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Temporal Autocorrelation-Based Beamforming

with MEG Neuroimaging Data

Jian Zhang and Li Su

Abstract

Characterizing the brain source activity using Magnetoencephalography (MEG) requires

solving an ill-posed inverse problem. Most source reconstruction procedures are performed

in terms of power comparison. However, in the presence of voxel-specific noises, the direct

power analysis can be misleading due to the power distortion as suggested by our multiple

trial MEG study on a face-perception experiment. To tackle the issue, we propose a temporal

autocorrelation-based method for the above analysis. The new method improves the face-

perception analysis and identifies several differences between neuronal responses to face and

scrambled-face stimuli. By the simulated and real data analyses, we demonstrate that compared

to the existing methods, the new proposal can be more robust to voxel-specific noises without

compromising on its accuracy in source localization. We further establish the consistency for

estimating the proposed index when the number of sensors and the number of time instants are

sufficiently large. In particular, we show that the proposed procedure can make a better focus

on true sources than its precedents in terms of peak segregation coefficient.

Some key words: MEG neuroimaging; Beamforming; Temporal autocorrelations; Source localization

and reconstruction.

1 Introduction

When stimulus information is being processed and transmitted in the brain, electrical currents,

reflecting neuronal response to a stimulus, will be produced and flow through the brain because

of neuron firing, which in turn generates orthogonally oriented electromagnetic fields around them
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in accordance with Maxwell’s equations. The electrical currents are often approximated by neural

dipoles. Each dipole is determined by its location, orientation and time-varying amplitudes (called

time-courses). The magnetic fields induced by the neuronal current flow can be measured at

the scalp via non-invasive brain imaging devices such as magnetoencephalography (Hämäläinen

et al., 1993). The magnitudes of these measured fields are directly related to neuronal current

strength, allowing characterization of the amplitudes of electrical brain activity on a millisecond

time scale. There are many uses for the MEG, including assisting surgeons in localizing a pathology

and assisting researchers in determining the function of various parts of the brain, among others.

For example, Henson et al. (2011) conducted a MEG-based experiment, where a healthy young

adult undergoes a series of perception judgments on faces or scrambled faces. They aimed at

localizing brain regions for human face-perception. While MEG offers a direct measurement of

neural activity with very high temporal resolution, its spatial resolution is low, requiring to solve

an ill-posed problem of source localization in which we reconstruct source dipoles that underpin the

observed magnetic fields. The problem is challenging since the observed magnetic field could result

from an infinite number of possible neuronal dipoles. The purpose of this paper is to address the

challenge within the context of adaptive spatial filtering and to improve the analysis of the above

face-perception experiment.

Various approaches can be used to tackle the above challenge. These approaches roughly fall

into two categories, namely (spatially and temporarily) global methods and local (i.e., spatially

local but temporally global) methods. The former includes Bayesian parametric methods while

the latter takes sensor covariance-based spatial filters as special cases. The local methods can

be or not be data-adaptive. In non-adaptive settings, a regularized L2 estimator of the time-

course at each time-instance is used. Examples of non-adaptive methods include minimum-norm

estimator (Hämäläinen and Ilmoniemi, 1994) and its variations (Lin et al., 2006). They are not

data-adaptive in the sense that they can be converted to sensor covariance-based spatial filters,

where the sensor covariance matrix is estimated by a forward model alone without using the data.

The data-adaptive filters are essentially projection-based filters, where the goal is to look for a set

of weights that project the sensor data, subjected to the minimum variance constraints (van Veen et

al., 1997; Robinson and Vrba, 1998; Huang et al., 2004). By the construction, the minimum variance

beamformers are scalable to big MEG data via parallel computing, in particular when multiple

trials and multiple subjects are involved. Other advantages of the beamformer methods over global

methods include that there are no priori assumptions about the number of the underlying sources
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and that no parametric assumptions are required about background noise distributions (Friston et

al., 2006; Hillebrand et al., 2005). Minimum variance beamformers (including Linearly Constrained

Minimum Variance (LCMV) and Synthetic Aperture Magnetometry (SAM) as special cases) and

Minimum-Norm Estimator (MNE) have been widely used in source localization and implemented

in main neuroimaging software. See Sekihara and Nagarajan (2010) for a review.

Although a number of studies have shown that the minimum variance beamformers are very

useful in practice (e.g., Brookes et al., 2011), the following practically important issues remain

to be addressed. Firstly, in the face-perception MEG experiment, the sensor measurements are

often broken into distinct blocks (termed epochs), forming multiple trial data for each stimulus.

This gives rise to two different approaches to estimating the sensor covariance: (1) Using the

covariance of the average sensor measurements, where we average sensor measurements over trials

first; (2) Using the average trial covariance, where we calculate individual trial covariances first

and then average them. The applicability of these two approaches depends on types of neuronal

activities to be detected (Friston et al., 2006). Neuronal responses to stimuli can be categorized

as evoked or induced. Evoked and induced responses differ in their phase-relationships to the

stimulus. Evoked responses are phase locked to the stimulus, whereas induced responses are not.

In the presence of induced responses, the first approach suffers from loss of signals due to averaging

sensor measurements over trials as shown in the Numerical Results Section below. In this case,

one prefers to calculate individual trial covariances first and then average them. Unfortunately, the

resulting sensor covariance estimate is often contaminated by background noises, giving a spatially

blurred map of neuronal activity as shown by the first two rows of the plots in Figure 1, where

we applied the SAM procedure to a face-perception data set. The high noise level has obscured

the distinction between sources and noises on the map. Secondly, most beamforming analysis is

performed in terms of power (i.e., marginal variance of the projected MEG data) comparison.

However, the power index can miss temporal-correlation patterns of source time-courses as pointed

out by Gross et al. (2001). In the presence of strong voxel-specific noises, the power index can also

give a noise-contaminated map at scalp. Under certain regularity conditions, Zhang et al. (2014)

showed that the SAM can make an error in discriminating the true source from the noisy voxel

when the signal-to-noise ratio (SNR) is too small to be estimated accurately.

[Put Figure 1 here.]

To tackle the above issues, we need to move away our focus from a simple power analysis to

a non-power analysis. Here, we present a family of temporal autocorrelation-based beamformers
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(short for TABs) as a complement of the SAM approach, and develop the related theory. We

propose the use of Ljung-Box statistic as a tool for summarizing the temporal information at each

voxel. The Ljung-Box statistic was originally developed for measuring the deviation of a time

series from white noises (Ljung and Box, 1978). The basic premise behind the new proposal is

that any interesting source signal arising from stimulus-related neuronal activities is at least non-

white. Therefore, a good neuronal activity index should be able to capture temporal deviation

from white noises, while bypassing the interference of background noises. The proposed procedure

aims at identifying neuronal responses with high autocorrelations. We demonstrate that the pro-

posed procedure can perform favorably in terms of the focus on peaks in the face-perception MEG

data analysis. In particular, we identify several new patterns for neuronal responses to face and

scrambled-face stimuli. Simulation studies suggest that for multiple trial data, when there exist

induced responses, the average-first covariance estimation scheme can substantially deteriorate the

accuracy of beamforming. The studies also show that the proposed procedure can work very well

even for moderate numbers of sensors and time-instances when the MEG data are noisy. The

proposed approach gives better results, in terms of localization bias, compared to standard SAM,

LCMV, high-order sensor covariance-based LCMV, and depth-weighted MNE. We carry out a the-

oretical comparison of the proposed index with the SAM index in terms of estimation consistency

and segregation coefficient in the mapping, where the segregation coefficient of a neuronal activity

index at voxel r is defined as the index ratio at r and at a peak. The smaller the segregation

coefficient the better resolution (i.e., separation between sources and non-sources) is provided. Our

theoretical analysis presents a clear picture of how the spatial and temporal dimensions affect the

performance of the proposed procedure. We show that the estimation of the new index is consistent

as the numbers of sensors and time-instances, n and J are sufficiently large (say, n ≥ 90, J ≥ 500

and
√

log(n)/J ≤ 10% as demonstrated in the simulations). The large J provides a better estimate

of covariance matrix of n sensors, while the large n entails a more accurate source mapping based

on the estimated sensor covariance. The proposed index is immunized against noises as its value is

mainly determined by the SNR at each voxel. Compared to the SAM map, the new activity map

can have a better segregation coefficient in some regions of interest.

The paper is organized as follows. The details of the proposed beamformer estimation are

provided in Section 2. The simulation studies and real data applications are conducted in Section

3. A theoretical analysis of the proposed inference procedure is provided in the Appendix. The

conclusions are made in Section 4. The proofs of the theoretical results and more results on the
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simulations and the data analysis can be found in the online supplementary material.

2 Methodology

Let Yi(tj) be the measurement recorded by the MEG sensor i at time tj , andY(tj) = (Y1(tj), ..., Yn(tj))
T

be the measurements from all n sensors at time tj , where the time points tj = j/∆, 1 ≤ j ≤ J ,

the number of the time instants J = b∆ is determined by the time window b and the sampling

rate ∆ per second, and the number of the sensors n is of order hundreds. Sarvas (1987) showed

that the contribution of an individual source to Y(tj) can be numerically calculated by the use of

a Maxwell’s equation-based forward model and that the contributions of multiple sources can be

summed up linearly. Accordingly, Y(tj) can be written as

Y(tj) =

∫

Ω
x(r)β(r, tj)dr + ε(tj), (2.1)

where Ω is the source space (i.e., the space inside the brain), β(r, tj) is the source magnitude at

location r with unknown orientation η(r) and x(r) = l(r)η(r) is a linear function of the orientation

η(r) ∈ R
3 with l(r) being an n × 3 matrix (called lead field matrix) at location r. The columns

lx(r), ly(r), and lz(r) in l(r) are the noiseless output of n sensors when a unit magnitude source at

location r is directed in the directions of the x, y, and z axes respectively. The lead field matrix is

known in the sense that it can be calculated by solving a set of Maxwell’s equations (Sarvas, 1987).

To simplify model (2.1), we discretize the continuous source space by a grid {r1, ..., rp}, which is

distributed throughout the brain. We assume that the true sources are approximately located on the

sieve when the sieve is sufficiently dense (i.e., p is sufficiently large). Let β(tj) = (β1(tj), ..., βp(tj))
T

= (β(r1, tj), ..., β(rp, tj))
T be the magnitude vector of the candidate sources at {r1, ..., rp} and

{β(rk, tj) : 1 ≤ j ≤ J} the source time-course at rk, where the superscript T indicates the matrix

transpose. Letting X = (x1, ...,xp), the model (2.1) can be discretized as follows:

Y(tj) =

p
∑

k=1

xkβ(rk, tj) + ε(tj) = Xβ(tj) + ε(tj), 1 ≤ j ≤ J, (2.2)

where 1 ≤ p < ∞, ε(tj) is the background noise vector of the n sensors at time tj . The

strength of the signal in the time-course βk(·) at voxel rk is often measured by its variability

limJ→∞
∑J

j=1(βk(tj) − β̄k)
2/J (called source power), where β̄k =

∑J
j=1 βk(tj)/J is a temporal

average of time-course βk(·). In practice, the number of sensors is of order hundreds while the

number of candidate sources p, around a few thousands or more, is much larger than n. When p is
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much larger than n, the model estimation becomes challenging as there are a diverging number of

candidate models which can fit to the data.

To localize unknown sources, we propose a family of beamformers by covariance thresholding and

shrinkage, which are computed in the following two steps: We first work out a sensor autocovariance

estimate by thresholding and shrinkage, and then decompose it and calculate the neuronal activity

index. The proposed beamformers can be extended to the setting with two stimuli: we apply the

procedure to the MEG data for each stimulus, followed by calculating a log-contrast (the logarithm

of the ratio of the indices under two stimuli, a F-type statistic) at each voxel. This will create

a log-contrast map. The global peak on the map indicates where the maximum of the log-index

increase attains for one stimulus relative to the other. The details are given below.

2.1 Estimation of sensor autocovariances

The sensor autocovariance matrix is often estimated by the sample version,

Ĉ(l) = (ĉij(l)) =
1

J

J−l
∑

j=1

Y(tj)Y(tj+l)
T − ȲȲ

T
, l = 0, 1, 2, ...,

where Ȳ is the sample mean {Y(tj)}. For simplicity, we denote Ĉ = Ĉ(0). Let the time-course

βk(tj) be decomposed to two uncorrelated parts, uncontaminated time-course αk(tj) and noise

ek(tj). Then, under certain conditions, we can show that Ĉ(l) = C(l) + op(1) with

C(l) =

p
∑

k=1

γk(l)xkx
T
k + σ2

0(l)In, 0 ≤ l ≤ J0, (2.3)

where J0 is the number of lags considered with a default value of 20, In is the n × n unit matrix

and

γk(l) = lim
J→∞

J−l
∑

j=1

(αk(tj)− ᾱk)(αk(tj+l)− ᾱk)/J + σ2
e(l),

σ2
e(l) = lim

J→∞

J−l
∑

j=1

(ek(tj)− ēk)(ek(tj+l)− ēk)/J, σ2
0(l) =







σ2
0, l = 0,

0, l 6= 0

are the contaminated autocovariance of the k-th time-source at lag l, the autocovariance of the

source noises at lag l, and the autocovariance of the sensor noises at lag l respectively.

It has been known that the sample covariance is not a good estimator of the population covari-

ance if its dimension n is large or if the sample covariance is degenerate (Bickel and Levina, 2008). In

MEG neuroimaging, the sensor sample covariance matrices can be nearly singular due to collinearity
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between nearby voxels. Here, we apply the thresholding procedure of Bickel and Levina (2008) to

the sensor sample covariance Ĉ, obtaining Ĉ(0, τnJ) = (ĉij(τnJ)), where ĉij(τnJ) = ĉijI(|ĉij | ≥ τnJ)

and the threshold level τnJ is changing in n and J. Similarly, we define the thresholded autoco-

variance Ĉ(l, τnJ) for l ≥ 1. The key assumption behind covariance thresholding is that many of

off-diagonal entries are zeros and the number of nonzero off-diagonal entries is growing slowly as the

matrix dimension is increasing. It can be seen from the proof of Lemma 2 in the online supplemen-

tal material that the above choice of the thresholding level gives the optimal convergence rate of

Ĉ(0, τnJ). In the field of sensor array processing, people often adopt a shrinkage approach, i.e., by

artificially add noise to the data in order to improve the mapping (Sekihara and Nagarajan, 2010).

In light of this, like in the software FieldTrip, in our implementation, if the smallest eigenvalue

of the sample sensor covariance is too small, then the thresholded covariance may not be positive

definite. This can be corrected by adding a small amount of noise (determined by the smallest

eigenvalue of the noise covariance matrix or by the Backus-Gibert regularization) to the data (i.e.,

adding ǫ× Ip to the sample sensor covariance) after thresholding. See Huang et al. (2004) for the

details.

Although we mainly focus on the thresholding approach, for a comparison, we also consider the

optimal shrinkage covariance estimator of Ledoit and Wolf (2004), which is defined as

Ĉopt =
b2n
d2n

µnIn +
d2n − b2n

d2n
Ĉ,

where

µn =
〈

Ĉ, In

〉

, d2n =
〈

Ĉ − µnIn, Ĉ − µnIn

〉

,

b̄2n =
1

J2

J
∑

j=1

〈

YjY
T
j − Ĉ,YjY

T
j − Ĉ

〉

, b2n = min(b̄2n, d
2
n),

and the trace operator < A,B >= tr(ABT )/n for any n×n matrices A and B. The idea behind the

above shrinkage estimator is to find the optimal weighted average of the sample covariance matrix

Ĉ and the identity matrix via minimizing the expected squared loss. Under certain conditions Ĉopt

converges to the true covariance C as n tends to infinity, implying that Ĉopt can be degenerate if C

is (Ledoit and Wolf, 2004). The autocovariance of the time-course at each grid is estimated by the

autocovariance of the projected data along the weighting vector derived from the Ĉopt-based SAM.

2.2 Neuronal activity indices

We now describe the proposed beamformers in the following two steps: We first approximate the

brain space by a regular three dimensional grid and then work out a neuronal activity index at each
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grid point. The index distribution is overlaid on a structural image of the subject’s brain, creating

a brain source map.

Projection step. For any grid point r and orientation η, let l(r) be the n × 3 lead field

matrix and x = l(r)η the composite lead field vector. Given η, we derive the weighting vector

w(r)=̂w(r, η) by minimizing the projected power wT Ĉ(0, τnJ)w, subject to wTx = 1. This gives

w(r, η) = Ĉ(0, τnJ)
−1x/xT Ĉ(0, τnJ)

−1x and the estimated source time-course {w(r, η)TY(tj) : 1 ≤
j ≤ J} at r with the power 1/xT Ĉ(0, τnJ)

−1x and SAM index

SAM(r, η) =
w(r, η)T Ĉ(0, τnJ)w(r, η)

w(r, η)Tw(r, η)
,

the estimated autocovariance w(r, η)T Ĉ(l, τnJ)w(r, η), and the estimated autocorrelation at lag l

w(r, η)T Ĉ(l, τnJ)w(r, η)

w(r, η)T Ĉ(0, τnJ)w(r, η)
=

xT Ĉ(0, τnJ)
−1Ĉ(l, τnJ)Ĉ(0, τnJ)

−1x

xT Ĉ(0, τnJ)−1x
.

Finally, the optimal orientation η(r) can be estimated via maximizing the SAM index, which is

equivalent to calculating the eigenvector associated with the maximum eigenvalue of the matrix

l(r)T Ĉ(0, τnJ)
−1l(r) relative to l(r)T Ĉ(0, τnJ)

−2l(r). The above maximum eigenvalue is taken as

the value of the conventional SAM index SAMc0(r) at r.

Mapping step. The value of the TAB index at grid point r can be calculated by using the

formula

TABc0(r) = (J + 2)J

J0
∑

l=1

ρ̂(r, η(r), l)2

J − l
,

where ρ̂(r, η(r), l) is the autocorrelation at lag l, i.e.,

ρ̂(r, η(r), l) =
η(r)T l(r)T Ĉ(0, τnJ)

−1Ĉ(l, τnJ)Ĉ(0, τnJ)
−1l(r)η(r)

η(r)T l(r)T Ĉ(0, τnJ)−1l(r)η(r)
.

When r is running over the grid, TABc0(r) creates a map in the brain. The maximum peak of the

map gives a location estimator of one of latent sources and the corresponding latent time-course

at the peak can be estimated by projecting the sensor data along the optimal beamforming weight

w(r, η). We also calculate the local peaks on the transverse slices of the brain, identifying multiple

sources.

2.3 Choosing tuning constants

Note that the tuning constant J0 in the TAB index depends on the temporal structure of the

underlying time-course at each voxel. If we impose certain parametric models on time-courses,
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then the Akaike information criterion can be used to determine the optimal J0. However, the

computation would be very expensive when we run the order selection for thousands of voxels.

Here, we simply choose a large J0 so that TAB can capture temporal patterns in time-courses. For

evoked and induced response, we show by simulations that the performance of TAB is not sensitive

to the choice of J0 when J0 ≥ 20. See Figure 14 in the online supplemental material for the details.

To choose the thresholding level, we first estimate the background noise level by using the

data. In practice, the MEG imaging is often run on a subject first without stimulus and then with

stimulus. This allows us to calculate the sample covariance Ĉ for the MEG data under stimulus

as well as the sample covariance Ĉ0 for the pre-stimulus data. The latter can provide an estimator

of the background noise level σ2
0. In light of the convergence rate of the sensor covariance matrix

estimator shown in the Appendix below, we set the thresholding level τnJ = c0σ̂
2
0

√

log(n)/J with

c0 being optimized over a range of values. We threshold Ĉ by τnJ , where σ̂2
0 is the minimum

diagonal element in Ĉ0. There are other estimators for σ2
0 such as the maximum and median

diagonal elements. However, any scaling effects between these estimators will be compensated for

by the re-scaling of c0 as tnJ depends on c0 and σ̂2
0 only through their product. When c0 = 0,

the proposed covariance estimator reduces to the standard sample covariance implemented in the

software FieldTrip. To optimize c0, for each value of c0, we apply the proposed procedure to the

data and obtain the maximum SAM and TAB indices:

SAMc0 = max{SAMc0(r) : r in the grid}, TABc0 = max{TABc0(r) : r in the grid} (2.4)

In both simulations and a real data analysis, we will show that c0 ∈ D0 = {0, 0.5, 1, 1.5, 2} has

covered its useful range. We choose c0 in which the corresponding index attains maximum or

minimum, which are called ma and mi respectively. By choosing c0, ma intends to increase the

maximum index value, while mi tries to reduce source interference. In the two stimuli case, we

choose c0 in which the corresponding log-contrast attains maximum or minimum. The similar

schemes of ma and mi can be defined for other beamformers.

3 Numerical results

We begin with the following notations. For any estimator r̂ of an source location r, let the localiza-

tion bias be defined as E|r̂− r|, where |r̂− r| is the L1 distance between r̂ and r. Let the maximum

coherence between two locations r1 and r2, ρmax be defined by

ρmax(r1, r2) = max
||η1||=1,||η2||=1

(l(r1)η1)
T l(r2)η2

||l(r1)η1||| · |l(r2)η2||
,
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which is a measure of collinearity between r1 and r2. In this section, we will examine the perfor-

mance of the proposed beamformers under various scenarios by simulations and a real data analysis.

We will consider both the thresholding-based and the optimal shrinkage-based sensor covariance

estimators in calculating the neuronal activity indices for the SAM, TAB, LCMV, LCMV4 (the

LCMV based on the sensor covariance matrix of order 3) and the depth-weighted MNE with weight

||l(r)||−1 at voxel r, where ||l(r)|| is the Forbenius norm of the leads field matrix at r. See Huang

et. al (2004) and Lin et al. (2006) for the definitions of the LCMV, LCMV4 and depth-weighted

MNE procedures. In simulation studies, we will compare the TAB to the procedures SAM, LCMV,

LCMV4 and depth-weighted MNE in terms of localization biases of the peak locations to the under-

lying sources and demonstrate that the TAB is more robust to noises than the other four procedures.

We will show that the accuracy of the localization is affected by source location coherence as well

as temporal correlations between sources.

3.1 Simulated data

In the following, we will focus on finite sample scenarios with moderate values of n2
√

log(n)/J , while

a theoretical analysis will be presented for large n2
√

log(n)/J in the Appendix. By simulations,

we will answer the following questions arising in the analysis of the face-perception experiment:

1. Does the TAB procedure outperform the existing procedures when heavy noises are presented

in the data?

2. Has the TAB procedure been improved by using thresholded or shrinkage covariance estima-

tor?

3. To what extent will the performance of the proposed procedure deteriorate by source location

coherence and source correlations?

4. In the presence of induced responses, to what extent will the performance of the proposed

procedure be affected by averaging multiple trial data?

For this purpose, in the simulations we considered two head models (one was produced by a

real human subject while the other was based on a mathematical model) with different numbers of

MEG sensors and a broad range of sources. We compared the TAB to the SAM, LCMV, LCMV4

and depth-weighted MNE. We presented only the results for J = 500 and J = 1000 due to space

limitation and that the results are similar when J = 2000, 3000 and 4000. We considered four

settings as follows.
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Setting 1 (Single trial data with evoked responses): We created a 184-sensor MEG

system (CTF/VSM) using a real adult human subject head shape which was approximated by

multiple local spheres and downloaded at http://fieldtrip.fcdonders.nl/download. We constructed

2905 regular 3-D grid points of resolution 1 cm within the head. These candidate source positions

were aligned with the axes of the head coordinate system. A lead field matrix L (with dimension

184×8715) between the sensors and the grid points was then calculated by using the open software

FieldTrip.

We assumed that there were two non-zero sources θ1(t) and θ2(t) located at r1 = (5,−5, 6)T and

r2 = (5, 5, 6) in the front lobe of the brain (which is known to be important for syntactic processing)

with the dumping cosine patterns θ1(t) = η1β1(t) and θ2(t) = η2β2(t) respectively. The L1 distance

and the maximum coherence between the two sources equal to 10 and 0.2181 respectively. Here,

η1 =

(

2√
6
,
1√
6
,
1√
6

)T

, η2 = (1, 0, 0), a1 =
√
6, a2 = 8/5,

βk(t)/ak = zk(t)

+



































exp

(

−
(

t− mk

m0
− π

)2
)

×
(

1− (t−mk/m0−m0/60000)2

(1−1/m0+m0/60000)2

)

× cos
(

2πfk

(

t− mk

m0

)

− π
)

, mk

m0
≤ t ≤ 1 + (mk−1)

m0

0, Otherwise,

where m0, mk and fk are two factors related to time-shifts and frequencies of the cosine waves, and

zk(t) ∼ AR(1), i.e., zk(t) = 0.2zk(t− 1)+ e(t), {e(t)} is a source-specific (white) noise process with

mean 0 and variance 0.12. We generated a pair of time-courses for each of the following combinations

of m0, (m1,m2) and (f1, f2): (1) m0 = 250, (m1,m2) = m0 × (1/8, 1/4) and (f1, f2) = (1, 3); (2)

m0 = 250, (m1,m2) = m0 × (1/8, 1/8) and (f1, f2) = (1, 1).

Setting 2 (Single trial data with phase-locked oscillations): It is similar to Setting 1.

The details can be found in the online supplemental material.

Setting 3 (Multiple trial data with randomly phased oscillations and 91 MEG sen-

sors): Motivated by Davies-Thompson and Andrews (2011), we assumed that there were two non-

zero sources θ1(t) and θ2(t) located at the precuneus region r1 = (−5, 5, 5)T and r2 = (−4,−4, 8)

with the random-phased oscillatory patterns θ1(t) = η1β1(t) and θ2(t) = η2β2(t) respectively. We

used the same head model as in Setting 2. The L1 distance and the maximum coherence between r1

and r2 are 13 and 0.0489 respectively. The two locations have been shown to be in a face-perception
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region of the brain (Zhang et al., 2014). Here,

η1 =

(

10√
102

,
1√
102

,
1√
102

)T

, β1(t) =
√
102 cos(20tπ), 0 ≤ t ≤ 1.

η2 = (1, 0, 0)T , β2(t) = 8 cos(20tπ), 0 ≤ t ≤ 1.

Setting 4 (Three sources with 184 MEG sensors): It is similar to Setting 1. The details

can be found in the online supplemental material.

The pairs of signal curves β1(t) and β2(t) in these settings were plotted in Figure 1 in the online

supplemental material. From the left to right in each row, the plots were made for Setting 1(1),

Setting 1(2), Setting 2, Setting 3 with a single pair of randomly phased oscillatory functions, and

Setting 3 with the average of 40 randomly-phased oscillatory functions respectively. The top and

bottom rows were made for the sample rates J = 500 and J = 1000 respectively. In particular, the

last two plots in each row show that after averaging, the amplitudes of randomly-phased oscillatory

functions were reduced by 85%. Note that the temporal correlation coefficients between the paired

curves in the top row are respectively 0.066, 0.912, 1, 1, and 1 in the top row and 0.028, 0.912,

1, 1, and 1 in the bottom row. The ten scenarios can be categorized in two groups in terms of

their temporal correlation coefficients, namely, weakly temporally correlated group and strongly

temporally correlated group.

In each of Settings 1, 2 and 3, we simulated the sensor measurements at t from the model

Y (t) = l(r1)η1β1(t) + l(r2)η2β2(t) + ε(t), (3.1)

where ε(t) is the sensor noise vector. In Setting 4, the model is

Y (t) = l(r1)η1β1(t) + l(r2)η2β2(t) + l(r3)η3β3(t) + ε(t), (3.2)

The sensors were measured at the time instants tk = bk/J, k = 0, 1, 2, ..., J − 1. The signal strength

(SS) in the sensor space was defined by

SS =

√

√

√

√

∑

v

J−1
∑

k=0

||l(rv)ηvβv(tk)||2/J.

For each k, we sampled Nnk from an n-dimensional standard Normal Nnk and set ε(tk) = SS ×
Nnk/

√
SNR. We considered two values of SNR, 1/202 and 1/302 in Settings 1 and 4, 1/25 and

1/0.64 in Setting 2, and 1/102 and 1/152 in Setting 3.

In each scenario of Settings 1, 2 and 4, we generated 30 independent data sets of {Y (tk), 0 ≤
k ≤ J − 1} paired with {ε(tk), 0 ≤ k ≤ J − 1} by models (3.1) and (3.2) respectively. In Setting
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3, we generated 60 × 40 independent data sets of {Y (tk), 0 ≤ k ≤ J − 1} paired with {ε(tk), 0 ≤
k ≤ J − 1} by model (3.1), forming 60 multiple trial data sets, with 40 trials each. For the

first 30 multiple trial data sets, we estimated the sensor covariances by the strategy of calculating

individual trial covariances first, followed by an average (short for “first-covariance-then-average”).

For the remaining 30 multiple trial data sets, we estimated the sensor covariances by averaging

the sensor measurements over trials first and then calculating the covariance of the averaged data

(short for “first-average-then-covariance”). Here, we imitated a practical scenario, where the MEG

imaging was run on a subject first without stimulus and then with stimulus. The former provides

an estimator of the background noise level. The width b of time-window for sampling is 2 in Setting

1 and 1 in Settings 2, 3 and 4.

For each data set, we calculated the sample covariance Ĉ of {Y (tk), 0 ≤ k ≤ J−1} derived from

the stimulus data and the corresponding sample covariance Ĉ0 of the background noises derived

from the pre-stimulus data. Then, for each of TAB, SAM, LCMV, LCMV4 and depth-weighted

MNE, we calculated their sensor covariance estimates for each stimulus, which were indexed by

c0 = 0, 0.5, 1, 1.5, 2, sh, ma, andmi. Note that, when c0 = 0, the resulting SAM, LCMV and depth-

weighted MNE reduce to their standard versions implemented in the FieldTrip. We applied the

corresponding TAB, SAM, LCMV, LCMV4 and MNE procedures to each of the data sets, obtaining

the TAB, SAM, LCMV, LCMV4 and MNE-based maximum location estimates respectively. We

then calculated the localization biases of these maximum location estimates to the nearest true

sources over 30 data sets for these five procedures respectively. The details of the results are

displayed by the box-and-whisker plots in Figures 2 and 3 below, and in Figures 2∼13 in the online

supplemental material.

[Put Figure 2 here.]

[Put Figure 3 here.]

The results can be summarized as follows:

• The results, which are displayed in the columns 2 and 4 of Figure 3 above and also Figures 2,

5 and 11 in the online supplemental material, demonstrate that using the sensor covariance

estimators indexed by ma and sh in the TAB can offer superior source localization than

that using the conventional sample covariance estimator. Similarly, ma (or mi ) and sh

can improve the performances of the conventional sample covariance estimator-based SAM,

LCMV, LCMV4 and depth-weighted MNE. The details are omitted due to space limitations.

• The results, which are shown in the right two columns of the above figures, confirm that
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the TAB procedure can outperform the SAM, LCMV, LCMV4 and depth-weighted MNE in

terms of localization bias when the data are noisy. For instance, the first rows in Figure 2

show that compared to the SAM, the TAB can reduce the localization bias by around 85%

when the scheme ma is used and by around 75% when the scheme sh is used.

• The plots in Figures 3, 6, 8, and 12 in the online supplemental material confirm that the source

location coherence does have severe effects on localizing the true sources. For example, r2 was

masked in Settings 1(1) and 1(2), whereas r1 was masked in Settings 2 and 3. The effects of

source correlations are also visible. For instance, comparing the rows 2 and 4 in Figure 2 in

the online supplemental material, we can find that the localization biases are almost doubled

when when SNR= 1/900 and the source correlation coefficient changed from 0.066 to 0.912.

• By comparing the localization bias plots in the columns 2 and 4 in Figure 3, we reveal that

for randomly-phased multiple trial data, using the first-covariance-then-average strategy for

sensor covariance estimation in the TAB can offer a less biased localization than using the

first-average-then-covariance strategy. For instance, the plots at row 1 and column 2 and at

row 1 and column 4 in Figure 3 show that the localization biases reduced to zeros when we

changed the strategy from using the first-average-then-covariance to using the first-covariance-

then-average.

• Figure 10 in the online supplemental material demonstrates that the TAB can perform better

than the SAM, LCMV, LCMV4 and depth-weighted MNE even when adopting the first-

average-then-covariance strategy in estimating sensor covariance matrix. This is not surpris-

ing because the TAB should be better than the SAM, LCMV, LCMV4 and depth-weighted

MNE in detecting temporal deviation from background noises.

3.2 Face-perception data

We applied the proposed beamformers to six multiple trial MEG data sets acquired by Wakeman

and Henson (Henson et al., 2011). The data sets were generated by six sessions with 146, 148, 150,

147, 148, and 148 face or scrambled face trials on a single subject respectively. During each of the

trials, a healthy young adult was presented with one exemplar of two types of visual stimuli: a face

or a scrambled face. Each trial consisted of a central fixation cross (presented for a random duration

of 400 to 600 ms), followed by a face or scrambled face (presented for a random duration of 800 to

1000 ms), followed by a central circle for 1700 ms. The subject used either his/her left or right index
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finger to report whether he/she thought the stimulus was symmetrical or asymmetrical vertically

through its center. The MEG data were collected with a Neuromag VectorView system, containing

a magnetometer and two orthogonal, planar gradiometers located at each of 102 positions within a

hemispherical array situated in a light, magnetically shielded room. The sampling rate was 1100Hz.

Here, we analyzed the data from the 102 magnetometers only. We focused on identifying locations

that showed activity increases for the faces relative to the scrambled faces.

To this end, we first created a grid system of 1 cm resolution with 1487 grid points, using the

subject’s anatomical magnetic resonance imaging (MRI) data. Then, for each session we applied the

neuroimaging software SPM8 to read and preprocess the recorded data, and to epoch the data for

the face stimulus and the scrambled face stimulus respectively. This gives rise to 146, 148, 150, 147,

148, and 148 epochs (i.e.,trials) of 700ms (770 time instants) with 200ms pre-stimulus and 500ms

post-stimulus, which were corresponding to the six sessions respectively. For each of the two stimuli,

we calculated the averaged sample covariance Ĉ over the trials by using the post-stimulus data and

the corresponding averaged noise covariance Ĉ0 by using pre-stimulus data. We thresholded Ĉ by

c0σ̂
2
0

√

log(n)/J , where n = 102, J = 551, and σ̂2
0 is the minimum diagonal element in Ĉ0. We also

calculated the optimal shrinkage estimator. We reported the corresponding results to the sensor

covariance estimates indexed by the three schemes c0 = 0, ma and sh respectively.

After the pre-processing, for each session, we applied both the TAB, SAM, LCMV, LCMV4 and

depth-weighted MNE to the face data set and the scrambled face data set respectively, followed

by calculating the corresponding log-contrast for each of 1487 grid points. We interpolated and

aligned the log-contrasts with the structural MRI of the subject. We also averaged the log-index

ratios at each voxel over six sessions, interpolated and relayed them on the the structural MRI of

the subject.

Taking Session 5 as an example, to compare the results derived from these procedures, we

plotted the log-contrasts for each procedure on 20 traverse slices of the brain and on the three

orthogonal slices through the peak location (i.e. maximum location estimate) in Figure 1. The

plots for other sessions can be found in the online supplementary material. The plots in Figure 1

show a clear distinction between the SAM map (the first two rows) and the TAB map (the last

two rows): The SAM gives rise to a blurred neuronal activity map due to contamination from

noises, whereas the TAB produces a clean and more sensible neuronal activity map. The SAM

attains the peak at the CTF coordinates (−4.05,−3.95,−0.05)cm, while the TAB attained the

peak at the CTF coordinates (−1.05, 5.95, 4.05)cm. The TAB highlights much less activated areas
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(with light yellow colored) than does the SAM (with heavily yellow colored), suggesting a large

part of the activated areas derived from the SAM may be artifacts generated by voxel-specified

noises as their temporal auto-correlations are low. This agrees with the theoretical analysis in the

next section. The SAM-derived global peak has failed in identifying a meaning location as the

location (−4.05,−3.95,−0.05)cm is located in the cerebellum and not close to any known face-

perception regions in the brain. In contrast, the TAB peak location (−1.05, 5.95, 4.05)cm is in

the fusiform face area (FFA) which is well-known to be a face-perception region. The LCMV4 is

able to provide a focused map whereas the standard LCMV and depth-weighted MNE give slightly

smeared maps. A similar phenomenon was observed in the median-nerve MEG response by Huang

et al. (2004). However, unlike the TAB, the LCMV4 may achieve its focus at the cost of its

accuracy in terms of localization bias as implied by our simulations. See Figure 2. The plots

in Figures 17,19,21,23,25,26 in the online supplemental material show that the thresholding and

shrinkage schemes perform similarly. So we focus only on the thresholding-based procedures below.

To reveal the types of the estimated sources, in Figures 30∼35 in the online supplemental material,

we further estimated and plotted the time-courses at the first four local peaks by projecting the

sensor measurements along the optimal beamforming vectors for the ma-based SAM and TAB

respectively. The TAB revealed that two evoked response patterns are different from those shown

by the SAM. For example, for Session 5, at the location (−1.05, 6.95, 4.05)cm, the estimated time-

course for the scrambled face is almost flat, whereas the one for the face has a dumping S-pattern

in the time interval (100, 200). In particular, the TAB identified a monotone response patterns at

location (7, 3, 3)cm. The time-courses derived from LCMV, LCMV4 and MNE are not presented

here due to space limitations.

Similar conclusions can also be made for the other sessions by use of Table 1 below and its

extension in the online supplemental material. Interestingly, Table 1 shows that the peak locations

are varying across the sessions, due to a session-specific random effect. There are two possible

explanations for the aforementioned phenomenon: (1) There might be a dynamic network in the

brain for face-perception. Only part of it would appear in each session; (2) There might be a

so-called habituation effect for the brain processing the stimuli, i.e. in the first time when you saw

a face, the brain responded in one way, but in the second, the third or the forth times, as you

have seen the same face before, your brain lost interests and therefore responded differently. So

there was a non-stationary response pattern over time, which increased the variance over sessions.

However, the voxels unrelated to the network showed the same (low) level of variability over time.
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Table 1: The peak locations and face-perception regions they belong to for the six runs and for

the averaged log-index over the six runs. TABma and SAMma denote the TAB and the SAM

when the thresholding scheme ma is used. By N/A we mean that the location is not close to any

face-selective regions.

SAMma TABma

Sess. Loc.(cm) Reg. Loc.(cm) Reg.

1 (-0.05, 5.95,6.05) PCu (-5.45, 4.45,1.95) close to OFA

2 (-5.05,5.45,6.05) PCu (-5.05,0.95,4.95) OFA

3 (7.05,2.45,1.55) N/A (7.95,-0.05,3.95) N/A

4 (-2.95,-6.35,6.05) N/A (-6.95,2.05,6.95) PCu

5 (-4.05,-3.95,-0.05) N/A (-1.05,5.95,4.05) FFA

6 (6.05,5.45,2.55) N/A (4.45,3.05,0.55) AMG

average (-6.95,2.05,7.05) PCu (-6.95,2.05,7.05) PCu

Neuropsychological evidences supported that the face-perception process can involve multiple

face-selective regions in human cortex such as the FFA, the occipital face area (OFA), the superior

temporal sulcus (STS), the precuneus (PCu), and the amygdala (AMG) (e.g., Davies-Thompson

and Andrews, 2011). The process proceeds via a series of stages in which the OFA computes an

early structural description of a face while higher-level face-selective regions such as the FFA and

the anterior temporal lobe compute the invariant aspects of a face. From Table 1, we note that

most of the peak locations derived from the TAB procedure are in one of these regions, whereas

most of the peak locations derived from the SAM are not close to these regions. This indicates that

the TAB can be a very useful tool to improve the SAM-based beamforming in practice. Compared

to Henson et al. (2011), we revealed several more locations with different responses to the face and

the scrambled face stimuli, reflecting the neuropsychological fact that there is a dynamic network

in the brain for the face-perception (Luckhoo et al., 2012).

4 Discussion and conclusion

We have proposed a family of beamformers for inverting electromagnetic models and detecting

temporally auto-correlated sources in MEG. These beamformers are local methods in the spatial
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domain but not in the temporal domain. The proposed neuronal activity index is different from

a source stability index proposed by Hymers et al. (2010), in which one needs to randomly split

the source-courses into two data sets each containing half the epochs. One performs beamforming

on each data set and then checks the consistency of the results derived from the two data sets.

Compared to the existing one, the new index is much easier for a theoretical analysis as it has

skipped the random splitting step. The proposed beamformers are based on the thresholded sensor

covariance estimator optimized over grid points c0σ̂
2
0

√

log(n)/J , c0 = 0, 0.5, 1, 1, 1.5, 2. These points

are derived from the asymptotic theory. In Figures 15 and 16 in the online supplemental material,

we have demonstrated that arbitrary chosen but dense grids perform very similar to and sometimes

worse than the scheme max. This is because the grid points in max is chosen under the guidance

of the theory.

In a standard beamforming analysis, active sources are often constrained to remain the same

over the short time interval of interest (Gramfort et al., 2013). Here, to detect the evoked and

induced responses, we have restricted our analysis in a short period. The implicit assumption

is that the source are stationary in the analysis period. While this assumption is reasonable for

the face-perception experiment, it is not a good model for non-stationary settings where multiple

transient sources activate sequentially or simultaneously during a long time interval. In these

settings, a varying index in time and frequency is required (Gramfort et al., 2013).

We have examined the performance of the proposed procedure by simulations and a real data

analysis. We have also investigated the theoretical behavior of the proposed procedure in the

Appendix below. We have showed that the index estimation is consistent. Compared to its prece-

dents, the proposed procedure has several advantages: It is more robust to voxel-specific noises,

has a better segregation coefficient, can help reduce source localization bias, and is scalable to big

MEG data. Our simulation studies have indicated that the proposed procedure can outperform

the standard SAM, LCMV, high-order covariance-based procedure LCMV4, and depth-weighted

MNE when the data are noisy. In particular, we have shown by using real MEG data sets that

the proposed procedure can be a powerful tool for analyzing multiple trial MEG data. The main

strength of TAB over traditional approaches lies in its robustness to background noises and its

accuracy in detecting true sources. Unlike TAB, LCMV4 can be significantly biased to artifacts

although it is robust to background noises.

There is a limitation in our theoretical analysis, where we assume the underlying sources are

uncorrelated. Extending the current theory to a general setting along the lines discussed in Sekihara
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and Nagarajan (2010) is possible but very tedious. It is beyond the scope of the current paper.

The proposed methodology can be used to generate a F -type test for locations in the brain

that segregates two stimulus conditions. The conventional way to estimate the null distributions

is to shuffle two stimulus conditions randomly to generate a few hundred permuted data sets.

We then apply the proposed procedure to each of them, calculating the corresponding permuted

log-contrast at each location in the brain. At each location, we count the percentage of times

that the permuted log-contrasts are larger than or equal to the observed log-contrast, which can be

taken as the estimated p-values of these F -type tests. Taking Session 5 in the above face-perception

experiment as an example, we obtained 500 permuted data sets by performing the Matlab command

”randperm” on the stimuli of 148 trials. We applied the TAB procedure to these permuted data

sets, obtaining an estimated P-value at each grid point. For instance, the estimated P-values at the

first five peaks on the TAB map are 0.062, 0.072, 0.024, 0.114 and 0.044 respectively. To highlight

the significant (1−P )-values, we thresholded them by 0.9 and overlaid them on the anatomical MRI

scan of the brain in Figure 36 in the online supplemental material. The maximum (1 − P )-value

0.973 (thus the minimum P-value 0.017) attained at the location with CTF (−0.95, 4.95, 1.55)cm

in the FFA region. An open issue with the permutation-derived null distribution is that it may

be substantially biased when the face and scrambled face data were not drawn from the same

distribution. This hampers multiple testing adjusting.

The proposed procedure can be thought as performing non-orthogonal principal component de-

composition on the sensor covariance matrix by exploiting the second order structure of the sample

covariance space. If the sample covariance space is highly nonlinear itself, then neither orthogonal

principal component analysis (PCA) nor non-orthogonal PCA is useful. However, the concept of

non-linear component decompositions such as independent component analysis (Hyvärinen et al.,

2001) can be modified to meet the challenge.

Finally, we note that the source localization problem has arisen from other scientific research

areas, including biomedicine, radar, sonar, and geophysics. See Morris et al. (2011), Minsley et al.

(2007), and the references therein. The proposed procedure can be applicable to these areas after

slight modifications.

Appendix: Theoretical analysis

In this Appendix, we present a theoretical analysis for the proposed beamformers when both n and

J are large enough. Here, allowing n to tend to infinity is just an analytic device for finding the
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spatial factors that affect the performances of the proposed beamformers. We assume that there are

q(≤ p) unknown true sources among p candidate sources in model (2.2). We aim at screening for

the true sources from the candidate sources by using the TAB. To make the model (2.2) identifiable,

we assume the following condition:

(A1) The source processes β(·) are temporally uncorrelated with the noise process ε(t). The

trends α(·) are temporally uncorrelated with the noise process e(·) and the limits of
∑J

j=1(αk(tj)−
ᾱk)

2/J and
∑J−l

j=1(ek(tj) − ēk)(ek(tj+l) − ēk)/J exist in probability as J → ∞. The source time-

courses at different voxels are asymptotically uncorrelated with each others. That is, for any fixed

J0, as J → ∞,

J−l
∑

j=1

(ε(tj)− ε̄)(β(tj+l)− β̄)T /J = op(1), 0 ≤ l ≤ J0,

J−l
∑

j=1

(βk1(tj)− β̄k1)(βk2(tj+l)− β̄k2)
T /J = op(1), k1 6= k2, 0 ≤ l ≤ J0,

J−l
∑

j=1

(e(tj)− ē)(α(tj+l)− ᾱ)T /J = op(1), 0 ≤ l ≤ J0,

and limJ→∞
∑J

j=1(βk(tj)− β̄k)
2/J exists in probability. Note that Sekihara and Nagarajan (2010)

gave a heuristic discussion on the performance of the SAM when the second equation doesn’t hold.

We proceed in the following two steps. First, we consider the ideal situation where the sen-

sor autocovariance matrices are known. Then, we investigate the asymptotic performance of the

beamformer when the sensor autocovariance matrices are estimated based on the sensor mea-

surements at J time instants. To simplify the derivation, we reparametrize the model (2.2) as

in Zhang et al. (2014). For the notation simplicity, we still let xk and βk(·) stand for the

lead field vector and the time-course after the reparametrization. Both the SAM index and the

TAB index are invariant under this reparametrization. For any A ⊆ 1 : p = {1, 2, ..., p}, define
CA(l) =

∑

k∈A xkx
T
k γk(l) + σ2

0(l)In, C[−j] =
∑

k 6=j xkx
T
k γk(l) + σ2

0(l)In. Let Ck(l) denote C1:k(l).

Beamforming with known sensor autocovariances

When the sensor processes are observed over an infinite number of time instants, under the as-

sumption (A1) the sensor autocovariance matrix Cp(l), 1 ≤ l ≤ h can be fully recovered. In this

ideal situation, we perform beamforming directly on Cp(l), 1 ≤ l ≤ J0 and then reconstruct the

unknown sources by using the equation (2.3). For this purpose, for any grid point r in the brain,

let x = x(r, η) denote
√
nl(r)η/||l(r)η||, the composite lead field vector at r with orientation η. For
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any two locations r and r1, define ρ(x(r, η),x1) = x(r, η)Tx1/n = 1− ||x(r, η)− x1||2/(2n), which
measures how close (r, η) is to (r1, η1). In fact, we can show that

||x(r, η)− x1||2/(2n) ≤ 1− ρ(x(r, η),x1)
2 ≤ ||x(r, η)− x1||2/n,

where ||x(r, η)−x1||2/n is the average of the squared coordinate Euclidean-distances between x(r, η)

and x1. Let ρ(x,x1,y) = ρ(x,y) − ρ(x,x1)ρ(x1,x2) and LT(r) denote the theoretical TAB index

at the voxel r

LT(r) = J(J + 2)

J0
∑

l=1

1

J − l

(

γr(l)

γr

)2

,

where γr(l) denotes the autocovariance function at r, γr = γr(0) and set γr(l)/γr = 0 when γr = 0.

Note that γr(l), l ≥ 1 are not affected by voxel-specific noises and that under condition (A1), power

γr can be written as the uncontaminated power γr0 plus the voxel-specific noise level σ2
e . We have

γr(l)

γr
=

γr(l)/σ
2
e

1 + γr0/σ2
e

,

which implies that LT(r) depends on the voxel-specific SNR γr0/σ
2
e and that LT(r) tends to zero

when σ2
e is very large. This is in contrast to the SAM index, where the SAM index will tend to

infinity when σ2
e tends to infinity. In the following, to make the sources identifiable, we assume

that

(A2): For any r 6= r1, l(r) and l(r1) are linearly independent in the sense that for any orientations

η and η1 and non-zero constant c1 with max{||l(r)η||, ||l(r1)η1||} 6= 0, we have l(r)η 6= c1l(r1)η1.

Single source

We first investigate the single source case (q = 1), in which a single source of non-zero power is

located at r1 with orientation η1. Note that in this setting LT(r) = 0 when r 6= r1. The following

result shows that when the sensor covariance is known, the TAB-based source map can accurately

recover the true source location and orientation, and the index estimation is consistent. In addition,

the TAB-based map has a smaller segregation coefficient than does the SAM when n is sufficiently

large.

Proposition 1 Under Conditions (A1) and (A2), TAB(r) attains the maximum uniquely at r1

and tends to zero in a rate of (n(1− ρ(x(r, η(r)),x1)
2))−2 for r 6= r1. And for r = r1,

TAB(r1)

LT(r1)
=

1
(

1 + σ2
0/(nγ1)

)2 = 1− 2σ2
0

nγ1
+O(1/n2),
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when n is large enough. Furthermore, the segregation coefficient at location r admits

TAB(r)

TAB(r1)
=

ρ(x(r, η(r)),x1)
4

(

1 + σ−2
0 γ1n(1− ρ(x(r, η(r)),x1)2)

)2 .

Remark 1 When n(1 − ρ(x(r, η(r)),x1)
2) is large, the segregation coefficient at r has the rate of

O
(

(n(1− ρ(x(r, η(r)),x1)
2))−2

)

. Note that Zhang et al. (2014) showed that the SAM index also

attains the maximum at the true source location r1 with the segregation coefficient at location r,

SAM(r)

SAM(r1)
=

1 + γ1σ
−2
0 n(1− ρ(x(r, η(r)),x1)

2)

1 + (2 + γ1σ
−2
0 n)γ1σ

−2
0 n(1− ρ(x(r, η(r)),x1)2)

.

In particular, when n(1 − ρ(x(r, η(r)),x1)
2) is large, the corresponding segregation coefficient has

the rate of O(1/n). Therefore, the TAB-based map can outperform the SAM in segregating the true

source r1 from r when n(1− ρ(x(r, η(r)),x1)
2) is large enough. Furthermore, the SAM map is less

smoother than the TAB map in terms of their full width half maximums (Barnes and Hillebrand,

2003). In fact, the full width half maximums (FWHMs) around r1 for the SAM and the TAB can

be respectively calculated by solving the equations SAM(r)/SAM(r1) = 1/2 and TAB(r)/TAB(r1) =

1/2, which are equivalent to solving

n(1− ρ(x(r, η(r)),x1)
2) =

σ4
0

nγ21
, n(1− ρ(x(r, η(r)),x1)

2) =

√
2− 1

γ1/σ2
0 +

√
2/n

respectively. This proves that the SAM has a much smaller FWHM than does the TAB if we note

that n(1− ρ(x(r, η(r)),x1)
2) is the squared distance between x(r, η(r)) and x1.

Multiple sources

We assume that there exist q unknown sources located at rk, 1 ≤ k ≤ q with orientations ηk, 1 ≤ k ≤
q respectively. We investigate the case where the underlying source locations are asymptotically

separated in the so-called lead field distance. Let x and y denote the composite lead field vectors

at locations rx and ry with orientation ηx and ηy respectively. Let ρj1j2 = ρ(xj1 ,xj2). We define the

notations of partial correlations of sources ayx|k, byx|k, cyx|k, 1 ≤ k ≤ q in the online supplemental

material and introduce a regularity condition for identifying the underlying sources below.

For any 1 ≤ j ≤ q, we rearrange the sequences (x1, γ1), ..., (xq, γq) into a new order, namely

(x1, γ1), ..., (xj−1, γj−1), (xj+1, γj+1), ..., (xq, γq), (xj , γj) and re-calculate the corresponding values

of aqq|(q−1) and bqq|(q−1) for this new sequence. These two new values are denoted by ajj|[−j] and

bjj|[−j] respectively. When a(k+1)(k+1)|k’s are positive, ajj|[−j] is also positive. We call ajj|[−j] the cor-

relation factor of the j-th source with the remaining sources. Let anq = nmin1≤k≤q−1 a(k+1)(k+1)|k.

22



We say that the source locations (and orientations) are asymptotically separable if they satisfy

the condition

(A3): anq → ∞ and byx|q = O(1) for x and y in the grid, as n → ∞.

It follows from the definition that byx|q = O(1) if max2≤k≤q akx|(k−1)/akk|(k−1) = O(1) and

max2≤k≤q ayk|(k−1)/akk|(k−1) = O(1) (i.e., given {x1, ...,xk−1}, the partial regression coefficients of

x and y with respect to xk are bounded). In particular, if max2≤k≤q akk|(k−1) is bounded below

from zero as n tends to infinity, then the above partial regression coefficients are bounded and thus

byx|q = O(1). Let km = 0 if anq → ∞ and km = min{1 ≤ k ≤ p − 1 : na(k+1)(k+1)|k = O(1)}
if anq = O(1). Under assumption (A3), we can show that cjj|q, 1 ≤ j ≤ q are bounded by the

definition.

Imposing the condition that anq → ∞ as n → ∞ is equivalent to say that for any λ > 0, the

maximum partial coherence of xk, 1 ≤ k ≤ p is bounded above by 1− λ/n for a large n. Note that

if anq → ∞, then all a(k+1)(k+1)|k are positive when n is large enough. Therefore, xk, 1 ≤ k ≤ q

are linearly independent for a large n because the inverse of the matrix (ρj1j2) can be obtained by

iteratively performing sweep operations (q − 1) times on the matrix. See Goodnight (1979).

The following theorem shows that if max1≤j≤q max2≤k≤q akj|(k−1)/akk|(k−1) = O(1) (i.e., the

partial regression coefficients of {xj} are bounded), then anq → ∞ is sufficient for the theoretical

TAB index to be consistently estimated. In particular, the estimation biases are of order (anq)
−1.

We now describe our general mapping theorem as follows.

Theorem 1 Under assumption (A3), for 1 ≤ j ≤ q, the TAB index admits

TAB(rj)

LT(rj)
= 1 +

2γjcjj|q

n
+O(a−2

nq ).

In particular, when q = 2, we have

TAB(rj)

LT(rj)
= 1− 2σ2

0

γjn(1− ρ(x1,x2)2)
+O

(

σ4
0

(n(1− ρ(x1,x2)2))2

)

.

For any voxel rx, if LT(rx) = 0, then TAB(rx) = 0. Otherwise, if naxx|q → ∞ (i.e., x is asymptot-

ically separable from the true sources), then

TAB(rx) = J(J + 2)

J0
∑

l=1

1

J − l

(

q
∑

k=1

γk(l)
b2kx|q

naxx|q

)2

×
{

1 +
2

n

(

2
∑q

k=1 γk(l)bkx|qckx|q
∑q

k=1 γk(l)b
2
kx|q

−
bxx|q

axx|q

)

+O
(

a−2
nq

)

}

.
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And the segregation coefficient at rx with respect to {rj : 1 ≤ j ≤ q},

max
1≤j≤q

TAB(rx)

TAB(rj)
= O

(

(naxx|q)
−2
)

.

Remark 2 The above theorem indicates that the proposed index estimation is consistent with

the underlying index when n is large enough and can have a better segregation coefficient when

minj na
2
xx|q/ajj|q → ∞ as n → ∞. The last point follows from the fact that under assumption (A3),

SAM(r)

SAM(rj)
=

σ2
0

nγjajj|[−j]

(

1 +
1

n

(

bxx|q −
σ2
0(1 + 2γjbjj|[−j])

γjajj|[−j]

)

+O(a−2
nq )

)

= O
(

(najj|q)
−1
)

.

See Zhang et al.(2014).

Beamforming with estimated sensor autocovariances

To derive a convergence result for Ĉq(l) as both n and J tend to infinity, we reformulate the model

2.2) as

Yi(t) = φi(t) + zi(t), φi(t) =

q
∑

k=1

xikαk(t), zi(t) =

q
∑

k=1

xikek(t) + εi(t).

By the definition, we have E[zi(t)] = 0. Let F0
−∞ = σ(z(t) : 0 ≤ t ≤ 0) and F∞

k = σ(z(t) : t ≥ k).

Define the mixing coefficient a(k) = supA∈F0

−∞
,B∈F∞

k
|P (A)P (B)− P (A ∩B)|. We need to impose

more regurality conditions on the above model as follows.

(A4): For 1 ≤ i ≤ n, zi(t) is stationary and ergodic. There exist positive constants κ1 and τ1

such that for any u > 0,

max
1≤i≤n

P (||zi(t)|| > u) ≤ exp(1− τ1u
κ1).

(A5): For k ≥ 0, a(k) ≤ exp(−τ2k
τ2).

(A6): max1≤i≤q supt≥0 |αi(t)| < ∞. limJ→∞
1
J

∑J
j=1 α(tj) exists and

1

J

J−l
∑

j=1

(φ(tj)− φ̄)(φ(tj+l)− φ̄)T = Xdiag(γα1
(l), ..., γαq(l))X

T +O
(

n
√

log(n)/J
)

.

Conditions (A4) and (A5) are required to prove the uniform ergodic results for zi(t) and

zi(t)zj(t). Condition (A6) can be verified when we take φi(t) as a trajectory sampled from a

stationary process similar to the processes zi(t), 1 ≤ i ≤ n.

In the following theorem, we let γr(l) and γr denote the autocovariance function and variance

at voxel r respectively. We provide a convergence result for the estimation of the TAB index as

follows. The result can be straightforwardly extended to the index-ratio.
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Theorem 2 Under conditions (A1)∼(A6), if n2
√

log(n)/J → 0, then for 1 ≤ j ≤ q,

TAB(rj)/LT(rj) = 1 +Op

(

1/n+ a−2
nq + n2

√

log(n)/J
)

as n and J tend to infinity. For voxel rx with naxx|q → ∞,

TAB(r)/J = Op

(

1/n+ (naxx|q)
−2 + n2

√

log(n)/J
)

.
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Figure 1: Neuronal activity maps with the face-perception data in session 5: The plots of the log-contrasts

between the faces and scrambled faces on three orthogonal slices through the global peak locations and on

20 transverse slices under the scheme of sensor covariance estimation indexed by ma. The rows 1 and 2,

3 and 4, 5 and 6, 7 and 8, and 9 and 10 are for the SAM, LCMV, LCMV4, depth-weighted MNE, and

TAB respectively. In each subplot, the scale of the log-contrasts between the faces and scrambled faces

are normalized to their maximum value and the log-contrasts have been thresholded by zero below. The

highlighted yellow colored areas show neuronal activity increases for the faces relative to the scrambled faces.

All the subplots are overlaid on the anatomical MRI scan of the brain.
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Figure 2: Setting 1 (Comparison of the TAB to the other procedures when J = 1000): Two sources are

located at CTF coordinates (5,−5, 6)T cm and (5, 5, 6)T cm respectively with temporal correlation 0.066 in

Setting 1(1) and 0.912 in Setting 1(2). The first four rows show the box-and-whisker plots of the global peak-

derived minimum localization bias differences, say TAB-SAM, TAB-LCMV, TAB-LCMV4 and TAB-MNE

against the sensor covariance estimates indexed by c0 = 0, 0.5, 1, 1.5, 2, sh, ma, and mi for the combinations

of n = 184, SNR= 1/202, 1/302, and J = 1000 respectively in Setting 1(1). The remaining four rows are for

Setting 1(2). The red colored lines in the boxes are the medians. Note that the optimal shrinkage sensor

covariance estimate is indexed by “sh”. The negative values of the differences indicate that the TAB can

achieve less localization biases than its competitors.
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Figure 3: Setting 3 (TAB performances under two schemes of handling multiple trial data): Two sources

are located at CTF coordinates (3,−1, 4)T cm and (−5, 2, 6)T cm respectively with temporal correlation

1. Comparison of the performances of the TAB under two schemes of handling multiple trial data, one is

averaging sensor measurements first and the other is calculating individual sensor covariances first and then

averaging them. The left and right two columns are for the first scheme and the second scheme respectively.

The rows show, from the left to right, the box-and-whisker plots of the TAB index values and the TAB

global peak-derived minimum localization biases to the underlying two sources against the sensor covariance

estimates used indexed by c0 = 0, 0.5, 1, 1.5, 2, sh, ma, and mi for the combinations of n = 91, the number of

trials is 40, SNR= 1/102, 1/152, and J = 500, 1000 respectively. The read colored lines in the boxes are the

medians. Comparing the left two columns to the right two columns, we can see that the localization biases

will increase if we perform the TAB on average sensor measurements in the presence of randomly-phased

oscillatory signals. This is due to that averaging randomly phased sensor measurements may reduce the

signal-to-noise ratios of the sources in the data.
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