
Isomorph-free Branch and Bound Search for Finite State Controllers

Marek Grześ, Pascal Poupart and Jesse Hoey
Cheriton School of Computer Science, University of Waterloo

200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
{mgrzes, ppoupart, jhoey}@uwaterloo.ca

Abstract

The recent proliferation of smart-phones and other
wearable devices has lead to a surge of new mo-
bile applications. Partially observable Markov de-
cision processes provide a natural framework to de-
sign applications that continuously make decisions
based on noisy sensor measurements. However,
given the limited battery life, there is a need to min-
imize the amount of online computation. This can
be achieved by compiling a policy into a finite state
controller since there is no need for belief moni-
toring or online search. In this paper, we propose
a new branch and bound technique to search for a
good controller. In contrast to many existing algo-
rithms for controllers, our search technique is not
subject to local optima. We also show how to re-
duce the amount of search by avoiding the enumer-
ation of isomorphic controllers and by taking ad-
vantage of suitable upper and lower bounds. The
approach is demonstrated on several benchmark
problems as well as a smart-phone application to
assist persons with Alzheimer’s to wayfind.

1 Introduction
In this work we describe an approach to generate isomorph-
free Moore finite state automata. This is an important prob-
lem since deterministic finite state controllers (FSCs) for par-
tially observable Markov decision processes (POMDPs) are
Moore finite state automata. The optimization of a POMDP
policy can be cast as a search for the best FSC of a given size.
However, since there are many controllers that encode the
same policy, there is a need for techniques that can generate
only the controllers that correspond to different policies. We
denote by “equivalent” the controllers that encode the same
policy. Controllers can be thought as deterministic finite au-
tomata for which there exist several minimization techniques
to identify smaller equivalent automata [Huffman, 1954;
Moore, 1956; Hopcroft, 1971]. Building on this work we
show how to generate only non-equivalent minimal FSCs.

Meuleau et al. [1999] previously designed a branch and
bound technique to search for the best controller of a given
size that avoids the generation of some symmetric controllers.

Two controllers are symmetric when a permutation of the ac-
tions of the first controller yields the second controller. Con-
troller symmetry is a special type of controller equivalence,
but does not cover all forms of controller equivalence. We
show that a significant speed up can be obtained by gener-
ating only non-equivalent controllers. We also show how to
further prune the search space by using tighter upper bounds
in branch and bound.

The optimization of POMDP policies by branch and bound
in the space of fixed-size deterministic controllers is partic-
ularly useful in applications where some performance guar-
antees are desired and online computation costs need to be
minimized. For instance, the emerging class of monitor-
ing and assistive applications on mobile or wearable de-
vices can be cast as POMDPs. While these applications
need to be continuously running, they also need to mini-
mize energy consumption to maximize battery life. Con-
trollers are ideally suited since there is no online planning
or belief monitoring. Due to the non-convex nature of con-
troller optimization, alternative approaches such as bounded
policy iteration [Poupart and Boutilier, 2003], stochastic lo-
cal search [Braziunas and Boutilier, 2004], quadratically con-
strained linear programming [Amato et al., 2009], gradient
ascent [Meuleau et al., 1999] and expectation maximiza-
tion [Toussaint et al., 2006] may get stuck in arbitrarily bad
local optima (although some techniques to escape local op-
tima have been proposed [Poupart et al., 2011b]). In contrast,
branch and bound is guaranteed to find the best deterministic
controller of a given size with enough time.

The paper is structured as follows. Sec. 2 reviews
POMDPs and finite state controllers. Sec. 3 describes re-
lated work on controller optimization, including branch and
bound. Sec. 4 shows how to detect equivalent controllers and
how to efficiently generate isomorph-free controllers. Sec. 5
explains how to improve branch and bound by generating
only non-equivalent controllers, using tighter upper bounds,
prioritizing the search and by limiting the number of edges.
Sec. 6 reports experiments with benchmark problems and a
wayfinding application to assist people with Alzheimer’s dis-
ease. Sec. 7 concludes.

2 Background
Partially observable Markov decision processes are formally
defined by a tuple<S,A,O, T, Z,R, γ>where S is the set of

states s, A is the set of actions a, O is the set of observations
o, T (s′, s, a) = Pr(s′|s, a) defines the transition probabili-
ties, Z(o, a, s′) = Pr(o|a, s′) defines the observation proba-
bilities, R(s, a) defines the reward function and 0 < γ < 1 is
the discount factor. The goal is to find a policy π : H → A
that maps histories h ∈ H of previous actions and observa-
tions to the next action. Since the length of histories grows
with time and the number of histories grows exponentially
with time, there is a need for a bounded representation. One
option is to use belief states (i.e., distributions over states)
which can be thought as a sufficient statistic that encodes the
same information as histories. Alternatively, we can restrict
policies to finite state controllers, which define a compact
mapping from histories to actions.

A finite state controller (FSC) consists of a set of nodes la-
beled with actions and edges labeled with observations. An
FSC is parametrized by an action mapping φ, which assigns
an action to each node (i.e., φ : A → N) and a node map-
ping ψ, which indicates which node each edge maps to (i.e.,
ψ : N ×O → N). The policy encoded by a controller is exe-
cuted by performing the action associated with each node tra-
versed and by following the edge associated with each obser-
vation received. This execution requires a negligible amount
of computation at each step to update the current node and
lookup the corresponding action. Hence, it is ideal for mo-
bile applications, especially those with severe computation or
energy constraints.

We consider the problem of finding the best controller with
a fixed number of nodes. The more nodes there are the bet-
ter the controller may be, but past experience has shown that
for many POMDPs there exist small controllers that are quite
good [Poupart et al., 2011b]. Hence, by fixing the number
of nodes we can limit the search space and still find a good
controller most of the time. The search space consists of all
possible φ’s and ψ’s, which is exponentially large. The value
V π(s, n) of starting a controller π = <φ,ψ> in node n at
state s can be computed as follows:

V
π

(s, n) = R(s, φ(n)) + γ
∑
s′,o

Pr(s
′
, o|s, φ(n))V

π
(s

′
, ψ(n, o)) ∀s, n

Without loss of generality, we assume that the policy
of a controller always starts in the first node n1. Hence
the value of a controller at initial belief b0 is V π(b0) =∑
s b0(s)V π(n1, s).

3 Related Work
The optimization of POMDP controllers is notoriously diffi-
cult [Vlassis et al., 2012]. Hansen [Hansen, 1998] first pro-
posed a policy iteration algorithm that gradually constructs
a controller by adding nodes. However, the size of the con-
troller tends to grow exponentially with the number of time
steps. Subsequently, several approaches were proposed to op-
timize controllers of a fixed size [Poupart and Boutilier, 2003;
Braziunas and Boutilier, 2004; Amato et al., 2009; Meuleau
et al., 1999; Toussaint et al., 2006]. These approaches of-
ten consider stochastic controllers, allowing them to employ
techniques from continuous optimization. Unfortunately, due
to the non-convex nature of the optimization, they may get
trapped in arbitrarily bad local optima. Some approaches

have been augmented with escape techniques, but this is usu-
ally done by increasing the size of the controller [Poupart
and Boutilier, 2003; Poupart et al., 2011b]. Alternatively,
an exhaustive search in the space of deterministic controllers
can guarantee that the best deterministic controller is found.
To that effect, Meuleau et al. [1999] proposed a branch and
bound technique to efficiently search the space of controllers.
We briefly review Meuleau’s approach since we will improve
it in the next sections.

Branch and bound performs a depth-first backtracking
search in the space of controller parameters. This space con-
sists of |N | action variables (one for each node mapping
φ(n)) and |N ||O| node variables (one for each edge map-
ping ψ(n, o)). The search incrementally builds a controller
by assigning values to the variables until a full controller is
obtained or we backtrack at a partial controller. At each par-
tial controller, an upper bound on the value of all possible
completions of this partial controller is computed. If this up-
per bound is lower than the value of the best controller visited
so far, then the search is cut. Alg. 1 describes a generic branch
and bound algorithm for controllers. It requires a method
to compute partial controller upper bounds and heuristics to
determine the order in which the variables and their values
should be enumerated. In addition, a pruning technique may
be used to detect equivalent controllers.

Meuleau et al. [1999] prune symmetric controllers by im-
posing a lexicographic ordering on the actions assigned to
the nodes. Assuming that actions are numbered from 1 to
|A|, then controllers whose nodes are not assigned actions
in increasing order are rejected. This prunes factorially many
equivalent controllers that would result from permuting nodes
with different actions. However, nodes with identical ac-
tions may still be permuted to yield syntactically different
controllers that are equivalent. Other non-obvious forms of
equivalence will also go undetected. We explain how to de-
tect and prune all forms of equivalence in the next section.

Algorithm 1 Branch and Bound

BRANCHANDBOUND(π, LB)

1 if PRUNE(π) then return LB
2 if π is fully specified then return max(V π(b0), LB)
3 UB ← UPPERBOUND(π)
4 if UB < LB then return LB
5 Select next variable V to instantiate
6 while some domain values have not been tried
7 Select next value v to try
8 Let π′ be π extended with V = v
9 if ¬PRUNE(π′)

10 LB ← BRANCHANDBOUND(π′, LB)
11 return LB

For the upper bound, Meuleau et al. [1999] adapt the
QMDP upper bound to partial controllers. The idea is to let
the choice of action and next node in the φ and ψ mappings
depend on the underlying state s even if it is not observable.
Because decisions are based on more information than what
is normally available, the resulting value is necessarily higher,
yielding an upper bound. When φ and ψ are completely un-

specified, the QMDP upper bound V̄ satisfies:

V̄ (s, n) = max
a

[R(s, a) + γ
∑
o

max
n′

∑
s′

Pr(o, s
′|s, a)V̄ (s

′
, n

′
)]∀s,n (1)

The above equation can easily be adapted to partially spec-
ified controllers by replacing the maximization over actions
by the action selected for each specified action mapping and
by replacing the maximization over next nodes by the selected
next node for each specified next node mapping. The upper
bound is computed with dynamic programming by repeatedly
computing the right-hand-side of Eq. 1. In Sec. 5, we explain
how to improve this bound by considering the fast informed
bound and an augmented POMDP.

4 Detecting Equivalent Controllers
Two FSCs are said to be equivalent when they encode the
same policy. The policy encoded by a controller is a set of
conditional plans rooted at each node. Here a conditional
plan is a tree that alternates between actions and observa-
tions. Trees are generally infinite unless the planning horizon
is finite. Two controllers that contain the same set of condi-
tional plans are considered equivalent. Detecting equivalent
controllers is related to the problem of detecting that two au-
tomata accept the same language. In fact, finite state con-
trollers are deterministic finite automata (DFA) where the ob-
servations are input symbols and actions are output symbols.
In automata theory, it is common to consider only two outputs
(accept and reject) since the goal is to define a language that
accepts a specific set of strings. Nevertheless, controllers can
be viewed as a straightforward extension where strings of in-
puts/observations are partitioned into several classes labeled
with different outputs/actions. Hence algorithms to detect
equivalent DFA can be used to detect equivalent controllers.

Equivalent DFA/FSCs arise when some nodes are repeated
or permuted. Several algorithms have been proposed to min-
imize automata by detecting repeated nodes [Huffman, 1954;
Moore, 1956; Hopcroft, 1971]. The same can be done with
controllers by detecting nodes that are the root of identical
conditional plans. Alg. 2 describes how to do this by gradu-
ally updating a matrix that indicates which pairs of nodes are
the roots of different trees. Let M be an |N | × |N | matrix
where |N | is the number of nodes in a FSC. The algorithm
starts with all entries inM set to 1, indicating that all nodes of
the FSC may be equivalent. Then the algorithm repeatedly
inspects the entries and revises an entry Mi,j to 0 when the
conditional plans of nodes ni and nj are found to be differ-
ent. This occurs when the actions of those nodes are different
or their edges point to subtrees that are not equivalent. The
algorithm terminates when there are no more entries to be re-
vised. If there is a non-diagonal entry set to 1, then the FSC
is not minimal since some of its nodes are repeated. While
the procedure described in Alg. 2 is not the most efficient, it
is conceptually simple and it can be easily modified to deal
with partial controllers as we will see in Alg. 3.

Minimal FSCs (no repeated nodes) may still be equivalent
if their nodes are permuted. In that case the FSCs are said to
be isomorphic. Since our goal is to generate non-equivalent
controllers, we can generate a single minimal FSC in each
equivalence class by imposing a lexicographic ordering. This

Algorithm 2 Repeated Trees in Full FSC

REPEATEDTREESINFULLFSC(FSC)

1 Let M be an |N | × |N | matrix of ones
2 repeat
3 for each i, j ∈ {1, ..., |N |} such that i 6= j
4 if φ(ni) 6= φ(nj) then Mi,j ← 0
5 for each observation o
6 if Mψ(ni,o),ψ(nj ,o) = 0 then Mi,j ← 0
7 until M doesn’t change
8 if ∃i 6= j such that Mij = 1 then return true
9 else return false

will ensure that among all node permutations, only one con-
figuration is retained. Suppose that we number all nodes from
1 to |N | and all observations from 1 to |O|, we can then
number edges from 1 to |N ||O| such that the index of the
edge coming out of node n and labeled with observation o is
(n − 1)|O| + o. We can retain a single permutation of the
nodes by making sure that the edges point to nodes that sat-
isfy the following conditions:

ψ(edge1) ≤ 2 and ψ(edgei) ≤ max
j<i

ψ(edgej) + 1 (2)

The first condition says that the first edge should point to node
1 or a new node that will take the next index. In this case the
next index is 2. The second condition says that all other edges
should point to a node that has already been pointed to by a
previous edge or a new node that will take the next index. In
this case the index is 1 plus the largest index of the nodes
pointed to so far.
Theorem 1. There is exactly one minimal controller in each
equivalence class that satisfies the conditions in (2).

Proof. We sketch an informal proof. There is at least one
minimal controller in each equivalence class that satisfies the
conditions in (2) since we can take any minimal controller
and renumber its nodes according to the order in which the
nodes would be visited by a breadth first search that expands
each node at most once.

We prove by contradiction that there is at most one minimal
controller in each equivalence class that satisfies the condi-
tions in (2). Suppose that we have two syntactically different
minimal controllers in the same equivalence class. By defini-
tion, these controllers encode the same policy, which means
that they have the same set of conditional plans. Alg. 2 en-
sures that none of their conditional plans are repeated. So
they must have the same number of nodes and there exists a
one-to-one mapping between the conditional plans of the two
controllers. The conditions in (2) also ensure that the nodes
are ordered in the same way, which means that there is no
syntactic difference between the controllers. This contradicts
our assumption.

Alg. 2 and the conditions in (2) give us the tools to identify
a unique minimal controller in each equivalence class that we
will call the canonical controller. We can use these tools in a
branch and bound procedure to generate only canonical con-
trollers corresponding to different policies. That being said,

branch and bound operates by gradually completing partial
controllers. Hence, we would like to detect as early as possi-
ble that all completions of a partial controller will yield non-
canonical controllers in order to cut the search early. This
can be done by modifying Alg. 2 to detect repeated trees in
partial controllers. When an action or an edge is unassigned,
we will assume that it can take any desirable assignment to
show that two trees are different. Hence, Alg. 3 will detect
identical trees only when two trees will necessarily be identi-
cal, regardless of how unassigned variables are assigned. We
denote by ’*’ the value of an unassigned variable.

Algorithm 3 Repeated Trees in Partial FSC

REPEATEDTREESINPARTIALFSC(FSC)

1 Let M be an |N | × |N | matrix of ones
2 repeat
3 for each i, j ∈ {1, ..., |N |} such that i 6= j
4 if φ(ni) = ∗ or φ(nj) = ∗ or φ(ni) 6= φ(nj)
5 Mi,j ← 0
6 for each observation o
7 if ψ(ni, o) = ∗ or ψ(nj , o) = ∗

or Mψ(ni,o),ψ(nj ,o) = 0 then Mi,j ← 0
8 until M doesn’t change
9 if ∃i 6= j such that Mij = 1 then return true

10 else return false

5 Improved Branch and Bound
There are several factors that influence the effectiveness of
branch and bound. In addition to pruning non-canonical con-
trollers as in the previous section, the quality of the upper
bounds, the order in which variables and values are selected
and the number of edges will influence the amount of search.

5.1 Upper Bound
Tighter upper bounds can significantly reduce the amount of
search. We propose to adapt the fast informed bound (FIB)
to controllers since this bound is tighter than QMDP. While
QMDP provides an upper bound by assuming that the current
state is observed, FIB assumes that the previous state is ob-
served. In practice, neither the current nor the previous states
are observable, however the previous state provides less addi-
tional information than the current state, which is why FIB is
tighter. When φ and ψ are completely unspecified, the upper
bound V̄ based on FIB is obtained as follows:

V̄ (s, n) = maxaQ̄(s, n, a) where
Q̄(s, n, a) = R(s, a) + γ

∑
o

max
n′,a′

∑
s′

Pr(o, s
′|s, a)Q̄(s

′
, n

′
, a

′
) ∀s, n, a

The above equation can easily be adapted to partially spec-
ified controllers by replacing the maximization over actions
by the action selected for each specified action mapping and
by replacing the maximization over next nodes by the selected
next node for each specified next node mapping.

Upper bounds such as QMDP and FIB can be further
improved by creating an augmented POMDP [Hauskrecht,
2000; Poupart et al., 2011a]. The idea is to augment the state

space with belief points to create a larger POMDP. If we treat
all reachable beliefs as states, the augmented POMDP be-
comes a belief state MDP that can be solved exactly by MDP
techniques. QMDP and FIB then return tight upper bounds
that correspond exactly to the optimal value function. Since it
is not practical to treat all reachable beliefs as states, we only
consider a subset of reachable beliefs, which yield an aug-
mented POMDP somewhere between the original POMDP
and the belief state MDP. Although the QMDP and FIB up-
per bounds won’t be tight, they will be tighter than for the
original POMDP. The combination of FIB with an augmented
POMDP currently yields the lowest known upper bounds for
many POMDPs [Poupart et al., 2011a]. We use the same
approach as in the gapMin solver [Poupart et al., 2011a] to
select the belief points and create the augmented POMDP.

5.2 Variable and Value Ranking
The order in which variables and values are selected for as-
signment can greatly influence the amount of search. If we
make good assignments initially then we will quickly obtain a
good controller with a high lower bound, allowing us to prune
more aggressively in the rest of the search. We propose to
rank variables according to their occupancy frequencies. In-
tuitively, the more often a node or an edge is visited, then the
more critical it will be to set it properly. Hence, we rank the
unassigned variables in decreasing order of occupancy fre-
quency and select the one with highest frequency. Occupancy
frequencies are estimated by performing a simulation of the
controller and recording how often each node and each edge
is visited. When the simulation reaches an unassigned node
or edge in a partial controller, the best action or best next node
according to the FIB upper bound is assumed. This allows us
to simulate the specified and unspecified parts of a controller.

Values are ranked based on their expected utility. For in-
stance, when instantiating a node with an action, we select
actions in decreasing order of expected utility measured by
the upper bound at the belief corresponding to the normalized
state occupancy frequency of the node. Let b(s) be the be-
lief proportional to the state occupancy frequency at node n.
We then rank actions according to

∑
s b(s)Q̄(n, s, a). Sim-

ilarly, when assigning an edge to a node, we select nodes in
decreasing order of expected utility measured by the upper
bound. Again, let b(s) be the belief proportional to the state
occupancy at node n. We then compute the reachable belief
b(s′) ∝

∑
s b(s) Pr(s′|s, φ(n)) Pr(o|s, φ(n)) and rank next

nodes n′ according to
∑
s′ b(s

′)Q̄(n′, s′, φ(n′)).

5.3 Observation Aggregation
The size of the controller greatly influences the amount of
search because it determines the number of variables. While
we bound the number of nodes, most of the variables in the
search correspond to edges instead of nodes since there are
|O| edges for each node. As a result, problems with many ob-
servations tend to have a search space that is intractable, even
when the number of nodes is small. We propose to bound
the number of edges. More precisely, we propose to merge
several edges together in a way that only a bounded number
of edge groups need to be instantiated. Grouping edges re-
ally corresponds to merging observations. We show that for

several benchmarks, merging observations by grouping edges
does not hurt the performance in the sense that a good con-
troller can still be found while cutting the search space.

Hoey et al. [2005] demonstrated that observations can be
merged without any loss as long as they do not lead to differ-
ent decisions. In a controller, observations label edges which
are used to decide which conditional plan will be executed
next. If a problem has more observations than the number
of nodes, then observations will be partitioned into at most
|N | groups. In practice, the optimal controller will often have
fewer than |N | observation groups per node since the graph
is often sparse (i.e., each node links to only a few nodes).

We propose to bound the number of edge groups (and
therefore observation groups). Let |E| be the maximum num-
ber of edge groups. We propose to instantiate |E| − |N | in-
dividual edges as usual. Then |N | edge groups are formed by
grouping together all unassigned edges for each node. The
edges in a group will be instantiated to the same value simul-
taneously, which reduces the amount of search. Since edges
are instantiated in decreasing order of occupancy frequency,
the remaining edges that are grouped together at each node
are the ones with the lowest occupancy frequency and there-
fore the loss of accuracy due to grouping should be small.

6 Experiments
We compare Meuleau’s search technique with our improved
branch and bound with and without pruning equivalent con-
trollers as well as three optimization techniques for stochas-
tic controllers: bounded policy iteration (BPI) with es-
cape [Poupart and Boutilier, 2003], quadratically constrained
linear programming (QCLP) [Amato et al., 2009], expecta-
tion maximization (EM) with forward search [Poupart et al.,
2011b]. The experiments are conducted with some bench-
mark problems and a real-world wayfinding POMDP that
runs on a mobile phone.

6.1 LaCasa Domain
Wandering is a common behavior among people with demen-
tia (PwD). It is also one of the main concerns of caregivers
since it can cause the person to get lost and injured. The
frequency and manner in which a person wanders is highly
influenced by the person’s background and contextual factors
specific to the situation. We developed a POMDP model for
a mobile application called “LaCasa” [Hoey et al., 2012] that
estimates the risk faced by the PwD and decides on the appro-
priate action to take, such as prompting the PwD or calling
the caregiver. Contextual information gathered from sensors
is integrated into the model, including current location, bat-
tery power, and proximity to the caregiver. The system can
reason about the costs of sensors (e.g. battery charge) and the
relative costs of different types of assistance. A preliminary
version of the system has been instantiated in a wandering
assistance application for mobile devices running on an An-
droid platform. However, in the current system, the neces-
sary POMDP belief updates and policy queries are computa-
tionally too demanding and are done on a remote server that
communicates with the smartphone using simple XML mes-
sages. This is a problem since the server communications

can be expensive battery-wise, and rely on a data connection.
The FSCs we find using the method proposed in this paper
alleviate this problem, allowing the policy to run directly and
cheaply on the smartphone. Additionally, it is not necessar-
ily the case that persons with dementia will be able to carry
a smartphone, and may require a much smaller, embedded or
wearable device. In such cases, the memory and computation
power available becomes a more serious constraint, making
the use of FSCs imperative. We experimented with three La-
Casa versions of different sizes—initially designed with our
technique [Grześ et al., 2013] for engineering POMDPs.

6.2 Results
Table 1 summarizes the results. The branch and bound (B&B)
techniques find FSCs with highest value V (b0) for a fixed
number of nodes and close to the upper bound computed by
GapMin [Poupart et al., 2011a]. For our improved B&B with
and without pruning, the number of edge groups is bounded
as indicated in the column #edges. This did not diminish the
value of the controllers found except for lacasa3-ext. #evals
indicates the number of (partial) controllers that were eval-
uated to complete the search. Although the controllers are
small, the search space is huge. Meuleau’s B&B was not able
to complete the search within 72 hours for most problems.
Our improved B&B with tighter upper bounds and priori-
tized variable/value selection significantly reduced the search
and an additional reduction was achieved by pruning equiv-
alent controllers. BPI, QCLP and EM search in the space of
stochastic controllers and therefore have an advantage since
the best stochastic controller of a given size may have higher
value than the best deterministic controller of the same size.
Nevertheless, they are prone to local optima and as a result
they found controllers with lower average value than B&B.

While our approach clearly improves the state of the art for
B&B, the time taken to find a controller is still significantly
higher than the time taken by search techniques for stochastic
controllers, point-based techniques and online search tech-
niques. However, as illustrated with the LaCasa domain,
there is a need for techniques that can reliably find good con-
trollers that can be executed with minimal online computa-
tion. In these cases, the additional offline cost to find the
controller is acceptable and worthwhile.

7 Conclusion
This work shows how to improve branch and bound by using
tighter bounds, prioritizing the selection of variables/values,
bounding the number of edge groups and pruning equivalent
controllers. The controllers that we considered in this work
are Moore automata. In the future, it would be interesting
to extend this work to Mealy automata [Amato et al., 2010]
which can encode the same policies as Moore automata with
fewer nodes, but more parameters (since the action mapping
depends on nodes and observations instead of nodes only).

Acknowledgments
This work was supported by the Ontario Ministry of Research
and Innovation, NSERC, Toronto Rehabilitation Institute and
the Alzheimer’s Association grant ETAC-10-173237.

Table 1: Initial lower bound, LB-init, indicates the lower bound used to initialize the search in all branch and bound algorithms.
If not specified, LB was set to the maximum value of a random controller and a one-node controller. ”Upper bound” is the
upper bound on the optimal value for arbitrarily large controllers as computed by GapMin with a 10,000-second time limit.
Meuleau’s B&B is our implementation of Meuleau’s branch and bound. Improved B&B is our branch and bound technique
without any pruning as described in Section 5. Improved B&B with pruning is our branch and bound (Section 5) with pruning
(Section 4). ‘-’ means that the algorithm did not finish the search within 72 hours. ‘∗’ means that QCLP did not finish on the
NEOS server due to insufficient memory (3GB limit). When # of edges is provided, it indicates a reduced number of edges in
the optimized controller.

problem (# of nodes) algorithm V (b0) SEM time [s] # of evaluations # of edges LB-init
chainOfChains3 (10) Meuleau’s B&B - - -
|S| = 10 improved B&B 157 ± 0 2.86 236
|A| = 4, |O| = 1 improved B&B with pruning 157 ± 0 1.67 81
Upper bound = 157 QCLP 0 ± 0 0.16

BPI 25.7 ± 0.77 4.25
EM 62.6 ± 9.46 21.18

hhepisobs woNoise (8) Meuleau’s B&B - - - 8.6
|S| = 20 improved B&B 8.64 ± 0 6.78 505 8.6
|A| = 4, |O| = 6 improved B&B with pruning 8.64 ± 0 4.48 405 8.6
Upper bound = 8.64 QCLP 0 ± 0 5.20

BPI 0 ± 0 0.41
EM 0 ± 0 0.79

lacasa1 (6) Meuleau’s B&B 294.0 ± 0 209204.47 3096207114
|S| = 16 improved B&B 294.0 ± 0 1121.17 4156430
|A| = 2, |O| = 3 improved B&B with pruning 294.0 ± 0 39.57 143943
Upper bound = 294.3 QCLP 293.8 ± 0.1 1.76

BPI 290.8 ± 0.15 0.30
EM 293.5 ± 0 0.24

lacasa3 (3) Meuleau’s B&B - - -
|S| = 640 improved B&B 292.0 ± 0 514.44 1586 6
|A| = 5, |O| = 12 improved B&B with pruning 292.0 ± 0 347.88 788 6
Upper bound = 294.9 QCLP ∗ ∗ ∗

BPI 288.2 ± 0.57 20.38
EM 290.5 ± 0.02 40.71

lacasa3-ext (3) Meuleau’s B&B 292.0 ± 0 1146.73 18162.14
|S| = 1920 improved B&B 291.0 ± 0 2385.37 5958.62 6
|A| = 5, |O| = 3 improved B&B with pruning 291.0 ± 0 1364.03 2964.52 6
Upper bound = 295.6 QCLP ∗ ∗ ∗

BPI 283.8 ± 0.30 4.01
EM 283.6 ± 0 261.15

machine (6) Meuleau’s B&B - - - 62.2
|S| = 256 improved B&B - - - 10 62.2
|A| = 4, |O| = 16 improved B&B with pruning 62.6 ± 0 52100 338486 10 62.2
Upper bound = 63.8 QCLP 62.47 ± 0.16 2640

BPI 26.6 ± 0.77 0.74
EM 62.43 ± 0.07 101.1

tiger.95 (5) Meuleau’s B&B 19.3 ± 0 15.07 911940
|S| = 2 improved B&B 19.3 ± 0 15.49 83359
|A| = 3, |O| = 2 improved B&B with pruning 19.3 ± 0 1.42 4418
Upper bound = 19.3 QCLP -6.3 ± 3.79 0.70

BPI -20.2 ± 0.12 0.06
EM 6.91 ± 2.48 0.15

4x5x2.95 (5) Meuleau’s B&B - - -
|S| = 39 improved B&B 2.02 ± 0 1738.92 409980 10
|A| = 4, |O| = 4 improved B&B with pruning 2.02 ± 0 639.99 206317 10
Upper bound = 2.08 QCLP 1.43 ± 0.07 0.75

BPI 0.55 ± 0.09 0.22
EM 0.85 ± 0.04 1.12

References
[Amato et al., 2009] C. Amato, D. Bernstein, and S. Zil-

berstein. Optimizing fixed-size stochastic controllers for
POMDPs and decentralized POMDPs. Journal of Au-
tonomous Agents and Multi-Agent Systems, 2009.

[Amato et al., 2010] C. Amato, B. Bonet, and S. Zilberstein.
Finite-state controllers based on mealy machines for cen-
tralized and decentralized POMDPs. In AAAI, 2010.

[Braziunas and Boutilier, 2004] D. Braziunas and
C. Boutilier. Stochastic local search for POMDP
controllers. In AAAI, pages 690–696, 2004.

[Grześ et al., 2013] Marek Grześ, Jesse Hoey, Shehroz S.
Khan, Alex Mihailidis, Stephen Czarnuch, Daniel Jack-
son, and Andrew Monk. Relational approach to
knowledge engineering for POMDP-based assistance sys-
tems as a translation of a psychological model. In-
ternational Journal of Approximate Reasoning, 2013.
http://dx.doi.org/10.1016/j.ijar.2013.03.006.

[Hansen, 1998] E. Hansen. An improved policy iteration al-
gorithm for partially observable MDPs. In NIPS, 1998.

[Hauskrecht, 2000] Milos Hauskrecht. Value-function ap-
proximations for partially observable Markov decision
processes. Journal of Artificial Intelligence Research,
13:33–94, 2000.

[Hoey and Poupart, 2005] Jesse Hoey and Pascal Poupart.
Solving POMDPs with continuous or large discrete ob-
servation spaces. In Proc. of the International Joint Con-
ference on Artificial Intelligence, pages 1332–1338, July
2005.

[Hoey et al., 2012] Jesse Hoey, Xiao Yang, Eduardo Quin-
tana, and Jesús Favela. Lacasa: Location and context-
aware safety assistant. In Proceedings of the Interna-
tional Conference on Pervasive Computing Technologies
for Healthcare, pages 171–174, 2012.

[Hopcroft, 1971] John Hopcroft. An n log n algorithm for
minimizing states in a finite automaton. Technical Re-
port StaN-CS-70-190, Stanford University, Department of
Computer Science, 1971.

[Huffman, 1954] David A Huffman. The synthesis of se-
quential switching circuits. Journal of the Franklin Insti-
tute, 257(3):161–190, 1954.

[Meuleau et al., 1999] Nicolas Meuleau, Kee-Eung Kim,
Leslie Pack Kaelbling, and Anthony R. Cassandra. Solv-
ing POMDPs by searching the space of finite policies. In
Kathryn B. Laskey and Henri Prade, editors, UAI, pages
417–426. Morgan Kaufmann, 1999.

[Moore, 1956] Edward F Moore. Gedanken-experiments
on sequential machines. Automata studies, 34:129–153,
1956.

[Poupart and Boutilier, 2003] Pascal Poupart and Craig
Boutilier. Bounded finite state controllers. In Sebastian
Thrun, Lawrence K. Saul, and Bernhard Schölkopf,
editors, NIPS. MIT Press, 2003.

[Poupart et al., 2011a] Pascal Poupart, Kee-Eung Kim, and
Dongho Kim. Closing the gap: Improved bounds on
optimal POMDP solutions. In Fahiem Bacchus, Carmel
Domshlak, Stefan Edelkamp, and Malte Helmert, editors,
ICAPS. AAAI, 2011.

[Poupart et al., 2011b] Pascal Poupart, Tobias Lang, and
Marc Toussaint. Analyzing and escaping local optima in
planning as inference for partially observable domains. In
Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba,
and Michalis Vazirgiannis, editors, ECML/PKDD (2), vol-
ume 6912 of Lecture Notes in Computer Science, pages
613–628. Springer, 2011.

[Toussaint et al., 2006] M. Toussaint, S. Harmeling, and
A. Storkey. Probabilistic inference for solving (PO)MDPs.
Technical Report EDI-INF-RR-0934, School of Informat-
ics, University of Edinburgh, 2006.

[Vlassis et al., 2012] Nikos Vlassis, Michael L. Littman, and
David Barber. On the computational complexity of
stochastic controller optimization in POMDPs. TOCT,
4(4):12, 2012.

