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Type Generic Observing

Maarten Faddegon and Olaf Chitil

University of Kent, UK

Abstract. Observing intermediate values helps to understand what is
going on when your program runs. Gill presented an observation method
for lazy functional languages that preserves the program’s semantics.
However, users need to define for each type how its values are observed:
a laborious task and strictness of the program can easily be affected.
Here we define how any value can be observed based on the structure
of its type by applying generic programming frameworks. Furthermore
we present an extension to specify per observation point how much to
observe of a value. We discuss especially functional values and behaviour
based on class membership in generic programming frameworks.

1 Introduction

Tracing intermediate values helps to understand what is going on in your pro-
gram. For lazy functional languages Gill presented a method to observe values
in a lightweight manner while preserving semantics [3]. His approach is imple-
mented in the library HOOD for Haskell. However, how values are observed has
to be stated for each type in a specific definition. Because the HOOD library
comes with many of these definitions, observing values of common types works
well. However when users define their own data types they also need to define
how these are observed. There are two reasons why it is undesirable that users
need to define instances for their data types: first of all writing these definitions
is a laborious and boring task making HOOD less accessible. The second and
maybe even more important problem is that the strictness of the program can
be changed when not enough care is given to the definition. This is bad: non-
termination can be introduced by tracing a program. In Section 2.2 we discuss
these issues in detail.

While considering how to give a generic definition to observe values, we re-
alised that HOOD lacks a mechanism to not observe values of a certain or
unknown type. Partial observation can be beneficial for two reasons: First of all,
when fully observing a function, the formatted output of an observation may be
cluttered by values that are not needed to understand the working of the func-
tion. Secondly, fully observing a value with a parameterised type requires the
addition of class predicates to the type of the function in which the observation
is made. The change then may require further type changes or additional in-
stance declarations wherever the function is called. If such changes are required
beyond the boundaries of one module, they are too intrusive and thus practically
infeasible.

With this in mind we have developed Hoed, an improved version of the HOOD
tracing library. Hoed can be installed with cabal update; cabal install Hoed.
In this paper we make the following contributions:



– We define how any value can be observed based on the structure of its type
and generalise HOOD with this definition (Section 4).

– We use our definition as case study to compare the three type-generic pro-
gramming frameworks: Generic Deriving Mechanism (Section 4.1), Scrap
Your Boilerplate (Section 4.2) and Template Haskell (Section 4.3).

– We include an extension that allows us to define in a generic manner, per
observation point, how much of a value to observe. (Section 5.1).

– Our novel application of generic programming demonstrates that there is a
real demand for the support of higher kinded types in generic programming
frameworks and that the current approaches leave room for future research
(Section 5).

2 A Closer Look at HOOD

HOOD is a library to observe the evaluated parts of intermediate values [3].
The two main combinators of the library are observe and runO. The function
observe takes a label as parameter and then behaves like the identity function; as
side effect a value is observed and associated with the label. Adding observations
doesn’t change the semantics of a program. The runO function formats and prints
observed values. Here is a typical usage of these combinators:

main = (runO . putStrLn . show)
$ floatToRational 0.6 (observe "sternbrocot" sternbrocot)

Our program converts floating point value 0.6 into rational value 3/5. Our
solution is composed of two parts: the first part constructs an infinite ordered
binary tree with all rational values, in the second part we descend into the tree
finding better and better approximations until a rational value that is equal to
our floating point value is found. For completeness our Tree type also has a Leaf
constructor, even though the tree we define is infinite and has no leafs.

-- API of Stern-Brocot library, implementation omitted in paper
data Tree a = Node a (Tree a) (Tree a) | Leaf a
sternbrocot :: Tree Rational
floatToRational :: Float -> Tree Rational -> Rational

We would like to know how the value 3/5 is computed and what the values
of the intermediate results are. We cannot do print sternbrocot or let s =
sternbrocot in trace (show s) s because this would force evaluation of the
whole infinite tree. With HOOD we can observe a value and only print those
parts that have been evaluated. After termination of the program, runO prints
the representation of the observed value:

Node (Rational 1 1)
(Node (Rational 1 2) _
(Node (Rational 2 3) (Node (Rational 3 5) _ _) _ )

)
_



-- Combinators used to make observations
runO :: IO a -> IO ()
observe :: Observable a => String -> a -> a

-- The class and method users need to implement
class Observable a where
observer :: a -> Parent -> a

-- Helper functions to implement an observer method
send :: String -> ObserverM a -> Parent -> a
(<<) :: (Observable a) => ObserverM (a -> b) -> a -> ObserverM b

Fig. 1: Essential parts of the HOOD API.

2.1 Defining How Values Are Observed

Values of different types need to be observed in different ways. For this purpose
the function observe uses the observer method. The observer method is part
of the class Observable. We need to define instances of the class Observable
for the types of all values that we want to observe.

To implement our own observer, the HOOD library provides the function
send. The send function takes the message to record, the value “wrapped” in
the ObserverM monad and the context. The ObserverM state monad is used to
number the components of the observed value. Later we take a closer look at
numbering components and the context, for now it is enough to know that this
is used to connect various parts of the observation.

To write a correct observer implementation we need to have some under-
standing of how lazy evaluation works and have some basic understanding of
HOOD’s internals. We need to define the method observer such that only a
shallow representation of the value is recorded now, and that other observers
will do the same for the components of the value when these are evaluated. The
helper function (<<) can be used to count and number the components of a value
and to apply observer to each component: To observe the tree of our example
the definition would be:

observer (Node x t1 t2)
= send "Node" (return Node << x << t1 << t2)

A user can easily change the lazy semantics of observe with their own
observer instance. For example using show on the components of the type can
result in a non-terminating program:

observer n@(Node x t1 t2)
= send (show x ++ ", " ++ show t1 ++ show t2) (return n)

2.2 How HOOD Works

Before we discuss how a generic observer works, we begin with a brief overview
of the observer mechanism in HOOD. Assume we want to observe a value such



b root

Node b v b l b r

Rational b p b q

1

observer (Node v l r) = send "Node" (return Node << v << l << r)

observer (Rational p q) = send "Rational"
(return Rational << p << q)

observer lit = send (show lit) (return lit)

Fig. 2: Application of observer instances when our Stern-Brocot tree is eval-
uated.

as the sternbrocot tree. The diagram of Figure 2 illustrates three steps in an
example evaluation. Each arrow represents an evaluation step, at each of these
steps an observer method emits a message. Next to each arrow the code of the
corresponding observer instance is shown.

The goal of each observer instance is twofold, as outlined in Figure 3.

First of all the observer records a message with a shallow representation of
the value. In the three instances above the representations are “Node”, “Rational”
and the result of (show lit). The show function in the last example does not
change the semantics because the value of lit has no internal structure, but in
general we need to be careful with show, because the representation it produces
is often not shallow.

Secondly the observer should put further observers on the components
of the value: for example the Tree observer adds an observer to all three
components in our example above, resulting in the second observation when v
is evaluated.

Node︸ ︷︷ ︸
shallow

a (Tree a) (Tree a)︸ ︷︷ ︸
components

Fig. 3: Example of decomposing a value into a shallow part under observation
now, and its components which are observed later (if evaluated).



To place observers on the components of a value, the value is decomposed
by pattern matching, e.g. into the constructor Node and the components v, l
and r in the Tree observer above. From the decomposed parts a transformed
value with observers is inserted one level deeper.

Components may or may not be evaluated, in arbitrary order. We assign
“port” numbers to each of the observers e.g. 0 for ‘v’, 1 for ‘l’ and 2 for ‘r’
to identify which message is associated with which field in the data constructor.
These numbers are stored in the Parent type

data Parent = Parent { observeParent :: Int, observePort :: Int}

To assign increasing port numbers to components, a state monad ObserveM
and the function thunk are used. When thunk is evaluated the appropriate
observer instance is applied. The (<<) function, used for hand written in-
stances, applies thunk to the argument on the right.

thunk :: (Observable a) => a -> ObserverM a
fn << a = do { fn’ <- fn ; a’ <- thunk a ; return (fn’ a’) }

3 Using Type Generic HOOD

To make HOOD easier to use and less prone to misuse we extended HOOD
allowing the user to derive how a value is observed from its type. Data generic
programming techniques are a well researched area resulting in a multitude of
libraries and language extensions. A fairly complete overview is given in [5].

3.1 Three Data Generic Frameworks

We use the following frameworks:

– The Generic Deriving Mechanism (GDM) adds the derivable class Generic
with methods to convert to and from a type representation. A generic func-
tion is defined on this type representation [14].

– Scrap Your Boilerplate (SYB) adds the derivable classes Typeable and Data
with methods to map over subtypes. Generic functions are defined on types
of the Data class [10].

– Template Haskell (TH) is a language extension that allows us to define func-
tions on a meta-level that are evaluated at compile-time and construct code
from types, functions or other expressions [21].

Each framework relies on some language extension and additional libraries. The
Glasgow Haskell compiler1 (GHC) implements all three frameworks; GDM is
also provided by the Utrecht Haskell compiler2 (UHC).

With the three frameworks we give give four implementations (see Figure 4).
Three alternative implementations extending HOOD with the ability to derive
how values are observed from their types. A fourth implementation, in TH only,
additionally allows us to define up to which type a value is observed.

1 http://www.haskell.org/ghc
2 http://www.cs.uu.nl/wiki/UHC



-- For the Generic Deriving framework we provide a default
-- implementation of observer:
class Observable a where

observer :: a -> Parent -> a
default observer :: (Generic a, GObservable (Rep a))

=> a -> Parent -> a
observer x c = ...

-- For the Scrap Your Boilerplate framework we define an observe method
-- for all types of the (derivable) class Data:
observe :: (Data a) => String -> a -> a

-- Our first implementation for the Template Haskell framework provides
-- a template to generate instances of Observable:
gobservableInstance :: Q Type -> Q [Dec]

-- Our second implementation for the Template Haskell framework
-- provides two templates. The first to specify which types should
-- be observed, and the second to observe a value:
observedTypes :: String -> [Q Type] -> Q [Dec]
observe :: String -> Q Exp

Fig. 4: API of our four type-generic HOOD extensions.

Generic Deriving Mechanism With GDM we define how observer can be
derived from a type representation. This representation is defined for instances
of the Generic class. The Generic class is derivable:

data Tree a = Node a (Tree a) (Tree a) | Leaf a deriving (Generic)

To derive an observer instance users add an Observable instance declaration
for their type without a definition of the method:

instance (Observable a) => Observable (Tree a)

Advanced users still can choose to define their own Observable instances: there
is a trade-off between the risk to make a mistake and change the semantics, and
being able to observe values of a certain type in a special way.

Scrap Your Boilerplate With SYB we define an observer method for values
from types of the Data class. This class is defined for types of the Typeable
class. Both can be derived:

data Tree a = Node a (Tree a) (Tree a) | Leaf a
deriving (Typeable, Data)

Note that this approach makes it impossible to define any ad-hoc instances that
describe how a value should be observed. In Section 5 we discuss that this causes
problems for types for which Data instances are difficult to define.



$(observedTypes "sternbrocot1"
[ [t| forall a . Observable a => Tree a |], [t| Rational |] ])

$(observedTypes "sternbrocot2" [[t| forall a . Tree a |]])

(a) In the same program we specify per identifier (e.g. "sternbrocot1") which
types are to be observed.

f1 = floatToRational 0.6 ($(observe "sternbrocot1") sternbrocot)
f2 = floatToRational 0.6 ($(observe "sternbrocot2") sternbrocot)

(b) We use (almost) the same observe annotation as we did before. But in each
case values of different types are observed depending on the specification above.

-- sternbrocot1
Node
(Rational 1 1)
(Node (Rational 1 2) _ (Node (Rational 2 3)

(Node (Rational 3 5) _ _)
_))

-- sternbrocot2
Node <?> (Node <?> _ (Node <?> (Node <?> _ _) _)) _

(c) Formatted output from the two example observations above. The symbol “<?>”
indicates an evaluated but not observed component.

Fig. 5: Specifying how much of the Stern-Brocot tree we want to observe.

Template Haskell We define a template to generate Observable instances
from a type. The user can apply a template to a type and “splice” the result
into the code under observation:

$(gobservableInstance [t| forall a . Tree a |])

Because our template offers just a way of generating code, it is again possible
for advanced users to define their own Observable instances.

3.2 Partial Observations

We explained in the Introduction that there are situations where we want to
observe parts of a value. With TH we generate custom implementations of the
whole observe mechanism to allow the user to specify per observe-annotation
values of which types should and should not be observed.

We need to add two sorts of annotations to the code under observation.
First of all, for each observation point we make a list of types whose values we
want to be observed. Parametrised components are observed when we add an
Observable class predicate for the type variable (Figure 5a). We associate each
list with the label of an observation point. Secondly we add an observe call
with the same label. The label doubles as identifier to find the list of types to be
observed and to annotate the formatted output of the observation (Figure 5c).

The observe and observedTypes annotations use the splice syntax from TH
but are otherwise not heavier than the annotations we used previously.



4 Three Type Generic Implementations

Now we discuss alternative type generic definitions of the observer function.
Ideally this function would be applicable to values of any type (as per type
signature below), in practice we still need some (derivable) class predicates.

observer :: a -> Parent -> a

For all our solutions we decompose the behaviour of observer into three parts:
render a shallow representation of the value, as a side-effect record this repre-
sentation, and observe components of the value.

observer x = send (shallowShow x) (observeChildren x)

It the next sections we discuss type generic definitions of shallowShow, which
produces the message to record, and observeChildren, which wraps the value.
We can use the polymorphic function send as it is.

shallowShow :: a -> String
observeChildren :: a -> ObserverM a

4.1 Generic Derived Observers

A type generic function is implemented with the Generic Deriving Mechanism
(GDM) by converting the observed value to a product-sum representation, ma-
nipulating this representation and converting back from the changed represen-
tation. To convert a value into a type representation its type should be of the
Generic class, which is derivable [14].

The product-sum representation has its roots in type theory: representing a
tuple or a record as the product of its components, and representing a variant
type (e.g. Node and Leaf in Tree) as the sum of its variants.

Encoding Constructor Names Constructor names can be attached as labels
to a type. In GDM this meta-information is encoded with the combination of
type M1 and method conName. The type is used in the representation while the
method holds the actual constructor label:

data M1 c a = M1 a
class Constructor c where conName :: c -> String

Note that the M1 data constructor is used for many different types. The types are
distinguished by the c type variable. Types for this variable and corresponding
conName instances need to be generated. In GHC this is done when we derive
Generics for a type. We would for example for our Tree generate the types
NodeConstr and LeafConstr such that:

conName (m :: M1 NodeConstr a) 7→ "Node"
conName (m :: M1 LeafConstr a) 7→ "Leaf"



data Tree a = Node a (Tree a) (Tree a)︸ ︷︷ ︸
left

| Leaf a︸ ︷︷ ︸
right︸ ︷︷ ︸

sum︸ ︷︷ ︸
data type

Fig. 6: Choice between data constructors of the Tree type encoded as the
sum of Node and Leaf.

Encoding Product and Sum Here we summarise the product-sum represen-
tation3 as used in GDM:

– To encode choice between data constructors of the same type GDM uses the
sum type. When there are more than two constructors, the sum type can be
nested.
data (a :+: b) = L1 a | R1 b

– To encode structured data the product representation is used.
data (:*:) f g = f :*: g

Let us consider how a value of the Tree type would be encoded. A value
with constructor Node has three components, this is encoded with the product-
representation. Our Tree type can either be Node or Leaf (see Figure 6), the
choice between these data constructors is encoded with L1 for Node-values and
R1 for Leaf-values. For example assume we want to encode a simple tree with
two leafs and one node. The values x, y and z are stored in the tree. We do not
elaborate on how these are encoded but just label their representations as q, r
and s:

encode (Node x (Leaf y) (Leaf z))
7→ L1 (M1 (q :*: R1 (M1 r) :*: R1 (M1 s)))

Implementing a Generic Observer with GDM For each value that we want
to observe with our generic observer we use GDM’s from-function to construct
a product-sum representation. Above we introduced GDM’s fixed set of types in
which it represents a Generic value.

We introduce a class GObservable with method gobserver and for each of
GDM’s representation-types we define an instance of GObservable: with the sum
representation we query the meta-information; using the meta information we
find the constructor names and record these; and with the product representation
we observe the components of the value.

The observer applied to one of the components can either be another ad-
hoc instance of observer provided by the programmer, or again the default
observer. The returned type representation (with observed components) is de-
coded to the original type with GDM’s to-function. Figure 7 shows a schematic
overview of applying the generic observer to the type representation of a Node
from our Tree.
3 We simplified the actual representation of GDM, the full representation is presented

by Magalhães et al. in [14].



default observer

gobserver

Sum:

Meta:

Product:

L1

M1

:*:

b :*:

b b

observer •

observer •

observer •

send "Node"

Fig. 7: Using GDM’s type representation to observe an example value of our
Tree type. The dots represent the components of the value, to which in turn
instances of observer are applied.

class Observable a where
observer :: a -> Parent -> a
default observer :: (Generic a, GObservable (Rep a))

=> a -> Parent -> a
observer x c = to (gobserver (from x) c)

4.2 Scrap Your Observers

Implementing a type generic function with Scrap Your Boilerplate (SYB) is done
by defining this function in terms of the Typeable and Data classes. The Data
class provides methods to query, map and fold over the components of a value.
The Typeable class provides a method to safely cast values. With SYB we can
define a generic transformation by first extending a simple function such that
it works over many types and then passing the type-extended function as an
argument to a generic data traversal combinator, such as a query, map or fold
function [10].

The class Data plays a central role in the SYB design pattern. Instances of
the Data class are easy and regular to define and can be generated by a compiler
when instructed by a deriving-clause [11].

Our goal is to develop a generic observer that takes the value of any type
that belongs to the Data class. Our generic function should have the same be-
haviour as the observer instances discussed before, that is: to create a shallow
representation of the value and to add intermediate observations to its compo-
nents.



observer :: Data a => a -> Parent -> a
observer x = send (shallowShow x) (observeChildren x)

We do not use the class Observable in our SYB implementation. An alter-
native implementation could provide an Observable instance for types of the
Data class. This however can lead to incoherent instances when we try to define
an ad-hoc Observable instance for a type that already has a Data instance.

shallowShow We start with defining how a shallow representation is produced.
In [11] a generic show is implemented. To get the name of the constructor the
methods toConstr and showConstr are defined for all types a of the Data class:

toConstr :: Data a => a -> Constr
showConstr :: Constr -> String

Applying toConstr to a value of base types such as Int results in a special
Constr representing that value. We use a composition of these two methods to
produce a shallow representation of any value of the Data type:

shallowShow :: Data a => a -> String
shallowShow = showConstr . toConstr

observeChildren SYB provides two methods to map over a value from the
Data class: gmapT to apply a function to all immediate components of a value
and gmapM to perform a monadic transformation on all immediate components of
a value [10]. The latter is what we need to define observeChildren: by applying
thunk the components will be observed and numbered. We have more to say on
gmapM in Section 5.2.

observeChildren :: Data a => a -> ObserverM a
observeChildren = gmapM thunk

4.3 Observer Templates

We define a type generic function in Template Haskell (TH) by defining a tem-
plate that takes a type as argument to construct a type-specific function at
compile-time.

We describe a template that from a type constructs an instance of the
Observable class and thereby defines how values of that type are observed.
We again follow the by now well known pattern of first defining templates to
construct a shallow representation and afterwards define observation of child
values.

TH Syntax From templates we construct code that is spliced into our pro-
gram at compile time. We define a template using either quasi-quote brack-
ets (e.g. [|thunk|]) or directly using constructors from the TH library (e.g.
VarE thunk). We can use ordinary Haskell code to combine and manipulate the
templates.

With the splice notation (e.g. $(gobservableInstance [t|MyData|])) we
construct and inject code into our program at compile time. Splicing code is not
restricted to the top-level but can also be done from within templates. For a
more comprehensive explanation we refer the interested reader to [21].



shallowShow Our TH implementation of shallowShow operates on the type-
representation to obtain the constructor name. This is similar to our GDM defi-
nition. However unlike the GDM definition we do not return the String itself but
rather an expression-representation of the String. The expression-representation
is evaluated at compile time and spliced as a snippet of code into the Haskell
program.

shallowShow :: Con -> Q Exp
shallowShow (NormalC name _) = stringE (nameBase name)

observeChildren We define the observerChildren template in a way that is
syntactically close to the earlier SYB definition: we apply thunk to all compo-
nents with a generic monadic map. The definition of gmapM with TH behaves
similar to the gmapM of SYB but operates on templates.

observeChildren :: Con -> [Q Exp] -> Q Exp
observeChildren = gmapM [| thunk |]

observer With shallowShow and observeChildren we now can implement
observer. We generate the code for a class instance of Observable with TH.
Types often have multiple data constructors. The gobserverClauses template
generates an implementation of observer for each constructor of the given type.

gobserver :: Q Type -> Q [Dec]
gobserver t = do cs <- gobserverClauses t

return [FunD (mkName "observer") cs]

The body of a clause is a familiar pattern by now and uses a template named
gobserverBody. However, our gobserverBody template requires a list of variable
bindings evars. This is needed, because with TH we do not operate on a value
representation, but generate actual Haskell code.

gobserverBody :: TyVarMap -> Con -> Q Exp -> [Q Exp] -> Q Body
gobserverBody tvm y c evars = normalB
[| send $(shallowShow y) $(observeChildren tvm y evars) $c |]

5 Strange Types

Up to now we have discussed observing values which have a type such as Int or
Tree Rational of kind *. The following types need further consideration:

– Type constructors such as Tree do not have any values. Therefore these
cannot be observed directly. However, with type constructors we can create
polymorphic types such as Tree a. In Section 5.1 we discuss how to observe
values of type Tree a for any a.

– The function type constructor has kind * -> *. A function is observed by
collecting the argument-result pairs of its applications. In Section 5.2 we
discuss both the ad-hoc instance and the generic observer for function types.

– IO actions such as getChar and putChar are similar to functions but either
the result or the argument is opaque: we record that it is there but we cannot
observe its value. For handling them see the original HOOD paper [3].



5.1 Partial Observe from Template

Up to now we assumed that all components of an observed type are observable.
In Section 3 we already gave reasons for sometimes desiring not to observe
components of a certain type or type variable. In this section we first explain
how to generate customised partial observe functions, observer methods and
Observable classes from template, then we discuss why we cannot provide a
similar implementation with GDM or SYB.

In the previous section we generated an observer method instance by ap-
plying a template to a type. Now we want to be able to specify per observe
annotation which components of a value are observed. We define two templates:

First of all the observedTypes template, which takes a list of types into whose
values an observation should descent. The template can be used more than once
to make several different observations. This is possible, because the template
generates a new “Observable”-like class, a set of “observer”-like instances and
a new “observe”-like function.

Secondly the observe template is used to insert the appropriate “observe”-
like function. The desired “observe”-like function is selected using the identifier
that is passed both to the observedTypes and observe template. This identifier
is also used to annotate the formatted output of the observation.

The templates we used before can be re-used here to implement the
observedTypes template but instead of unconditionally applying thunk to all
components we need to choose between thunk to continue tracing deeper, or
nothunk to stop tracing.

if isObservable type then [| thunk |] else [| nothunk |]

To determine if a type is observable we identify two cases: if it is a type variable
we check if the user added an Observable class predicate to the type. Otherwise
we check if an instance of our custom class for the type exists. Both SYB and
GDM lack the ability to perform these tests, we can therefore only give a TH
implementation of this extension.

With GDM and SYB it is possible to derive functions that observe parts of
a value based on the type of its component. However there is no mechanism to
generate new class declarations with instances. Thus with these frameworks we
would need to provide type descriptions or a set of functions to every observe
application. Previous research has shown that this approach gives problems with
values of polymorphic types [1].

5.2 Observing Functions

In HOOD’s output, a function is represented as a finite map of arguments to
results. This map is built in two steps: a function is observed by observing the
set of its applications and an application is observed by observing the argument
and result. In other words: the components of a function are the applications of
that function and the components of function application are the argument and
result.

In the original HOOD implementation this is done via an ad-hoc imple-
mentation of the observer method. With TH we generate ad-hoc instances of
observer, and with GDM we define a default observer; both frameworks allow
us to keep the hand-written observer instance for function types.



Because observe in the SYB solution is defined over the values that have a
type of the Data rather than the Observable class, we cannot use a hand-written
observer and need to extend our generic definition with the function type. In the
remainder of this section we discuss how we can map over the components of a
function as defined above.

Monadic Map over Function Application Lämmel and Jones dismiss travers-
ing into functional values as impossible unless the source code itself is tra-
versed [10]. The monadic map function gmapM from Scrap Your Boilerplate is
defined over types from the Data class, but for function type it does not do what
we need.

gmapM :: Monad m => (forall b . Data b => b -> m b) -> a -> m a
instance Data (a->b) where gmapM g fn = return fn

While it is hard to define what the components of a function are, we can
define what the components of function application are: the argument and the
result. From these argument and result pairs we can construct a finite map to
represent the function. We define function apM to traverse into the components
of function application.

apM :: Monad m => (a -> m b) -> (b -> a) -> a -> m b
apM g fn = \arg -> do {arg <- g arg; g (fn arg)}

Even if we would provide an alternative definition of gmapM there would be
a problem: gmapM constructs values of the same type as the input: b goes in and
m b comes out. With our view on function types however we want to construct
values of a different type: b->a goes in and, rather than m (a->b), we want a->m
b to come out.

Emulating A Monadic Map We can define a specific implementation of
the gmapT instance for functional types, to emulate a specific application of
gmapM. To get context information into our specific implementation of gmapT we
can construct a special “transformer” function that actually does not transform
anything but just returns the context.

funObserver :: (Data a) => a -> Parent -> a
funObserver y c = gmapT (mkT (\_-> c)) y

instance (Data a, Data b) => Data (a -> b) where
gmapT g fn = observeFunChildren (g root) fn
toConstr f = mkConstr (mkNoRepType "Fun") "Fun" [] Prefix

Because we use a different approach for function types, observer needs to detect
which types are function types and use our special approach in those cases:

observer :: (Data a) => a -> Parent -> a
observer x c = if isFun x

then funObserver x c
else send (shallowShow x) (observeChildren x) c



Concluding Remarks on Classes Compared to using an ad-hoc instance
as we did with GDM and TH, our SYB observer for function types is more
complicated. Furthermore, redefining the gmapT instance will prevent us from
using HOOD in modules that use a conflicting SYB instance of gmapT. With
GDM we define Observer instances while we define the observer behaviour in
SYB in terms of the Data class. This prohibits defining ad-hoc instances with
our SYB solution.

6 Related Work

Much work was done before on tracing lazy functional languages and generic
programming without which our work would not have been possible.

6.1 Tracing

Previous work on tracing Haskell provides a rich set of information but has seen
limited use because systems such as Freja [16], Hat [22] and Buddha [18] require
instrumentation of the whole program, including libraries, and are implemented
only for subsets of Haskell [2].

With HOOD, Gill made tracing accessible to a larger set of users by present-
ing a portable library of tracing combinators. To deal with the Observable class
restriction, users are required to understand lazy evaluation and how HOOD’s
internals work.

The Haskell interpreter Hugs4 keeps a type-representation of all values during
runtime. Hence Hugs provides a variant of Hood called HugsHood which allows
observation of all values without class restriction through type reflection [8].
Most other Haskell compilers do not provide run-time type information. It would
therefore be hard to implement the Hugs debugging primitives in these compilers
[1]. HugsHood also extends Hood with an interesting “breakpoint” feature that
shows the development of observations over time.

GHood extends HOOD with a graphical representation of the observation
showing development over time [19].

COOSy is an adaptation of HOOD for the functional logic language Curry.
COOSy’s observe function takes a type description, somewhat similar to the
list of types we specify in our Partial Observe from Template approach (see
Section 5.1). Partly this was done because Curry lacks a class system, but like
our extension it also enables the user to specify per observation up to which type
values are observed [1]. However unlike COOSy, we also allow to observe into a
polymorphic value, at the cost of needing to add a class predicate to the type
signature of the value under observation.

6.2 Generic Programming Frameworks

In this paper we discuss and compare the implementation of type generic obser-
vations with Scrap Your Boilerplate, Generic Deriving Mechanism and Template
Haskell.

Previously Hinze et al. [5] did a much broader comparison of approaches to
generic programming, and Rodriguez et al. [20] defined a generic programming

4 http://www.haskell.org/haskellwiki/Hugs



benchmark to compare 9 generic programming libraries. Both were valuable
sources of information for writing this paper. Our comparison is more modest
in the sense that we only compare three approaches. Our contribution however
is that we add two criteria of comparison derived from a real world application
that previously were not, or not high on the agenda:

1. Define a generic function’s behaviour based on class membership of the type
of its argument.

2. Define a generic function over a functional value in terms of the applications
of that functional value.

With the Scrap Your Boilerplate With Class approach and the Smash Your
Boilerplate variant we can reintroduce the Observable class in our second im-
plementation: using a dictionary we can explicitly define a default observer
instance of Data types [9, 12]. We can provide a specific instance for function
types, and advanced users can also again define their own instances.

The Uniplate and Strafunsky libraries are variations on SYB offering different
interfaces but neither allows mapping over more types compared to SYB [13,15].

The Generics for the Masses approach is captured completely in Haskell
98. Because the class for generics needs to be adapted for each new type this
approach is not suitable to implement a type generic observer method [4, 12].
Later work addressed this problem at the cost of introducing boilerplate code
that was not in the original approach [17].

The lifted spine view allows representation of data constructors as well as
type constructors. Unlike TH we cannot infer if a type is of a certain class, or if
a type variable has a class predicate [6].

PolyP is an extension of Haskell allowing the definition of type generic func-
tions over types of kind * and over higher kinded types as long as the types do
not contain function spaces [7].

DrIFT allows the programmer to add directives to the program which create
code from rules defined in a separate file [23]. DrIFTs directives are comparable
to splicing in TH, and its rules are comparable to the templates of TH. DrIFT is
not as powerful as TH: data types with higher kinded type variables (e.g. Tree
a) are not handled [5].

7 Conclusions and Future Work

In this paper we show how to overcome the restriction of hand-written Observable
instances for datatypes of values that we want to observe. Furthermore we
present a method to observe up to a certain data type or type variable, which
makes HOOD easier to use in libraries and testing frameworks.

We implemented our idea with three different generic programming tech-
niques: Scrap Your Boilerplate, Generic Deriving Mechanism and Template Haskell.
From our experience we make three observations:

– Neither GDM nor SYB completely support functional values. But GDM and
SYB-with-class can be extended with a hand-written ad-hoc Observable
instance for the function type.

– Specifying per observe which types are observed currently requires the
power of a meta-language.



– Typechecking our Observable templates gives no guarantee that correct
code is produced under all circumstances. An error will be caught when the
user of our library typechecks their code, but this is a much weaker guarantee
compared to SYB and GDM [5].

With our partial-observe extension we explored a new domain of generic pro-
gramming. We show that class membership testing, ignored in most previous
work, deserves a dedicated study to guarantee type correctness to the writer of
a generic library.

GDM SYB TH
function-type instances ad-hoc no ad-hoc or template
type-safe yes yes when using library
class-membership test no no yes

Tracing lazy functional programs has seen much research in the past. It
produced very informative systems with a high use barrier on the one hand
and lightweight systems that provide less information on the other hand. Our
contribution extends the out-of-the-box applicability of HOOD to a wider range
of types. We however do not address the wide gap between the information
provided by systems such as HAT compared to the information provided by
HOOD; this calls for research on closing this gap while maintaining HOOD’s
ease-of-use.
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