exactly the holim-isomorphisms; see
Remark 2.10. Furthermore, we would not just have to know that Chrom(Sp)
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has a constant set of generators but also that those generators are finitary,
that is, the homotopy limit of each generator is finite.

2.3. Convergence of Towers

Let C be a left proper combinatorial model structure such that the model
structures PnC of n-types (see Sect. 2.1) are right proper, and hence the
model structure Post(C) exists. In this section we are going to take a closer
look at what it means for a tower in Post(C) to converge. Recall that we have
a Quillen adjunction

const : C −−→←− Post(C) : lim .

The following terminology appears in [4, Definition 5.35].

Definition 2.13. The model category C is hypercomplete if the derived left
adjoint of the previous Quillen adjunction is full and faithful, that is, if the
composite

Ho(C) Lconst−−−−→ Ho(Post(C)) holim−−−→ Ho(C)

is isomorphic to the identity.

We have seen in Sect. 2.1 that this is true for C = sSet∗. We have also
seen in Theorem 2.12 that, under a finiteness assumption, the chromatic tower
of spectra Chrom(Sp) is hypercomplete in this sense. We can also consider
the case of left Bousfield localizations of sSet∗, that is, C = LS sSet∗. In
general, this model category will not be hypercomplete. Let X be fibrant in
LS sSet∗, that is, fibrant as a simplicial set and S-local. If we take a fibrant
replacement of the constant tower const(Y) in Post(LS sSet∗), we obtain a
tower

(const(Y ))fib = (· · · −→ Yn −→ Yn−1 −→ · · · −→ Y0)

such that all the Yi are S-local, Yi is Pi-local for all i and Yn → Yn−1 is a
weak equivalence in Pn−1LS sSet∗. However, this is not a fibrant replacement
of const(Y) in Post(sSet∗), unless LS commutes with all the localizations Pn.
In this case, a Postnikov tower in LS sSet∗ is also a Postnikov tower in sSet∗,
and hypercompleteness holds. This would be the case for LS = LMR for R a
subring of the rational numbers Q, but it cannot be expected in general.

Let us recapture the classical case to get a more general insight into
hypercompleteness. For X in sSet∗ we know that X → limn PnX is a weak
equivalence. This is equivalent to saying that for all i,

πi(X) −→ πi(lim
n

PnX)

is an isomorphism of groups. But we have also seen that

πi(lim
n

PnX) = lim
n

πi(PnX)

as well as

πi(PnX) =
{

πi(X) if i ≤ n,
0 if i > n.
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Putting this together we get that, indeed, πi(limn PnX) ∼= πi(X) for all i.
This is a special case of the following. A set of homotopy generators for
a model category C consists of a small full subcategory G such that every
object of C is weakly equivalent to a filtered homotopy colimit of objects of
G and that by [11, Proposition 4.7] every combinatorial model category has
a set of homotopy generators that can be chosen to be cofibrant. Let C be
a proper combinatorial model category with a set of homotopy generators G
and homotopy function complex mapC(−,−). Then, for a cofibrant X, the
map X → holimn PnX is a weak equivalence in C if and only if

mapC(G,X) −→ mapC(G,holimn PnX) = holimn mapC(G,PnX)

is a weak equivalence in sSet for all G ∈ G, where the equality holds by [19,
Theorem 19.4.4(2)].

So from this we can see that if we had mapC(G,PnX) ∼= Pn mapC(G,X)
for all G in G, then we would get the desired weak equivalence because again

πi mapC(G,PnX) = πi(Pn mapC(G,X)).

We could also reformulate this statement by not using the full set of gen-
erators G, since we are only making use of the fact that they detect weak
equivalences.

Proposition 2.14. Let hG be a set in C that detects weak equivalences. If

mapC(G,PnX) ∼= Pn mapC(G,X)

for every G in hG, then C is hypercomplete. �

We can follow this through with a non-simplicial example, bounded
chain complexes of Z-modules Chb(Z). Let us briefly recall Postnikov sections
of chain complexes, which are discussed in detail in [18, Section 3.4]. As
mentioned in Sect. 2.1, Pn Chb(Z) is the left Bousfield localization of Chb(Z)
at

Wk = IChb(Z)�{fk : Sk+1 −→ Dk+2}.

The generating cofibrations of the projective model structure of Chb(Z) are
the inclusions

IChb(Z) = {Sn−1 −→ D
n | n ≥ 1},

where S
n−1 is the chain complex which only contains Z in degree n−1 and is

zero in all other degrees, and D
n is Z in degrees n and n−1 with the identity

differential and zero everywhere else. We can thus work out that

Wk = {Sn+k+1 −→ D
n+k+2 | n ≥ 0}.

This means that a chain complex is a k-type if and only if its homology
vanishes in degrees k + 1 and above. The localization M −→ PkM is simply
truncation above degree k.
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Let Hom(M,N) denote the mapping chain complex for M , N in Chb(Z),
that is,

Hom(M,N)k =
∏

i

HomZ(Mi, Ni+k)

with differential (df)(x) = d(f(x)) + (−1)k+1f(d(x)); see for example [20,
Chap. 4.2]. We note that

πi(mapChb(Z)(M,N)) = Hi(Hom(M,N))

because

πi(mapChb(Z)(M,N)) = [Si,mapChb(Z)(M,N)]sSet∗ = [M ⊗L Si, N ]Chb(Z)

= [M [i], N ]Chb(Z) = [M ⊗ Z[i], N ]Chb(Z)

= [Z[i],Hom(M,N)]Chb(Z) = Hi(Hom(M,N)).

So Chb(Z) is hypercomplete if Hom(G,PnN) is quasi-isomorphic to
Pn Hom(G,N) for all G in hG. For bounded below chain complexes, a set
that detects weak equivalences can be taken to be

hG = {Si = Z[i] | i ≥ 0}.

We have the following diagram of short exact sequences:

ExtZ(Hi(M), Hi+1(N)) ��

��

Hi(Hom(M, N)) ��

��

HomZ(Hi(M), Hi(N))

��
ExtZ(Hi(M), Hi+1(PnN)) �� Hi(Hom(M, PnN)) �� HomZ(Hi(M), Hi(PnN)).

Using the 5-lemma we can read off that Hi(Hom(M,PnN)) = 0 for
i > n as desired and that

Hi(Hom(M,PnN)) = Hi(Hom(M,N))

for i ≤ n − 1, but unless ExtZ(Hn(M),Hn+1(N)) = 0 we do not get that

Hn(Hom(M,PnN)) = Hn(Hom(M,N)).

Note that in general it is not true that Hom(M,PnN) � Pn Hom(M,N).
However, as we only require the case M = S

i, we have that

Hom(Si, N) = N [n],

where N [n] is the n-fold suspension of N . Thus,

Hom(G,PnN) = Pn Hom(G,N)

for all G in hG, so Chb(Z) is hypercomplete as expected.

Remark 2.15. Another important example of a tower of model structures
occurring in nature is given by the Taylor tower of Goodwillie calculus, where
for every n one considers the n-excisive model structure on the category of
small endofunctors of simplicial sets; see [8, Section 4]. We do not discuss this
example in this paper, and detailed relations to the aforementioned references
could be a topic for future research.
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3. Homotopy Fibered Products of Model Categories

Let I be the small category

1 α←− 0
β−→ 2.

A pullback diagram of model categories is a left Quillen presheaf F : Iop →
CAT. The objects X• of the category of sections are given by three objects
X0,X1 and X2 in F (0), F (1) and F (2), respectively, together with morphisms

α∗X1 −→ X0 ←− β∗X2

in F (0). A morphism φ• : X• → Y• consists of morphisms φi : Xi → Yi in
F (i) for i = 0, 1, 2, such that the diagram

α∗X1
��

α∗φ1

��

X0

φ0

��

β∗X2
��

β∗φ2

��
α∗Y1

�� Y0 β∗Y2
��

commutes.

Proposition 3.1. Let F : Iop → CAT be a pullback diagram of model categories
such that F (i) is a combinatorial model category for every i in I. Then there
exists a combinatorial model structure on the category of sections Sect(I, F ),
where a map φ• is a weak equivalence or a cofibration if and only if φi is a
weak equivalence or cofibration in F (i) for every i in I. The fibrations are
the maps φ• : X• → Y• such that f0 is a fibration in F (0) and

X1 −→ Y1 ×α∗Y0 α∗X0 and X2 −→ Y2 ×β∗Y0 β∗X0

are fibrations in F (1) and F (2), respectively. In particular, X• is fibrant if
Xi is fibrant in F (i) and

X1 −→ α∗X0 and X2 −→ β∗X0

are fibrations in F (1) and F (2), respectively .

Proof. The existence of the required model structure follows from Theo-
rem 1.2. The description of the fibrations follows from [16, Theorem 3.1]. �

Proposition 3.2. Let F : Iop → CAT be a pullback diagram of model categories
such that F (i) is combinatorial and right proper for every i in I. Then there
is a model structure Fibpr(F ) on the category of sections of F , called the
homotopy fibered product model structure, with the following properties:

(i) A morphism φ• is a fibration in Fibpr(F ) if and only if φ• is a fibration
in Sect(I, F ).

(ii) A section X• is cofibrant in Fibpr(F ) if and only if Xi is cofibrant in
F (i) for every i in I and the morphisms α∗X1 → X0 and β∗X2 → X0

are weak equivalences in F (0).
(iii) A morphism φ• between cofibrant sections is a weak equivalence if and

only if φi is a weak equivalence in F (i) for every i in I.
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Proof. The existence of the model structure Fibpr(F ) follows from Theo-
rem 1.3 applied to the left Quillen presheaf F . The characterization of the
weak equivalences between cofibrant objects follows since Fibpr(F ) is a right
Bousfield localization of Sect(I, F ). �

3.1. Bousfield arithmetic Squares of Homological Localizations

Let C be a left proper combinatorial stable model category and E any spec-
trum. The model structure LEC is the left Bousfield localization of C with
respect to the set IC�SE . Here IC is the set of generating cofibrations of
C, the set SE consists of the generating trivial cofibrations of the homologi-
cal localization LE Sp, and � is the pushout-product defined via the action
C×Sp → C. This model structure is an example of a left Bousfield localization
along a Quillen bifunctor, as studied in [18].

Now, let J and K be a partition of the set of prime numbers. By ZJ we
denote the J-local integers, and by MG the Moore spectrum of the group G.
Consider the model structures LMZJ

C, LMZK
C and LMQC. Since, for every

set of primes P , every MZP -equivalence is an MQ-equivalence, the identities
LMZJ

C → LMQC and LMZK
C → LMQC are left Quillen functors.

Thus we have a pullback diagram of model categories L•C : Iop → CAT,
where I = 1 ← 0 → 2 and L0C = LMQC, L1C = LMZJ

C and L2C = LMZK
C.

If C is a left proper combinatorial stable model category, then by Propo-
sition 3.1 the model structure Sect(I, L•C) exists, and it is also a stable model
structure because each of the involved model categories is stable.

Moreover, if in addition the model structures LMZJ
C, LMZK

C and LMQC
are right proper, then by Proposition 3.2 the model structure Fibpr(L•C),
which we denote by Bou(C), also exists. The model structure Bou(C) is also
stable, since it is a right Bousfield localization with respect to a set of stable
objects; see [2, Proposition 5.6].

Lemma 3.3. The adjunction const : C � Bou(C) : lim is a Quillen pair.

Proof. The proof is the same as the one for Lemma 2.4. �

Note that for any spectrum E, the model structure LE Sp is right
proper [2, Proposition 4.7]; hence the model structure Bou(Sp) exists.

Theorem 3.4. Let C be a proper and combinatorial stable model category. The
Quillen pair const : C � Bou(C) : lim is a Quillen equivalence.

Proof. By [20, Proposition 1.3.13] it suffices to check that the derived unit
and counit are weak equivalences.

Let X be a fibrant and cofibrant object in C. We need to show that

X −→ lim(const(X)fib)

is a weak equivalence in C, where (−)fib denotes a fibrant replacement in
Bou(C). The constant diagram const(X) is cofibrant in Bou(C) since const is
a left Quillen functor. Let

LMZJ
X −→ LMQX ←− LMZK

X
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be a fibrant replacement of const(X) in Bou(C). We have that LMZK
X,

LMZJ
X and LMQX are fibrant in LMZK

C, LMZJ
C and LMQC, respectively,

and the two maps are fibrations in C and weak equivalences in LMQC. Fur-
thermore, the three localisations are smashing in Sp, so by [3, Lemma 6.7]

LMZK
X = X ∧ MZK , LMQX = X ∧ MQ and LMZJ

X = X ∧ MZJ .

By [9, Proposition 2.10] we have that

lim(MZK −→ MQ ←− MZJ) = S,

where S denotes the sphere spectrum. Thus, the map

X −→ lim(LMZK
X −→ LMQX ←− LMZJ

X)
= X ∧ lim(MZK −→ MQ ←− MZJ)

is a weak equivalence. The last equality follows because homotopy pullbacks
commute with the action of spectra coming from framings, since in stable
categories they are equivalent to homotopy pushouts.

Now, let X• be any fibrant and cofibrant object in Bou(C). We have to
see that the map

const(lim X•) −→ X•

is a weak equivalence in Bou(C). This is equivalent to saying that the map
lim X• → X1 is a weak equivalence in LMZJ

C, lim X• → X2 is a weak
equivalence in LMZK

C and lim X• → X12 is a weak equivalence in LMQC.
Note that if A → B is a weak equivalence in LMQC, A is fibrant in

LMZK
C and B is fibrant in LMQC, then A → B is a weak equivalence

in LMZJ
C. To see this, let A → LMZJ

A be a fibrant replacement of A in
LMZJ

C. We are going to use [3, Lemma 6.7] again, which says that the weak
equivalences in LMZJ

C are morphisms f in C such that f ∧ MZJ is a weak
equivalence in C. This makes the following argument the same as it would be
for C = Sp.

Since B is fibrant in LMQC, it is so in LMZJ
C. Thus, there is a lifting

A ��

��

B

LMZJ
A.

��

The left arrow is a weak equivalence in LMZJ
C and hence a weak equiva-

lence in LMQC. Therefore, the dotted arrow is a weak equivalence in LMQC
between fibrant objects in LMQC. (Observe that LMZJ

A is fibrant in LMZJ
C

and LMZK
C and hence in LMQC.) Thus, it is a weak equivalence in C. This

completes the proof of the claim since weak equivalences in C are weak equiv-
alences in LMZJ

C.
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Since X• is fibrant and cofibrant, we have that in the pullback diagram

lim X•
f2 ��

f1

��

X2

��
X1

�� X12

X1, X2 and X12 are fibrant in LMZJ
C, LMZK

C and LMQC, respectively, and
the right and bottom arrows are weak equivalences in LMQC and fibrations
in LMZK

C and LMZJ
C, respectively. By the previous observation and right

properness of the model structures involved, the map f1 : lim X• → X1 is a
weak equivalence in LMZJ

, and f2 : lim X• → X2 is a weak equivalence in
LMZK

C, respectively. Thus, the map lim X• → X12 is also a weak equiva-
lence in MQ, which means that const(lim X•) −→ X• is an objectwise weak
equivalence, and thus a weak equivalence in Bou(C) as claimed. �

Remark 3.5. There is a higher chromatic version of the objectwise statement.
Here Sp denotes the category of p-local spectra. There is a homotopy fiber
square

LnX

��

�� LK(n)X

��
Ln−1X �� Ln−1LK(n)X;

see [13, Section 3.9]. However, we cannot apply the methods of this section
to get a result analogously to Theorem 3.4. This is due to the fact that
LK(n)Ln−1 Sp is trivial as a model category. (By [25, Theorem 2.1], a spec-
trum is E(n−1)-local if and only if it is K(i)-local for 1 ≤ i ≤ n−1. But the
K(n)-localization of a K(m)-local spectrum is trivial for n = m.) Consider
the homotopy fibered product model structure on

Ln−1 Sp −→ Ln−1LK(n) Sp ←− LK(n) Sp .

A fibrant and cofibrant diagram

X1
f1−→ X0

f2←− X2

would have to satisfy that X1 is E(n − 1)-local and f1 is an Ln−1LK(n)

localization. By the universal property of localizations, this means that f1

factors over Ln−1LK(n)X1 → X0. However, as X1 is E(n − 1)-local and thus
K(n)-acyclic, this map (and thus f1) is trivial. Thus we cannot reconstruct
a pullback square like the above from this model structure.

3.2. Homotopy Fibers of Localized Model Categories

We will use the homotopy fibered product model structure to describe the
homotopy fiber of Bousfield localizations. We can then use this to describe
the layers of a Postnikov tower, among other examples.

Let C be a left proper pointed combinatorial model category and let S
be a set of morphisms in C. The identity C → LSC is a left Quillen functor
and thus we have a pullback diagram of model categories LS

• C : Iop → CAT,
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where I = 1 ← 0 → 2, and LS
0 C = LSC, LS

1 C = ∗ and LS
2 C = C. (Here ∗

denotes the category with one object and one identity morphism with the
trivial model structure.)

A section of LS
• C is a diagram ∗ → Y ← X in C where ∗ denotes the

zero object. There is an adjunction

const : C �� Sect(I, LS
• C) : ev2,��

where const(X) = (∗ → X
1← X) and ev2(∗ → Y ← X) = X. We will denote

Fibpr(LS
• ) by Fib(LS

• ) and we will call it the homotopy fiber of the Quillen
pair C � LSC.

Definition 3.6. Let C be a proper pointed combinatorial model category and
let K be a set of objects and S be a set of morphisms in C. We say that the
colocalized model structure CKC and the localized model structure LSC are
compatible when for every object X in C, X is K-colocal if and only if X is
cofibrant in C and the map ∗ → X is an S-local equivalence.

The stable case is discussed in detail in [2, Section 10] where such model
structures are called “orthogonal”; see also Sect. 3.5.

Remark 3.7. Note that if CKC and LSC are compatible, then it follows from
the definitions that ∗ → Y ← X is cofibrant in Fib(LS

• C) if and only if both
X and Y are K-colocal and cofibrant in C. If ∗ → Y ← X is moreover fibrant
in Fib(LS

• C), then Y is weakly contractible since Y is S-local and ∗ → Y is
an S-equivalence and X → Y is a fibration in C.

Theorem 3.8. Let C be a proper pointed combinatorial model category and let
K be a set of objects and S be a set of morphisms in C. If CKC and LSC are
compatible, then the adjunction

const : CKC �� Fib(LS
• C) : ev2��

is a Quillen equivalence.

Proof. We will first show that the adjunction is a Quillen pair. By [19, Pro-
postion 8.5.4(2)], it is enough to check that the left adjoint preserves trivial
cofibrations and sends cofibrations between cofibrant objects to cofibrations.

Let f be a trivial cofibration in CKC. Then f is a trivial cofibration in
C and, therefore, const(f) is a trivial cofibration in Sect(I, LS

• C) and thus a
trivial cofibration in Fib(LS

• C).
Now let f : X → Y be a cofibration between cofibrant objects in CKC.

Then f is a cofibration between cofibrant objects in C and hence const(f) is
also a cofibration between cofibrant objects in Sect(I, LS

• C). But const(X)
and const(Y ) are cofibrant in Fib(LS

• C), since CKC and LSC are compatible
and, therefore, the maps ∗ → X and ∗ → Y are S-local equivalences. Hence
const(f) is a cofibration in Fib(LS

• C), by [19, Proposition 3.3.16(2)].
To prove that it is a Quillen equivalence, it suffices to show that the de-

rived unit and counit are weak equivalences; see [20, Proposition 1.3.13]. Let
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X be a cofibrant object in CKC. Then we can construct a fibrant replacement
for const(X) in Fib(LS

• C) as follows:

∗ �� X
��

��

X
��

��
∗ �� LSX X ′,����

where the map X → LSX is a trivial cofibration in LSC and X → X ′ → LSX
is a factorization in C of the previous map as a trivial cofibration followed by
a fibration. Indeed, the map between the two sections is a trivial cofibration
in Fib(LS

• C) since it is a levelwise trivial cofibration, and ∗ → LSX ← X ′

is fibrant in Fib(LS
• C) since LSX is fibrant in LSC, X ′ is fibrant in C and

X ′ → LSX is a fibration in C.
Therefore, the map X → ev2(const(X)) → ev2(R(const(X))), where

R denotes fibrant replacement in Fib(LS
• C), is precisely the map X → X ′,

which is a weak equivalence in CKC since it was already a weak equivalence
in C.

Finally, let ∗ → Y ← X be a fibrant and cofibrant section in Fib(LS
• C).

We need to check that the composite

const(Q(ev2(∗ → Y ← X))) −→ const(ev2(∗ → Y ← X)) −→ (∗ → Y ← X)

is a weak equivalence in Fib(LS
• C). But ev2(∗ → Y ← X) = X is already

cofibrant in CKC, by Remark 3.7. Therefore, we need to show that the map
of sections

∗ �� X

��

X

∗ �� Y X��

is a weak equivalence in Fib(LS
• C). Since both sections are cofibrant, it is

enough to see that the map in the middle is a weak equivalence in LSC,
which follows again from Remark 3.7. �

3.3. Postnikov Sections and Connective Covers of Simplicial Sets

We can use this setup to describe the “layers” of Postnikov towers. Let sSet∗
denote the category of pointed simplicial sets. Consider the model structure
Pk sSet∗ = LS sSet∗ for k-types, that is, the left Bousfield localization of
sSet∗ with respect to the set of inclusions S = {Sk+1 → Dk+2}. If K =
{Sk+1}, then the right Bousfield localization Ck sSet∗ = CK sSet∗ is the model
structure for k-connective covers, and Pk sSet∗ and Ck sSet∗ are compatible,
since for every X there is a fiber sequence

CkX −→ X −→ PkX,

where CkX denotes the kth connective cover of X. By Theorem 3.8 the model
categories Ck sSet∗ and Fib(LS

• sSet∗) are Quillen equivalent.
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Let S = {Sn+1 → Dn+2} and K = {Sn+1}, as before, and let C be a
proper combinatorial model category. Then we define LSC as the left Bous-
field localization of C with respect to the set IC�S and CKC as the right
Bousfield localization of C with respect to GC ⊗ K. Here IC is the set of gen-
erating cofibrations of C, GC is a set of homotopy generators, ⊗ denotes the
simplicial action given by a framing and � the pushout product. A fuller
account of localized model structures along Quillen bifunctors can be found
in [18]. In general, LSC and CKC are not necessarily compatible, so Theo-
rem 3.8 will not hold in this case for arbitrary C. However, examples where
compatibility holds include the category of chain complexes Chb(R) and sta-
ble localizations; see Sect. 3.5.

We can also consider Fib(LS
• Pk+1 sSet∗). Since for every X we have a

fibration

K(πk+1X, k + 1) −→ Pk+1X −→ PkX,

the model structures CkPk+1 sSet∗ and PkPk+1 sSet∗ = Pk sSet∗ are compat-
ible. Hence Theorem 3.8 directly implies

Corollary 3.9. The model structures CkPk+1 sSet∗ and Fib(LS
• Pk+1 sSet∗) are

Quillen equivalent. �

This means that we can view CkPk+1 sSet∗ as the kth layer of the Postnikov
tower model structure. Note that Ho(CkPk+1 sSet∗) is equivalent to the cat-
egory of abelian groups for k ≥ 1.

3.4. Nullifications and Cellularizations of Spectra

Let Sp be a suitable model structure for the category of spectra, for instance,
symmetric spectra and let S be a single map E → ∗. Then LS Sp = PE Sp
is called the E-nullification of Sp and CE Sp is called the E-cellularization
of Sp. As follows from [17, Theorem 3.6] we have the following compatibility
between localized and colocalized model structures:

(i) If the induced map Ho(Sp)(Σ−1E,CEX) → Ho(Sp)(Σ−1E,X) is injec-
tive for every X, then CE Sp and PE Sp are compatible.

(ii) If the induced map Ho(Sp)(E,X) → Ho(Sp)(E,PΣEX) is the zero map
for every X, then CE Sp and PΣE Sp are compatible.

3.5. Stable Localizations and Colocalizations

Let C be a proper combinatorial stable model category and let GSp denote
a set of cofibrant homotopy generators for the model category of symmetric
spectra Sp. Recall that a set of homotopy generators for a model category C
consists of a small full subcategory GC such that every object of C is weakly
equivalent to a filtered homotopy colimit of objects of GC and that by [11,
Proposition 4.7] every combinatorial model category has a set of homotopy
generators that can be chosen to be cofibrant.

A set of maps S in a stable model category is said to be stable if the
class of S-local objects is closed under suspension. Let S be a stable set of
morphisms in C and let K = cof(S) be the set of cofibers of the elements
of S. Then we have that cof(S ⊗ GSp) = cof(S) ⊗ GSp = K ⊗ GSp, where
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⊗ denotes the action of Sp on C. Hence, by [2, Proposition 10.3] it follows
that LS⊗GSpC and CK⊗GSpC are compatible. Therefore, Theorem 3.8 readily
implies the following fact:

Corollary 3.10. The model categories CK⊗GSpC and Fib(LS⊗GSp• C) are Quillen
equivalent. �
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